The present disclosure relates generally to molecular electronics, and more particularly to molecular layers formed using Langmuir-Blodgett methods.
Molecular devices having two electrodes (for example, a bottom electrode and a top electrode) and a molecular switching layer or film at the junction of the two electrodes are known. Such devices may be useful, for example, in the fabrication of devices based on electrical switching, such as molecular wire crossbar interconnects for signal routing and communications, molecular wire crossbar memory, molecular wire crossbar logic employing programmable logic arrays, multiplexers or demultiplexers for molecular wire crossbar networks, molecular wire transistors, and the like. Such devices may further be useful, for example, in the fabrication of devices based on optical switching, such as displays, electronic books, rewritable media, electrically tunable optical lenses, electrically controlled tinting for windows and mirrors, optical crossbar switches (for example, for routing signals from one of many incoming channels to one of many outgoing channels), and the like.
Typically, the molecular switching layer or film has an organic molecule that, in the presence of an electrical (E) field, switches between two or more energetic states, such as by an electro-chemical oxidation or reduction (redox) reaction or by a change in the band gap of the molecule induced by the applied E-field.
It is important to form a good electrical contact between the electrode and the molecular switching layer in order to fabricate operative molecular devices. Molecules with special chemical end groups are able to form direct chemical bonds with metal or semiconductor electrodes to form a self-assembled monolayer (SAM), which may have a good electrical contact with an electrode(s). However, this self-assembled molecular layer formed on the surface of the electrode may generally be prone to a high density of defects. If a second electrode is formed on the molecular layer, then an electrical short may occur between the first and second electrode through the defects in the self-assembled molecular layer.
The formation of Langmuir-Blodgett (LB) layers or films employing switching molecules has been attempted because such layers or films are generally much denser than SAM films. Further, LB layers or films have relatively low defect densities compared to SAM films. However, it has proven to be a significant challenge to effectively bond LB films to the electrode substrate. As such, if the LB film is not sufficiently bonded to the electrode(s), then poor electrical contact may result.
As such, there is a need for providing a high density molecular switching layer on an electrode(s), which layer also bonds well with the electrode.
A molecule for Langmuir-Blodgett (LB) deposition of a molecular layer is disclosed. The molecule includes at least one switching moiety, a hydrophilicity-modifiable connecting group attached to one end of the moiety, and a hydrophilicity-non-modifiable connecting group attached to the other end of the moiety. The hydrophilicity-modifiable connecting group is transformable to a temporary end group upon adjustment in pH of the aqueous environment containing the molecule. The temporary end group is more hydrophilic than the hydrophilicity-modifiable connecting group and the hydrophilicity-non-modifiable connecting group. The difference in hydrophilicity between the temporary end group and the hydrophilicity-non-modifiable connecting group causes formation of a substantially well-oriented, uniform LB film at a solvent surface.
Objects, features and advantages will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though not necessarily identical components. For the sake of brevity, reference numerals having a previously described function may not necessarily be described in connection with subsequent drawings in which they appear.
Embodiments of the present invention advantageously use a novel concept of hydrophilicity modification. This concept takes advantage of the advantageous qualities of self-assembly techniques (e.g. good electrical contact due to chemical bonding) and Langmuir-Blodgett (LB) deposition (e.g. low defect density). The concept further substantially eliminates problems that may in some instances be associated with both methods. The method according to embodiments of the present invention provides a good Langmuir-Blodgett film(s), orienting the connecting groups at the ends of the molecule forming the film(s), such that chemical bonding and the formation of good electrical contact with the crossbar electrodes at either end of the molecule is promoted (described in further detail below, also for example with reference to
Referring now to
There are generally two primary methods of operating such switches 10, depending on the nature of the switch molecules 18. The molecular switching layer 16 includes a switch molecule 18 (for example, an organic molecule) that, in the presence of an electrical (E) field, switches between two or more energetic states, such as by an electrochemical oxidation or reduction (redox) reaction or by a change in the band gap of the molecule induced by the applied E-field.
In the former case, when an appropriate voltage is applied across the wires 12, 14, the switch molecules RS are either oxidized or reduced. When a molecule is oxidized (reduced), then a second species is reduced (oxidized) so that charge is balanced. These two species are then called a redox pair. One example of this device would be for one molecule to be reduced, and then a second molecule (the other half of the redox pair) would be oxidized. In another example, a molecule is reduced, and one of the wires 12, 14 is oxidized. In a third example, a molecule is oxidized, and one of the wires 12, 14 is reduced. In a fourth example, one wire 12, 14 is oxidized, and an oxide associated with the other wire 14, 12 is reduced. In such cases, oxidation or reduction may affect the tunneling distance or the tunneling barrier height between the two wires, thereby exponentially altering the rate of charge transport across the wire junction, and serving as the basis for a switch. Examples of molecules 18 that exhibit such redox behavior include rotaxanes, pseudo-rotaxanes, and catenanes; see, e.g., U.S. Pat. No. 6,459,095, entitled “Chemically Synthesized and Assembled Electronic Devices”, issued Oct. 1, 2002, to James R. Heath et al, the disclosure of which is incorporated herein by reference in its entirety.
