Molecules having pesticidal utility, and intermediates, compositions, and processes, related thereto

Information

  • Patent Grant
  • 9661854
  • Patent Number
    9,661,854
  • Date Filed
    Thursday, September 1, 2016
    8 years ago
  • Date Issued
    Tuesday, May 30, 2017
    7 years ago
Abstract
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
Description
FIELD OF THIS DISCLOSURE

This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides.


BACKGROUND OF THIS DISCLOSURE

“Many of the most dangerous human diseases are transmitted by insect vectors” (Rivero et al.). “Historically, malaria, dengue, yellow fever, plague, filariasis, louse-borne typhus, trypanomiasis, leishmaniasis, and other vector borne diseases were responsible for more human disease and death in the 17th through the early 20th centuries than all other causes combined” (Gubler). Vector-borne diseases are responsible for about 17% of the global parasitic and infectious diseases. Malaria alone causes over 800,000 deaths a year, 85% of which occur in children under five years of age. Each year there are about 50 to about 100 million cases of dengue fever. A further 250,000 to 500,000 cases of dengue hemorrhagic fever occur each year (Matthews). Vector control plays a critical role in the prevention and control of infectious diseases. However, insecticide resistance, including resistance to multiple insecticides, has arisen in all insect species that are major vectors of human diseases (Rivero et al.). Recently, more than 550 arthropod species have developed resistance to at least one pesticide (Whalon et al.). Furthermore, the cases of insect resistance continue to exceed by far the number of cases of herbicide and fungicide resistance (Sparks et al.).


Each year insects, plant pathogens, and weeds, destroy more than 40% of all food production. This loss occurs despite the application of pesticides and the use of a wide array of non-chemical controls, such as, crop rotations, and biological controls. If just some of this food could be saved, it could be used to feed the more than three billion people in the world who are malnourished (Pimental).


Plant parasitic nematodes are among the most widespread pests, and are frequently one of the most insidious and costly. It has been estimated that losses attributable to nematodes are from about 9% in developed countries to about 15% in undeveloped countries. However, in the United States of America a survey of 35 States on various crops indicated nematode-derived losses of up to 25% (Nicol et al.).


It is noted that gastropods (slugs and snails) are pests of less economic importance than other arthropods or nematodes, but in certain places, they may reduce yields substantially, severely affecting the quality of harvested products, as well as, transmitting human, animal, and plant diseases. While only a few dozen species of gastropods are serious regional pests, a handful of species are important pests on a worldwide scale. In particular, gastropods affect a wide variety of agricultural and horticultural crops, such as, arable, pastoral, and fiber crops; vegetables; bush and tree fruits; herbs; and ornamentals (Speiser).


Termites cause damage to all types of private and public structures, as well as to agricultural and forestry resources. In 2005, it was estimated that termites cause over US$50 billion in damage worldwide each year (Korb).


Consequently, for many reasons, including those mentioned above, there is an on-going need for the costly (estimated to be about US$256 million per pesticide in 2010), time-consuming (on average about 10 years per pesticide), and difficult, development of new pesticides (CropLife America).


CERTAIN REFERENCES CITED IN THIS DISCLOSURE



  • CropLife America, The Cost of New Agrochemical Product Discovery, Development & Registration, and Research & Development predictions for the Future, 2010.

  • Drewes, M., Tietjen, K., Sparks, T. C., High-Throughput Screening in Agrochemical Research, Modern Methods in Crop Protection Research, Part I, Methods for the Design and Optimization of New Active Ingredients, Edited by Jeschke, P., Kramer, W., Schirmer, U., and Matthias W., p. 1-20, 2012.

  • Gubler, D., Resurgent Vector-Borne Diseases as a Global Health Problem, Emerging Infectious Diseases, Vol. 4, No. 3, p. 442-450, 1998.

  • Korb, J., Termites, Current Biology, Vol. 17, No. 23, 2007.

  • Matthews, G., Integrated Vector Management: Controlling Vectors of Malaria and Other Insect Vector Borne Diseases, Ch. 1, p. 1, 2011.

  • Nicol, J., Turner S., Coyne, L., den Nijs, L., Hocksland, L., Tahna-Maafi, Z., Current Nematode Threats to World Agriculture, Genomic and Molecular Genetics of Plant—Nematode Interactions, p. 21-43, 2011.

  • Pimental, D., Pest Control in World Agriculture, Agricultural Sciences—Vol. II, 2009.

  • Rivero, A., Vezilier, 3., Weill, M., Read, A., Gandon, S., Insect Control of Vector-Borne Diseases: When is Insect Resistance a Problem? Public Library of Science Pathogens, Vol. 6, No. 8, p. 1-9, 2010.

  • Sparks T. C., Nauen R., IRAC: Mode of action classification and insecticide resistance management, Pesticide Biochemistry and Physiology (2014) available online 4 Dec. 2014.

  • Speiser, B., Molluscicides, Encyclopedia of Pest Management, Ch. 219, p. 506-508, 2002.

  • Whalon, M., Mota-Sanchez, D., Hollingworth, R., Analysis of Global Pesticide Resistance in Arthropods, Global Pesticide Resistance in Arthropods, Ch. 1, p. 5-33, 2008.



DEFINITIONS USED IN THIS DISCLOSURE

The examples given in these definitions are generally non-exhaustive and must not be construed as limiting this disclosure. It is understood that a substituent should comply with chemical bonding rules and steric compatibility constraints in relation to the particular molecule to which it is attached. These definitions are only to be used for the purposes of this disclosure.


The phrase “active ingredient” means a material having activity useful in controlling pests, and/or that is useful in helping other materials have better activity in controlling pests, examples of such materials include, but are not limited to, acaricides, algicides, antifeedants, avicides, bactericides, bird repellents, chemosterilants, fungicides, herbicide safeners, herbicides, insect attractants, insect repellents, insecticides, mammal repellents, mating disrupters, molluscicides, nematicides, plant activators, plant growth regulators, rodenticides, synergists, and virucides (see alanwood.net). Specific examples of such materials include, but are not limited to, the materials listed in active ingredient group alpha.


The phrase “active ingredient group alpha” (hereafter “AIGA”) means collectively the following materials:


(1) (3-ethoxypropyl)mercury bromide, 1,2-dibromoethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,3-dichloropropene, 1-MCP, 1-methylcyclopropene, 1-naphthol, 2-(octylthio)ethanol, 2,3,3-TPA, 2,3,5-tri-iodobenzoic acid, 2,3,6-TBA, 2,4,5-T, 2,4,5-TB, 2,4,5-TP, 2,4-D, 2,4-DB, 2,4-DEB, 2,4-DEP, 2,4-DES, 2,4-DP, 2,4-MCPA, 2,4-MCPB, 2iP, 2-methoxyethylmercury chloride, 2-phenylphenol, 3,4-DA, 3,4-DB, 3,4-DP, 3,6-dichloropicolinic acid, 4-aminopyridine, 4-CPA, 4-CPB, 4-CPP, 4-hydroxyphenethyl alcohol, 8-hydroxyquinoline sulfate, 8-phenylmercurioxyquinoline, abamectin, abamectin-aminomethyl, abscisic acid, ACC, acephate, acequinocyl, acetamiprid, acethion, acetochlor, acetofenate, acetophos, acetoprole, acibenzolar, acifluorfen, aclonifen, ACN, acrep, acrinathrin, acrolein, acrylonitrile, acypetacs, afidopyropen, afoxolaner, alachlor, alanap, alanycarb, albendazole, aldicarb, aldicarb sulfone, aldimorph, aldoxycarb, aldrin, allethrin, allicin, allidochlor, allosamidin, alloxydim, allyl alcohol, allyxycarb, alorac, alpha-cypermethrin, alpha-endosulfan, alphamethrin, altretamine, aluminium phosphide, aluminum phosphide, ametoctradin, ametridione, ametryn, ametryne, amibuzin, amicarbazone, amicarthiazol, amidithion, amidoflumet, amidosulfuron, aminocarb, aminocyclopyrachlor, aminopyralid, aminotriazole, amiprofos-methyl, amiprophos, amiprophos-methyl, amisulbrom, amiton, amitraz, amitrole, ammonium sulfamate, amobam, amorphous silica gel, amorphous silicon dioxide, ampropylfos, AMS, anabasine, ancymidol, anilazine, anilofos, anisuron, anthraquinone, antu, apholate, aramite, arprocarb, arsenous oxide, asomate, aspirin, asulam, athidathion, atraton, atrazine, aureofungin, avermectin B1, AVG, aviglycine, azaconazole, azadirachtin, azafenidin, azamethiphos, azidithion, azimsulfuron, azinphosethyl, azinphos-ethyl, azinphosmethyl, azinphos-methyl, aziprotryn, aziprotryne, azithiram, azobenzene, azocyclotin, azothoate, azoxystrobin, bachmedesh, barban, barbanate, barium hexafluorosilicate, barium polysulfide, barium silicofluoride, barthrin, basic copper carbonate, basic copper chloride, basic copper sulfate, BCPC, beflubutamid, benalaxyl, benalaxyl-M, benazolin, bencarbazone, benclothiaz, bendaqingbingzhi, bendiocarb, bendioxide, benefin, benfluralin, benfuracarb, benfuresate, benmihuangcaoan, benodanil, benomyl, benoxacor, benoxafos, benquinox, bensulfuron, bensulide, bensultap, bentaluron, bentazon, bentazone, benthiavalicarb, benthiazole, benthiocarb, bentranil, benzadox, benzalkonium chloride, benzamacril, benzamizole, benzamorf, benzene hexachloride, benzfendizone, benzimine, benzipram, benzobicyclon, benzoepin, benzofenap, benzofluor, benzohydroxamic acid, benzomate, benzophosphate, benzothiadiazole, benzovindiflupyr, benzoximate, benzoylprop, benzthiazuron, benzuocaotong, benzyl benzoate, benzyladenine, berberine, beta-cyfluthrin, beta-cypermethrin, bethoxazin, BHC, bialaphos, bicyclopyrone, bifenazate, bifenox, bifenthrin, bifujunzhi, bilanafos, binapacryl, bingqingxiao, bioallethrin, bioethanomethrin, biopermethrin, bioresmethrin, biphenyl, bisazir, bismerthiazol, bismerthiazol-copper, bisphenylmercury methylenedi(x-naphthalene-y-sulphonate), bispyribac, bistrifluron, bisultap, bitertanol, bithionol, bixafen, blasticidin-S, borax, Bordeaux mixture, boric acid, boscalid, BPPS, brassinolide, brassinolide-ethyl, brevicomin, brodifacoum, brofenprox, brofenvalerate, broflanilide, brofluthrinate, bromacil, bromadiolone, bromchlophos, bromethalin, bromethrin, bromfenvinfos, bromoacetamide, bromobonil, bromobutide, bromociclen, bromocyclen, bromo-DDT, bromofenoxim, bromofos, bromomethane, bromophos, bromophos-ethyl, bromopropylate, bromothalonil, bromoxynil, brompyrazon, bromuconazole, bronopol, BRP, BTH, bucarpolate, bufencarb, buminafos, bupirimate, buprofezin, Burgundy mixture, busulfan, busulphan, butacarb, butachlor, butafenacil, butam, butamifos, butane-fipronil, butathiofos, butenachlor, butene-fipronil, butethrin, buthidazole, buthiobate, buthiuron, butifos, butocarboxim, butonate, butopyronoxyl, butoxycarboxim, butralin, butrizol, butroxydim, buturon, butylamine, butylate, butylchlorophos, butylene-fipronil, cacodylic acid, cadusafos, cafenstrole, calciferol, calcium arsenate, calcium chlorate, calcium cyanamide, calcium cyanide, calcium polysulfide, calvinphos, cambendichlor, camphechlor, camphor, captafol, captan, carbam, carbamorph, carbanolate, carbaril, carbaryl, carbasulam, carbathion, carbendazim, carbendazol, carbetamide, carbofenotion, carbofuran, carbon disulfide, carbon tetrachloride, carbonyl sulfide, carbophenothion, carbophos, carbosulfan, carboxazole, carboxide, carboxin, carfentrazone, carpropamid, cartap, carvacrol, carvone, CAVP, CDAA, CDEA, CDEC, cellocidin, CEPC, ceralure, cerenox, cevadilla, Cheshunt mixture, chinalphos, chinalphos-methyl, chinomethionat, chinomethionate, chiralaxyl, chitosan, chlobenthiazone, chlomethoxyfen, chloralose, chloramben, chloramine phosphorus, chloramphenicol, chloraniformethan, chloranil, chloranocryl, chlorantraniliprole, chlorazifop, chlorazine, chlorbenside, chlorbenzuron, chlorbicyclen, chlorbromuron, chlorbufam, chlordane, chlordecone, chlordimeform, chlorempenthrin, chloretazate, chlorethephon, chlorethoxyfos, chloreturon, chlorfenac, chlorfenapyr, chlorfenazole, chlorfenethol, chlorfenidim, chlorfenprop, chlorfenson, chlorfensulphide, chlorfenvinphos, chlorfenvinphos-methyl, chlorfluazuron, chlorflurazole, chlorflurecol, chlorfluren, chlorflurenol, chloridazon, chlorimuron, chlorinate, chlor-IPC, chlormephos, chlormequat, chlormesulone, chlormethoxynil, chlornidine, chlornitrofen, chloroacetic acid, chlorobenzilate, chlorodinitronaphthalenes, chlorofenizon, chloroform, chloromebuform, chloromethiuron, chloroneb, chlorophacinone, chlorophos, chloropicrin, chloropon, chloroprallethrin, chloropropylate, chlorothalonil, chlorotoluron, chloroxifenidim, chloroxuron, chloroxynil, chlorphonium, chlorphoxim, chlorprazophos, chlorprocarb, chlorpropham, chlorpyrifos, chlorpyrifos-methyl, chlorquinox, chlorsulfuron, chlorthal, chlorthiamid, chlorthiophos, chlortoluron, chlozolinate, chltosan, cholecalciferol, choline chloride, chromafenozide, cicloheximide, cimectacarb, cimetacarb, cinerin I, cinerin II, cinerins, cinidon-ethyl, cinmethylin, cinosulfuron, cintofen, ciobutide, cisanilide, cismethrin, clacyfos, clefoxydim, clenpirin, clenpyrin, clethodim, climbazole, cliodinate, clodinafop, cloethocarb, clofencet, clofenotane, clofentezine, clofenvinfos, clofibric acid, clofop, clomazone, clomeprop, clonitralid, cloprop, cloproxydim, clopyralid, cloquintocet, cloransulam, closantel, clothianidin, clotrimazole, cloxyfonac, cloxylacon, clozylacon, CMA, CMMP, CMP, CMU, codlelure, colecalciferol, colophonate, copper 8-quinolinolate, copper acetate, copper acetoarsenite, copper arsenate, copper carbonate, basic, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper silicate, copper sulfate, copper sulfate, basic, copper zinc chromate, coumachlor, coumafene, coumafos, coumafuryl, coumaphos, coumatetralyl, coumethoxystrobin, coumithoate, coumoxystrobin, CPMC, CPMF, CPPC, credazine, cresol, cresylic acid, crimidine, crotamiton, crotoxyfos, crotoxyphos, crufomate, cryolite, cue-lure, cufraneb, cumyleron, cumyluron, cuprobam, cuprous oxide, curcumenol, CVMP, cyanamide, cyanatryn, cyanazine, cyanofenphos, cyanogen, cyanophos, cyanthoate, cyantraniliprole, cyanuric acid, cyazofamid, cybutryne, cyclafuramid, cyclanilide, cyclaniliprole, cyclethrin, cycloate, cycloheximide, cycloprate, cycloprothrin, cyclopyrimorate, cyclosulfamuron, cycloxydim, cycluron, cyenopyrafen, cyflufenamid, cyflumetofen, cyfluthrin, cyhalodiamide, cyhalofop, cyhalothrin, cyhexatin, cymiazole, cymoxanil, cyometrinil, cypendazole, cypermethrin, cyperquat, cyphenothrin, cyprazine, cyprazole, cyproconazole, cyprodinil, cyprofuram, cypromid, cyprosulfamide, cyromazine, cythioate, cytrex, daimuron, dalapon, daminozide, dayoutong, dazomet, DBCP, d-camphor, DCB, DCIP, DCPA (Japan), DCPA (USA), DCPTA, DCU, DDD, DDPP, DDT, DDVP, debacarb, decafentin, decamethrin, decarbofuran, deet, dehydroacetic acid, deiquat, delachlor, delnav, deltamethrin, demephion, demephion-O, demephion-S, demeton, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-S-methyl, demeton-S-methyl sulphone, demeton-S-methylsulphon, DEP, depallthrine, derris, desmedipham, desmetryn, desmetryne, d-fanshiluquebingjuzhi, diafenthiuron, dialifor, dialifos, diallate, di-allate, diamidafos, dianat, diatomaceous earth, diatomite, diazinon, dibrom, dibutyl phthalate, dibutyl succinate, dicamba, dicapthon, dichlobenil, dichlobentiazox, dichlofenthion, dichlofluanid, dichlone, dichloralurea, dichlorbenzuron, dichlorfenidim, dichlorflurecol, dichlorflurenol, dichlormate, dichlormid, dichloromethane, dichlorophen, dichlorprop, dichlorprop-P, dichlorvos, dichlozolin, dichlozoline, diclobutrazol, diclocymet, diclofop, diclomezine, dicloran, dicloromezotiaz, diclosulam, dicofol, dicophane, dicoumarol, dicresyl, dicrotophos, dicryl, dicumarol, dicyclanil, dicyclonon, dieldrin, dienochlor, diethamquat, diethatyl, diethion, diethion, diethofencarb, dietholate, diethon, diethyl pyrocarbonate, diethyltoluamide, difenacoum, difenoconazole, difenopenten, difenoxuron, difenzoquat, difethialone, diflovidazin, diflubenzuron, diflufenican, diflufenicanil, diflufenzopyr, diflumetorim, dikegulac, dilor, dimatif, dimefluthrin, dimefox, dimefuron, dimehypo, dimepiperate, dimetachlone, dimetan, dimethacarb, dimethachlone, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethirimol, dimethoate, dimethomorph, dimethrin, dimethyl carbate, dimethyl disulfide, dimethyl phthalate, dimethylvinphos, dimetilan, dimexano, dimidazon, dimoxystrobin, dimpylate, dimuron, dinex, dingjunezuo, diniconazole, diniconazole-M, dinitramine, dinitrophenols, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinofenate, dinopenton, dinoprop, dinosam, dinoseb, dinosulfon, dinotefuran, dinoterb, dinoterbon, diofenolan, dioxabenzofos, dioxacarb, dioxathion, dioxation, diphacin, diphacinone, diphenadione, diphenamid, diphenamide, diphenyl sulfone, diphenylamine, diphenylsulphide, diprogulic acid, dipropalin, dipropetryn, dipterex, dipymetitrone, dipyrithione, diquat, disodium tetraborate, disosultap, disparlure, disugran, disul, disulfiram, disulfoton, ditalimfos, dithianon, dithicrofos, dithioether, dithiometon, dithiopyr, diuron, dixanthogen, d-limonene, DMDS, DMPA, DNOC, dodemorph, dodicin, dodine, dofenapyn, doguadine, dominicalure, doramectin, DPC, drazoxolon, DSMA, d-trans-allethrin, d-trans-resmethrin, dufulin, dymron, EBEP, EBP, ebufos, ecdysterone, echlomezol, EDB, EDC, EDDP, edifenphos, eglinazine, emamectin, EMPC, empenthrin, enadenine, endosulfan, endothal, endothall, endothion, endrin, enestroburin, enilconazole, enoxastrobin, ephirsulfonate, EPN, epocholeone, epofenonane, epoxiconazole, eprinomectin, epronaz, epsilon-metofluthrin, epsilon-momfluorothrin, EPTC, erbon, ergocalciferol, erlujixiancaoan, esdepallthrine, esfenvalerate, ESP, esprocarb, etacelasil, etaconazole, etaphos, etem, ethaboxam, ethachlor, ethalfluralin, ethametsulfuron, ethaprochlor, ethephon, ethidimuron, ethiofencarb, ethiolate, ethion, ethiozin, ethiprole, ethirimol, ethoate-methyl, ethobenzanid, ethofumesate, ethohexadiol, ethoprop, ethoprophos, ethoxyfen, ethoxyquin, ethoxysulfuron, ethychlozate, ethyl formate, ethyl pyrophosphate, ethylan, ethyl-DDD, ethylene, ethylene dibromide, ethylene dichloride, ethylene oxide, ethylicin, ethylmercury 2,3-dihydroxypropyl mercaptide, ethylmercury acetate, ethylmercury bromide, ethylmercury chloride, ethylmercury phosphate, etinofen, ETM, etnipromid, etobenzanid, etofenprox, etoxazole, etridiazole, etrimfos, etrimphos, eugenol, EXD, famoxadone, famphur, fenac, fenamidone, fenaminosulf, fenaminstrobin, fenamiphos, fenapanil, fenarimol, fenasulam, fenazaflor, fenazaquin, fenbuconazole, fenbutatin oxide, fenchlorazole, fenchlorphos, fenclofos, fenclorim, fenethacarb, fenfluthrin, fenfuram, fenhexamid, fenidin, fenitropan, fenitrothion, fenizon, fenjuntong, fenobucarb, fenolovo, fenoprop, fenothiocarb, fenoxacrim, fenoxanil, fenoxaprop, fenoxaprop-P, fenoxasulfone, fenoxycarb, fenpiclonil, fenpirithrin, fenpropathrin, fenpropidin, fenpropimorph, fenpyrazamine, fenpyroximate, fenquinotrione, fenridazon, fenson, fensulfothion, fenteracol, fenthiaprop, fenthion, fenthion-ethyl, fentiaprop, fentin, fentrazamide, fentrifanil, fenuron, fenuron-TCA, fenvalerate, ferbam, ferimzone, ferric phosphate, ferrous sulfate, fipronil, flamprop, flamprop-M, flazasulfuron, flocoumafen, flometoquin, flonicamid, florasulam, florpyrauxifen, fluacrypyrim, fluazaindolizine, fluazifop, fluazifop-P, fluazinam, fluazolate, fluazuron, flubendiamide, flubenzimine, flubrocythrinate, flucarbazone, flucetosulfuron, fluchloralin, flucofuron, flucycloxuron, flucythrinate, fludioxonil, fluenethyl, fluenetil, fluensulfone, flufenacet, flufenerim, flufenican, flufenoxuron, flufenoxystrobin, flufenprox, flufenpyr, flufenzine, flufiprole, fluhexafon, flumethrin, flumetover, flumetralin, flumetsulam, flumezin, flumiclorac, flumioxazin, flumipropyn, flumorph, fluometuron, fluopicolide, fluopyram, fluorbenside, fluoridamid, fluoroacetamide, fluoroacetic acid, fluorochloridone, fluorodifen, fluoroglycofen, fluoroimide, fluoromide, fluoromidine, fluoronitrofen, fluoroxypyr, fluothiuron, fluotrimazole, fluoxastrobin, flupoxam, flupropacil, flupropadine, flupropanate, flupyradifurone, flupyrsulfuron, fluquinconazole, fluralaner, flurazole, flurecol, flurenol, fluridone, flurochloridone, fluromidine, fluroxypyr, flurprimidol, flursulamid, flurtamone, flusilazole, flusulfamide, flutenzine, fluthiacet, fluthiamide, flutianil, flutolanil, flutriafol, fluvalinate, fluxametamide, fluxapyroxad, fluxofenim, folpel, folpet, fomesafen, fonofos, foramsulfuron, forchlorfenuron, formaldehyde, formetanate, formothion, formparanate, fosamine, fosetyl, fosmethilan, fospirate, fosthiazate, fosthietan, frontalin, fthalide, fuberidazole, fucaojing, fucaomi, fujunmanzhi, fulumi, fumarin, funaihecaoling, fuphenthiourea, furalane, furalaxyl, furamethrin, furametpyr, furan tebufenozide, furathiocarb, furcarbanil, furconazole, furconazole-cis, furethrin, furfural, furilazole, furmecyclox, furophanate, furyloxyfen, gamma-BHC, gamma-cyhalothrin, gamma-HCH, genit, gibberellic acid, gibberellin A3, gibberellins, gliftor, glitor, glucochloralose, glufosinate, glufosinate-P, glyodin, glyoxime, glyphosate, glyphosine, gossyplure, grandlure, griseofulvin, guanoctine, guazatine, halacrinate, halauxifen, halfenprox, halofenozide, halosafen, halosulfuron, haloxydine, haloxyfop, haloxyfop-P, haloxyfop-R, HCA, HCB, HCH, hemel, hempa, HEOD, heptachlor, heptafluthrin, heptenophos, heptopargil, herbimycin, herbimycin A, heterophos, hexachlor, hexachloran, hexachloroacetone, hexachlorobenzene, hexachlorobutadiene, hexachlorophene, hexaconazole, hexaflumuron, hexafluoramin, hexaflurate, hexalure, hexamide, hexazinone, hexylthiofos, hexythiazox, HHDN, holosulf, homobrassinolide, huancaiwo, huanchongjing, huangcaoling, huanjunzuo, hydramethylnon, hydrargaphen, hydrated lime, hydrogen cyanamide, hydrogen cyanide, hydroprene, hydroxyisoxazole, hymexazol, hyquincarb, IAA, IBA, IBP, icaridin, imazalil, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, imibenconazole, imicyafos, imidacloprid, imidaclothiz, iminoctadine, imiprothrin, inabenfide, indanofan, indaziflam, indoxacarb, inezin, infusorial earth, iodobonil, iodocarb, iodofenphos, iodomethane, iodosulfuron, iofensulfuron, ioxynil, ipazine, IPC, ipconazole, ipfencarbazone, ipfentrifluconazole, iprobenfos, iprodione, iprovalicarb, iprymidam, ipsdienol, ipsenol, IPSP, IPX, isamidofos, isazofos, isobenzan, isocarbamid, isocarbamide, isocarbophos, isocil, isodrin, isofenphos, isofenphos-methyl, isofetamid, isolan, isomethiozin, isonoruron, isopamphos, isopolinate, isoprocarb, isoprocil, isopropalin, isopropazol, isoprothiolane, isoproturon, isopyrazam, isopyrimol, isothioate, isotianil, isouron, isovaledione, isoxaben, isoxachlortole, isoxadifen, isoxaflutole, isoxapyrifop, isoxathion, isuron, ivermectin, ixoxaben, izopamfos, izopamphos, japonilure, japothrins, jasmolin I, jasmolin II, jasmonic acid, jiahuangchongzong, jiajizengxiaolin, jiaxiangjunzhi, jiecaowan, jiecaoxi, Jinganmycin A, jodfenphos, juvenile hormone I, juvenile hormone II, juvenile hormone III, kadethrin, kappa-bifenthrin, kappa-tefluthrin, karbutilate, karetazan, kasugamycin, kejunlin, kelevan, ketospiradox, kieselguhr, kinetin, kinoprene, kiralaxyl, kresoxim-methyl, kuicaoxi, lactofen, lambda-cyhalothrin, lancotrione, latilure, lead arsenate, lenacil, lepimectin, leptophos, lianbenjingzhi, lime sulfur, lindane, lineatin, linuron, lirimfos, litlure, looplure, lufenuron, lüfuqingchongxianan, lüxiancaolin, Ivdingjunzhi, Ivfumijvzhi, Ivxiancaolin, lythidathion, M-74, M-81, MAA, magnesium phosphide, malathion, maldison, maleic hydrazide, malonoben, maltodextrin, MAMA, mancopper, mancozeb, mandestrobin, mandipropamid, maneb, matrine, mazidox, MCC, MCP, MCPA, MCPA-thioethyl, MCPB, MCPP, mebenil, mecarbam, mecarbinzid, mecarphon, mecoprop, mecoprop-P, medimeform, medinoterb, medlure, mefenacet, mefenoxam, mefenpyr, mefentrifluconazole, mefluidide, megatomoic acid, melissyl alcohol, melitoxin, MEMC, menazon, MEP, mepanipyrim, meperfluthrin, mephenate, mephosfolan, mepiquat, mepronil, meptyldinocap, mercaptodimethur, mercaptophos, mercaptophos thiol, mercaptothion, mercuric chloride, mercuric oxide, mercurous chloride, merphos, merphos oxide, mesoprazine, mesosulfuron, mesotrione, mesulfen, mesulfenfos, mesulphen, metacresol, metaflumizone, metalaxyl, metalaxyl-M, metaldehyde, metam, metamifop, metamitron, metaphos, metaxon, metazachlor, metazosulfuron, metazoxolon, metconazole, metepa, metflurazon, methabenzthiazuron, methacrifos, methalpropalin, metham, methamidophos, methasulfocarb, methazole, methfuroxam, methibenzuron, methidathion, methiobencarb, methiocarb, methiopyrisulfuron, methiotepa, methiozolin, methiuron, methocrotophos, metholcarb, methometon, methomyl, methoprene, methoprotryn, methoprotryne, methoquin-butyl, methothrin, methoxychlor, methoxyfenozide, methoxyphenone, methyl apholate, methyl bromide, methyl eugenol, methyl iodide, methyl isothiocyanate, methyl parathion, methylacetophos, methylchloroform, methyldithiocarbamic acid, methyldymron, methylene chloride, methyl-isofenphos, methylmercaptophos, methylmercaptophos oxide, methylmercaptophos thiol, methylmercury benzoate, methylmercury dicyandiamide, methylmercury pentachlorophenoxide, methylneodecanamide, methylnitrophos, methyltriazothion, metiozolin, metiram, metiram-zinc, metobenzuron, metobromuron, metofluthrin, metolachlor, metolcarb, metometuron, metominostrobin, metosulam, metoxadiazone, metoxuron, metrafenone, metriam, metribuzin, metrifonate, metriphonate, metsulfovax, metsulfuron, mevinphos, mexacarbate, miechuwei, mieshuan, miewenjuzhi, milbemectin, milbemycin oxime, milneb, mimanan, mipafox, MIPC, mirex, MNAF, moguchun, molinate, molosultap, momfluorothrin, monalide, monisuron, monoamitraz, monochloroacetic acid, monocrotophos, monolinuron, monomehypo, monosulfiram, monosulfuron, monosultap, monuron, monuron-TCA, morfamquat, moroxydine, morphothion, morzid, moxidectin, MPMC, MSMA, MTMC, muscalure, myclobutanil, myclozolin, myricyl alcohol, N-(ethylmercury)-p-toluenesulphonanilide, NAA, NAAm, nabam, naftalofos, naled, naphthalene, naphthaleneacetamide, naphthalic anhydride, naphthalophos, naphthoxyacetic acids, naphthylacetic acids, naphthylindane-1,3-diones, naphthyloxyacetic acids, naproanilide, napropamide, napropamide-M, naptalam, natamycin, NBPOS, neburea, neburon, nendrin, neonicotine, nichlorfos, niclofen, niclosamide, nicobifen, nicosulfuron, nicotine, nicotine sulfate, nifluridide, nikkomycins, NIP, nipyraclofen, nipyralofen, nitenpyram, nithiazine, nitralin, nitrapyrin, nitrilacarb, nitrofen, nitrofluorfen, nitrostyrene, nitrothal-isopropyl, nobormide, nonanol, norbormide, norea, norflurazon, nornicotine, noruron, novaluron, noviflumuron, NPA, nuarimol, nuranone, OCH, octachlorodipropyl ether, octhilinone, o-dichlorobenzene, ofurace, omethoate, o-phenylphenol, orbencarb, orfralure, orthobencarb, ortho-dichlorobenzene, orthosulfamuron, oryctalure, orysastrobin, oryzalin, osthol, osthole, ostramone, ovatron, ovex, oxabetrinil, oxadiargyl, oxadiazon, oxadixyl, oxamate, oxamyl, oxapyrazon, oxapyrazone, oxasulfuron, oxathiapiprolin, oxaziclomefone, oxine-copper, oxine-Cu, oxolinic acid, oxpoconazole, oxycarboxin, oxydemeton-methyl, oxydeprofos, oxydisulfoton, oxyenadenine, oxyfluorfen, oxymatrine, oxytetracycline, oxythioquinox, PAC, paclobutrazol, paichongding, pallIthrine, PAP, para-dichlorobenzene, parafluron, paraquat, parathion, parathion-methyl, parinol, Paris green, PCNB, PCP, PCP-Na, p-dichlorobenzene, PDJ, pebulate, pedinex, pefurazoate, pelargonic acid, penconazole, pencycuron, pendimethalin, penfenate, penflufen, penfluron, penoxalin, penoxsulam, pentachlorophenol, pentachlorophenyl laurate, pentanochlor, penthiopyrad, pentmethrin, pentoxazone, perchlordecone, perfluidone, permethrin, pethoxamid, PHC, phenamacril, phenamacril-ethyl, phenaminosulf, phenazine oxide, phenetacarbe, phenisopham, phenkapton, phenmedipham, phenmedipham-ethyl, phenobenzuron, phenothiol, phenothrin, phenproxide, phenthoate, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury derivative of pyrocatechol, phenylmercury nitrate, phenylmercury salicylate, phorate, phosacetim, phosalone, phosametine, phosazetim, phosazetin, phoscyclotin, phosdiphen, phosethyl, phosfolan, phosfolan-methyl, phosglycin, phosmet, phosnichlor, phosphamide, phosphamidon, phosphine, phosphinothricin, phosphocarb, phosphorus, phostin, phoxim, phoxim-methyl, phthalide, phthalophos, phthalthrin, picarbutrazox, picaridin, picloram, picolinafen, picoxystrobin, pimaricin, pindone, pinoxaden, piperalin, piperazine, piperonyl butoxide, piperonyl cyclonene, piperophos, piproctanly, piproctanyl, piprotal, pirimetaphos, pirimicarb, piriminil, pirimioxyphos, pirimiphos-ethyl, pirimiphos-methyl, pival, pivaldione, plifenate, PMA, PMP, polybutenes, polycarbamate, polychlorcamphene, polyethoxyquinoline, polyoxin D, polyoxins, polyoxorim, polythialan, potassium arsenite, potassium azide, potassium cyanate, potassium ethylxanthate, potassium naphthenate, potassium polysulfide, potassium thiocyanate, pp′-DDT, prallethrin, precocene I, precocene II, precocene III, pretilachlor, primidophos, primisulfuron, probenazole, prochloraz, proclonol, procyazine, procymidone, prodiamine, profenofos, profluazol, profluralin, profluthrin, profoxydim, profurite-aminium, proglinazine, prohexadione, prohydrojasmon, promacyl, promecarb, prometon, prometryn, prometryne, promurit, pronamide, propachlor, propafos, propamidine, propamocarb, propanil, propaphos, propaquizafop, propargite, proparthrin, propazine, propetamphos, propham, propiconazole, propidine, propineb, propisochlor, propoxur, propoxycarbazone, propyl isome, propyrisulfuron, propyzamide, proquinazid, prosuler, prosulfalin, prosulfocarb, prosulfuron, prothidathion, prothiocarb, prothioconazole, prothiofos, prothoate, protrifenbute, proxan, prymidophos, prynachlor, psoralen, psoralene, pydanon, pydiflumetofen, pyflubumide, pymetrozine, pyracarbolid, pyraclofos, pyraclonil, pyraclostrobin, pyraflufen, pyrafluprole, pyramat, pyrametostrobin, pyraoxystrobin, pyrasulfotole, pyraziflumid, pyrazolate, pyrazolynate, pyrazon, pyrazophos, pyrazosulfuron, pyrazothion, pyrazoxyfen, pyresmethrin, pyrethrin I, pyrethrin II, pyrethrins, pyribambenz-isopropyl, pyribambenz-propyl, pyribencarb, pyribenzoxim, pyributicarb, pyriclor, pyridaben, pyridafol, pyridalyl, pyridaphenthion, pyridaphenthione, pyridate, pyridinitril, pyrifenox, pyrifluquinazon, pyriftalid, pyrimetaphos, pyrimethanil, pyrimicarbe, pyrimidifen, pyriminobac, pyriminostrobin, pyrimiphos-ethyl, pyrimiphos-methyl, pyrimisulfan, pyrimitate, pyrinuron, pyriofenone, pyriprole, pyripropanol, pyriproxyfen, pyrisoxazole, pyrithiobac, pyrolan, pyroquilon, pyroxasulfone, pyroxsulam, pyroxychlor, pyroxyfur, qincaosuan, qingkuling, quassia, quinacetol, quinalphos, quinalphos-methyl, quinazamid, quinclorac, quinconazole, quinmerac, quinoclamine, quinofumelin, quinomethionate, quinonamid, quinothion, quinoxyfen, quintiofos, quintozene, quizalofop, quizalofop-P, quwenzhi, quyingding, rabenzazole, rafoxanide, R-diniconazole, rebemide, reglone, renriduron, rescalure, resmethrin, rhodethanil, rhodojaponin-III, ribavirin, rimsulfuron, rizazole, R-metalaxyl, rodethanil, ronnel, rotenone, ryania, sabadilla, saflufenacil, saijunmao, saisentong, salicylanilide, salifluofen, sanguinarine, santonin, S-bioallethrin, schradan, scilliroside, sebuthylazine, secbumeton, sedaxane, selamectin, semiamitraz, sesamex, sesamolin, sesone, sethoxydim, sevin, shuangjiaancaolin, shuangjianancaolin, S-hydroprene, siduron, sifumijvzhi, siglure, silafluofen, silatrane, silica aerogel, silica gel, silthiofam, silthiopham, silthiophan, silvex, simazine, simeconazole, simeton, simetryn, simetryne, sintofen, S-kinoprene, slaked lime, SMA, S-methoprene, S-metolachlor, sodium arsenite, sodium azide, sodium chlorate, sodium cyanide, sodium fluoride, sodium fluoroacetate, sodium hexafluorosilicate, sodium naphthenate, sodium o-phenylphenoxide, sodium orthophenylphenoxide, sodium pentachlorophenate, sodium pentachlorophenoxide, sodium polysulfide, sodium silicofluoride, sodium tetrathiocarbonate, sodium thiocyanate, solan, sophamide, spinetoram, spinosad, spirodiclofen, spiromesifen, spirotetramat, spiroxamine, stirofos, streptomycin, strychnine, sulcatol, sulcofuron, sulcotrione, sulfallate, sulfentrazone, sulfiram, sulfluramid, sulfodiazole, sulfometuron, sulfosate, sulfosulfuron, sulfotep, sulfotepp, sulfoxaflor, sulfoxide, sulfoxime, sulfur, sulfuric acid, sulfuryl fluoride, sulglycapin, sulphosate, sulprofos, sultropen, swep, tau-fluvalinate, tavron, tazimcarb, TBTO, TBZ, TCA, TCBA, TCMTB, TCNB, TDE, tebuconazole, tebufenozide, tebufenpyrad, tebufloquin, tebupirimfos, tebutam, tebuthiuron, tecloftalam, tecnazene, tecoram, tedion, teflubenzuron, tefluthrin, tefuryltrione, tembotrione, temefos, temephos, tepa, TEPP, tepraloxydim, teproloxydim, terallethrin, terbacil, terbucarb, terbuchlor, terbufos, terbumeton, terbuthylazine, terbutol, terbutryn, terbutryne, terraclor, terramicin, terramycin, tetcyclacis, tetrachloroethane, tetrachlorvinphos, tetraconazole, tetradifon, tetradisul, tetrafluron, tetramethrin, tetra methylfluthrin, tetramine, tetranactin, tetraniliprole, tetrapion, tetrasul, thallium sulfate, thallous sulfate, thenylchlor, theta-cypermethrin, thiabendazole, thiacloprid, thiadiazine, thiadifluor, thiamethoxam, thiameturon, thiapronil, thiazafluron, thiazfluron, thiazone, thiazopyr, thicrofos, thicyofen, thidiazimin, thidiazuron, thiencarbazone, thifensulfuron, thifluzamide, thimerosal, thimet, thiobencarb, thiocarboxime, thiochlorfenphim, thiochlorphenphime, thiocyanatodinitrobenzenes, thiocyclam, thiodan, thiodiazole-copper, thiodicarb, thiofanocarb, thiofanox, thiofluoximate, thiohempa, thiomersal, thiometon, thionazin, thiophanate, thiophanate-ethyl, thiophanate-methyl, thiophos, thioquinox, thiosemicarbazide, thiosultap, thiotepa, thioxamyl, thiram, thiuram, thuringiensin, tiabendazole, tiadinil, tiafenacil, tiaojiean, TIBA, tifatol, tiocarbazil, tioclorim, tioxazafen, tioxymid, tirpate, TMTD, tolclofos-methyl, tolfenpyrad, tolprocarb, tolpyralate, tolyfluanid, tolylfluanid, tolylmercury acetate, tomarin, topramezone, toxaphene, TPN, tralkoxydim, tralocythrin, tralomethrin, tralopyril, transfluthrin, transpermethrin, tretamine, triacontanol, triadimefon, triadimenol, triafamone, triallate, tri-allate, triamiphos, triapenthenol, triarathene, triarimol, triasulfuron, triazamate, triazbutil, triaziflam, triazophos, triazothion, triazoxide, tribasic copper chloride, tribasic copper sulfate, tribenuron, tribufos, tributyltin oxide, tricamba, trichlamide, trichlopyr, trichlorfon, trichlormetaphos-3, trichloronat, trichloronate, trichlorotrinitrobenzenes, trichlorphon, triclopyr, triclopyricarb, tricresol, tricyclazole, tricyclohexyltin hydroxide, tridemorph, tridiphane, trietazine, trifenmorph, trifenofos, trifloxystrobin, trifloxysulfuron, trifludimoxazin, triflumezopyrim, triflumizole, triflumuron, trifluralin, triflusulfuron, trifop, trifopsime, triforine, trihydroxytriazine, trimedlure, trimethacarb, trimeturon, trinexapac, triphenyltin, triprene, tripropindan, triptolide, tritac, trithialan, triticonazole, tritosulfuron, trunc-call, tuoyelin, uniconazole, uniconazole-P, urbacide, uredepa, valerate, validamycin, validamycin A, valifenalate, valone, vamidothion, vangard, vaniliprole, vernolate, vinclozolin, vitamin D3, warfarin, xiaochongliulin, xinjunan, xiwojunan, xiwojunzhi, XMC, xylachlor, xylenols, xylylcarb, xymiazole, yishijing, zarilamid, zeatin, zengxiaoan, zengxiaolin, zeta-cypermethrin, zinc naphthenate, zinc phosphide, zinc thiazole, zinc thiozole, zinc trichlorophenate, zinc trichlorophenoxide, zineb, ziram, zolaprofos, zoocoumarin, zoxamide, zuoanjunzhi, zuocaoan, zuojunzhi, zuomihuanglong, α-chlorohydrin, α-ecdysone, α-multistriatin, α-naphthaleneacetic acids, and β-ecdysone;


(2) the following molecules

    • (a) N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio)propanamide (hereafter “AI-1”)




embedded image




    • (b) (3S,6S,7R,8R)-8-benzyl-3-(3-((isobutyryloxy)methoxy)-4-methoxypicolinamido)-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl isobutyrate (hereafter “AI-2”)







embedded image


(3) a molecule known as Lotilaner that has the following structure




embedded image


(4) the following molecules in Table A









TABLE A







Structure of M # - active ingredients








M #
Structure





M1


embedded image







M2


embedded image







M3


embedded image







M4


embedded image







M5


embedded image







M6


embedded image











As used in this disclosure, each of the above is an active ingredient. For more information consult the “Compendium of Pesticide Common Names” located at Alanwood.net and various editions, including the on-line edition, of “The Pesticide Manual” located at bcpcdata.com.


A particularly preferred selection of active ingredients are 1,3-dichloropropene, chlorpyrifos, hexaflumuron, methoxyfenozide, noviflumuron, spinetoram, spinosad, sulfoxaflor, and sulfuryl fluoride (hereafter “AIGA-2”).


Additionally, another particularly preferred selection of active ingredients are acequinocyl, acetamiprid, acetoprole, avermectin, azinphos-methyl, bifenazate, bifenthrin, carbaryl, carbofuran, chlorfenapyr, chlorfluazuron, chromafenozide, clothianidin, cyfluthrin, cypermethrin, deltamethrin, diafenthiuron, emamectin benzoate, endosulfan, esfenvalerate, ethiprole, etoxazole, fipronil, flonicamid, fluacrypyrim, gamma-cyhalothrin, halofenozide, indoxacarb, lambda-cyhalothrin, lufenuron, malathion, methomyl, novaluron, permethrin, pyridalyl, pyrimidifen, spirodiclofen, tebufenozide, thiacloprid, thiamethoxam, thiodicarb, tolfenpyrad, and zeta-cypermethrin (hereafter “AIGA-3”).


The term “alkenyl” means an acyclic, unsaturated (at least one carbon-carbon double bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, vinyl, allyl, butenyl, pentenyl, and hexenyl.


The term “alkenyloxy” means an alkenyl further consisting of a carbon-oxygen single bond, for example, allyloxy, butenyloxy, pentenyloxy, hexenyloxy.


The term “alkoxy” means an alkyl further consisting of a carbon-oxygen single bond, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, and tert-butoxy.


The term “alkyl” means an acyclic, saturated, branched or unbranched, substituent consisting of carbon and hydrogen, for example, methyl, ethyl, propyl, isopropyl, butyl, and tert-butyl.


The term “alkynyl” means an acyclic, unsaturated (at least one carbon-carbon triple bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, ethynyl, propargyl, butynyl, and pentynyl.


The term “alkynyloxy” means an alkynyl further consisting of a carbon-oxygen single bond, for example, pentynyloxy, hexynyloxy, heptynyloxy, and octynyloxy.


The term “aryl” means a cyclic, aromatic substituent consisting of hydrogen and carbon, for example, phenyl, naphthyl, and biphenyl.


The term “biopesticide” means a microbial biological pest control agent that, in general, is applied in a similar manner to chemical pesticides. Commonly they are bacterial, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis. One well-known biopesticide example is Bacillus species, a bacterial disease of Lepidoptera, Coleoptera, and Diptera. Biopesticides include products based on entomopathogenic fungi (e.g. Metarhizium anisopliae), entomopathogenic nematodes (e.g. Steinernema feltiae), and entomopathogenic viruses (e.g. Cydia pomonella granulovirus). Other examples of entomopathogenic organisms include, but are not limited to, baculoviruses, protozoa, and Microsporidia. For the avoidance of doubt, biopesticides are active ingredients.


The term “cycloalkenyl” means a monocyclic or polycyclic, unsaturated (at least one carbon-carbon double bond) substituent consisting of carbon and hydrogen, for example, cyclobutenyl, cyclopentenyl, cyclohexenyl, norbornenyl, bicyclo[2.2.2]octenyl, tetrahydronaphthyl, hexahydronaphthyl, and octahydronaphthyl.


The term “cycloalkenyloxy” means a cycloalkenyl further consisting of a carbon-oxygen single bond, for example, cyclobutenyloxy, cyclopentenyloxy, norbornenyloxy, and bicyclo[2.2.2]octenyloxy.


The term “cycloalkyl” means a monocyclic or polycyclic, saturated substituent consisting of carbon and hydrogen, for example, cyclopropyl, cyclobutyl, cyclopentyl, norbornyl, bicyclo[2.2.2]octyl, and decahydronaphthyl.


The term “cycloalkoxy” means a cycloalkyl further consisting of a carbon-oxygen single bond, for example, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, norbornyloxy, and bicyclo[2.2.2]octyloxy.


The term “halo” means fluoro, chloro, bromo, and iodo.


The term “haloalkoxy” means an alkoxy further consisting of, from one to the maximum possible number of identical or different, halos, for example, fluoromethoxy, trifluoromethoxy, 2,2-difluoropropoxy, chloromethoxy, trichloromethoxy, 1,1,2,2-tetrafluoroethoxy, and pentafluoroethoxy.


The term “haloalkyl” means an alkyl further consisting of, from one to the maximum possible number of, identical or different, halos, for example, fluoromethyl, trifluoromethyl, 2,2-difluoropropyl, chloromethyl, trichloromethyl, and 1,1,2,2-tetrafluoroethyl.


The term “heterocyclyl” means a cyclic substituent that may be aromatic, fully saturated, or partially or fully unsaturated, where the cyclic structure contains at least one carbon and at least one heteroatom, where said heteroatom is nitrogen, sulfur, or oxygen. Examples are:


(1) aromatic heterocyclyl substituents include, but are not limited to, benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzothienyl, benzothiazolyl, benzoxazolyl, cinnolinyl, furanyl, imidazolyl, indazolyl, indolyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl, triazinyl, and triazolyl;


(2) fully saturated heterocyclyl substituents include, but are not limited to, piperazinyl, piperidinyl, morpholinyl, pyrrolidinyl, tetrahydrofuranyl, and tetrahydropyranyl;


(3) partially or fully unsaturated heterocyclyl substituents include, but are not limited to, 4,5-dihydro-isoxazolyl, 4,5-dihydro-oxazolyl, 4,5-dihydro-1H-pyrazolyl, 2,3-dihydro-[1,3,4]-oxadiazolyl, and 1,2,3,4-tetrahydro-quinolinyl; and


(4) Additional examples of heterocyclyls include the following:




embedded image


The term “locus” means a habitat, breeding ground, plant, seed, soil, material, or environment, in which a pest is growing, may grow, or may traverse. For example, a locus may be: where crops, trees, fruits, cereals, fodder species, vines, turf, and/or ornamental plants, are growing; where domesticated animals are residing; the interior or exterior surfaces of buildings (such as places where grains are stored); the materials of construction used in buildings (such as impregnated wood); and the soil around buildings.


The phrase “MoA Material” means an active ingredient having a mode of action (“MoA”) as indicated in IRAC MoA Classification v. 7.4, located at irac-online.org., which describes the following groups.


(1) Acetylcholinesterase (AChE) inhibitors, includes the following active ingredients acephate, alanycarb, aldicarb, azamethiphos, azinphos-ethyl, azinphos-methyl, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, cadusafos, carbaryl, carbofuran, carbosulfan, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethiofencarb, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenobucarb, fenthion, formetanate, fosthiazate, furathiocarb, heptenophos, imicyafos, isofenphos, isoprocarb, isopropyl O-(methoxyaminothio-phosphoryl)salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, methiocarb, methomyl, metolcarb, mevinphos, monocrotophos, Naled, omethoate, oxamyl, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimicarb, pirimiphos-methyl, profenofos, propetamphos, propoxur, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiodicarb, thiofanox, thiometon, triazamate, triazophos, trichlorfon, trimethacarb, vamidothion, XMC, and xylylcarb.


(2) GABA-gated chloride channel antagonists, includes the following active ingredients chlordane, endosulfan, ethiprole, and fipronil.


(3) Sodium channel modulators, includes the following active ingredients acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(1R)-trans-isomers], deltamethrin, empenthrin [(EZ)-(1R)-isomers], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, kadethrin, permethrin, phenothrin [(1R)-trans-isomer], prallethrin, pyrethrins (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethrin, tetramethrin [(1R)-isomers], tralomethrin, and transfluthrin, and methoxychlor.


(4) Nicotinic acetylcholine receptor (nAChR) agonists, includes the following active ingredients

    • (4A) acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam,
    • (4B) nicotine,
    • (4C) sulfoxaflor,
    • (4D) flupyradifurone,
    • (4E) triflumezopyrim and dicloromezotiaz.


(5) Nicotinic acetylcholine receptor (nAChR) allosteric activators, includes the following active ingredients spinetoram and spinosad.


(6) Chloride channel activators, includes the following active ingredients abamectin, emamectin benzoate, lepimectin, and milbemectin.


(7) Juvenile hormone mimics, includes the following active ingredients hydroprene, kinoprene, methoprene, fenoxycarb, and pyriproxyfen.