Further, the wires 12, 14 may be modulation-doped by coating their surfaces with appropriate molecules—either electron-withdrawing groups (Lewis acids, such as boron trifluoride (BF3)) or electron-donating groups (Lewis bases, such as alkylamines) to make them p-type or n-type conductors, respectively.
In the latter case, examples of molecule 18 based on field induced changes include E-field induced band gap changes, such as disclosed and claimed in patent application Ser. No. 09/823,195, filed Mar. 29, 2001, published as Publication No. 2002/0176276 on Nov. 28, 2002, which application is incorporated herein by reference in its entirety. Examples of molecules used in the E-field induced band gap change approach include molecules that evidence molecular conformation change or an isomerization; change of extended conjugation via chemical bonding change to change the band gap; or molecular folding or stretching.
Changing of extended conjugation via chemical bonding change to change the band gap may be accomplished in one of the following ways: charge separation or recombination accompanied by increasing or decreasing band localization; or change of extended conjugation via charge separation or recombination and π-bond breaking or formation.
The formation of micrometer scale and nanometer scale crossed wire switches 10 uses either a reduction-oxidation (redox) reaction to form an electrochemical cell or uses E-field induced band gap changes to form molecular switches. In either case, the molecular switches typically have two states, and may be either irreversibly switched from a first state to a second state or reversibly switched from a first state to a second state. In the latter case, there are two possible conditions: either the electric field may be removed after switching into a given state, and the molecule will remain in that state (“latched”) until a reverse field is applied to switch the molecule back to its previous state; or removal of the electric field causes the molecule to revert to its previous state, and hence the field must be maintained in order to keep the molecule in the switched state until it is desired to switch the molecule to its previous state.
Color switch molecular analogs, particularly based on E-field induced band gap changes, are also known; see, e.g., U.S. application Ser. No. 09/844,862, filed Apr. 27, 2001.
Referring now to
In an embodiment of the present invention, the molecule 18 is an organic molecule, and the molecular switching moiety 26 is an optically switchable molecular functional unit or an electrically switchable molecular functional unit. It is to be understood that the switching moiety 26 may be any suitable moiety, however, in an embodiment, the moiety 26 includes at least one of saturated hydrocarbons, unsaturated hydrocarbons, substituted hydrocarbons, heterocyclic systems, organometallic complex systems, or mixtures thereof.
In an embodiment, the switching moiety 26 is a moiety that, in the presence of an electric field, undergoes at least one of oxidation or reduction, and/or experiences a band gap change. In one embodiment, the switching moiety 26 undergoes at least one of oxidation or reduction and is at least one of rotaxanes, pseudo-rotaxanes, catenanes, and mixtures thereof. An example of a switching moiety 26 that undergoes a band gap change in the presence of an external electrical field is described in U.S. Pat. No. 6,674,932 granted to Zhang et al. on Jan. 6, 2004, the specification of which is incorporated herein by reference in its entirety.
It is to be understood that any suitable hydrophilicity-non-modifiable connecting group (HNSCG) 28 may be used as desired or necessitated by a particular end use. In an embodiment of the present invention, the hydrophilicity-non-modifiable connecting group (HNSCG) 28 is at least one of multivalent hetero atoms selected from the group consisting of C, N, O, S, and P; functional groups containing the hetero atoms and selected from the group consisting of SH, OH, SiCl3, NH, and PH; saturated hydrocarbons; unsaturated hydrocarbons; substituted hydrocarbons; heterocyclic compounds; carboxylic acids; derivatives thereof (non-limitative examples of which include carboxylic esters, amides, nitrites, or the like); and mixtures thereof.
In a further embodiment of the present invention, the hydrophilicity-non-modifiable connecting group (HNSCG) 28 functional groups are at least one of S-alkyl, S-aryl, S—S-alkyl, S—S-aryl, S-acyl, O-aryl, O-alkyl, O-acyl, NH2, NH-alkyl, NH-aryl, NH-acyl, N-(alkyl)2, N-(aryl)2, N-(alkyl)(aryl), PH2, PH-alkyl, PH-aryl, PH-acyl, P-(alkyl)2, P-(aryl)2, P-(alkyl)(aryl), and mixtures thereof.