(8) Miscellaneous nonspecific (multi-site) inhibitors, includes the following active ingredients methyl bromide, chloropicrin, sulfuryl fluoride, borax, boric acid, disodium octaborate, sodium borate, sodium metaborate, tartar emetic, diazomet, and metam.


(9) Modulators of Chordotonal Organs, includes the following active ingredients pymetrozine and flonicamid.


(10) Mite growth inhibitors, includes the following active ingredients clofentezine, hexythiazox, diflovidazin, and etoxazole.


(11) Microbial disruptors of insect midgut membranes, includes the following active ingredients Bacillus thuringiensis subsp. israelensis, Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. kurstaki, Bacillus thuringiensis subsp. tenebrionenis, Bt crop proteins (Cry1Ab, Cry1Ac, Cry1Fa, Cry1A. 105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34Ab1/Cry35Ab1), and Bacillus sphaericus.


(12) Inhibitors of mitochondrial ATP synthase, includes the following active ingredients tetradifon, propargite, azocyclotin, cyhexatin, fenbutatin oxide, and diafenthiuron.


(13) Uncouplers of oxidative phosphorylation via disruption of the proton gradient, includes the following active ingredients chlorfenapyr, DNOC, and sulfluramid.


(14) Nicotinic acetylcholine receptor (nAChR) channel blockers, includes the following active ingredients bensultap, cartap hydrochloride, thiocyclam, and thiosultap-sodium.


(15) Inhibitors of chitin biosynthesis, type 0, includes the following active ingredients bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, and triflumuron.


(16) Inhibitors of chitin biosynthesis, type 1, includes the following active ingredient buprofezin.


(17) Moulting disruptor, Dipteran, includes the following active ingredient cyromazine.


(18) Ecdysone receptor agonists, includes the following active ingredients chromafenozide, halofenozide, methoxyfenozide, and tebufenozide.


(19) Octopamine receptor agonists, includes the following active ingredient amitraz.


(20) Mitochondrial complex III electron transport inhibitors, includes the following active ingredients hydramethylnon, acequinocyl, and fluacrypyrim.


(21) Mitochondrial complex I electron transport inhibitors, includes the following active ingredients fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolfenpyrad, and rotenone.


(22) Voltage-dependent sodium channel blockers, includes the following active ingredients indoxacarb and metaflumizone.


(23) Inhibitors of acetyl CoA carboxylase, includes the following active ingredients spirodiclofen, spiromesifen, and spirotetramat.


(24) Mitochondrial complex IV electron transport inhibitors, includes the following active ingredients, aluminium phosphide, calcium phosphide, phosphine, zinc phosphide, and cyanide.


(25) Mitochondrial complex II electron transport inhibitors, includes the following active ingredients cyenopyrafen, cyflumetofen, and pyflubumide, and


(28) Ryanodine receptor modulators, includes the following active ingredients chlorantraniliprole, cyantraniliprole, and flubendiamide.


Groups 26 and 27 are unassigned in this version of the classification scheme. Additionally, there is a Group UN that contains active ingredients of unknown or uncertain mode of action. This group includes the following active ingredients, azadirachtin, benzoximate, bifenazate, bromopropylate, chinomethionat, cryolite, dicofol, pyridalyl, and pyrifluquinazon.


The term “pest” means an organism that is detrimental to humans, or human concerns (such as, crops, food, livestock, etc.), where said organism is from Phyla Arthropoda, Mollusca, or Nematoda. Particular examples are ants, aphids, bed bugs, beetles, bristletails, caterpillars, cockroaches, crickets, earwigs, fleas, flies, grasshoppers, grubs, hornets, jassids, leafhoppers, lice, locusts, maggots, mealybugs, mites, moths, nematodes, plantbugs, planthoppers, psyllids, sawflies, scales, silverfish, slugs, snails, spiders, springtails, stink bugs, symphylans, termites, thrips, ticks, wasps, whiteflies, and wireworms.


Additional examples are pests in


(1) Subphyla Chelicerata, Myriapoda, and Hexapoda.


(2) Classes of Arachnida, Symphyla, and Insecta.


(3) Order Anoplura. A non-exhaustive list of particular genera includes, but is not limited to, Haematopinus spp., Hoplopleura spp., Linognathus spp., Pediculus spp., Polyplax spp., Solenopotes spp., and Neohaematopinis spp. A non-exhaustive list of particular species includes, but is not limited to, Haematopinus asini, Haematopinus suis, Linognathus setosus, Linognathus ovillus, Pediculus humanus capitis, Pediculus humanus humanus, and Pthirus pubis.


(4) Order Coleoptera. A non-exhaustive list of particular genera includes, but is not limited to, Acanthoscelides spp., Agriotes spp., Anthonomus spp., Apion spp., Apogonia spp., Araecerus spp., Aulacophora spp., Bruchus spp., Cerosterna spp., Cerotoma spp., Ceutorhynchus spp., Chaetocnema spp., Colaspis spp., Ctenicera spp., Curculio spp., Cyclocephala spp., Diabrotica spp., Dinoderus spp., Gnathocerus spp., Hemicoelus spp., Heterobostruchus spp., Hypera spp., Ips spp., Lyctus spp., Megascelis spp., Meligethes spp., Mezium spp., Niptus spp., Otiorhynchus spp., Pantomorus spp., Phyllophaga spp., Phyllotreta spp., Ptinus spp., Rhizotrogus spp., Rhynchites spp., Rhynchophorus spp., Scolytus spp., Sphenophorus spp., Sitophilus spp., Tenebrio spp., and Tribolium spp. A non-exhaustive list of particular species includes, but is not limited to, Acanthoscelides obtectus, Agrilus planipennis, Ahasverus advena, Alphitobius diaperinus, Anoplophora glabripennis, Anthonomus grandis, Anthrenus verbasci, Anthrenus falvipes, Ataenius spretulus, Atomaria linearis, Attagenus unicolor, Bothynoderes punctiventris, Bruchus pisorum, Callosobruchus maculatus, Carpophilus hemipterus, Cassida vittata, Cathartus quadricollis, Cerotoma trifurcata, Ceutorhynchus assimilis, Ceutorhynchus napi, Conoderus scalaris, Conoderus stigmosus, Conotrachelus nenuphar, Cotinis nitida, Crioceris asparagi, Cryptolestes ferrugineus, Cryptolestes pusillus, Cryptolestes turcicus, Cylindrocopturus adspersus, Deporaus marginatus, Dermestes lardarius, Dermestes maculatus, Epilachna varivestis, Euvrilletta peltata, Faustinus cubae, Hylobius pales, Hylotrupes bajulus, Hypera postica, Hypothenemus hampei, Lasioderma serricorne, Leptinotarsa decemlineata, Limonius canus, Liogenys fuscus, Liogenys suturalis, Lissorhoptrus oryzophilus, Lophocateres pusillus, Lyctus planicollis, Maecolaspis joliveti, Melanotus communis, Meligethes aeneus, Melolontha melolontha, Necrobia rufipes, Oberea brevis, Oberea linearis, Oryctes rhinoceros, Oryzaephilus mercator, Oryzaephilus surinamensis, Oulema melanopus, Oulema oryzae, Phyllophaga cuyabana, Polycaon stoutti, Popillia japonica, Prostephanus truncatus, Rhyzopertha dominica, Sitona lineatus, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum, Tenebroides mauritanicus, Tribolium castaneum, Tribolium confusum, Trogoderma granarium, Trogoderma variabile, Xestobium rufovillosum, and Zabrus tenebrioides.


(5) Order Dermaptera. A non-exhaustive list of particular species includes, but is not limited to, Forficula auricularia.


(6) Order Blattaria. A non-exhaustive list of particular species includes, but is not limited to, Blattella germanica, Blattella asahinai, Blatta orientalis, Blatta lateralis, Parcoblatta pennsylvanica, Periplaneta americana, Periplaneta australasiae, Periplaneta brunnea, Periplaneta fuliginosa, Pycnoscelus surinamensis, and Supella longipalpa.


(7) Order Diptera. A non-exhaustive list of particular genera includes, but is not limited to, Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Bactrocera spp., Ceratitis spp., Chrysops spp., Cochliomyia spp., Contarinia spp., Culex spp., Culicoides spp., Dasineura spp., Delia spp., Drosophila spp., Fannia spp., Hylemya spp., Liriomyza spp., Musca spp., Phorbia spp., Pollenia spp., Psychoda spp., Simulium spp., Tabanus spp., and Tipula spp. A non-exhaustive list of particular species includes, but is not limited to, Agromyza frontella, Anastrepha suspensa, Anastrepha ludens, Anastrepha obliqua, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera invadens, Bactrocera zonata, Ceratitis capitata, Dasineura brassicae, Delia platura, Fannia canicularis, Fannia scalaris, Gasterophilus intestinalis, Gracillia perseae, Haematobia irritans, Hypoderma lineatum, Liriomyza brassicae, Liriomyza sativa, Melophagus ovinus, Musca autumnalis, Musca domestica, Oestrus ovis, Oscinella frit, Pegomya betae, Piophila casei, Psila rosae, Rhagoletis cerasi, Rhagoletis pomonella, Rhagoletis mendax, Sitodiplosis mosellana, and Stomoxys calcitrans.


(8) Order Hemiptera. A non-exhaustive list of particular genera includes, but is not limited to, Adelges spp., Aulacaspis spp., Aphrophora spp., Aphis spp., Bemisia spp., Ceroplastes spp., Chionaspis spp., Chrysomphalus spp., Coccus spp., Empoasca spp., Euschistus spp., Lepidosaphes spp., Lagynotomus spp., Lygus spp., Macrosiphum spp., Nephotettix spp., Nezara spp., Nilaparvata spp., Philaenus spp., Phytocoris spp., Piezodorus spp., Planococcus spp., Pseudococcus spp., Rhopalosiphum spp., Saissetia spp., Therioaphis spp., Toumeyella spp., Toxoptera spp., Trialeurodes spp., Triatoma spp., and Unaspis spp. A non-exhaustive list of particular species includes, but is not limited to, Acrosternum hilare, Acyrthosiphon pisum, Aleyrodes proletella, Aleurodicus dispersus, Aleurothrixus floccosus, Amrasca biguttula biguttula, Aonidiella aurantii, Aphis fabae, Aphis gossypii, Aphis glycines, Aphis pomi, Aulacorthum solani, Bactericera cockerelli, Bagrada hilaris, Bemisia argentifolii, Bemisia tabaci, Blissus leucopterus, Boisea trivittata, Brachycorynella asparagi, Brevennia rehi, Brevicoryne brassicae, Cacopsylla pyri, Cacopsylla pyricola, Calocoris norvegicus, Ceroplastes rubens, Cimex hemipterus, Cimex lectularius, Coccus pseudomagnoliarum, Dagbertus fasciatus, Dichelops furcatus, Diuraphis noxia, Diaphorina citri, Dysaphis plantaginea, Dysdercus suturellus, Edessa meditabunda, Empoasca vitis, Eriosoma lanigerum, Erythroneura elegantula, Eurygaster maura, Euschistus conspersus, Euschistus heros, Euschistus servus, Halyomorpha halys, Helopeltis antonii, Hyalopterus pruni, Helopeltis antonii, Helopeltis theivora, Icerya purchasi, Idioscopus nitidulus, Jacobiasca formosana, Laodelphax striatellus, Lecanium corni, Leptocorisa oratorius, Leptocorisa varicornis, Lygus hesperus, Maconellicoccus hirsutus, Macrosiphum euphorbiae, Macrosiphum granarium, Macrosiphum rosae, Macrosteles quadrilineatus, Mahanarva frimbiolata, Megacopta cribraria, Metopolophium dirhodum, Mictis longicornis, Myzus persicae, Nasonovia ribisnigri, Nephotettix cincticeps, Neurocolpus longirostris, Nezara viridula, Nilaparvata lugens, Paracoccus marginatus, Paratrioza cockerelli, Parlatoria pergandii, Parlatoria ziziphi, Peregrinus maidis, Phylloxera vitifoliae, Physokermes piceae, Phytocoris californicus, Phytocoris relativus, Piezodorus guildinii, Planococcus citri, Planococcus ficus, Poecilocapsus lineatus, Psallus vaccinicola, Pseudacysta perseae, Pseudococcus brevipes, Quadraspidiotus perniciosus, Rhopalosiphum maidis, Rhopalosiphum padi, Saissetia oleae, Scaptocoris castanea, Schizaphis graminum, Sitobion avenae, Sogatella furcifera, Trialeurodes vaporariorum, Trialeurodes abutiloneus, Unaspis yanonensis, and Zulia entrerriana.


(9) Order Hymenoptera. A non-exhaustive list of particular genera includes, but is not limited to, Acromyrmex spp., Atta spp., Camponotus spp., Diprion spp., Dolichovespula spp., Formica spp., Monomorium spp., Neodiprion spp., Paratrechina spp., Pheidole spp., Pogonomyrmex spp., Polistes spp., Solenopsis spp., Technomyrmex, spp., Tetramorium spp., Vespula spp., Vespa spp., and Xylocopa spp. A non-exhaustive list of particular species includes, but is not limited to, Athalia rosae, Atta texana, Caliroa cerasi, Cimbex americana, Iridomyrmex humilis, Linepithema humile, Mellifera Scutellata, Monomorium minimum, Monomorium pharaonis, Neodiprion sertifer, Solenopsis invicta, Solenopsis geminata, Solenopsis molesta, Solenopsis richtery, Solenopsis xyloni, Tapinoma sessile, and Wasmannia auropunctata.


(10) Order Isoptera. A non-exhaustive list of particular genera includes, but is not limited to, Coptotermes spp., Cornitermes spp., Cryptotermes spp., Heterotermes spp., Kalotermes spp., Incisitermes spp., Macrotermes spp., Marginitermes spp., Microcerotermes spp., Procornitermes spp., Reticulitermes spp., Schedorhinotermes spp., and Zootermopsis spp. A non-exhaustive list of particular species includes, but is not limited to, Coptotermes acinaciformis, Coptotermes curvignathus, Coptotermes frenchi, Coptotermes formosanus, Coptotermes gestroi, Cryptotermes brevis, Heterotermes aureus, Heterotermes tenuis, Incisitermes minor, Incisitermes snyderi, Microtermes obesi, Nasutitermes corniger, Odontotermes formosanus, Odontotermes obesus, Reticulitermes banyulensis, Reticulitermes grassei, Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes hesperus, Reticulitermes santonensis, Reticulitermes speratus, Reticulitermes tibialis, and Reticulitermes virginicus.


(11) Order Lepidoptera. A non-exhaustive list of particular genera includes, but is not limited to, Adoxophyes spp., Agrotis spp., Argyrotaenia spp., Cacoecia spp., Caloptilia spp., Chilo spp., Chrysodeixis spp., Colias spp., Crambus spp., Diaphania spp., Diatraea spp., Earias spp., Ephestia spp., Epimecis spp., Feltia spp., Gortyna spp., Helicoverpa spp., Heliothis spp., Indarbela spp., Lithocolletis spp., Loxagrotis spp., Malacosoma spp., Nemapogon spp., Peridroma spp., Phyllonorycter spp., Pseudaletia spp., Plutella spp., Sesamia spp., Spodoptera spp., Synanthedon spp., and Yponomeuta spp. A non-exhaustive list of particular species includes, but is not limited to, Achaea janata, Adoxophyes orana, Agrotis ipsilon, Alabama argillacea, Amorbia cuneana, Amyelois transitella, Anacamptodes defectaria, Anarsia lineatella, Anomis sabulifera, Anticarsia gemmatalis, Archips argyrospila, Archips rosana, Argyrotaenia citrana, Autographa gamma, Bonagota cranaodes, Borbo cinnara, Bucculatrix thurberiella, Capua reticulana, Carposina niponensis, Chlumetia transversa, Choristoneura rosaceana, Cnaphalocrocis medinalis, Conopomorpha cramerella, Corcyra cephalonica, Cossus cossus, Cydia caryana, Cydia funebrana, Cydia molesta, Cydia nigricana, Cydia pomonella, Darna diducta, Diaphania nitidalis, Diatraea saccharalis, Diatraea grandiosella, Earias insulana, Earias vittella, Ecdytolopha aurantianum, Elasmopalpus lignosellus, Ephestia cautella, Ephestia elutella, Ephestia kuehniella, Epinotia aporema, Epiphyas postvittana, Erionota thrax, Estigmene acrea, Eupoecilia ambiguella, Euxoa auxiliaris, Galleria mellonella, Grapholita molesta, Hedylepta indicata, Helicoverpa armigera, Helicoverpa zea, Heliothis virescens, Hellula undalis, Keiferia lycopersicella, Leucinodes orbonalis, Leucoptera coffeella, Leucoptera malifoliella, Lobesia botrana, Loxagrotis albicosta, Lymantria dispar, Lyonetia clerkella, Mahasena corbetti, Mamestra brassicae, Manduca sexta, Maruca testulalis, Metisa plana, Mythimna unipuncta, Neoleucinodes elegantalis, Nymphula depunctalis, Operophtera brumata, Ostrinia nubilalis, Oxydia vesulia, Pandemis cerasana, Pandemis heparana, Papilio demodocus, Pectinophora gossypiella, Peridroma saucia, Perileucoptera coffeella, Phthorimaea operculella, Phyllocnistis citrella, Phyllonorycter blancardella, Pieris rapae, Plathypena scabra, Platynota idaeusalis, Plodia interpunctella, Plutella xylostella, Polychrosis viteana, Prays endocarpa, Prays oleae, Pseudaletia unipuncta, Pseudoplusia includens, Rachiplusia nu, Scirpophaga incertulas, Sesamia inferens, Sesamia nonagrioides, Setora nitens, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera exigua, Spodoptera frugiperda, Spodoptera eridania, Thecla basilides, Tinea pellionella, Tineola bisselliella, Trichoplusia ni, Tuta absoluta, Zeuzera coffeae, and Zeuzea pyrina.


(12) Order Mallophaga. A non-exhaustive list of particular genera includes, but is not limited to, Anaticola spp., Bovicola spp., Chelopistes spp., Goniodes spp., Menacanthus spp., and Trichodectes spp. A non-exhaustive list of particular species includes, but is not limited to, Bovicola bovis, Bovicola caprae, Bovicola ovis, Chelopistes meleagridis, Goniodes dissimilis, Goniodes gigas, Menacanthus stramineus, Menopon gallinae, and Trichodectes canis.


(13) Order Orthoptera. A non-exhaustive list of particular genera includes, but is not limited to, Melanoplus spp. and Pterophylla spp. A non-exhaustive list of particular species includes, but is not limited to, Acheta domesticus, Anabrus simplex, Gryllotalpa africana, Gryllotalpa australis, Gryllotalpa brachyptera, Gryllotalpa hexadactyla, Locusta migratoria, Microcentrum retinerve, Schistocerca gregaria, and Scudderia furcata.


(14) Order Psocoptera. A non-exhaustive list of particular species includes, but is not limited to, Liposcelis decolor, Liposcelis entomophila, Lachesilla quercus, and Trogium pulsatorium.


(15) Order Siphonaptera. A non-exhaustive list of particular species includes, but is not limited to, Ceratophyllus gallinae, Ceratophyllus niger, Ctenocephalides canis, Ctenocephalides felis, and Pulex irritans.


(16) Order Thysanoptera. A non-exhaustive list of particular genera includes, but is not limited to, Caliothrips spp., Frankliniella spp., Scirtothrips spp., and Thrips spp. A non-exhaustive list of particular species includes, but is not limited to, Caliothrips phaseoli, Frankliniella bispinosa, Frankliniella fusca, Frankliniella occidentalis, Frankliniella schultzei, Frankliniella tritici, Frankliniella williamsi, Heliothrips haemorrhoidalis, Rhipiphorothrips cruentatus, Scirtothrips citri, Scirtothrips dorsalis, Taeniothrips rhopalantennalis, Thrips hawaiiensis, Thrips nigropilosus, Thrips orientalis, Thrips palmi, and Thrips tabaci.


(17) Order Thysanura. A non-exhaustive list of particular genera includes, but is not limited to, Lepisma spp. and Thermobia spp.


(18) Order Acarina. A non-exhaustive list of particular genera includes, but is not limited to, Acarus spp., Aculops spp., Argus spp., Boophilus spp., Demodex spp., Dermacentor spp., Epitrimerus spp., Eriophyes spp., Ixodes spp., Oligonychus spp., Panonychus spp., Rhizoglyphus spp., and Tetranychus spp. A non-exhaustive list of particular species includes, but is not limited to, Acarapis woodi, Acarus siro, Aceria mangiferae, Aculops lycopersici, Aculus pelekassi, Aculus schlechtendali, Amblyomma americanum, Brevipalpus obovatus, Brevipalpus phoenicis, Dermacentor variabilis, Dermatophagoides pteronyssinus, Eotetranychus carpini, Liponyssoides sanguineus, Notoedres cati, Oligonychus coffeae, Oligonychus ilicis, Ornithonyssus bacoti, Panonychus citri, Panonychus ulmi, Phyllocoptruta oleivora, Polyphagotarsonemus latus, Rhipicephalus sanguineus, Sarcoptes scabiei, Tegolophus perseaflorae, Tetranychus urticae, Tyrophagus longior, and Varroa destructor.


(19) Order Araneae. A non-exhaustive list of particular genera includes, but is not limited to, Loxosceles spp., Latrodectus spp., and Atrax spp. A non-exhaustive list of particular species includes, but is not limited to, Loxosceles reclusa, Latrodectus mactans, and Atrax robustus.


(20) Class Symphyla. A non-exhaustive list of particular species includes, but is not limited to, Scutigerella immaculata.


(21) Subclass Collembola. A non-exhaustive list of particular species includes, but is not limited to, Bourletiella hortensis, Onychiurus armatus, Onychiurus fimetarius, and Sminthurus viridis.


(22) Phylum Nematoda. A non-exhaustive list of particular genera includes, but is not limited to, Aphelenchoides spp., Belonolaimus spp., Criconemella spp., Ditylenchus spp., Globodera spp., Heterodera spp., Hirschmanniella spp., Hoplolaimus spp., Meloidogyne spp., Pratylenchus spp., and Radopholus spp. A non-exhaustive list of particular species includes, but is not limited to, Dirofilaria immitis, Globodera pallida, Heterodera glycines, Heterodera zeae, Meloidogyne incognita, Meloidogyne javanica, Onchocerca volvulus, Pratylenchus penetrans, Radopholus similis, and Rotylenchulus reniformis.


(23) Phylum Mollusca. A non-exhaustive list of particular species includes, but is not limited to, Arion vulgaris, Cornu aspersum, Deroceras reticulatum, Limax flavus, Milax gagates, and Pomacea canaliculata.


A particularly preferred pest group to control is sap-feeding pests. Sap-feeding pests, in general, have piercing and/or sucking mouthparts and feed on the sap and inner plant tissues of plants. Examples of sap-feeding pests of particular concern to agriculture include, but are not limited to, aphids, leafhoppers, moths, scales, thrips, psyllids, mealybugs, stinkbugs, and whiteflies. Specific examples of Orders that have sap-feeding pests of concern in agriculture include but are not limited to, Anoplura and Hemiptera. Specific examples of Hemiptera that are of concern in agriculture include, but are not limited to, Aulacaspis spp., Aphrophora spp., Aphis spp., Bemisia spp., Coccus spp., Euschistus spp., Lygus spp., Macrosiphum spp., Nezara spp., and Rhopalosiphum spp.


Another particularly preferred pest group to control is chewing pests. Chewing pests, in general, have mouthparts that allow them to chew on the plant tissue including roots, stems, leaves, buds, and reproductive tissues (including, but not limited to flowers, fruit, and seeds). Examples of chewing pests of particular concern to agriculture include, but are not limited to, caterpillars, beetles, grasshoppers, and locusts. Specific examples of Orders that have chewing pests of concern in agriculture include but are not limited to, Coleoptera and Lepidoptera. Specific examples of Coleoptera that are of concern in agriculture include, but are not limited to, Anthonomus spp., Cerotoma spp., Chaetocnema spp., Colaspis spp., Cyclocephala spp., Diabrotica spp., Hypera spp., Phyllophaga spp., Phyllotreta spp., Sphenophorus spp., Sitophilus spp.


The phrase “pesticidally effective amount” means the amount of a pesticide needed to achieve an observable effect on a pest, for example, the effects of necrosis, death, retardation, prevention, removal, destruction, or otherwise diminishing the occurrence and/or activity of a pest in a locus. This effect may come about when pest populations are repulsed from a locus, pests are incapacitated in, or around, a locus, and/or pests are exterminated in, or around, a locus. Of course, a combination of these effects can occur. Generally, pest populations, activity, or both are desirably reduced more than fifty percent, preferably more than 90 percent, and most preferably more than 99 percent. In general, a pesticidally effective amount, for agricultural purposes, is from about 0.0001 grams per hectare to about 5000 grams per hectare, preferably from about 0.0001 grams per hectare to about 500 grams per hectare, and it is even more preferably from about 0.0001 grams per hectare to about 50 grams per hectare.







DETAILED DESCRIPTION OF THIS DISCLOSURE

This document discloses molecules of Formula One




embedded image



wherein:


(A) Ar1 is selected from the group consisting of furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, or thienyl,

    • wherein each furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, and thienyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,
    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;


(B) Het is a 5- or 6-membered, saturated or unsaturated, heterocyclic ring, containing one or more heteroatoms independently selected from nitrogen, sulfur, or oxygen, and where Ar1 and L1 are not ortho to each other, but may be meta or para, such as, for a five-membered ring they are 1,3, and for a 6-membered ring they are either 1,3 or 1,4,

    • wherein each heterocyclic ring may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,
    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;


(C) L1 is selected from the group consisting of (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, and (C2-C6)alkynyl,

    • wherein each alkyl, haloalkyl, cycloalkyl, alkenyl, and alkynyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, and (C2-C6)alkynyl;


(D) Ar2 is selected from the group consisting of furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, or thienyl,

    • wherein each furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, and thienyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,
    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;


(E) R15 is selected from the group consisting of H, (C1-C4)alkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, C(O)—NRxRy, C(O)-phenyl, (C1-C4)alkyl-NRxRy, C(O)O—(C1-C4)alkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, and (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl,

    • wherein each alkyl, cycloalkyl, alkenyl, alkynyl, and phenyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;


(F) Q1 is selected from the group consisting of O and S;


(G) Q2 is selected from the group consisting of O and S;


(H) R16 is selected from the group consisting of (K), H, (C1-C4)alkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, C(O)—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, (C1-C4)alkylphenyl, (C1-C4)alkyl-O-phenyl, C(O)—(Het-1), Het-1, (C1-C4)alkyl-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-(Het-1), (C1-C4)alkyl-C(O)—(Het-1), (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(NRxRy)—C(O)OH, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(N(Rx)—C(O)O—(C1-C4)alkyl)-C(O)OH, (C1-C4)alkyl-C(O)—(Het-1)-C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C3-C8)cycloalkyl, (C1-C4)alkyl-OC(O)—(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-NRxRy, (C1-C4)alkyl-S(O)n—(Het-1), and (C1-C4)alkyl-O-(Het-1),

    • wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and (Het-1) may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)OH, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl), phenyl, phenoxy, Si((C1-C4)alkyl)3, S(O)n—NRxRy, and (Het-1);


(I) R17 is selected from the group consisting of (K), H, (C1-C4)alkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, C(O)—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, (C1-C4)alkylphenyl, (C1-C4)alkyl-O-phenyl, C(O)-(Het-1), Het-1, (C1-C4)alkyl-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-(Het-1), (C1-C4)alkyl-C(O)-(Het-1), (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(NRxRy)—C(O)OH, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(N(Rx)—C(O)O—(C1-C4)alkyl)-C(O)OH, (C1-C4)alkyl-C(O)-(Het-1)-C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C3-C8)cycloalkyl, (C1-C4)alkyl-OC(O)-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-NRxRy, (C1-C4)alkyl-S(O)n-(Het-1), and (C1-C4)alkyl-O-(Het-1),

    • wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and (Het-1) may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)OH, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, phenoxy, Si((C1-C4)alkyl)3, S(O)n—NRxRy, and (Het-1);


(J) L2 is selected from the group consisting of (C3-C8)cycloalkyl, phenyl, (C1-C4)alkylphenyl, (C1-C4)alkyl-O-phenyl, (C2-C6)alkenyl-O-phenyl, (Het-1), (C1-C4)alkyl-(Het-1), and (C1-C4)alkyl-O-(Het-1),

    • wherein each alkyl, cycloalkyl, alkenyl, phenyl, and (Het-1) may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)— (C3-C8)cycloalkyl, C(O)O—(C1-C4)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, O—(C1-C4)alkyl, S—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, phenoxy, and (Het-1),
    • wherein each alkyl, cycloalkyl, alkenyl, phenyl, and (Het-1) substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C1-C4)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, O—(C1-C4)alkyl, S—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, phenoxy, and (Het-1);


(K) R16 and R17 along with Cx(Q2)(Nx), form a 4- to 7-membered saturated or unsaturated, hydrocarbyl cyclic group, which may further contain one or more heteroatoms selected from the group consisting of nitrogen, sulfur, and oxygen, wherein said hydrocarbyl cyclic group may be optionally substituted with one or more substituents independently selected from the group consisting of oxo, R18, and R19,

    • wherein R18 and R19 are each independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, thioxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and (Het-1);


(L) Rx and Ry are each independently selected from the group consisting of H, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, and phenyl,

    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, and phenyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and (Het-1);


(M) (Het-1) is a 5- or 6-membered, saturated or unsaturated, heterocyclic ring, containing one or more heteroatoms independently selected from nitrogen, sulfur, or oxygen,

    • wherein each heterocyclic ring may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,
    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;


(N) n are each independently 0, 1, or 2; and


N-oxides, agriculturally acceptable acid addition salts, salt derivatives, solvates, crystal polymorphs, isotopes, resolved stereoisomers, and tautomers, of the molecules of Formula One.


The molecules of Formula One may exist in different geometric or optical isomeric or different tautomeric forms. One or more centers of chirality may be present in which case molecules of Formula One may be present as pure enantiomers, mixtures of enantiomers, pure diastereomers or mixtures of diastereomers. It will be appreciated by those skilled in the art that one stereoisomer may be more active than the other stereoisomers. Individual stereoisomers may be obtained by known selective synthetic procedures, by conventional synthetic procedures using resolved starting materials, or by conventional resolution procedures. There may be double bonds present in the molecule, in which case compounds of Formula One may exist as single geometric isomers (cis or trans, E or Z) or mixtures of geometric isomers (cis and trans, E and Z). Centers of tautomerisation may be present. This disclosure covers all such isomers, tautomers, and mixtures thereof, in all proportions. The structures disclosed in the present disclosure are drawn in only one geometric form for clarity, but are intended to represent all geometric forms of the molecule.


In another embodiment Ar1 is (1a)




embedded image


wherein:

    • (1) X1 is N or CR1, wherein R1 is H;
    • (2) R2 and R4 are each independently H;
    • (3) R3 is (C1-C4)haloalkyl or (C1-C4)haloalkoxy; and
    • (4) R5 is H or Cl.


This embodiment may be used in combination with the other embodiments of Het, L1, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment Ar1 is (1a), wherein R3 is CF3 or OCF3. This embodiment may be used in combination with the other embodiments of X1, R1, R2, R4, R5, Het, L1, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment Het is (1b)




embedded image


wherein R6 is H. This embodiment may be used in combination with the other embodiments of Ar1, L1, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment L1 is (1c)




embedded image


wherein R7 and R8 are each independently H. This embodiment may be used in combination with the other embodiments of Ar1, Het, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment L1 is (1d)




embedded image


wherein R7, R8, R9, and R10 are each independently H. This embodiment may be used in combination with the other embodiments of Ar1, Het, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment L1 is (1d), wherein R7 is (C1-C4)alkyl. This embodiment may be used in combination with the other embodiments of Ar1, Het, R8, R9, R10, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment L1 is (1d), wherein R7 is CH3. This embodiment may be used in combination with the other embodiments of Ar1, Het, R8, R9, R10, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment L1 is (1e)




embedded image


wherein R7, R8, R9, and R10 are each independently H. This embodiment may be used in combination with the other embodiments of Ar1, Het, Ar2, R15, Q1, Q2, R16, R17, and L2.


In another embodiment Ar2 is (1f)




embedded image


wherein:

    • (1) R11 is H, F, (C1-C4)alkyl, or (C1-C4)alkoxy;
    • (2) R12 is H, F, Cl, (C1-C4)haloalkyl, (C1-C4)alkoxy, or C(O)O—(C1-C4)alkyl;
    • (3) X2 is N or CR13, wherein R13 is H, F, Cl, (C1-C4)haloalkyl, (C1-C4)alkoxy, or C(O)O—(C1-C4)alkyl; and
    • (4) R14 is H or F.


This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, R15, Q1, Q2, R16, R17, and L2.


In another embodiment Ar2 is (1f), wherein R11 is CH3 or OCH3. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, R12, X2, R13, R14, Q1, Q2, R16, R17 and L2.


In another embodiment Ar2 is (1f), wherein R12 is CF3, OCH3, or C(O)O—CH3. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, R11, X2, R13, R14, Q1, Q2, R16, R17 and L2.


In another embodiment Ar2 is (1f), wherein R13 is CF3, OCH3, or C(O)O—CH3. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, R11, R12, X2, R14, Q1, Q2, R16, R17 and L2.


In another embodiment R15 is H. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, Q1, Q2, R16, R17, and L2.


In another embodiment Q1 is O. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, R15, Q2, R16, R17, and L2.


In another embodiment Q2 is S. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, R15, Q1, R16, R17, and L2.


In another embodiment L2 is (1g)




embedded image


wherein:

    • (1) R20 is F, Cl, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, or (C1-C4)alkyl-O—(C1-C4)alkyl, wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, and haloalkoxy may be substituted with one or more F substituents;
    • (2) R21 is H;
    • (3) R22 is H or F;
    • (4) R23 is (C1-C4)alkyl or (C1-C4)haloalkyl; and
    • (5) R24 is H.


This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, R15, Q1, Q2, R16, and R17.


In another embodiment L2 is (1g), wherein R20 is CH2CH2CH3, CH(CH3)2, CF3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2, OCH(CH3)CH2CH3, OC(CH3)3, OCF3, OCH2CF3, CH2OCH3, or CH(CH3)OCH3. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar1, Q1, Q2, R16, R17, R21, R22, R23, and R24.


In another embodiment L2 is (1g), wherein R23 is CH3 or CF3. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, Q1, Q2, R16, R17, R21, R22, R23, and R24.


In another embodiment L2 is (1h)




embedded image


wherein R20, R21, R22, R23, and R24 are each independently H. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, R15, Q1, Q2, R16, and R17.


In another embodiment R16 and R17 along with Cx(Q2)(Nx), is (1i)




embedded image


wherein R18 and R19 are each independently H. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, R15, Q1, and L2.


In another embodiment R16 and R17 along with Cx(Q2)(Nx), is (1j)




embedded image


wherein R18 and R19 are each independently H. This embodiment may be used in combination with the other embodiments of Ar1, Het, L1, Ar2, R15, Q1, and L2.


In another embodiment . . .


(A) Ar1 is (1a)




embedded image




    • wherein:

    • (1) X1 is selected from the group consisting of N and CR1, and

    • (2) R1, R2, R3, R4, and R5 are each independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,

    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;





(B) Het is (1b)




embedded image




    • wherein, R6 is a substituent selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,

    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;





(C) L1 is selected from the group consisting of




embedded image




    • wherein, R7, R8, R9, and R10 are each independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, and (C2-C6)alkynyl;





(D) Ar2 is (1f)




embedded image




    • wherein:

    • (1) X2 is selected from the group consisting of N and CR13, and

    • (2) R11, R12, R13, and R14 are each independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,

    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;





(E) R15 is selected from the group consisting of H, (C1-C4)alkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, C(O)—NRxRy, C(O)-phenyl, (C1-C4)alkyl-NRxRy, C(O)O—(C1-C4)alkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, and (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl,

    • wherein each alkyl, cycloalkyl, alkenyl, alkynyl, and phenyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy;


(F) Q1 is selected from the group consisting of O and S;


(G) Q2 is selected from the group consisting of O and S;


(H) R16 is selected from the group consisting of (K), H, (C1-C4)alkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, C(O)—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, (C1-C4)alkylphenyl, (C1-C4)alkyl-O-phenyl, C(O)-(Het-1), Het-1, (C1-C4)alkyl-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-(Het-1), (C1-C4)alkyl-C(O)-(Het-1), (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(NRxRy)—C(O)OH, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(N(Rx)—C(O)O—(C1-C4)alkyl)-C(O)OH, (C1-C4)alkyl-C(O)-(Het-1)-C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C3-C8)cycloalkyl, (C1-C4)alkyl-OC(O)-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-NRxRy, (C1-C4)alkyl-S(O)n-(Het-1), and (C1-C4)alkyl-O-(Het-1),

    • wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and (Het-1) may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)OH, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl), phenyl, phenoxy, Si((C1-C4)alkyl)3, S(O)n—NRxRy, and (Het-1);


(I) R17 is selected from the group consisting of (K), H, (C1-C4)alkyl, (C3-C8)cycloalkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, C(O)—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, (C1-C4)alkylphenyl, (C1-C4)alkyl-O-phenyl, C(O)-(Het-1), Het-1, (C1-C4)alkyl-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-(Het-1), (C1-C4)alkyl-C(O)-(Het-1), (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(NRxRy)—C(O)OH, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-NRxRy, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-C(O)—N(Rx)(C1-C4)alkyl(N(Rx)—C(O)O—(C1-C4)alkyl)-C(O)OH, (C1-C4)alkyl-C(O)-(Het-1)-C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)O—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C1-C4)alkyl, (C1-C4)alkyl-OC(O)—(C3-C8)cycloalkyl, (C1-C4)alkyl-OC(O)-(Het-1), (C1-C4)alkyl-OC(O)—(C1-C4)alkyl-N(Rx)—C(O)O—(C1-C4)alkyl, (C1-C4)alkyl-NRxRy, (C1-C4)alkyl-S(O)n-(Het-1), and (C1-C4)alkyl-O-(Het-1),

    • wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and (Het-1) may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)OH, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, phenoxy, Si((C1-C4)alkyl)3, S(O)n—NRxRy, and (Het-1);


(J) L2 is selected from the group consisting of




embedded image




    • wherein, R20, R21, R22, R23, and R24 are each independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C1-C4)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, O—(C1-C4)alkyl, S—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, phenoxy, and (Het-1),

    • wherein each alkyl, cycloalkyl, alkenyl, phenyl, and (Het-1) substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, NRxRy, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C1-C4)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, O—(C1-C4)alkyl, S—(C1-C4)alkyl, (C1-C4)alkyl-O—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, phenoxy, and (Het-1);





(K) R16 and R17 along with Cx(Q2)(Nx), is selected from the group consisting of




embedded image




    • wherein R18 and R19 are each independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, thioxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and (Het-1);





(L) Rx and Ry are each independently selected from the group consisting of H, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, and phenyl,

    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, and phenyl may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)H, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and (Het-1);


(M) (Het-1) is a 5- or 6-membered, saturated or unsaturated, heterocyclic ring, containing one or more heteroatoms independently selected from nitrogen, sulfur, or oxygen,

    • wherein each heterocyclic ring may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, oxo, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy,
    • wherein each alkyl, haloalkyl, cycloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, phenyl, and phenoxy substituent may be optionally substituted with one or more substituents independently selected from the group consisting of H, F, Cl, Br, I, CN, NO2, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, (C2-C6)alkenyl, (C2-C6)alkynyl, S(O)n—(C1-C4)alkyl, S(O)n—(C1-C4)haloalkyl, OSO2—(C1-C4)alkyl, OSO2—(C1-C4)haloalkyl, C(O)—NRxRy, (C1-C4)alkyl-NRxRy, C(O)—(C1-C4)alkyl, C(O)O—(C1-C4)alkyl, C(O)—(C1-C4)haloalkyl, C(O)O—(C1-C4)haloalkyl, C(O)—(C3-C8)cycloalkyl, C(O)O—(C3-C8)cycloalkyl, C(O)—(C2-C6)alkenyl, C(O)O—(C2-C6)alkenyl, (C1-C4)alkyl-O—(C1-C4)alkyl, (C1-C4)alkyl-S(O)n—(C1-C4)alkyl, C(O)—(C1-C4)alkyl-C(O)O—(C1-C4)alkyl, phenyl, and phenoxy; and


(N) n are each independently 0, 1, or 2.


In another embodiment


(A) Ar1 is (1a)




embedded image



wherein:

    • (1) X1 is selected from the group consisting of N and CR1, and
    • (2) R1, R2, R3, R4, and R5 are each independently selected from the group consisting of H, Cl, (C1-C4)haloalkyl, and (C1-C4)haloalkoxy;


(B) Het is (1b)




embedded image




    • wherein, R6 is H;





(C) L is selected from the group consisting of




embedded image




    • wherein, each R7, R8, R9, and R10 is independently selected from the group consisting of H and (C1-C4)alkyl;





(D) Ar2 is (1f)




embedded image




    • wherein:

    • (1) X2 is selected from the group consisting of N and CR13, and

    • (2) R11, R12, R13, and R14 are each independently selected from the group consisting of H, F, Cl, (C1-C4)alkyl, (C1-C4)haloalkyl, (C1-C4)alkoxy, and C(O)O—(C1-C4)alkyl;





(E) R15 is H;


(F) Q1 is O;


(G) Q2 is S;


(H) R16 is (K);


(I) R17 is (K);


(J) L2 is selected from the group consisting of




embedded image




    • wherein, R20, R21, R22, R23, and R24 are each independently selected from the group consisting of H, F, Cl, (C1-C4)alkyl, (C1-C4)haloalkyl, (C3-C8)cycloalkyl, (C1-C4)alkoxy, (C1-C4)haloalkoxy, and (C1-C4)alkyl-O—(C1-C4)alkyl; and





(K) R16 and R17 along with C(Q2)(Nx), is selected from the group consisting of




embedded image




    • wherein R18 and R19 are each H.





In another embodiment


(A) Ar1 is (1a)




embedded image



wherein:

    • (1) X1 is selected from the group consisting of N and CR1, and
    • (2) R1, R2, R3, R4, and R5 are each independently selected from the group consisting of H, Cl, CF3, and OCF3;


(B) Het is (1b)




embedded image




    • wherein, R6 is H;





(C) L1 is selected from the group consisting of




embedded image




    • wherein, each R7, R8, R9, and R10 is independently selected from the group consisting of H and CH3;





(D) Ar2 is (1f)




embedded image




    • wherein:

    • (1) X2 is selected from the group consisting of N and CR13, and

    • (2) R11, R12, R13, and R14 are each independently selected from the group consisting of H, F, Cl, CH3, CF3, OCH3, and C(O)O—CH3;





(E) R15 is H;


(F) Q1 is O;


(G) Q2 is S;


(H) R16 is (K);


(I) R17 is (K);


(J) L2 is selected from the group consisting of




embedded image




    • wherein, R20, R21, R22, R23, and R24 are each independently selected from the group consisting of H, F, Cl, CH3, CH2CH2CH3, CH(CH3)2, CF3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2, OC(CH3)3, OCH(CH3)CH2CH3, OCF3, OCH2CF3, CH2OCH3, and CH(CH3)OCH3; and





(K) R16 and R17 along with C(Q2)(Nx), is selected from the group consisting of




embedded image


wherein R18 and R19 are each H.


Preparation of Molecules of Formula One


Many of the molecules of Formula One may be depicted in two or more tautomeric forms such as when R16 and R17 are H (Scheme TAU). For the sake of simplifying the schemes, all molecules have been depicted as existing as a single tautomer. Any and all energetically accessible tautomers are included within the scope of this Formula One, and no inference should be made as to whether the molecule exists as the tautomeric form in which it is drawn.




embedded image


The molecules of Formula One will generally have a molecular mass of about 400 Daltons to about 1200 Daltons.


Preparation of Isocyanates


Molecules of Formula One disclosed herein may be prepared from the corresponding isocyanates 1-2, wherein Ar1, Het, L1, and Ar2 are as previously disclosed. In some cases these isocyanates are not isolated, but are instead generated in situ from a suitable precursor and used directly in the preparation of molecules of Formula One. One such suitable precursor are amines 1-1, wherein Ar1, Het, L1, and Ar2 are as previously disclosed, which may be converted into isocyanates 1-2 by using one of several common reagents such as phosgene, diphosgene, or triphosgene, in a mixed solvent system such as dichloromethane and water or diethyl ether and water, in the presence of a base such as sodium bicarbonate or triethylamine, at temperatures from about −10° C. to about 50° C. (Scheme 1, step a).




embedded image


Alternatively, the isocyanates may be generated via the Curtius rearrangement of acyl azides 1-4, wherein Ar1, Het, L, and Ar2 are as previously disclosed, which are, in turn, prepared from the corresponding carboxylic acids 1-3, wherein Ar1, Het, L1, and Ar2 are as previously disclosed. Formation of acyl azides 1-4 may occur either by treatment of the acid with ethyl chloroformate and sodium azide in the presence of an amine base such as triethylamine, or with diphenylphosphoryl azide in the presence of an amine base such as trimethylamine (Scheme 1, step b). Acyl azides 1-4 are then made to undergo a thermally-induced Curtius rearrangement, leading to the corresponding isocyanates 1-2. Depending on the nature of the particular acyl azide, this rearrangement may occur spontaneously at room temperature, or it may require heating from 40° C. to about 100° C. in a solvent, such as toluene, acetonitrile, or an ethereal solvent such as dioxane or tetrahydrofuran. Acyl azides 1-4 are not always fully characterized, but may simply be heated directly without characterization, to generate isocyanates 1-2.


Preparation of Linear Biurets


Isocyanates 1-2 may be treated directly with ureas 2-1, wherein Q2 and L2 are as previously disclosed, in the presence of about 0.1 equivalents to about 2 equivalents of an inorganic base such as cesium carbonate or sodium hydride, resulting in the formation of biurets 2-2, wherein Ar1, Het, L1, Ar2, Q2, and L2 are as previously disclosed (Scheme 2, step a). The reaction can be performed at temperatures from about 0° C. to about 100° C., preferably from about 20° C. to about 80° C., in an aprotic solvent or solvent mixture chosen from acetonitrile, acetone, toluene, tetrahydrofuran, dichloroethane, dichloromethane, or mixtures thereof, but use of acetonitrile is preferred.




embedded image



Preparation of Substituted Linear Biurets


Linear biurets 2-2 may be treated with R16-halo, wherein R16 is as previously disclosed, in a protic solvent, such as ethanol, in the presence of a base, such as sodium acetate, at temperatures from about 0° C. to about 60° C., to yield substituted linear biurets 3-1, wherein Ar1, Het, L1, Ar2, Q2, R16, and L2 are as previously disclosed (Scheme 3, step a).




embedded image



Preparation of Cyclic Biurets


Linear biurets 2-2 generated in situ may be converted directly without purification into a variety of cyclized analogs (Scheme 4), or they can be isolated from the reaction medium prior to cyclization. Cyclization may be achieved by treatment with an α-halo ester such as methyl bromoacetate to form 2-imino 1,3-chalcogenazolin-4-ones 4-1, wherein Ar1, Het, L, Ar2, Q2, R18, R19, and L2 are as previously disclosed (Scheme 4, step a); vicinal dihalides such as 1-bromo-2-chloroethane or 1,2-dichloroethane, to form 2-imino-1,3-chalogenazolines 4-2, wherein Ar1, Het, L1, Ar2, Q2, R18, R19, and L2 are as previously disclosed (Scheme 4, step b); α-halo ketones such as chloroacetone to form 2-imino-1,3-chalcogenazoles 4-3, wherein Ar1, Het, L, Ar2, Q2, R18, R19, and L2 are as previously disclosed (Scheme 4, step c); 1,3-dihalopropanes such as 1-bromo-3-chloro-propane to form 2-imino-1,3-chalcogenazinanes 4-4, wherein Ar1, Het, L, Ar2, Q2, R18, R19, and L2 are as previously disclosed (Scheme 4, step d); or α,β-unsaturated acid chlorides such as acryloyl chloride to form 2-imino-1,3-chalcogenazinones 4-5, wherein Ar1, Het, L, Ar2, Q2, R18, R19, and L2 are as previously disclosed (Scheme 4, step e). With step a in Scheme 4, the use of sodium acetate in a protic solvent such as ethanol or methanol, at temperatures ranging from about 20° C. to about 70° C. is preferred. With step b in Scheme 4, the use of an inorganic base such as potassium carbonate in a solvent such as acetonitrile or (preferably) 2-butanone, at a temperature between about 0° C. and about 80° C., is preferred.




embedded image


An alternative method for preparing cyclic biurets is described in Scheme 5. 2-Imino-1,3-chalcogenazoheterocycles 5-1, wherein Q2CxNx, R16, R17, and L2 are as previously disclosed, may be treated directly with isocyanates 1-2, either in the absence of base or in the presence of about 0.1 equivalents to about 2 equivalents of an inorganic base, such as cesium carbonate or sodium hydride, to form cyclic thiobiurets 5-2, wherein Ar1, Het, L, Ar2, Q2, R16, R17, and L2 are as previously disclosed (Scheme 5, step a). The reaction may be performed at temperatures from about 0° C. to about 100° C., preferably from about 20° C. to about 80° C., in an aprotic solvent or solvent mixture chosen from acetonitrile, acetone, toluene, tetrahydrofuran, 1,2-dichloroethane, dichloromethane, or mixtures thereof, but use of acetonitrile is preferred. Cyclic biurets 4-1, 4-2, 4-3, 4-4, and 4-5, wherein L1 contains an olefin, may be reduced by treatment with hydrogen in the presence of a transition metal catalyst, such as palladium on carbon or platinum(IV) oxide.




embedded image


Alternatively, 2-imino-1,3-chalcogenazoheterocycles 5-1 may be reacted with 4-nitrophenyl chloroformate, forming 4-nitrophenyl carbamates 5-1b, wherein Q2CxNx, R16, R17, and L2 are as previously disclosed (Scheme 5, step b). This reaction may be conducted with equimolar quantities of 2-imino-1,3-chalcogenazoheterocycles 5-1 and the chloroformate, in a polar aprotic solvent, such as tetrahydrofuran, dioxane, or acetonitrile, in the presence of from about 0.1 equivalents to about 2 equivalents of an inorganic base, such as cesium carbonate or potassium carbonate, preferably at about room temperature. 4-Nitrophenyl carbamates 5-1b may be isolated by filtration and concentration of the filtrate, or 4-nitrophenyl carbamates 5-1b may be used directly in the next step (Scheme 5, step c). Treatment of 4-nitrophenyl carbamates 5-1b with amines 1-1 may generate cyclic thiobiurets 5-2. Step c may also be conducted in the presence of an inorganic base, such as cesium carbonate or potassium carbonate, from about 0.1 equivalents to about 2 equivalents, preferably about 1 equivalent to about 1.2 equivalents, at temperatures from about 0° C. to about 100° C., preferably about room temperature. Cyclic biurets 5-2, wherein L1 contains an olefin, may be reduced by treatment with hydrogen in the presence of a transition metal catalyst, such as palladium on carbon or platinum(IV) oxide.




embedded image


An alternative method for preparing cyclic biurets is described in Scheme 6. Amines 1-1 may be reacted with 4-nitrophenyl chloroformate, forming 4-nitrophenyl carbamates 6-1, wherein Ar1, Het, L, and Ar2 are as previously disclosed (Scheme 6, step a). This reaction may be conducted with equimolar quantities of amines 1-1 and the chloroformate, in a polar aprotic solvent, such as tetrahydrofuran, dioxane, or acetonitrile, in the presence of from about 0.1 equivalents to about 2 equivalents of an inorganic base, such as cesium carbonate or potassium carbonate, preferably at about room temperature. 4-Nitrophenyl carbamates 6-1 may be isolated by filtration and concentration of the filtrate, or 4-nitrophenyl carbamates 6-1 may be used directly (Scheme 6, step b). Treatment of 4-nitrophenyl carbamates 6-1 with 2-imino-1,3-chalcogenazoheterocycles 5-1 may generate cyclic thiobiurets 5-2. This reaction may be conducted with equimolar quantities of nitrophenyl carbamates 6-1 and 2-imino-1,3-chalcogenazoheterocycles 5-1, in a polar aprotic solvent, such as acetonitrile, in the presence of from about 0.1 equivalents to about 2 equivalents of an inorganic base, such as cesium carbonate or potassium carbonate, and about 2 equivalents of an organic base, such as N,N-diisopropylethylamine, preferably at about room temperature. Cyclic biurets 5-2, wherein L1 contains an olefin, may be reduced by treatment with hydrogen in the presence of a transition metal catalyst, such as palladium on carbon or platinum(IV) oxide.




embedded image


An additional method for preparing cyclic biurets is described in Scheme 7. Treatment of carbamates 7-1, wherein Ar1, Het, L1, and Ar2 are as previously disclosed, with 2-imino-1,3-chalcogenazoheterocycles 5-1 may generate cyclic thiobiurets 5-2. This reaction may be conducted in an aprotic solvent such as toluene, at temperatures from about 80° C. to about 140° C. in a sealed tube (Scheme 7, step a). Cyclic biurets 5-2, wherein L1 contains an olefin, may be reduced by treatment with hydrogen in the presence of a transition metal catalyst, such as palladium on carbon or platinum(IV) oxide.