It is to be understood that any suitable hydrophilicity-modifiable connecting group (HSCG) 30 may be used as desired or necessitated by a particular end use. In an embodiment of the present invention, the hydrophilicity-modifiable connecting group (HSCG) 30 is at least one of multivalent hetero atoms selected from the group consisting of C, N, O, S, and P; functional groups containing the hetero atoms and selected from the group consisting of SH, OH, SiCl3, NH, and PH; saturated hydrocarbons; unsaturated hydrocarbons; substituted hydrocarbons; heterocyclic compounds; carboxylic acids; derivatives thereof; and mixtures thereof.
In a further embodiment of the present invention, the hydrophilicity-modifiable connecting group (HSCG) 30 functional groups are at least one of NH2, NH-alkyl, NH-aryl, N-(alkyl)2, N-(aryl)2, N-(alkyl)(aryl), PH2, PH-alkyl, PH-aryl, P-(alkyl)2, P-(aryl)2, P-(alkyl)(aryl), pyridine, and mixtures thereof.
Referring now to
Referring now to
The pH of the aqueous environment is then re-adjusted so as to transform the temporary end group 32 back to the hydrophilicity-modifiable connecting group 30, as shown in
Embodiments of the present invention are advantageously suitable for fabricating molecular devices with molecules containing two or more substantially asymmetric, connecting end-groups 28, 30. In an embodiment, it is desirable that both of the connecting end-groups 28, 30 be capable of forming good electrical contact with electrodes 38, 40 (as shown in
In an embodiment, one of the hydrophilicity-modifiable connecting group 30 or the hydrophilicity-non-modifiable connecting group 28 is a connecting unit between the organic molecule 18 and the substrate (38, 40, 42 as shown in
The method of the embodiment outlined above will be discussed in more detail herein. The hydrophilicity of one of the end groups 30 may be modified by changing the pH of the aqueous environment, for example the subphase of an LB trough, within a range under which the other end group 28 of the molecule 18 remains inert. This change in hydrophilicity of the one end group 30 is due to the formation of a temporary end group 32 following the pH adjustment. It is to be understood that the temporary end group 32 may be any suitable end group. However, in an embodiment, the temporary end group 32 is an ion pair (IPEG) 32. It is to be further understood that the ion pair 32 may be any suitable ion pair. A non-limitative example of such an ion pair 32 is H+X−, wherein X— is at least one of Br−, Cl−, I−, CH3CO2−, HCO2−, NO3−, H2PO4−, HPO42−, HSO4−, SO42−, other organic acids, or mixtures thereof.
The conversion of the one end-group 30 to an ion pair 32 makes it more hydrophilic than the inert end-group 28, causing the molecule to orient itself such that the ion pair (temporary end group) 32 preferentially resides at the solvent/water interface 34 of the LB trough. After forming this film, the pH of the subphase in the LB trough is then carefully readjusted. The pH change converts the ion pair 32 at the solvent-air interface 34 back to the original reactive end-group 30 for a subsequent bonding reaction with the metal electrodes 38, 40.
It is to be understood that any solvent suitable for an LB process may be used. In an embodiment, the solvent is water, organic solvents, or mixtures thereof. Suitable organic solvents include, but are not limited to chloroform, dichloromethane, benzene, toluene, ethyl acetate, hexane, pentane, heptane, ethyl ether, or the like.
In carrying out embodiments of the method, it is desirable to consider the following guidelines. The hydrophilicity-modifiable connecting group (HSCG) 30 may be sensitive to pH changes; whereas the hydrophilicity-non-modifiable connecting group (HNSCG) 28 may be substantially inert to pH change. It would be desirable that both the hydrophilicity-modifiable connecting group (HSCG) 30 and the hydrophilicity-non-modifiable connecting group (HNSCG) 28 be reactive enough to react with a noble metal electrode substrate to form a stable chemical bond. It would be desirable that both the hydrophilicity-modifiable connecting group (HSCG) 30 and the hydrophilicity-non-modifiable connecting group (HNSCG) 28 be substantially hydrophobic, but soluble in selected organic solvents. It is desirable that the molecular switching moiety (MD) 26 be stable to pH change and substantially hydrophobic. Further, the LB process and thin film transfer may desirably be carried out in a substantially inert atmosphere to aid in preventing the highly reactive connecting end-groups 28, 30 from being deleteriously affected or destroyed by oxidation.