Preparation of Amines


Methods for preparation of the amines 1-1 required for preparation of molecules of Formula One are described in Scheme 8. Olefins 8-1, wherein L1 contains an olefin and Ar1 and Het are as previously disclosed, may be treated with Ar2-Halo, wherein Halo are Cl, Br, or I and Ar2 is as previously disclosed with a palladium catalyst, such as palladium(II) acetate, and a phosphine ligand, such as tri(o-tolyl)phosphine, in the presence of a base, such as triethylamine, in a suitable solvent, such as N,N-dimethylformamide, at temperatures from about 50° C. to about 120° C., using conventional or microwave heating, to form carbamates 7-1 (Scheme 8, step a). Deprotection of the tert-butoxycarbonyl group on carbamates 7-1 may be accomplished under acidic conditions with strong acids, such as hydrogen chloride or trifluoroacetic acid, followed by free basing with a base, such as sodium bicarbonate or sodium hydroxide, to furnish amines 1-1 (Scheme 8, step b).




embedded image


Alternatively, olefins 8-1, wherein L1 contains an olefin and Ar1 and Het are as previously disclosed, may be treated with Ar2-Halo, wherein Halo are Cl, Br, or I and Ar2 is as previously disclosed, with a palladium catalyst, such as palladium(II) acetate, and a phosphine ligand, such as tri(o-tolyl)phosphine, in the presence of a base, such as triethylamine, in a suitable solvent, such as N,N-dimethylformamide, at temperatures from about 50° C. to about 120° C., using conventional or microwave heating, to form nitroarenes 8-2, wherein Ar1, Het, L1, and Ar2 are as previously disclosed, (Scheme 8, step c) or amines 1-1 (Scheme 8, step e). Nitroarenes 8-2 may be reduced to the corresponding amines 1-1 by treatment with hydrogen in the presence of a transition metal catalyst, such as palladium on carbon or platinum(IV) oxide. Likewise, it is appreciated when L1 contains an olefin concomitant reduction of the olefin will occur (Scheme 8, step d). Alternatively, nitroarenes 8-2 may be reduced to the corresponding amines 1-1 by treatment with zinc dust in the presence of an acid, such as acetic acid. It also appreciated that zinc dust and acid will leave any olefins present un-reduced.




embedded image


A method for preparation of certain amines 9-4, wherein Het is a 1,2,4-triazolyl and Ar1, L1, and Ar2 are as previously disclosed, required for preparation of molecules of Formula One is described in Scheme 9. Amides 9-1, wherein L1 and Ar2 are as previously disclosed, which may be prepared from the corresponding carboxylic acid, may be treated with 1,1-dimethoxy-N,N-dimethylmethanamine at temperatures from about 60° C. to about 100° C. to form the dimethylaminomethylene adduct. The adduct may be treated with hydrazine hydrate in the presence of an acid, such as acetic acid, at temperatures from about 80° C. to about 120° C., followed by cooling and neutralizing the mixture with a base, such as sodium hydroxide, to provide nitrotriazoles 9-2, wherein L1 and Ar2 are as previously disclosed (Scheme 9, step a). Nitrotriazoles 9-2 may be treated with Ar1-Halo, wherein Halo are Cl, Br, or I and Ar1 is as previously disclosed, with a copper catalyst, such as copper(I) chloride, copper(II) bromide, or copper(I) iodide, and a ligand, such as N1,N2-dimethylethane-1,2-diamine, in the presence of a base, such as potassium carbonate, in a suitable solvent, such as N,N-dimethylformamide, at temperatures from about 50° C. to about 120° C., using conventional or microwave heating, to form nitroarenes 9-3, wherein Het is a 1,2,4-triazolyl and Ar1, L1, and Ar2 are as previously disclosed (Scheme 9, step b). Nitroarenes 9-3 may be reduced to the corresponding amines 9-4 by treatment with hydrogen in the presence of a transition metal catalyst, such as palladium on carbon or platinum(IV) oxide. Likewise, it is appreciated when L1 contains an olefin concomitant reduction of the olefin will occur (Scheme 9, step c). Alternatively, nitroarenes 9-3 may be reduced to the corresponding amines 9-4 by treatment with zinc dust in the presence of an acid, such as acetic acid. It also appreciated that zinc dust and acid will leave any olefins present un-reduced.




embedded image



Preparation of Olefins 8-1


Methods for preparation of the amines 8-1 required for preparation of amines 1-1 are described in Scheme 10. Aryl halides 10-1, wherein Halo are Cl, Br, or I and Ar1 is as previously disclosed, may be treated with heteroaryl halides 10-2, wherein Halo are Cl, Br, or I and Het is as previously disclosed, with a copper catalyst, such as copper(I) chloride, copper(II) bromide, or copper(I) iodide, in the presence of a base, such as cesium carbonate, in a suitable solvent, such as N,N-dimethylformamide, at temperatures from about 50° C. to about 120° C., using conventional or microwave heating, to form heteroaryl halides 10-3, wherein Ar1, Het, and Halo are as previously disclosed (Scheme 10, step a). Treatment of heteroaryl halides 10-3 with an activated vinyl source, such as 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane, in the presence of a transition metal catalyst, such as bis(triphenylphosphine)palladium(II) dichloride, with a base, such as potassium carbonate, in a polar solvent, such as N,N-dimethylformamide, at temperatures from about 50° C. to about 120° C., using conventional or microwave heating, to form olefins 8-1 (Scheme 10, step b). Alternatively, heteroaryl halides 10-3 may be treated with an activated vinyl source, such as tributyl(vinyl)stannane, in the presence of a transition metal catalyst, such as bis(triphenylphosphine)palladium(II) dichloride, in a polar solvent, such as 1,2-dichloroethane, at temperatures from about 50° C. to about 120° C., using conventional or microwave heating, to form olefins 8-1 (Scheme 10, step b).


Preparation of 2-imino-1,3-chalcogenazoheterocycles


Methods for preparation of the 2-imino-1,3-chalcogenazoheterocycles required for preparation of molecules of Formula One are described in Scheme 11. Anilines 11-1, wherein L2 is as previously disclosed, may be treated with chloroacetyl chloride in the presence of a base, such as sodium bicarbonate, in a polar aprotic solvent, such as ethyl acetate, at temperatures from about −10° C. to about 30° C., to form amides 11-2, wherein L2 is as previously disclosed (Scheme 11, step a). Treatment of amides 11-2 with potassium thiocyanate, in the presence of a base, such as cesium carbonate, in a polar solvent, such as acetone, at temperatures from about 50° C. to reflux, may form 2-imino-1,3-chalcogenazoheterocycles 11-3, wherein L2 is as previously disclosed (Scheme 11, step b).




embedded image


Methods for preparation of the 2-imino-1,3-chalcogenazoheterocycles 12-4, wherein L2 is as previously disclosed, required for preparation of molecules of Formula One are also described in Scheme 12. Thioureas 12-1, wherein L2 is as previously disclosed, may be treated with a chloroformate, such as ethyl chloroformate to form thioureas 12-2, wherein L2 is as previously disclosed (Scheme 12, step a). Thioureas 12-2 may be further treated with chloroacetyl chloride, in the presence of a base, such as cesium carbonate, in a polar aprotic solvent, such as acetonitrile, at temperatures from about 10° C. to about 40° C., to form chalcogenazoheterocycles 12-3, wherein L2 is as previously disclosed, (Scheme 12, step b). Chalcogenazoheterocycles 12-3 may be treated with a base, such as sodium hydroxide, in a polar protic solvent, such as ethanol, at temperatures from about 40° C. to about 90° C. to form 2-imino-1,3-chalcogenazoheterocycles 12-4 (Scheme 12, step c).




embedded image


EXAMPLES

These examples are for illustration purposes and are not to be construed as limiting this disclosure to only the embodiments disclosed in these examples.


Starting materials, reagents, and solvents that were obtained from commercial sources were used without further purification. Anhydrous solvents were purchased as Sure/Seal™ from Aldrich and were used as received. Melting points were obtained on a Thomas Hoover Unimelt capillary melting point apparatus or an OptiMelt Automated Melting Point System from Stanford Research Systems and are uncorrected. Examples using “room temperature” were conducted in climate controlled laboratories with temperatures ranging from about 20° C. to about 24° C. Molecules are given their known names, named according to naming programs within ISIS Draw, ChemDraw, or ACD Name Pro. If such programs are unable to name a molecule, such molecule is named using conventional naming rules. 1H NMR spectral data are in ppm (δ) and were recorded at 300, 400, 500, or 600 MHz; 13C NMR spectral data are in ppm (δ) and were recorded at 75, 100, or 150 MHz; and 19F NMR spectral data are in ppm (δ) and were recorded at 376 MHz, unless otherwise stated.


Example 1: Preparation of methyl 2-[bis(tert-butoxycarbonyl)amino]-5-iodo-benzoate (C1)



embedded image


To a round bottom flask was added methyl 2-amino-5-iodobenzoate (5.00 g, 18.1 mmol) and di-tert-butyl dicarbonate (3.94 g, 18.1 mmol). The flask was sealed and evacuated/backfilled with nitrogen (3×). Tetrahydrofuran (90 mL) was added, and the reaction mixture was heated to 60° C. overnight. 4-Dimethylaminopyridine (1.10 g, 9.02 mmol) was added, and the reaction mixture was heated for 1.5 hours. The reaction mixture was cooled to room temperature. Ethyl acetate and water were added, and the layers were separated. The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as a pale yellow solid (1.70 g, 20%): 1H NMR (400 MHz, CDCl3) δ 8.32 (d, J=2.1 Hz, 1H), 7.84 (dd, J=8.3, 2.2 Hz, 1H), 6.93 (d, J=8.3 Hz, 1H), 3.87 (s, 3H), 1.38 (s, 18H); EIMS m/z 478 ([M+H]+).


Example 2: Preparation of 2-(3-bromo-1H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)pyridine (C2)



embedded image


To a reaction vial were added 2-bromo-5-(trifluoromethoxy)pyridine (1.0 g, 4.1 mmol) and 3-bromo-1H-1,2,4-triazole (0.91 g, 6.2 mmol). N,N-Dimethylformamide (16 mL) and cesium carbonate (2.6 g, 8.2 mmol) were added, and the vial was degassed for 5 minutes with argon. Copper(I) iodide (0.077 g, 0.41 mmol) was added, and the vial was further degassed for 5 minutes with argon. The vial was capped and heated at 100° C. for 1 hour in a Biotage Initiator® microwave reactor, with external IR-sensor temperature monitoring from the side of the vessel. The reaction mixture was cooled to room temperature, poured onto crushed ice (3 volumes), and extracted with ethyl acetate (3×150 mL). The combined organic layers were dried over sodium sulfate, filtered, and concentrated. Purification by flash column chromatography using 0-40% ethyl acetate/hexanes as eluent provided the title compound as a pale brown liquid (0.40 g, 31%): 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 8.39 (d, J=2.4 Hz, 1H), 7.94 (d, J=8.8 Hz, 1H), 7.77 (dd, J=1.6 Hz, 8.8 Hz, 1H); ESIMS m/z 309 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 2:


2-(3-Bromo-1H-1,2,4-triazol-1-yl)-3-chloro-5-(trifluoromethyl)pyridine (C3)



embedded image


Prepared from 3-chloro-2-iodo-5-(trifluoromethyl)pyridine (0.750 g, 60%): 1H NMR (300 MHz, CDCl3) δ 8.80 (s, 1H), 8.72 (s, 1H), 8.22 (s, 1H); ESIMS m/z 327 ([M+H]+).


Example 3: Preparation of 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4)



embedded image


To a microwave reaction vial were added 3-bromo-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (0.200 g, 0.649 mmol), 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.150 g, 0.974 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.0750 g, 0.0650 mmol), and potassium carbonate (0.179 g, 1.30 mmol) in N,N-dimethylformamide/water (0.2 M, 4:1). The vial was capped and heated at 90° C. for 30 minutes in a Biotage Initiator® microwave reactor, with external IR-sensor temperature monitoring from the side of the vessel. The reaction mixture was diluted with ethyl acetate and washed with water. The aqueous layers were further extracted with ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as an off-white solid (0.115 g, 69%): mp 89-91° C.; 1H NMR (400 MHz, CDCl3) δ 8.47 (d, J=0.7 Hz, 1H), 7.80-7.63 (m, 2H), 7.43-7.30 (m, 2H), 6.80 (ddd, J=17.6, 11.0, 0.7 Hz, 1H), 6.35 (dd, J=17.6, 1.5 Hz, 1H), 5.62 (dd, J=11.0, 1.5 Hz, 1H); 19F NMR (376 MHz, CDCl3) δ −58.04; 13C NMR (101 MHz, CDCl3) δ 162.74, 148.38, 141.21, 135.43, 126.09, 122.38, 121.65, 121.13, 120.90; EIMS m/z 255 ([M]+).


The following compounds were prepared in like manner to the procedure outlined in Example 3:


5-(Trifluoromethoxy)-2-(3-vinyl-1H-1,2,4-triazol-1-yl)pyridine (C5)



embedded image


Prepared from 2-(3-bromo-1H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)pyridine (C2) and tetrakis(triphenylphosphine)palladium(0) (0.500 g, 61%): 1H NMR (300 MHz, CDCl3) δ 9.06 (s, 1H), 8.39 (s, 1H), 7.96-7.93 (d, J=9.6 Hz, 1H), 7.77-7.74 (d, J=9.6 Hz, 1H), 6.78 (dd, J=17.4, 10.8 Hz, 1H), 6.41-6.35 (d, J=17.4 Hz, 1H), 5.66-5.62 (d, J=10.8 Hz, 1H); EIMS m/z 257 ([M+H]+).


Example 4: Preparation of 3-chloro-5-(trifluoromethyl)-2-(3-vinyl-1H-1,2,4-triazol-1-yl)pyridine (C6)



embedded image


To a reaction vial were added 2-(3-bromo-1H-1,2,4-triazol-1-yl)-3-chloro-5-(trifluoromethyl)pyridine (C3) (1.00 g, 3.06 mmol), tributyl(vinyl)stannane (1.16 g, 3.66 mmol), and 1,2-dichloroethane (25 mL). The reaction mixture was degassed for 15 minutes with argon. Bis(triphenylphosphine)palladium(II) dichloride (0.112 g, 0.153 mmol) was added, and the reaction mixture was again degassed with argon for 5 minutes. The vial was capped and heated at 100° C. for 16 hours in a Biotage Initiator® microwave reactor, with external IR-sensor temperature monitoring from the side of the vessel. The reaction mixture was concentrated. Purification by flash column chromatography provided the title compound (0.650 g, 77%): 1H NMR (300 MHz, CDCl3) δ 8.86 (s, 1H), 7.72 (s, 1H), 8.20 (s, 1H), 6.84 (dd, J=17.4, 10.8 Hz, 1H), 6.41 (d, J=17.4 Hz, 1H), 5.67 (d, J=10.8 Hz, 1H); ESIMS m/z 275 ([M+H]+).


Example 5: Preparation of tert-butyl (E)-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C7)



embedded image


To a microwave reaction vial were added 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) (0.0500 g, 0.196 mmol), tert-butyl (4-iodophenyl)carbamate (0.125 g, 0.392 mmol), palladium(II) acetate (0.00440 mg, 0.0200 mmol), and tri(o-tolyl)phosphine (0.0119 g, 0.0390 mmol). The vial was sealed and was evacuated/backfilled with nitrogen (3×). N,N-Dimethylformamide (0.784 mL) was added followed by triethylamine (0.0273 mL, 0.196 mmol). The vial was heated at 100° C. for 30 minutes in a Biotage Initiator® microwave reactor, with external IR-sensor temperature monitoring from the side of the vessel. The reaction mixture was cooled to room temperature, diluted with dichloromethane, and washed with water and brine. The combined organic layers were dried, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as an off-white solid (0.0860 g, 97%): mp 171-173° C.; 1H NMR (400 MHz, CDCl3) δ 8.50 (d, J=0.7 Hz, 1H), 7.80-7.70 (m, 2H), 7.64 (d, J=16.3 Hz, 1H), 7.55-7.47 (m, 2H), 7.43-7.33 (m, 4H), 7.06 (dd, J=16.2, 0.7 Hz, 1H), 6.64 (s, 1H), 1.53 (s, 9H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 447 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 5:


tert-Butyl (E)-(3-methyl-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C8)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and tert-butyl (4-iodo-3-methylphenyl)carbamate and isolated as a white solid (0.600 g, 66%): mp 199-201° C.; 1H NMR (400 MHz, CDCl3) δ 8.50 (d, J=0.7 Hz, 1H), 7.96-7.81 (m, 1H), 7.81-7.70 (m, 2H), 7.60 (d, J=8.5 Hz, 1H), 7.43-7.33 (m, 2H), 7.28 (s, 1H), 7.19 (dd, J=8.5, 2.3 Hz, 1H), 7.00 (dd, J=16.1, 0.7 Hz, 1H), 6.48 (s, 1H), 2.47 (s, 3H), 1.53 (s, 9H); 19F NMR (471 MHz, CDCl3) δ −58.03; 13C NMR (126 MHz, CDCl3) δ 163.36, 152.55, 148.27, 141.18, 138.52, 137.72, 135.50, 132.24, 129.94, 126.43, 122.41, 121.41, 121.01, 119.98, 119.36, 116.57, 116.26, 28.34, 20.14; ESIMS m/z 461 ([M+H]+).


Methyl 2-[bis(tert-butoxycarbonyl)amino]-5-[(E)-2-[1-[4-(trifluoromethoxy)phenyl]-1,2,4-triazol-3-yl]vinyl]benzoate (C9)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and methyl 2-[bis(tert-butoxycarbonyl)amino]-5-iodo-benzoate (C1) and isolated as a yellow solid (0.300 g, 78%): mp 57-67° C.; 1H NMR (400 MHz, CDCl3) δ 8.58-8.44 (m, 1H), 8.25 (dd, J=18.8, 2.2 Hz, 1H), 7.89-7.62 (m, 4H), 7.39 (dq, J=7.9, 0.9 Hz, 2H), 7.26-7.16 (m, 2H), 3.90 (d, J=2.1 Hz, 3H), 1.40 (d, J=6.9 Hz, 18H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 605 ([M+H]+).


tert-Butyl (E)-(2-chloro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C10)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and tert-butyl (2-chloro-4-iodophenyl)carbamate and isolated as a yellow solid (0.515 g, 90%): mp 160-173° C.; 1H NMR (400 MHz, CDCl3) δ 8.52-8.43 (m, 1H), 8.21 (d, J=8.6 Hz, 1H), 7.81-7.67 (m, 2H), 7.62-7.53 (m, 2H), 7.46 (dd, J=8.6, 1.9 Hz, 1H), 7.42-7.33 (m, 2H), 7.14-7.00 (m, 2H), 1.55 (s, 9H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 481 ([M+H]+).


tert-Butyl (E)-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)prop-1-en-1-yl)phenyl)carbamate (C11)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and tert-butyl (4-iodophenyl)carbamate and isolated as an orange solid (0.330 g, 38%): mp 199-201° C.; 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H), 7.83-7.66 (m, 1H), 7.53-7.45 (m, 1H), 7.46-7.28 (m, 3H), 6.55 (d, J=11.0 Hz, 1H), 2.96 (s, 3H), 2.89 (d, J=0.6 Hz, 3H), 2.42 (d, J=1.4 Hz, 1H), 1.57-1.47 (m, 9H); 19F NMR (376 MHz, CDCl3) δ −58.04; ESIMS m/z 461 ([M+H]+).


tert-Butyl (E)-(4-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C12)



embedded image


Prepared from 5-(trifluoromethyl)-2-(3-vinyl-1H-1,2,4-triazol-1-yl)pyridine (C5) and tert-butyl (2-chloro-4-iodophenyl)carbamate (0.200 g, 23%): ESIMS m/z 448 ([M+H]+).


tert-Butyl (E)-(5-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)carbamate (C13)



embedded image


Prepared from 5-(trifluoromethyl)-2-(3-vinyl-1H-1,2,4-triazol-1-yl)pyridine (C5) and tert-butyl (2-chloro-4-iodophenyl)carbamate (0.250 g, 28%): ESIMS m/z 448 ([M+H]+).


tert-Butyl (E)-(5-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)carbamate (C14)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and tert-butyl (2-chloro-4-iodophenyl)carbamate (0.270 g, 31%): ESIMS m/z 448 ([M+H]+).


tert-Butyl (E)-(4-(2-(1-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C15)



embedded image


Prepared from 3-chloro-5-(trifluoromethyl)-2-(3-vinyl-1H-1,2,4-triazol-1-yl)pyridine (C6) and tert-butyl (2-chloro-4-iodophenyl)carbamate (0.300 g, 35%): 1H NMR (300 MHz, CDCl3) δ 8.91 (s, 1H), 8.72 (s, 1H), 8.20 (s, 1H), 7.70 (d, J=16.0 Hz, 1H), 7.52 (d, J=8.4 Hz, 2H), 7.39 (d, J=8.4 Hz, 2H), 7.10 (d, J=16.0 Hz, 1H), 6.53 (s, 1H), 1.56 (s, 9H); ESIMS m/z 466 ([M+H]+).


(E)-2-Methoxy-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C16)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and 4-iodo-2-methoxyaniline and isolated as a yellow solid (0.311 g, 70%): mp 179-185° C.; 1H NMR (400 MHz, CDCl3) δ 8.48 (d, J=0.6 Hz, 1H), 7.79-7.68 (m, 2H), 7.61 (d, J=16.2 Hz, 1H), 7.43-7.31 (m, 2H), 7.12-6.90 (m, 3H), 6.70 (d, J=7.9 Hz, 1H), 3.98 (s, 2H), 3.91 (s, 3H); 19F NMR (376 MHz, CDCl3) δ −58.03; 13C NMR (126 MHz, CDCl3) δ 163.55, 148.18, 147.23, 141.10, 137.34, 135.69, 135.55, 126.79, 122.39, 121.52, 121.41, 120.89, 119.36, 114.46, 112.94, 108.18, 55.44; ESIMS m/z 377 ([M+H]+).


(E)-4-(2-(1-(4-(Trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)-2-(trifluoromethyl)aniline (C17)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and 4-iodo-2-(trifluoromethyl)aniline and isolated as a yellow solid (0.383 g, 58%): mp 170-180° C.; 1H NMR (400 MHz, CDCl3) δ 8.49 (d, J=0.6 Hz, 1H), 7.80-7.68 (m, 2H), 7.67-7.60 (m, 1H), 7.60-7.48 (m, 2H), 7.38 (dq, J=7.9, 1.0 Hz, 2H), 7.00 (dd, J=16.2, 0.6 Hz, 1H), 6.81-6.69 (m, 1H), 4.32 (s, 2H); 13C NMR (126 MHz, CDCl3) δ 163.09, 148.27, 144.65, 141.17, 135.48, 133.87, 131.16, 126.06, 125.81, 125.77, 122.41, 120.94, 117.44, 114.60, 113.96; 19F NMR (471 MHz, CDCl3) δ −58.03, −62.89; ESIMS m/z 415 ([M+H]+).


(E)-2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and 2-fluoro-4-iodoaniline and isolated as a yellow solid (0.580 g, 73%): mp 170-179° C.; 1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H), 7.82-7.66 (m, 2H), 7.56 (d, J=16.2 Hz, 2H), 7.37 (d, J=8.4 Hz, 2H), 7.24-7.12 (m, 1H), 6.95 (d, J=16.1 Hz, 1H), 6.82-6.70 (m, 1H), 3.88 (s, 2H); 19F NMR (376 MHz, CDCl3) δ −58.03, −135.23; 13C NMR (126 MHz, CDCl3) δ 163.19, 152.49, 150.59, 148.26, 135.49, 135.13, 134.34, 127.33, 124.05, 122.40, 120.96, 116.59, 114.36, 113.45; ESIMS m/z 365 ([M+H]+).


(E)-2,6-Difluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C19)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and 2,6-difluoro-4-iodoaniline and isolated as a yellow solid (0.200 g, 44%): mp 130-136 OC; 1H NMR (400 MHz, CDCl3) δ 8.56-8.44 (m, 1H), 7.82-7.68 (m, 2H), 7.50 (d, J=16.1 Hz, 1H), 7.44-7.30 (m, 2H), 7.05 (dd, J=7.5, 2.1 Hz, 2H), 6.95 (d, J=16.2 Hz, 1H), 3.88 (s, 2H); 19F NMR (376 MHz, CDCl3) δ −58.03, −132.53; 13C NMR (126 MHz, CDCl3) δ 162.81, 152.85, 152.78, 150.94, 150.87, 148.33, 148.31, 141.22, 135.43, 133.51, 133.48, 133.46, 125.65, 124.46, 122.42, 121.41, 120.98, 119.36, 115.68, 109.73, 109.68, 109.60, 109.55; ESIMS m/z 383 ([M+H]+).


(E)-3-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C20)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and 3-fluoro-4-iodoaniline and isolated as an orange solid (0.371 g, 64%): mp 153-157° C.; 1H NMR (400 MHz, CDCl3) δ 8.49 (d, J=0.6 Hz, 1H), 7.80-7.64 (m, 3H), 7.44-7.31 (m, 3H), 7.06 (dd, J=16.4, 0.7 Hz, 1H), 6.47 (dd, J=8.3, 2.3 Hz, 1H), 6.40 (dd, J=12.5, 2.3 Hz, 1H), 3.92 (s, 2H); 19F NMR (471 MHz, CDCl3) δ −58.04, −115.03; ESIMS m/z 365 ([M+H]+).


(E)-3-(2-Methoxy-4-nitrostyryl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C21)



embedded image


Prepared from 1-(4-(trifluoromethoxy)phenyl)-3-vinyl-1H-1,2,4-triazole (C4) and 1-iodo-2-methoxy-4-nitrobenzene and isolated as an orange solid (0.503 g, 78%): mp 135-155° C.; 1H NMR (400 MHz, CDCl3) δ 8.54 (d, J=0.6 Hz, 1H), 7.99 (d, J=16.5 Hz, 1H), 7.88 (ddd, J=8.4, 2.2, 0.5 Hz, 1H), 7.81-7.67 (m, 4H), 7.45-7.32 (m, 3H), 4.02 (s, 3H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 407 ([M+H]+).


Example 6: Preparation of (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22)



embedded image


To tert-butyl (E)-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C7) (0.600 g, 1.34 mmol) in dichloromethane (7.5 mL) at 0° C. was added 3,3,3-trifluoroacetic acid (2.07 mL, 26.9 mmol) dropwise. The reaction mixture was allowed to stir and warm to room temperature. The reaction mixture was concentrated, and the crude residue was diluted with dichloromethane. Saturated sodium carbonate was added until bubbling ceased. Water was added, the layers were separated, and the aqueous phase was extracted with dichloromethane (3×). The combined organic extracts were washed with water and brine, dried over sodium sulfate, filtered, and concentrated, providing the title compound as an off-white solid (0.400 g, 85%): mp 199-201° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.30 (s, 1H), 8.10-7.94 (m, 2H), 7.65-7.57 (m, 2H), 7.57-7.44 (m, 3H), 7.04 (d, J=16.2 Hz, 1H), 6.92-6.76 (m, 2H), 3.71 (s, 2H); 19F NMR (376 MHz, DMSO-d6) 5-56.98; ESIMS m/z 388 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 6:


(E)-3-Methyl-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C23)



embedded image


Prepared from tert-butyl (E)-(3-methyl-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C8) and isolated as an off-white solid (0.391 g, 99%): mp 199-201° C.; 1H NMR (400 MHz, CDCl3) δ 8.48 (d, J=0.7 Hz, 1H), 7.86 (dt, J=16.1, 0.6 Hz, 1H), 7.80-7.66 (m, 2H), 7.51 (d, J=8.3 Hz, 1H), 7.37 (dq, J=8.9, 1.0 Hz, 2H), 6.92 (dd, J=16.1, 0.7 Hz, 1H), 6.61-6.45 (m, 2H), 3.00 (s, 2H), 2.42 (s, 3H); 19F NMR (471 MHz, CDCl3) δ −58.03; 13C NMR (126 MHz, CDCl3) δ 163.71, 148.20, 146.90, 141.08, 138.24, 135.55, 132.72, 127.02, 125.55, 122.39, 120.97, 116.66, 114.15, 113.10, 20.08; ESIMS m/z 391 ([M+H]+).


Methyl (E)-2-amino-5-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)benzoate (C24)



embedded image


Prepared from methyl 2-[bis(tert-butoxycarbonyl)amino]-5-[(E)-2-[1-[4-(trifluoromethoxy)phenyl]-1,2,4-triazol-3-yl]vinyl]benzoate (C9) and isolated as an orange solid (0.375 g, 99%): mp 186-190° C.; 1H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.09 (d, J=2.1 Hz, 1H), 7.79-7.68 (m, 2H), 7.60 (d, J=16.2 Hz, 1H), 7.56-7.49 (m, 1H), 7.41-7.32 (m, 2H), 6.98 (d, J=16.3 Hz, 1H), 6.69 (d, J=8.6 Hz, 1H), 5.92 (s, 2H), 3.91 (s, 3H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 405 ([M+H]+).


(E)-2-Chloro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C25)



embedded image


Prepared from tert-butyl (E)-(2-chloro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C10) and isolated as an orange solid (0.363 g, 88%): 1H NMR (400 MHz, CDCl3) δ 8.48 (d, J=6.1 Hz, 1H), 7.73 (dd, J=8.9, 6.4 Hz, 2H), 7.59-7.46 (m, 2H), 7.41-7.34 (m, 2H), 7.30 (dd, J=8.3, 2.0 Hz, 1H), 6.96 (d, J=16.2 Hz, 1H), 6.86-6.73 (m, 1H), 4.21 (s, 2H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 381 ([M+H]+).


(E)-4-(2-(1-(4-(Trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)prop-1-en-1-yl)aniline (C26)



embedded image


Prepared from tert-butyl (E)-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)prop-1-en-1-yl)phenyl)carbamate (C11) and isolated as an off-white solid (0.042 g, 18%): mp 163-165° C.; 1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H), 7.81-7.72 (m, 2H), 7.72-7.63 (m, 1H), 7.42-7.29 (m, 4H), 6.80-6.67 (m, 2H), 3.76 (s, 2H), 2.43 (d, J=1.4 Hz, 3H); 19F NMR (376 MHz, CDCl3) δ −58.05; ESIMS m/z 360 ([M+H]+).


(E)-4-(2-(1-(5-(Trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C27)



embedded image


Prepared from tert-butyl (E)-(4-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C12) (0.250 g, 65%): 1H NMR (300 MHz, CDCl3) δ 9.06 (s, 1H), 8.38 (s, 1H), 7.95 (d, J=8.7 Hz, 1H), 7.75 (d, J=8.7 Hz, 1H), 7.64 (d, J=16.2 Hz, 1H), 7.41 (d, J=8.4 Hz, 2H), 6.94 (d, J=16.2 Hz, 1H), 6.68 (d, J=8.7 Hz, 2H), 3.83 (s, 2H); ESIMS m/z 348 ([M+H]+).


(E)-4-(2-(1-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C28)



embedded image


Prepared from tert-butyl (E)-(4-(2-(1-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C15) (0.300 g, 77%): ESIMS m/z 366 ([M+H]+).


Example 7: Preparation of 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29)



embedded image


To a 500 mL flask were added 3-(4-nitrophenethyl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C41) (10.2 g, 27.0 mmol), palladium on carbon (10%, 5.75 g, 2.70 mmol), dichloromethane (90.0 mL) and ethanol (45.0 mL). The flask was then placed under a hydrogen atmosphere (1 atmosphere). The reaction mixture was allowed to stir overnight at room temperature. The catalyst was removed via filtration through a pad of Celite® and washing with additional dichloromethane. The filtrate was concentrated to provide the title compound (7.37 g, 78%) as an off white solid: 1H NMR (400 MHz, DMSO-d6) δ 9.21 (s, 1H), 8.05-7.88 (m, 2H), 7.56 (d, J=8.6 Hz, 2H), 7.01-6.80 (m, 2H), 6.62-6.36 (m, 2H), 4.93 (s, 2H), 3.02-2.78 (m, 4H); 19F NMR (376 MHz, DMSO-d6) δ −57.01; 13C NMR (101 MHz, DMSO-d6) δ 164.54, 146.78, 146.42, 142.74, 135.70, 128.63, 128.11, 122.47, 120.73, 114.02, 32.82, 30.11; ESIMS m/z 349 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 7:


(E)-3-Methoxy-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C30)



embedded image


Prepared from (E)-3-(2-methoxy-4-nitrostyryl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C21) using ethyl acetate as solvent and isolated as an orange solid (0.168 g, 45%): 1H NMR (400 MHz, CDCl3) δ 8.54 (d, J=0.6 Hz, 1H), 7.99 (d, J=16.5 Hz, 1H), 7.88 (ddd, J=8.4, 2.2, 0.5 Hz, 1H), 7.81-7.67 (m, 4H), 7.45-7.32 (m, 3H), 4.02 (s, 3H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 407 ([M+H]+).


4-(2-(1-(4-(Trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)propyl)aniline (C31)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)prop-1-en-1-yl)aniline (C26) using ethyl acetate as solvent and isolated as an off-white solid (0.039 g, 91%): 1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 7.73-7.61 (m, 2H), 7.41-7.30 (m, 2H), 7.06-6.91 (m, 2H), 6.66-6.54 (m, 2H), 3.55 (s, 2H), 3.33-3.19 (m, 1H), 3.13 (dd, J=13.6, 6.3 Hz, 1H), 2.76 (dd, J=13.6, 8.6 Hz, 1H), 1.32 (d, J=6.9 Hz, 3H); 19F NMR (376 MHz, CDCl3) δ −58.06; ESIMS m/z 363 ([M+H]+).


2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C32)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) (0.250 g, 73%): 1H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 7.79-7.59 (m, 2H), 7.43-7.30 (m, 2H), 6.89 (dd, J=12.0, 1.9 Hz, 1H), 6.83 (dd, J=8.3, 1.7 Hz, 1H), 6.70 (dd, J=9.2, 8.0 Hz, 1H), 3.61 (s, 2H), 3.17-2.94 (m, 4H); 19F NMR (471 MHz, CDCl3) δ −58.05, −135.16; 13C NMR (126 MHz, CDCl3) δ 165.32, 152.55, 150.65, 148.24, 141.03, 135.54, 132.42, 132.06, 124.21, 122.35, 121.13, 116.98, 115.16, 33.30, 30.31; ESIMS m/z 367 ([M+H]+).


4-(2-(1-(4-(Trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)cyclopropyl)aniline (C33)



embedded image


Prepared from 3-(2-(4-nitrophenyl)cyclopropyl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C43) as a white solid (0.074 g, 89%): mp 101-108° C.; 1H NMR (400 MHz, CDCl3) δ 8.41 (d, J=15.7 Hz, 1H), 7.73-7.63 (m, 2H), 7.38-7.30 (m, 2H), 7.03-6.95 (m, 2H), 6.67-6.58 (m, 2H), 3.58 (d, J=15.7 Hz, 2H), 2.48 (ddd, J=9.0, 6.1, 4.4 Hz, 1H), 2.33 (ddd, J=8.7, 5.5, 4.4 Hz, 1H), 1.62 (ddd, J=9.0, 5.6, 4.7 Hz, 1H), 1.39 (ddd, J=8.7, 6.2, 4.6 Hz, 1H); 19F NMR (376 MHz, CDCl3) δ −58.03; ESIMS m/z 361 ([M+H]+).


Example 8: Preparation of (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22)



embedded image


To a 20 mL vial were added (E)-3-(4-nitrostyryl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C42) (0.100 g, 0.266 mmol), zinc dust (0.100 g, 1.53 mmol), and acetic acid (1.3 mL). The reaction mixture was stirred at room temperature for 30 minutes. An addition aliquot of acetic acid (2.0 mL) was added. The reaction mixture was allowed to stir overnight at room temperature. The reaction mixture was diluted with water, carefully basified with aqueous sodium hydroxide, and extracted with ethyl acetate. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated to provide the title compound as an off-white solid (0.0810 g, 79%): mp 199-201° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.27 (s, 1H), 8.03-7.97 (m, 2H), 7.59 (d, J=8.6 Hz, 2H), 7.36 (d, J=8.5 Hz, 3H), 6.88 (d, J=16.2 Hz, 1H), 6.58 (d, J=8.4 Hz, 2H), 5.47 (s, 2H); 19F NMR (376 MHz, DMSO-d6) 5-56.97; ESIMS m/z 347 ([M+H]+).


Example 9: Preparation of 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F38)



embedded image


Step 1: Preparation of (E)-4-nitrophenyl-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C34)

To a reaction vial were added (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) (0.100 g, 0.289 mmol) and tetrahydrofuran (5 mL). 4-Nitrophenyl carbonochloridate (0.0582 g, 0.289 mmol) in tetrahydrofuran was added dropwise at room temperature, and the reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was concentrated providing the title compound which was used without further purification.


Step 2: Preparation of 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F38)

To (E)-4-nitrophenyl (4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)carbamate (C34) dissolved in acetonitrile (5.00 mL) were added 2-imino-3-(2-isopropyl-5-methylphenyl)thiazolidin-4-one (0.0717 g, 0.289 mmol), cesium carbonate (0.0940 g, 0.289 mmol), and N,N-diethylisopropylamine (0.101 mL, 0.578 mmol). The reaction mixture was allowed to stir at room temperature. The reaction mixture was poured into water, and the aqueous phase was extracted with ethyl acetate (3×). The combined organic layers were washed with water and brine, dried, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/B, where B is dichloromethane/hexanes (1:1), as eluent provided the title compound as an off-white solid (0.126 g, 70%).


The following compounds were prepared in like manner to the procedure outlined in Example 9:


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)propyl)phenyl)urea (F15)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)propyl)aniline (C31) and isolated as an off-white solid (0.050 g, 72%).


(Z)-1-(3-(2-(Methoxymethyl)-5-methyl phenyl)-4-oxothiazolidin-2-yl idene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F21)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29) and isolated as a white solid (0.118 g, 65%).


(Z)-1-(2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-(methoxymethyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F22)



embedded image


Prepared from 2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C32) and isolated as a pale orange solid (0.089 g, 59%).


(Z)-1-(3-(2-(sec-Butoxy)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F24)



embedded image


Prepared from 2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C32) and isolated as an off-white foam (0.041 g, 40%).


(Z)-1-(2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(5-methyl-2-propyl phenyl)-4-oxothiazolidin-2-ylidene)urea (F26)



embedded image


Prepared from 2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C32) and isolated as an off-white foam (0.078 g, 71%).


(Z)-1-(3-(2-(2,2-Difluorocyclopropyl)-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F28)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29) and isolated as an off-white solid (0.061 g, 32%).


(Z)-1-(3-(2-(1-Methoxyethyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F31)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29) and isolated as a pale yellow solid (0.051 g, 55%).


(Z)-1-(3-Cyclohexyl-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F35)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29) and isolated as a white solid (0.086 g, 52%).


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)thiazol-2(3H)-yl idene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F36)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29) and isolated as an off-white solid (0.075 g, 85%).


(Z)-1-(2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-methylphenyl)thiazol-2(3H)-ylidene)urea (F37)



embedded image


Prepared from 2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C32) and isolated as an off white solid (0.076 g, 88%).


1-((Z)-3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(3-methyl-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F39)



embedded image


Prepared from (E)-3-methyl-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C23) and isolated as an off-white solid (0.243 g, 68%).


1-((Z)-3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(3-methoxy-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F40)



embedded image


Prepared from (E)-3-methoxy-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C30) and isolated as a red solid (0.018 g, 13%).


1-((Z)-3-(2-Fluoro-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F41)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.095 g, 55%).


1-((Z)-3-(2-Methoxy-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F42)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.114 g, 54%).


1-((Z)-3-(5-Methyl-2-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F43)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as a pale yellow solid (0.116 g, 51%).


1-((Z)-3-(2-Chloro-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F44)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.092 g, 52%).


1-((Z)-3-(5-Methyl-2-propyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F45)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.108 g, 61%).


1-((Z)-3-(2-Ethoxy-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F46)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.081 g, 45%).


1-((Z)-3-(4-Fluoro-2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F47)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.126 g, 68%).


1-((Z)-3-(2-(sec-Butoxy)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F48)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.118 g, 62%).


1-((Z)-3-(2-Isopropoxy-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F49)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.108 g, 58%).


1-((Z)-3-(5-Methyl-2-(trifluoromethoxy)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F50)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.134 g, 69%).


1-((Z)-3-(5-Methyl-2-(2,2,2-trifluoroethoxy)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F51)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as a yellow solid (0.130 g, 66%).


1-((Z)-3-(2-(tert-Butoxy)-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F52)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an off-white solid (0.151 g, 80%).


1-((Z)-3-(2-(Methoxymethyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F53)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as a yellow solid (0.118 g, 65%).


Methyl 2-(3-((Z)-3-(2-isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)ureido)-5-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)benzoate (F54)



embedded image


Prepared from methyl (E)-2-amino-5-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)benzoate (C24) and isolated as an off-white solid (0.078 g, 46%).


1-(2-Fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F55)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as a white solid (0.110 g, 63%).


1-(2-Chloro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F56)



embedded image


Prepared from (E)-2-chloro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C25) and isolated as a yellow solid (0.092 g, 53%).


1-(2,6-Difluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F57)



embedded image


Prepared from (E)-2,6-difluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C19) and isolated as an off-white solid (0.100 g, 57%).


1-((Z)-3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(2-methoxy-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F58)



embedded image


Prepared from (E)-2-methoxy-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C16) and isolated as a yellow solid (0.092 g, 53%).


1-(2-Fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-(methoxymethyl)-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)urea (F59)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as an off-white solid (0.101 g, 57%).


1-((Z)-3-(2-(sec-Butoxy)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(2-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F60)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as an orange foam (0.060 g, 32%).


1-(3-Fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F61)



embedded image


Prepared from (E)-3-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C20) and isolated as a yellow foam (0.099 g, 56%).


1-((Z)-3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)-2-(trifluoromethyl)phenyl)urea (F62)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)-2-(trifluoromethyl)aniline (C17) and isolated as an orange solid (0.083 g, 49%).


1-(2-Fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(5-methyl-2-propylphenyl)-4-oxothiazolidin-2-ylidene)urea (F63)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as an off-white solid (0.069 g, 65%).


1-(2-Fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)urea (F64)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as an orange solid (0.104 g, 54%).


1-((Z)-3-(2-Isopropyl-5-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F65)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as an orange solid (0.112 g, 57%).


1-((Z)-3-(2-(2,2-Difluorocyclopropyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F66)



embedded image


Prepared from (E)-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C22) and isolated as a pale orange solid (0.043 g, 56%).


1-((Z)-3-(2-(2,2-Difluorocyclopropyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(2-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F67)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as an orange solid (0.082 g, 55%).


1-(2,6-Difluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-(methoxymethyl)-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)urea (F68)



embedded image


Prepared from (E)-2,6-difluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C19) and isolated as an orange solid (0.102 g, 50%).


1-((Z)-3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F69)



embedded image


Prepared from (E)-4-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C27) and isolated as an off-white solid (0.096 g, 27%).


1-(4-((E)-2-(1-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F72)



embedded image


Prepared from (E)-4-(2-(1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C28) and isolated as a brown solid (0.170 g, 24%).


(Z)-1-(3-(2-Isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)cyclopropyl)phenyl)urea (F73)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)cyclopropyl)aniline (C33) and isolated as an off-white solid (0.054 g, 47%).


Example 10: Preparation of 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(5-((E)-2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)urea (F71)



embedded image


To a reaction vial were added tert-butyl (E)-(5-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)carbamate (C13) (0.500 g, 1.12 mmol), 2-imino-3-(2-isopropyl-5-methylphenyl)thiazolidin-4-one (0.550 g, 2.24 mmol), and toluene (11 mL). The vial was sealed and heated to 120° C. for 24 hours. The reaction mixture was concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as an off-white solid (0.0800 g, 25%).


The following compounds were prepared in like manner to the procedure outlined in Example 10:


1-((Z)-3-(2-Isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(5-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)urea (F70)



embedded image


Prepared from tert-butyl (E)-(5-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)carbamate (C14) and isolated as an off-white solid (0.085 g, 37%).


(Z)-1-(4-Oxo-3-(pyridin-3-yl)thiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F75)



embedded image


Prepared from 4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)aniline (C29) and isolated as an off-white solid (0.037 g, 22%).


1-((Z)-3-Cyclohexyl-4-oxothiazolidin-2-ylidene)-3-(2-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F78)



embedded image


Prepared from (E)-2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)aniline (C18) and isolated as a yellow solid (0.029 g, 17%).


Example 11: Preparation of (Z)-1-(3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F1)



embedded image


1-((Z)-3-(2-Isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F38) (0.109 g, 0.176 mmol) and palladium on carbon (10%, 0.0500 g, 0.0470 mmol) were added to a 25 mL reaction vial. Ethyl acetate (1.8 mL) was added, and the vial was sealed. The vial was evacuated, then backfilled with hydrogen (balloon) (3×). The reaction mixture was stirred under hydrogen by balloon for 2 hours. The reaction mixture was filtered through Celite® and concentrated. Purification by flash column chromatography using 0-100% ethyl acetate/B, where B is dichloromethane/hexanes (1:1), as eluent provided the title compound as an off-white solid (0.0790 g, 72%).


The following compounds were prepared in like manner to the procedure outlined in Example 11:


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(3-methyl-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F2)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(3-methyl-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F39) (0.108 g, 89%).


(Z)-1-(3-(2-Fluoro-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F3)



embedded image


Prepared from 1-((Z)-3-(2-fluoro-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F41) and isolated as an orange solid (0.102 g, 50%).


(Z)-1-(3-(2-Methoxy-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F4)



embedded image


Prepared from 1-((Z)-3-(2-methoxy-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F42) and isolated as a white solid (0.013 g, 19%).


(Z)-1-(3-(5-Methyl-2-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F5)



embedded image


Prepared from 1-((Z)-3-(5-methyl-2-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F43) and isolated as a white solid (0.050 g, 75%).


(Z)-1-(3-(2-Chloro-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F6)



embedded image


Prepared from 1-((Z)-3-(2-chloro-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F44) and isolated as a white solid (0.031 g, 58%).


(Z)-1-(3-(5-Methyl-2-propyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F7)



embedded image


Prepared from 1-((Z)-3-(5-methyl-2-propylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F45) and isolated as a white solid (0.040 g, 63%).


(Z)-1-(3-(2-Ethoxy-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F8)



embedded image


Prepared from 1-((Z)-3-(2-ethoxy-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F46) and isolated as a white solid (0.031 g, 65%).


(Z)-1-(3-(4-Fluoro-2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F9)



embedded image


Prepared from 1-((Z)-3-(4-fluoro-2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F47) and isolated as a white solid (0.047 g, 64%).


(Z)-1-(3-(2-(sec-Butoxy)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F10)



embedded image


Prepared from 1-((Z)-3-(2-(sec-butoxy)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F48) and isolated as a white solid (0.057 g, 71%).


(Z)-1-(3-(2-Isopropoxy-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F11)



embedded image


Prepared from 1-((Z)-3-(2-isopropoxy-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F49) and isolated as a white solid (0.054 g, 68%).


(Z)-1-(3-(5-Methyl-2-(trifluoromethoxy)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F12)



embedded image


Prepared from 1-((Z)-3-(5-methyl-2-(trifluoromethoxy)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F50) and isolated as a white solid (0.064 g, 69%).


(Z)-1-(3-(5-Methyl-2-(2,2,2-trifluoroethoxy)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F13)



embedded image


Prepared from 1-((Z)-3-(5-methyl-2-(2,2,2-trifluoroethoxy)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F51) and isolated as a white solid (0.077 g, 81%).


(Z)-1-(3-(2-(tert-Butoxy)-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F14)



embedded image


Prepared from 1-((Z)-3-(2-(tert-butoxy)-5-methylphenyl)-4-oxothiazolidin-2-yl idene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F52) and isolated as an off-white solid (0.070 g, 74%).


Methyl (Z)-2-(3-(3-(2-isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)ureido)-5-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)benzoate (F16)



embedded image


Prepared from methyl 2-(3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)ureido)-5-((E)-2-(1-(4-(trifluoromethoxy) phenyl)-1H-1,2,4-triazol-3-yl)vinyl)benzoate (F54) and isolated as a white solid (0.044 g, 58%).


(Z)-1-(2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F17)



embedded image


Prepared from 1-(2-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F55) and isolated as an off white solid (0.040 g, 56%): mp 95-97° C.


(Z)-1-(2-Chloro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)urea (F18)



embedded image


Prepared from 1-(2-chloro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F56) and isolated as an off white solid (0.043 g, 71%): mp 70-90° C.


(Z)-1-(2,6-Difluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)urea (F19)



embedded image


Prepared from 1-(2,6-difluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F57) and isolated as a white solid (0.046 g, 58%).


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-ylidene)-3-(2-methoxy-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F20)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(2-methoxy-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F58) and isolated as a white solid (0.040 g, 67%): mp 82-92° C.


(Z)-1-(3-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F23)



embedded image


Prepared from 1-(3-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F61) and isolated as an off-white solid (0.046 g, 63%).


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-yl idene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)-2-(trifluoromethyl)phenyl)urea (F25)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)-2-(trifluoromethyl)phenyl)urea (F62) and isolated as an off white foam (0.040 g, 55%).


(Z)-1-(2-Fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)urea (F27)



embedded image


Prepared from 1-(2-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)urea (F64) and isolated as an off-white solid (0.059 g, 79%).


(Z)-1-(3-(2-Isopropyl-5-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F29)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-(trifluoromethyl)phenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F65) and isolated as an off-white solid (0.057 g, 72%).


(Z)-1-(3-(2-(2,2-Difluorocyclopropyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(2-fluoro-4-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F30)



embedded image


Prepared from 1-((Z)-3-(2-(2,2-difluorocyclopropyl)-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(2-fluoro-4-((E)-2-(1-(4-(trifluoromethoxy) phenyl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F67) and isolated as a grey semi-solid (0.057 g, 72%).