A non-limitative embodiment is shown in
After carefully adjusting the pH of the water solution in the LB trough, an ion pair H+X− is formed at the pyridine end-group 32. The formation of the ion pair H+X− greatly enhances the hydrophilicity of the pyridine end-group 32, tethering it more strongly to the air-water interface than the S—COR end-group 28, thereby resulting in a preferential orientation of the molecules 18 that helps to form a good, substantially uniform LB thin film.
After this good, substantially uniform thin film is formed in the LB trough, the pH environment of the LB trough is carefully readjusted. The pH change converts the ion pair H+X− back to the non-protonated pyridine end-group 30 that is able to chemically bond with metal electrodes (not shown in
A further non-limitative embodiment is shown in
The —OSi(CH3)2R group is an example of a trialkyl silyl type of hydrophobic temporary protecting group 36 (one non-limitative example of a temporary protecting group 36) generated by treating —OH with (CH3)2RSiCl under a mild base condition (Et3N) to form a mono-capped molecule (see
It is to be understood that R in the temporary protecting group 36 may be any suitable alkyl group, including, but not limited to, —CH3, —C2H5, —C3H7, —C4H9, —C5H11, —C6H13, —C7H15, —C8H17, —C9H19, —C10H21, —C11H23, substituted hydrocarbons (e.g. —(CH2)n—Ar; —(CH2)n-Het; where n>0, the —Ar may be any suitable aromatic hydrocarbon, and the Het may be any suitable heterocyclic system; or the like), or combinations thereof. A generic representation of a trialkyl silyl type of temporary protecting group 36 is —OSiR1R2R3. It is to be understood that the R1, R2, R3 may each be the same type of alkyl group, may each be a different alkyl group, or may be any combination of similar and different alkyl groups. The non-limitative examples of R groups listed above may also serve as suitable non-limitative examples of R1, R2, R3 groups.
The temporary protecting group 36 may also advantageously aid in orienting the molecule 18 such that the temporary protecting group 36 remains in the air, and the ion pair end group 32 remains at the water/solvent interface 34.
Referring now to FIGS. 5A(IV) and 5A(V), the highly water-soluble X−NH3+ ion pair may be selectively reconverted back to —NH2 by carefully readjusting the pH of the water phase to basic (for example, a pH greater than about 10) with a sodium hydroxide (NaOH) solution after the thin film is formed.
In any of the embodiments described herein, there are at least two non-limitative embodiments for constructing crossbar devices 10 with good electrical contact. A first embodiment, direct linking to the electrode substrate, may be desirable if the end-group 30 is reactive enough to form a chemical bond quickly with the bottom electrode 38 (it is to be understood that an annealing at a mild elevated temperature under an inert environment may be advantageous in order to facilitate the solid-solid interaction).
In this first embodiment, the L-B thin film (
A second non-limitative embodiment for constructing crossbar devices 10 with good electrical contact may be desirable if the end-group 30 is not reactive enough toward the electrode substrate 38 in the bonding reaction among the solid-solid interface. In this second embodiment, the LB thin film (
It is to be understood that non-electrode solid substrate 42 may be formed from any suitable material, including but not limited to at least one of inorganic materials (e.g. glass, silicon, metal oxides (e.g. silicon oxides, aluminum oxides, etc.) and the like), organic materials (e.g. polycarbonates and the like), or combinations thereof.
An embodiment of a crossed wire molecular device 10 includes a plurality of bottom electrodes 38, a plurality of top electrodes 40 crossing the bottom electrodes 38 at a non-zero angle, and a molecular layer formed from a plurality of organic molecules 18, each of the molecules 18 having at least one molecular switching moiety 26. The molecular layer is operatively disposed in at least one junction formed where one electrode 38, 40 crosses another electrode 40, 38. A non-limitative embodiment of a method of forming the crossed wire molecular device 10 is as follows. The pH of the aqueous environment is adjusted as described hereinabove in a manner sufficient to transform the hydrophilicity-modifiable connecting group 30 to a temporary end group 32. A Langmuir-Blodgett (LB) film of the molecule 18 is formed on the solvent/water interface 34. The pH is re-adjusted in a manner sufficient to transform the temporary end group 32 back to the hydrophilicity-modifiable connecting group 30. Each of the plurality of bottom electrodes 38 is passed through the Langmuir-Blodgett film to form the molecular layer chemically bonded, via the hydrophilicity-modifiable connecting group 30, on a surface of the bottom electrode 38. The method may further include forming one of the plurality of top electrodes 40, crossing the one of the plurality of bottom electrodes 38 at the non-zero angle, thereby forming the junction therebetween. The molecular layer is thereby chemically bonded, via the hydrophilicity-non-modifiable connecting group 28, on a surface of the top electrode.
While several embodiments have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.