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-yl idene)-3-(5-(2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)pyridin-2-yl)urea (F32)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(5-((E)-2-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)urea (F70) and isolated as an off-white solid (0.032 g, 64%)


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-yl idene)-3-(5-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)ethyl)pyridin-2-yl)urea (F33)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(5-((E)-2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)pyridin-2-yl)urea (F71) using platinum(IV) oxide in tetrahydrofuran and isolated as an off-white solid (0.025 g, 50%).


(Z)-1-(4-(2-(1-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F34)



embedded image


Prepared from 1-(4-((E)-2-(1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)-3-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)urea (F72) using platinum(IV) oxide in tetrahydrofuran (0.100 g, 66%).


(Z)-1-(3-(2-Isopropyl-5-methyl phenyl)-4-oxothiazolidin-2-yl idene)-3-(4-(2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)urea (F74)



embedded image


Prepared from 1-((Z)-3-(2-isopropyl-5-methylphenyl)-4-oxothiazolidin-2-ylidene)-3-(4-((E)-2-(1-(5-(trifluoromethoxy)pyridin-2-yl)-1H-1,2,4-triazol-3-yl)vinyl)phenyl)urea (F69) and isolated as a light brown solid (0.095 g, 79%).


Example 12: Preparation of 3-(4-nitrophenyl)propanamide (C35



embedded image


Method A:


To a 100 mL flask were added 3-(4-nitrophenyl)propanoic acid (10.0 g, 51.2 mmol) and toluene (203 mL). Thionyl chloride (4.11 mL, 56.4 mmol) and N,N-dimethylformamide (2.03 mL) were added. The reaction was stirred in a heating block that was pre-heated to 70° C. After 5 hours, an additional aliquot of thionyl chloride (1.20 mL, 16.5 mmol) was added. The reaction mixture was allowed to stir at 70° C. overnight. The reaction mixture was concentrated. The resulting residue was diluted with tetrahydrofuran (100 mL) and ammonium hydroxide (10.0 mL, 257 mmol) was added. The reaction mixture was allowed to stir at room temperature for 4 hours. The reaction mixture was concentrated. Purification by flash chromatography using 30-100% ethyl acetate/hexanes as eluent provided the title compound (6.65 g, 66%): 1H NMR (400 MHz, DMSO-d6) δ 8.19-8.12 (m, 2H), 7.55-7.45 (m, 2H), 7.33 (s, 1H), 6.82 (s, 1H), 2.94 (t, J=7.6 Hz, 2H), 2.42 (t, J=7.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 172.81, 149.97, 145.84, 129.53, 123.32, 39.70, 35.73, 30.53; ESIMS m/z 195 ([M+H]+).


Method B:


To a stirred solution of 3-(4-nitrophenyl) propanoic acid (25 g, 128.07 mmol) and N,N-dimethylformamide (catalytic) in dry dichloromethane (200 mL) at 0° C. was added oxalyl chloride (32.5 g, 5.175 mmol) dropwise. The reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was concentrated under reduced pressure to give a residue, which was dissolved in tetrahydrofuran, cooled to 0° C. and quenched with ammonia. The reaction mixture was allowed to stir and warm to room temperature over 4 hours. The reaction mixture was concentrated under reduced pressure to give a residue, which was triturated with 5% methanol in dichloromethane. The precipitate was filtered and collected. The title compound was isolated as a pale yellow solid (17.0 g, 68%):


The following compounds were prepared in like manner to the procedure outlined in Example 12:


(E)-3-(4-Nitrophenyl)acrylamide (C36)



embedded image


Prepared from (E)-3-(4-nitrophenyl)acrylic acid as a yellow solid (3.66 g, 70%): 1H NMR (400 MHz, DMSO-d6) δ 8.31-8.20 (m, 2H), 7.92-7.78 (m, 2H), 7.68 (s, 1H), 7.53 (d, J=15.9 Hz, 1H), 7.30 (s, 1H), 6.81 (d, J=15.9 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 165.90, 147.46, 141.47, 136.78, 128.55, 126.63, 124.04; ESIMS m/z 193 ([M+H]+).


2-(4-Nitrophenyl)cyclopropane-1-carboxamide (C37)



embedded image


Prepared from 2-(4-nitrophenyl)cyclopropane-1-carboxylic acid as a tan solid (0.680 g, 65%): 1H NMR (400 MHz, DMSO-d6) δ 8.18-8.10 (m, 2H), 7.75-7.58 (m, 1H), 7.46-7.36 (m, 2H), 7.09-6.95 (m, 1H), 2.40 (ddd, J=8.9, 6.0, 4.0 Hz, 1H), 2.06-1.92 (m, 1H), 1.52-1.41 (m, 1H), 1.35 (ddd, J=8.4, 6.0, 4.1 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 172.13, 150.11, 145.63, 126.78, 123.45, 26.72, 23.78, 16.33; ESIMS m/z 206 ([M+H]+).


Example 13: Preparation of 3-(4-nitrophenethyl)-1H-1,2,4-triazole (C38



embedded image


To a 1000 mL flask were added 3-(4-nitrophenyl)propanamide (C35) (6.65 g, 34.2 mmol) and 1,1-dimethoxy-N,N-dimethylmethanamine (65.0 mL, 489 mmol). The reaction mixture was warmed to 80° C. for 4.5 hours. The reaction mixture was cooled in an ice bath. The resulting precipitate was collected via filtration through a medium glass frit. The resulting solid was charged to a 200 mL flask and diluted with acetic acid (68.5 mL) and hydrazine hydrate (1.66 mL, 34.2 mmol). The reaction mixture was heated to 100° C. overnight. The reaction mixture was cooled to room temperature and carefully neutralized to pH ˜8.5 with aqueous sodium hydroxide. The resulting solution was extracted with ethyl acetate (3×75 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated to provide the title compound (6.80 g, 90%): 1H NMR (400 MHz, DMSO-d6) δ 13.64 (s, 1H), 8.12 (dd, J=9.4, 2.7 Hz, 3H), 7.57-7.41 (m, 2H), 3.15 (dd, J=8.1, 6.3 Hz, 2H), 3.09-3.00 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 149.23, 145.93, 129.60, 123.31, 33.02, 27.50; ESIMS m/z 219 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 13:


(E)-3-(4-Nitrostyryl)-1H-1,2,4-triazole (C39)



embedded image


Prepared from (E)-3-(4-nitrophenyl)acrylamide (C36) (3.01 g, 72%): 1H NMR (400 MHz, DMSO-de) δ 8.46 (s, 1H), 8.28-8.17 (m, 2H), 8.01-7.89 (m, 2H), 7.61 (d, J=16.3 Hz, 1H), 7.45 (d, J=16.3 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 158.06, 146.69, 146.35, 142.83, 130.48, 127.83, 123.95, 121.86; ESIMS m/z 217 ([M+H]+).


3-(2-(4-Nitrophenyl)cyclopropyl)-1H-1,2,4-triazole (C40)



embedded image


Prepared from 2-(4-nitrophenyl)cyclopropane-1-carboxamide (C37 as a yellow solid (0.342 g, 45%): 1H NMR (400 MHz, DMSO-de) δ 13.76 (s, 1H), 8.43 (s, 1H), 8.15 (d, J=8.6 Hz, 2H), 7.49 (d, J=8.4 Hz, 2H), 2.55 (s, 1H), 2.50-2.45 (m, 1H), 1.71 (s, 2H); ESIMS m/z 230 ([M+H]+).


Example 14: Preparation of 3-(4-nitrophenethyl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C41)



embedded image


To a 100 mL flask were added 3-(4-nitrophenethyl)-1H-1,2,4-triazole (C38) (6.50 g, 29.8 mmol), potassium carbonate (8.23 g, 59.6 mmol), and copper(I) chloride (0.590 g, 5.96 mmol). The flask was sealed and placed under inert atmosphere, then N,N-dimethylformamide (99 mL), N1,N2-dimethylethane-1,2-diamine (1.28 mL, 11.9 mmol), and 1-iodo-4-(trifluoromethoxy)benzene (6.99 mL, 44.7 mmol) were added. The reaction mixture was stirred in a heating block warmed to 100° C., overnight. The reaction mixture was cooled to room temperature and poured into brine solution. The aqueous layer was extracted with ethyl acetate (3×100 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The resulting residue was purified by flash chromatography using 0-70% ethyl acetate/hexanes as eluent to provide the title compound (8.97 g, 79%): 1H NMR (400 MHz, DMSO-de) δ 9.23 (s, 1H), 8.21-8.07 (m, 2H), 7.99-7.87 (m, 2H), 7.55 (dd, J=8.8, 1.8 Hz, 4H), 3.20 (dd, J=8.2, 6.2 Hz, 2H), 3.15-3.04 (m, 2H); 19F NMR (376 MHz, DMSO-d6) δ −57.06; 13C NMR (101 MHz, DMSO-d6) δ 163.73, 149.34, 146.85, 145.93, 142.91, 135.61, 129.69, 123.81, 123.30, 122.46, 121.26, 120.76, 118.71, 116.14, 32.94, 28.62; ESIMS m/z 379 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 14:


(E)-3-(4-Nitrostyryl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C42)



embedded image


Prepared from (E)-3-(4-nitrostyryl)-1H-1,2,4-triazole (C39) as a yellow solid (3.12 g, 59%): 1H NMR (400 MHz, DMSO-d6) δ 9.39 (s, 1H), 8.26-8.18 (m, 2H), 8.06-7.96 (m, 4H), 7.71 (d, J=16.2 Hz, 1H), 7.64-7.57 (m, 2H), 7.53 (d, J=16.3 Hz, 1H); 19F NMR (376 MHz, DMSO-d6) δ −57.01; 13C NMR (101 MHz, DMSO-d6) δ 161.24, 147.09, 146.84, 143.64, 142.52, 135.50, 131.92, 128.07, 123.90, 122.53, 121.85, 120.96; ESIMS m/z 377 ([M+H]+).


3-(2-(4-Nitrophenyl)cyclopropyl)-1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazole (C43)



embedded image


Prepared from 3-(2-(4-nitrophenyl)cyclopropyl)-1H-1,2,4-triazole (C40) using copper(I) iodide and cesium carbonate as a yellow residue (0.080 g, 14%): 1H NMR (400 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.20-8.12 (m, 2H), 8.01-7.93 (m, 2H), 7.63-7.55 (m, 2H), 7.55-7.48 (m, 2H), 2.69-2.56 (m, 2H), 1.77 (ddd, J=8.7, 6.0, 4.6 Hz, 1H), 1.66 (ddd, J=8.8, 6.0, 4.7 Hz, 1H); 19F NMR (376 MHz, DMSO-d6) 5-56.98; ESIMS m/z 391 ([M+H]+).


Example 15: Preparation of ethyl N-[(2-isopropyl-5-methyl-phenyl)carbamothioyl]carbamate (C44)



embedded image


To a reaction flask were added 2-isopropyl-5-methylaniline (6.30 g, 42.2 mmol) and diethyl ether (40 mL). Ethyl chloroformate (5.54 g, 42.2 mmol) was added slowly to the reaction mixture over 30 minutes. Hexanes (50 mL) was added to the reaction mixture, which was then cooled to 10° C. The resultant solids were filtered and air dried to provide the title compound as a tan solid (9.34 g, 77%): mp 135-137° C.; 1H NMR (400 MHz, CDCl3) δ 11.05 (s, 1H), 8.14 (s, 1H), 7.34-7.21 (m, 2H), 7.20-7.09 (m, 1H), 4.30 (q, J=7.1 Hz, 2H), 3.10-2.94 (m, 1H), 2.34 (s, 3H), 1.36 (t, J=7.1 Hz, 3H), 1.23 (d, J=6.9 Hz, 6H); ESIMS m/z 281 ([M+H]+).


Example 16: Preparation of ethyl (Z)-(3-(2-isopropyl-5-methylphenyl)thiazol-2(3H)-ylidene)carbamate (C45)



embedded image


To a reaction flask were added ethyl N-[(2-isopropyl-5-methyl-phenyl)carbamothioyl]carbamate (C44) (7.00 g, 26.0 mmol), acetonitrile (80 mL), and cesium carbonate (13.8 g, 42.4 mmol). The reaction mixture was allowed to stir at room temperature. 2-Chloroacetaldehyde (5.10 g, 32.5 mmol) was added to the reaction mixture in 0.5 mL increments over 40 minutes, maintaining temperature below 30° C. The reaction mixture was diluted with diethyl ether (100 mL) and washed with saturated aqueous sodium bicarbonate (100 mL). The layers were separated, and the organics were washed with brine (50 mL), dried over magnesium sulfate, filtered, and concentrated to afford a red oil. The oil was dissolved in dry tetrahydrofuran (75 mL), then cooled in an ice bath. N,N-Diisopropylethylamine (8.07 g, 62.4 mmol) was added, followed by the dropwise addition of thionyl chloride (2.97 g, 25.0 mmol), maintaining a temperature below 15° C. The reaction mixture was allowed to stir for 1 hour. The reaction mixture was diluted with diethyl ether (100 mL) and washed with saturated aqueous sodium bicarbonate (100 mL). The layers were separated, and the organics were dried over magnesium sulfate, filtered, and concentrated onto 30 g of silica gel. Purification by flash column chromatography using 0-50% ethyl acetate/hexanes as eluent provided the title compound as a yellow solid (4.24 g, 55%): mp 119-123° C.; 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J=8.0 Hz, 1H), 7.23 (dd, J=8.0, 1.8 Hz, 1H), 6.98 (dd, J=1.8, 0.9 Hz, 1H), 6.83 (d, J=4.7 Hz, 1H), 6.66 (d, J=4.7 Hz, 1H), 4.19 (q, J=7.1 Hz, 2H), 2.57 (p, J=6.9 Hz, 1H), 2.33 (s, 3H), 1.27 (t, J=7.1 Hz, 3H), 1.20 (d, J=6.8 Hz, 3H), 1.10 (d, J=6.9 Hz, 3H); ESIMS m/z 305 ([M+H]+).


Example 17: Preparation of 3-(2-isopropyl-5-methylphenyl)thiazol-2(3H)-imine (C46)



embedded image


Ethyl (Z)-(3-(2-isopropyl-5-methylphenyl)thiazol-2(3H)-ylidene)carbamate (C45) (2.0 g, 6.6 mmol) was dissolved in ethanol (20 mL) and treated with solid sodium hydroxide (1.0 g, 26 mmol), and the solution was stirred and heated to 65° C. for 6 hours. The reaction mixture was cooled to room temperature and diluted with water (100 mL). The mixture was extracted with dichloromethane, dried, filtered, and concentrated. Purification by flash column chromatography using 0-100% ethyl acetate/hexanes as eluent provided the title compound as a tan solid (1.0 g, 66%): mp 56-59° C.; 1H NMR (400 MHz, CDCl3) δ 7.32 (d, J=8.0 Hz, 1H), 7.27-7.19 (m, 1H), 7.09-6.99 (m, 1H), 6.37 (d, J=5.0 Hz, 1H), 5.89 (d, J=4.9 Hz, 1H), 2.94 (p, J=6.9 Hz, 1H), 2.34 (s, 4H), 1.23 (d, J=6.8 Hz, 3H), 1.16 (d, J=6.9 Hz, 3H).


Example 18: Preparation of 1-fluoro-2-methyl-4-nitro-5-(prop-1-en-2-yl)benzene (C47)



embedded image


To a reaction vial were added 1-chloro-5-fluoro-4-methyl-2-nitrobenzene (1.50 g, 7.91 mmol), 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (1.79 mL, 9.50 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.444 g, 0.633 mmol), and sodium carbonate (1.01 g, 9.50 mmol). Water (2.85 mL) and dioxane (11.4 mL) were added. The vial was capped and heated at 140° C. for 30 minutes in a Biotage Initiator® microwave reactor, with external IR-sensor temperature monitoring from the side of the vessel. The reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed with water. The aqueous layer was further extracted with ethyl acetate (3×). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated. Purification by flash column chromatography eluting with 0-40% ethyl acetate/hexanes provided the title compound as a yellow liquid (1.42 g, 88%): 1H NMR (400 MHz, CDCl3) δ 7.81 (dd, J=7.0, 0.9 Hz, 1H), 6.95 (d, J=9.4 Hz, 1H), 5.17 (t, J=1.5 Hz, 1H), 4.97-4.86 (m, 1H), 2.33 (dd, J=2.0, 0.8 Hz, 3H), 2.06 (dd, J=1.6, 0.9 Hz, 3H); 19F NMR (376 MHz, CDCl3) 5-108.66; EIMS m/z 195 ([M]+).


The following compounds were prepared in like manner to the procedure outlined in Example 18:


2-Nitro-1-(prop-1-en-2-yl)-4-(trifluoromethyl)benzene (C48)



embedded image


Prepared from 1-chloro-2-nitro-4-(trifluoromethyl)benzene and isolated as a yellow oil (0.428 g, 40%): 1H NMR (500 MHz, CDCl3) δ 8.17-8.11 (m, 1H), 7.81 (ddd, J=8.1, 1.9, 0.8 Hz, 1H), 7.49 (dd, J=8.1, 0.9 Hz, 1H), 5.32-5.19 (m, 1H), 4.99 (t, J=1.0 Hz, 1H), 2.11 (dd, J=1.5, 0.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 148.17, 142.52, 141.54, 131.54, 131.05, 130.78, 130.50, 130.23, 129.19, 129.16, 123.91, 121.74, 121.52, 121.49, 121.46, 121.42, 116.65, 23.06; 19F NMR (471 MHz, CDCl3) δ −62.86; EIMS m/z 231 ([M]+).


Example 19: Preparation of 4-fluoro-2-isopropyl-5-methylaniline (C49



embedded image


To a reaction flask were added 1-fluoro-2-methyl-4-nitro-5-(prop-1-en-2-yl)benzene (C47) (1.41 g, 7.22 mmol) in ethyl acetate (29 mL) and palladium on carbon (10 weight %, 0.770 g, 0.720 mmol). The flask was evacuated, then backfilled with hydrogen (balloon) (3×). The reaction mixture was stirred under hydrogen by balloon overnight. The reaction mixture was filtered through Celite® and concentrated to afford the title compound as a yellow liquid (1.10 g, 90%): 1H NMR (400 MHz, CDCl3) δ 6.79 (d, J=11.1 Hz, 1H), 6.49 (d, J=7.0 Hz, 1H), 3.39 (s, 2H), 2.91-2.80 (m, 1H), 2.17 (d, J=2.0 Hz, 3H), 1.22 (d, J=6.8 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 138.55, 122.03, 118.40, 118.35, 111.97, 111.73, 27.63, 22.29, 14.16; EIMS m/z 167 ([M]+).


The following compounds were prepared in like manner to the procedure outlined in Example 19:


2-Isopropyl-5-(trifluoromethyl)aniline (C50)



embedded image


Prepared from 2-nitro-1-(prop-1-en-2-yl)-4-(trifluoromethyl)benzene (C48) and isolated as a yellow oil (0.360 g, 99%): 1H NMR (300 MHz, CDCl3) δ 7.22 (d, J=8.0 Hz, 1H), 7.05-6.95 (m, 1H), 6.93-6.83 (m, 1H), 3.81 (s, 2H), 2.90 (p, J=6.8 Hz, 1H), 1.27 (d, J=6.8 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 143.60, 135.99, 129.18, 128.93, 128.67, 128.42, 125.83, 125.40, 123.24, 115.39, 115.35, 112.01, 111.98, 27.73, 21.97; 19F NMR (471 MHz, CDCl3) δ −62.57; EIMS m/z 203 ([M]+).


2-(Methoxymethyl)-5-methylaniline (C51)



embedded image


Prepared from 1-(methoxymethyl)-4-methyl-2-nitrobenzene (C91) and isolated as an orange oil (1.6 g, 100%): 1H NMR (400 MHz, CDCl3) δ 6.94 (d, J=7.3 Hz, 1H), 6.56-6.49 (m, 2H), 4.44 (s, 2H), 4.11 (s, 2H), 3.32 (s, 3H), 2.26 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 146.16, 139.28, 130.09, 119.27, 118.70, 116.44, 73.46, 57.26, 21.25; EIMS m/z 151 ([M]+).


Example 20: Preparation of 2-chloro-N-(2-fluoro-5-methylphenyl)acetamide (C52)



embedded image


To a reaction flask were added 2-fluoro-5-methylaniline (3.00 g, 24.0 mmol) and ethyl acetate (24.0 mL). The reaction mixture was cooled to 0° C. Sodium bicarbonate (4.03 g, 47.9 mmol) was added, followed by dropwise addition of chloroacetyl chloride (2.30 mL, 28.8 mmol) over 4 minutes. The reaction mixture was allowed to stir at 0° C. for 10 minutes, then was allowed to warm to room temperature and was further stirred for 90 minutes. Water (15 mL) was added to the reaction mixture, and the phases were separated. The organic layers were washed with brine (20 mL), dried over magnesium sulfate, filtered, and concentrated to afford the title compound (4.83 g, 100%): 1H NMR (400 MHz, CDCl3) δ 8.47 (s, 1H), 8.08 (dd, J=7.5, 2.1 Hz, 1H), 7.00 (dd, J=10.7, 8.4 Hz, 1H), 6.90 (dddd, J=8.3, 5.0, 2.2, 0.8 Hz, 1H), 4.21 (s, 2H), 2.34 (d, J=0.9 Hz, 3H); 19F NMR (376 MHz, CDCl3) 5-135.59; 13C NMR (126 MHz, CDCl3) δ 163.83, 151.92, 150.00, 134.42, 125.79, 121.94, 114.64, 42.92, 21.08; ESIMS m/z 201 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 20:


2-Chloro-N-(2-methoxy-5-methylphenyl)acetamide (C53)



embedded image


Prepared from 2-methoxy-5-methylaniline and isolated as a brown solid (4.50 g, 95%): mp 78-80° C.; 1H NMR (400 MHz, CDCl3) δ 8.90 (s, 1H), 8.16 (d, J=2.1 Hz, 1H), 6.89 (ddd, J=8.3, 2.1, 0.8 Hz, 1H), 6.79 (d, J=8.3 Hz, 1H), 4.19 (s, 2H), 3.88 (s, 3H), 2.31 (s, 3H); ESIMS m/z 213 ([M+H]+).


2-Chloro-N-(2-ethoxy-5-methylphenyl)acetamide (C54)



embedded image


Prepared from 2-ethoxy-5-methylaniline and isolated as a black solid (0.802 g, 100%): mp 50-52° C.; 1H NMR (400 MHz, CDCl3) δ 9.04 (s, 1H), 8.21-8.11 (m, 1H), 6.92-6.82 (m, 1H), 6.78 (d, J=8.3 Hz, 1H), 4.20 (s, 2H), 4.08 (q, J=7.0 Hz, 2H), 2.31 (t, J=0.7 Hz, 3H), 1.45 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 163.48, 145.61, 130.56, 126.54, 124.82, 120.09, 111.11, 64.54, 43.20, 20.97, 14.84; ESIMS m/z 227 ([M+H]+).


2-Chloro-N-(5-methyl-2-(trifluoromethoxy)phenyl)acetamide (C55)



embedded image


Prepared from 5-methyl-2-(trifluoromethoxy)aniline and isolated as a white solid (1.33 g, 93%): mp 86-88° C.; 1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.19 (d, J=2.1 Hz, 1H), 7.17 (dq, J=8.4, 1.6 Hz, 1H), 7.02-6.90 (m, 1H), 4.22 (s, 2H), 2.37 (d, J=0.7 Hz, 3H); 19F NMR (376 MHz, CDCl3) δ −58.04; ESIMS m/z 267 ([M+H]+).


2-Chloro-N-(2-isopropoxy-5-methylphenyl)acetamide (C56)



embedded image


Prepared from 2-isopropoxy-5-methylaniline and isolated as a brown oil (0.930 g, 97%): 1H NMR (400 MHz, CDCl3) δ 9.11 (s, 1H), 8.17 (d, J=2.0 Hz, 1H), 6.87 (ddq, J=8.5, 2.1, 0.7 Hz, 1H), 6.81 (d, J=8.3 Hz, 1H), 4.64-4.42 (m, 1H), 4.21 (s, 2H), 2.30 (d, J=0.7 Hz, 3H), 1.36 (d, J=6.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 170.29, 163.68, 144.46, 130.78, 127.56, 124.93, 120.16, 113.28, 72.02, 43.21, 22.19, 21.00; ESIMS m/z 241 ([M+H]+).


N-(2-(sec-Butoxy)-5-methylphenyl)-2-chloroacetamide (C57)



embedded image


Prepared from 2-(sec-butoxy)-5-methylaniline and isolated as a brown oil (0.600 g, 92%): 1H NMR (400 MHz, CDCl3) δ 9.12 (s, 1H), 8.18 (d, J=2.1 Hz, 1H), 6.86 (ddd, J=8.3, 2.1, 0.8 Hz, 1H), 6.79 (d, J=8.3 Hz, 1H), 4.34 (h, J=6.0 Hz, 1H), 4.20 (s, 2H), 2.30 (d, J=0.7 Hz, 3H), 1.86-1.61 (m, 2H), 1.31 (d, J=6.1 Hz, 3H), 1.01 (d, J=7.4 Hz, 3H); ESIMS m/z 255 ([M+H]+).


2-Chloro-N-(5-methyl-2-(2,2,2-trifluoroethoxy)phenyl)acetamide (C58)



embedded image


Prepared from 5-methyl-2-(2,2,2-trifluoroethoxy)aniline and isolated as a brown semi-solid (0.660 g, 95%): 1H NMR (400 MHz, CDCl3) δ 8.94 (s, 1H), 8.19 (d, J=2.1 Hz, 1H), 6.91 (ddd, J=8.3, 2.1, 0.8 Hz, 1H), 6.78 (d, J=8.4 Hz, 1H), 4.40 (q, J=8.0 Hz, 2H), 4.21 (s, 2H), 2.33 (s, 3H); 19F NMR (376 MHz, CDCl3) δ −74.20; ESIMS m/z 281 ([M+H]+).


N-(2-(tert-Butoxy)-5-methylphenyl)-2-chloroacetamide (C59)



embedded image


Prepared from 2-(tert-butoxy)-5-methylaniline and isolated as a yellow oil (2.16 g, 93%): 1H NMR (400 MHz, CDCl3) δ 9.13 (s, 1H), 8.21 (d, J=2.1 Hz, 1H), 6.97 (d, J=8.2 Hz, 1H), 6.87-6.76 (m, 1H), 4.20 (s, 2H), 2.32 (s, 3H), 1.42 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 163.19, 142.22, 133.32, 131.21, 124.61, 121.40, 120.05, 80.77, 43.17, 28.86, 21.20; EIMS m/z 256 ([M]+).


2-Chloro-N-(5-methyl-2-(trifluoromethyl)phenyl)acetamide (C60)



embedded image


Prepared from 5-methyl-2-(trifluoromethyl)aniline and isolated as a white solid (2.79 g, 96%): mp 109-110° C.; 1H NMR (400 MHz, CDCl3) δ 8.69 (s, 1H), 8.02 (s, 1H), 7.52 (d, J=8.0 Hz, 1H), 7.09 (ddt, J=7.9, 1.6, 0.8 Hz, 1H), 4.22 (s, 2H), 2.42 (t, J=0.9 Hz, 3H); 19F NMR (376 MHz, CDCl3) δ −60.29; EIMS m/z 251 ([M]+).


2-Chloro-N-(2-chloro-5-methylphenyl)acetamide (C61)



embedded image


Prepared from 2-chloro-5-methylaniline and isolated as a purple solid (4.50 g, 96%): mp 112-114° C.; 1H NMR (400 MHz, CDCl3) δ 8.87 (s, 1H), 8.26-8.12 (m, 1H), 7.27 (d, J=8.4 Hz, 1H), 6.91 (ddq, J=8.2, 2.2, 0.7 Hz, 1H), 4.23 (s, 2H), 2.35 (d, J=0.7 Hz, 3H); EIMS m/z 218 ([M]+).


2-Chloro-N-(2-(1-methoxyethyl)-5-methylphenyl)acetamide (C62)



embedded image


Prepared from 2-(1-methoxyethyl)-5-methylaniline (C87) and isolated as a yellow oil (2.19 g, 71%): 1H NMR (300 MHz, CDCl3) δ 10.16 (s, 1H), 8.17 (s, 1H), 7.02 (d, J=7.7 Hz, 1H), 6.99-6.85 (m, 1H), 4.45 (q, J=6.7 Hz, 1H), 4.20 (dd, J=2.6, 1.1 Hz, 2H), 3.34 (d, J=1.1 Hz, 3H), 2.37 (d, J=1.0 Hz, 3H), 1.52 (dd, J=6.9, 1.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 164.22, 138.56, 135.55, 128.26, 127.41, 125.20, 122.16, 80.90, 77.31, 77.05, 76.80, 56.25, 43.10, 21.37, 20.95.


2-Chloro-N-(2-(methoxymethyl)-5-methylphenyl)acetamide (C63)



embedded image


Prepared from 2-(methoxymethyl)-5-methylaniline (C51) and isolated as an orange oil (1.89 g, 77%): 1H NMR (400 MHz, CDCl3) δ 9.74 (s, 1H), 8.01-7.95 (m, 1H), 7.09 (d, J=7.6 Hz, 1H), 6.97-6.88 (m, 1H), 4.49 (s, 2H), 4.23 (s, 2H), 3.43 (s, 3H), 2.36 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 164.65, 139.40, 136.56, 129.19, 125.42, 124.08, 122.41, 73.55, 58.01, 43.06, 40.47; EIMS m/z 227 ([M]+).


2-Chloro-N-(2-(2,2-difluorocyclopropyl)-5-methylphenyl)acetamide (C64)



embedded image


Prepared from 2-(2,2-difluorocyclopropyl)-5-methylaniline (C90) and isolated as a brown solid (0.600 g, 84%): mp 103-107° C.; 1H NMR (400 MHz, CDCl3) δ 10.21 (s, 1H), 8.40-8.24 (m, 1H), 7.32 (ddd, J=8.5, 6.7, 2.3 Hz, 1H), 7.15-7.05 (m, 2H), 4.19 (d, J=5.3 Hz, 2H), 3.34 (s, 3H), 1.53 (d, J=6.7 Hz, 4H); 19F NMR (376 MHz, CDCl3) 5-126.50, −126.91, −139.52, −139.92.


2-Chloro-N-(5-methyl-2-propylphenyl)acetamide (C65)



embedded image


Prepared from 5-methyl-2-propylaniline and isolated as a pink solid (1.86 g, 92%): mp 108-111° C.; 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.74-7.69 (m, 1H), 7.09 (d, J=7.8 Hz, 1H), 6.98-6.94 (m, 1H), 4.24 (s, 2H), 2.55 (dd, J=8.6, 6.8 Hz, 2H), 2.34 (s, 3H), 1.67-1.57 (m, 2H), 0.99 (td, J=7.3, 2.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 132.21, 130.32, 129.67, 126.64, 123.34, 43.24, 33.16, 23.23, 13.94; EIMS m/z 225 ([M]+).


2-Chloro-N-(4-fluoro-2-isopropyl-5-methylphenyl)acetamide (C66)



embedded image


Prepared from 4-fluoro-2-isopropyl-5-methylaniline (C49) and isolated as an orange solid (1.20 g, 85%): mp 126-134° C.; 1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1H), 7.50 (d, J=7.4 Hz, 1H), 6.94 (d, J=10.9 Hz, 1H), 4.24 (s, 2H), 3.05-2.88 (m, 1H), 2.24 (dd, J=2.0, 0.7 Hz, 3H), 1.24 (d, J=6.8 Hz, 6H); 19F NMR (376 MHz, CDCl3) δ −118.99; EIMS m/z 243 ([M]+).


2-Chloro-N-(2-isopropyl-5-(trifluoromethyl)phenyl)acetamide (C67)



embedded image


Prepared from 2-isopropyl-5-(trifluoromethyl)aniline (C50) and isolated as an orange oil (0.560 g, 100%): 1H NMR (500 MHz, CDCl3) δ 8.41 (s, 1H), 8.20-8.13 (m, 1H), 7.50-7.40 (m, 2H), 4.28 (s, 2H), 3.07 (p, J=6.9 Hz, 1H), 1.31 (d, J=6.8 Hz, 6H); 19F NMR (471 MHz, CDCl3) δ −62.51; EIMS m/z 278 ([M]+).


Example 21: Preparation of 3-(2-fluoro-5-methylphenyl)-2-iminothiazolidin-4-one (C68)



embedded image


To a reaction flask were added 2-chloro-N-(2-fluoro-5-methylphenyl)acetamide (C52) (2.00 g, 9.92 mmol) and acetone (9.92 mL). Potassium thiocyanate (1.93 g, 19.8 mmol) was added as a solid, and the reaction mixture was heated at 65° C. for 3 hours. The reaction mixture was cooled to room temperature. Cesium carbonate (0.162 g, 0.496 mmol) was added, and the reaction was stirred at room temperature for 45 minutes. The reaction mixture was filtered through Celite®, washed with acetone, and concentrated. Purification by flash column chromatography using 0-60% ethyl acetate/hexanes as eluent provided the title compound as a pale orange solid (1.790 g, 80%): mp 120-122° C.; 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.24 (s, 1H), 7.20-7.01 (m, 2H), 4.20-3.99 (m, 2H), 2.36 (s, 3H); 19F NMR (376 MHz, CDCl3) 5-125.16; ESIMS m/z 225 ([M+H]+).


The following compounds were prepared in like manner to the procedure outlined in Example 21:


2-Imino-3-(2-methoxy-5-methylphenyl)thiazolidin-4-one (C69)



embedded image


Prepared from 2-chloro-N-(2-methoxy-5-methylphenyl)acetamide (C53) as a brown solid (0.814 g, 36%): 1H NMR (400 MHz, DMSO-d6) δ 9.12 (s, 1H), 7.29-7.15 (m, 1H), 7.03 (d, J=8.4 Hz, 1H), 6.94 (s, 1H), 4.15 (d, J=2.6 Hz, 2H), 3.69 (s, 3H), 2.25 (s, 3H); ESIMS m/z 237 ([M+H]+).


3-(2-Ethoxy-5-methylphenyl)-2-iminothiazolidin-4-one (C70)



embedded image


Prepared from 2-chloro-N-(2-ethoxy-5-methylphenyl)acetamide (C53) and isolated as a brown solid (0.545 g, 59%): 65-70° C.; 1H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 8.17-8.10 (m, 1H), 6.88 (ddd, J=8.4, 2.1, 0.9 Hz, 1H), 6.78 (d, J=8.3 Hz, 1H), 4.11 (q, J=7.0 Hz, 2H), 3.91 (s, 2H), 2.30 (t, J=0.7 Hz, 3H), 1.46 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 162.07, 145.26, 130.58, 126.23, 125.14, 120.48, 110.91, 110.84, 64.48, 38.10, 20.94, 14.87; ESIMS m/z 250 ([M+H]+).


2-Imino-3-(5-methyl-2-(trifluoromethoxy)phenyl)thiazolidin-4-one (C71)



embedded image


Prepared from 2-chloro-N-(5-methyl-2-(trifluoromethoxy)phenyl)acetamide (C55) and isolated as an orange oil (1.35 g, 93%): 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.31 (s, 2H), 7.17-7.09 (m, 1H), 4.15-4.05 (m, 2H), 2.40 (d, J=0.8 Hz, 3H); 19F NMR (376 MHz, CDCl3) δ −57.38; ESIMS m/z 290 ([M+H]+).


2-Imino-3-(2-isopropoxy-5-methylphenyl)thiazolidin-4-one (C72)



embedded image


Prepared from 2-chloro-N-(2-isopropoxy-5-methylphenyl)acetamide (C56) and isolated as a yellow solid (0.700 g, 98%): mp 58-60° C.; 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 8.23-8.04 (m, 1H), 6.95-6.84 (m, 1H), 6.80 (d, J=8.4 Hz, 1H), 4.60 (hept, J=6.1 Hz, 1H), 3.90 (s, 2H), 2.30 (s, 3H), 1.38 (d, J=6.1 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 161.99, 144.11, 130.61, 127.14, 125.13, 120.51, 112.58, 110.78, 71.60, 38.05, 30.95, 22.15, 20.95; ESIMS m/z 264 ([M+H]+).


3-(2-(sec-Butoxy)-5-methylphenyl)-2-iminothiazolidin-4-one (C73)



embedded image


Prepared from N-(2-(sec-butoxy)-5-methylphenyl)-2-chloroacetamide (C57) and isolated as a yellow oil (0.528 g, 75%): 1H NMR (400 MHz, CDCl3) δ 8.42 (s, 1H), 8.19-8.11 (m, 1H), 6.88 (ddd, J=8.4, 2.2, 0.8 Hz, 1H), 6.79 (d, J=8.3 Hz, 1H), 4.36 (h, J=6.1 Hz, 1H), 3.90 (s, 2H), 2.30 (d, J=0.7 Hz, 3H), 1.80 (ddd, J=13.7, 7.6, 6.2 Hz, 1H), 1.74-1.61 (m, 1H), 1.33 (d, J=6.1 Hz, 3H), 1.00 (t, J=7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 161.96, 144.31, 130.52, 127.15, 125.11, 120.47, 112.53, 110.74, 38.02, 29.15, 20.94, 19.34, 9.84; ESIMS m/z 278 ([M+H]+).


2-Imino-3-(5-methyl-2-(2,2,2-trifluoroethoxy)phenyl)thiazolidin-4-one (C74)



embedded image


Prepared from 2-chloro-N-(5-methyl-2-(2,2,2-trifluoroethoxy)phenyl)acetamide (C58) and isolated as an off-white solid (0.510 g, 71%): mp 127-129° C.; 1H NMR (400 MHz, CDCl3) δ 8.18 (d, J=15.6 Hz, 2H), 6.93 (d, J=8.3 Hz, 1H), 6.80 (d, J=8.3 Hz, 1H), 4.43 (q, J=8.0 Hz, 2H), 3.90 (s, 2H), 2.33 (d, J=0.8 Hz, 3H); 19F NMR (376 MHz, CDCl3) δ −73.95; ESIMS m/z 304 ([M+H]+).


3-(2-(tert-Butoxy)-5-methylphenyl)-2-iminothiazolidin-4-one (C75)



embedded image


Prepared from N-(2-(tert-butoxy)-5-methylphenyl)-2-chloroacetamide (C59) and isolated as a brown oil (0.158 g, 7%): 1H NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 7.17 (d, J=8.7 Hz, 1H), 7.11 (d, J=8.4 Hz, 1H), 7.00 (s, 1H), 4.03 (s, 2H), 2.33 (t, J=0.7 Hz, 3H), 1.34 (s, 9H); ESIMS m/z 278 ([M+H]+).


2-Imino-3-(5-methyl-2-(trifluoromethyl)phenyl)thiazolidin-4-one (C76)



embedded image


Prepared from 2-chloro-N-(5-methyl-2-(trifluoromethyl)phenyl)acetamide (C60) and isolated as an orange solid (2.63 g, 84%): mp 118-127° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.33 (s, 1H), 7.74 (d, J=8.0 Hz, 1H), 7.50 (ddd, J=8.0, 1.8, 0.9 Hz, 1H), 7.29 (t, J=1.2 Hz, 1H), 4.29-4.09 (m, 2H), 2.41 (s, 3H); 19F NMR (376 MHz, DMSO-d6) 5-59.80; ESIMS m/z 275 ([M+H]+).


3-(2-Chloro-5-methylphenyl)-2-iminothiazolidin-4-one (C77)



embedded image


Prepared from 2-chloro-N-(2-chloro-5-methylphenyl)acetamide (C61) and isolated as a yellow solid (3.00 g, 90%): mp 125-127° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.31 (s, 1H), 7.49 (d, J=8.2 Hz, 1H), 7.35-7.25 (m, 1H), 7.21 (d, J=2.1 Hz, 1H), 4.30-4.13 (m, 2H), 2.32 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 170.36, 156.15, 137.25, 131.98, 130.96, 130.61, 128.76, 128.22, 33.13, 19.56; ESIMS m/z 241 ([M+H]+).


2-Imino-3-(2-(1-methoxyethyl)-5-methylphenyl)thiazolidin-4-one (C78)



embedded image


Prepared from 2-chloro-N-(2-(1-methoxyethyl)-5-methylphenyl)acetamide (C62) and isolated as an orange solid (1.80 g, 71%): mp 94-108° C.; 1H NMR (300 MHz, CDCl3) δ 7.51 (d, J=7.9 Hz, 1H), 7.34 (dd, J=8.0, 1.9 Hz, 1H), 7.00-6.86 (m, 1H), 4.21-4.05 (m, 2H), 3.12 (d, J=1.1 Hz, 2H), 2.38 (s, 3H), 1.42-1.31 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 210.86, 170.85, 139.07, 131.65, 129.19, 129.06, 127.13, 77.52, 77.09, 76.67, 74.46, 74.15, 69.51, 56.72, 56.54, 53.81, 31.76, 29.28, 23.35, 20.98.


2-Imino-3-(2-(methoxymethyl)-5-methylphenyl)thiazolidin-4-one (C79)



embedded image


Prepared from 2-chloro-N-(2-(methoxymethyl)-5-methylphenyl)acetamide (C63) and isolated as an orange solid (0.550 g, 25%): mp 66-71° C.; 1H NMR (400 MHz, CDCl3) δ 9.37 (s, 1H), 8.00 (s, 1H), 7.07 (d, J=7.6 Hz, 1H), 6.97-6.89 (m, 1H), 4.56 (s, 2H), 3.86 (s, 2H), 3.42 (s, 3H), 2.37 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 162.54, 139.50, 136.62, 129.24, 125.51, 123.55, 122.35, 73.76, 57.85, 37.87, 21.45; EIMS m/z 250 ([M]+).


3-(2-(2,2-Difluorocyclopropyl)-5-methylphenyl)-2-iminothiazolidin-4-one (C80)



embedded image


Prepared from 2-chloro-N-(2-(2,2-difluorocyclopropyl)-5-methylphenyl)acetamide (C64) and isolated as a brown solid (0.279 g, 41%): mp 130-134° C.; 1H NMR (400 MHz, DMSO-d6) δ 10.00 (s, 1H), 7.21-7.17 (m, 1H), 7.13 (d, J=7.9 Hz, 1H), 7.05 (d, J=7.5 Hz, 1H), 4.13 (s, 2H), 2.88 (td, J=12.3, 8.2 Hz, 1H), 2.29 (s, 3H), 2.02-1.87 (m, 1H), 1.75 (dtd, J=12.1, 8.0, 3.6 Hz, 1H); 19F NMR (376 MHz, DMSO-d6) δ −124.66, −125.06, −139.62, −140.02; EIMS m/z 284 ([M+H]+).


2-Imino-3-(5-methyl-2-propylphenyl)thiazolidin-4-one (C81)



embedded image


Prepared from 2-chloro-N-(5-methyl-2-propylphenyl)acetamide (C65) and isolated as a white solid (1.76 g, 84%): mp 120-123° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.67 (s, 1H), 7.17 (d, J=1.7 Hz, 1H), 7.11 (d, J=7.7 Hz, 1H), 7.00-6.93 (m, 1H), 4.11 (s, 2H), 2.52-2.48 (m, 2H), 2.25 (s, 3H), 1.50 (h, J=7.4 Hz, 2H), 0.88 (t, J=7.3 Hz, 3H); 13C NMR (126 MHz, DMSO-d6) δ 164.20, 134.56, 134.13, 132.75, 128.76, 126.11, 125.70, 112.19, 36.01, 31.68, 22.32, 19.91, 13.23; EIMS m/z 248 ([M]+). 3-(4-Fluoro-2-isopropyl-5-methylphenyl)-2-iminothiazolidin-4-one (C82)




embedded image


Prepared from 2-chloro-N-(4-fluoro-2-isopropyl-5-methylphenyl)acetamide (C66) and isolated as a brown oil (1.11 g, 80%): 1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.07 (d, J=10.7 Hz, 1H), 6.93 (d, J=7.3 Hz, 1H), 4.12-4.00 (m, 2H), 2.72-2.59 (m, 1H), 2.25 (s, 3H), 1.17 (d, J=7.0 Hz, 6H); 19F NMR (376 MHz, CDCl3) 5-114.93; ESIMS m/z 267 ([M+H]+).


2-Imino-3-(2-isopropyl-5-(trifluoromethyl)phenyl)thiazolidin-4-one (C83)



embedded image


Prepared from 2-chloro-N-(2-isopropyl-5-(trifluoromethyl)phenyl)acetamide (C67) and isolated as a yellow oil: 1H NMR (300 MHz, CDCl3) δ 7.90 (s, 1H), 7.70 (d, J=8.6 Hz, 1H), 7.58 (d, J=8.3 Hz, 1H), 7.39 (d, J=1.9 Hz, 1H), 4.14 (s, 2H), 2.81 (p, J=6.8 Hz, 1H), 1.22 (d, J=6.8 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 171.05, 160.01, 151.10, 132.51, 127.72, 127.00, 126.97, 126.16, 126.13, 34.46, 28.83, 23.63, 23.28; 19F NMR (471 MHz, CDCl3) δ −62.40; EIMS m/z 301 ([M]+).


Example 22: Preparation of 1-(4-methyl-2-nitrophenyl)ethan-1-one (C84



embedded image


To a reaction flask were added 4-methyl-2-nitro-1-(prop-1-en-2-yl)benzene (11.4 g, 64.3 mmol), dichloromethane (292 mL), and methanol (29.2 mL). The reaction mixture was cooled to −78° C. Ozone was bubbled into the reaction mixture, and the reaction mixture was stirred at −78° C. for 3 hours. The reaction mixture was flushed with nitrogen. Dimethylsulfide (14.0 mL, 189 mmol) was added, and the reaction mixture was allowed to stir and warm to room temperature overnight. The reaction was concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as an oil (8.90 g, 70%): 1H NMR (300 MHz, CDCl3) δ 7.85 (dd, J=1.7, 0.8 Hz, 1H), 7.50 (ddd, J=7.8, 1.7, 0.8 Hz, 1H), 7.35 (dd, J=7.7, 0.9 Hz, 1H), 2.53 (s, 3H), 2.48 (s, 3H).


Example 23: Preparation of 1-(4-methyl-2-nitrophenyl)ethan-1-ol (C85



embedded image


To a reaction flask under an atmosphere of nitrogen were added 1-(4-methyl-2-nitrophenyl)ethan-1-one (C84) (8.91 g, 49.7 mmol) and methanol (249 mL). The reaction mixture was cooled to 0° C. Sodium borohydride (2.26 g, 59.7 mmol) was added, and the reaction mixture was stirred at 0° C. for 1 hour. The reaction mixture was allowed to warm to room temperature overnight. The reaction mixture was acidified with hydrochloric acid (2 N), and was diluted with dichloromethane. The layers were separated, and the aqueous phase was extracted with dichloromethane. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as a green oil (7.10 g, 75%): 1H NMR (400 MHz, CDCl3) δ 7.73-7.66 (m, 2H), 7.45 (dd, J=8.0, 2.1 Hz, 1H), 5.45-5.26 (m, 1H), 2.42 (s, 3H), 1.54 (s, 3H).


Example 24: Preparation of 1-(1-methoxyethyl)-4-methyl-2-nitrobenzene (C86



embedded image


To a dry round-bottomed flask were added 1-(4-methyl-2-nitrophenyl)ethan-1-ol (C85) (6.14 g, 33.9 mmol) and tetrahydrofuran (169 mL). The reaction mixture was cooled to 0° C. Sodium hydride (60% oil immersion, 2.03 g, 50.8 mmol) was added under an atmosphere of nitrogen. The reaction mixture was stirred at 0° C. for 30 minutes, then iodomethane (3.18 mL, 50.8 mmol) was added. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was diluted with saturated aqueous ammonium chloride, and water was added. The layers were separated, and the aqueous phase was extracted with dichloromethane (2×). The combined organic layers were dried over sodium sulfate, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as a yellow oil (7.10 g, 98%): 1H NMR (400 MHz, CHCl3) δ 7.78-7.68 (m, 1H), 7.61 (d, J=8.0 Hz, 1H), 7.45 (ddd, J=8.1, 1.8, 0.9 Hz, 1H), 4.84 (q, J=6.3 Hz, 1H), 3.19 (d, J=0.8 Hz, 3H), 2.43 (s, 3H), 1.50 (dd, J=6.3, 0.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 148.60, 138.44, 136.60, 134.47, 127.44, 124.41, 77.49, 77.23, 76.98, 74.87, 56.82, 23.44, 20.75.


Example 25: Preparation of 2-(1-methoxyethyl)-5-methylaniline (C87



embedded image


To a reaction flask were added 1-(1-methoxyethyl)-4-methyl-2-nitrobenzene (C86) (7.00 g, 35.9 mmol), nickel(II) chloride (4.65 g, 35.9 mmol), and methanol (179 mL). Sodium borohydride (2.94 g, 78.0 mmol) was added to the reaction mixture in 200-500 mg portions every 2-3 minutes under an atmosphere of nitrogen. The reaction mixture was quenched with acetone (6 mL) and was concentrated to approximately 80 mL. The crude mixture was diluted with dichloromethane and washed with water. The layers were separated, and the organics were concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as an orange oil (2.99 g, 45%): 1H NMR (300 MHz, CHCl3) δ 6.87 (d, J=7.6 Hz, 1H), 6.51 (ddd, J=7.5, 1.7, 0.8 Hz, 1H), 6.47 (d, J=1.6 Hz, 1H), 4.36 (q, J=6.7 Hz, 1H), 4.22 (s, 2H), 3.26 (s, 3H), 2.24 (d, J=0.8 Hz, 3H), 1.56-1.46 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 144.87, 128.61, 122.59, 118.56, 116.95, 80.41, 77.31, 77.06, 76.81, 55.93, 21.09, 20.01.


Example 26: Preparation of 2-bromo-4-methyl-1-vinylbenzene (C88



embedded image


To a solution of methyltriphenylphosphonium bromide (20.6 g, 58.0 mmol) in anhydrous tetrahydrofuran (250 mL) in a dry round-bottomed flask under nitrogen at 0° C. was added n-butyllithium (23.0 mL, 55.0 mmol). The reaction mixture was stirred at 0° C. for 1 hour, and then 2-bromo-4-methylbenzaldehyde (10.0 g, 50.0 mmol) was added. The reaction mixture was warmed to room temperature over 18 hours. The reaction was quenched with hydrochloric acid (2 N). The organic layer was separated, dried over sodium sulfate, filtered, and concentrated. The solid was dissolved in dichloromethane and recrystallized with diethyl ether. The filtrate was concentrated and then purified twice by flash column chromatography using 0-20% ethyl acetate/hexanes as eluent to provide the title compound as a clear oil (11.5 g, 99%): 1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=7.9 Hz, 1H), 7.38 (dd, J=1.9, 1.0 Hz, 1H), 7.14-6.95 (m, 2H), 5.65 (dd, J=17.4, 1.1 Hz, 1H), 5.30 (dd, J=11.0, 1.1 Hz, 1H), 2.31 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 139.38, 135.64, 135.62, 135.61, 134.57, 133.28, 128.44, 126.45, 123.49, 115.75, 115.72, 115.69, 115.68, 115.65, 115.64; EIMS m/z 198 ([M]+).


Example 27: Preparation of 2-bromo-1-(2,2-difluorocyclopropyl)-4-methylbenzene (C89)



embedded image


To a reaction vial were added 2-bromo-4-methyl-1-vinylbenzene (C88) (2.00 g, 10.1 mmol), sodium iodide (0.304 g, 2.03 mmol), and tetrahydrofuran (13.5 mL). Trimethyl(trifluoromethyl)silane (6.00 mL, 41.0 mmol) was added, and the reaction mixture was stirred at 65° C. for 3 hours. Three batches of the same volume were run. The reaction mixtures were combined and loaded onto a silica gel cartridge. Purification by flash chromatography using ethyl acetate/hexanes as eluent provided the title compound as a white amorphous solid (7.21 g, 86%): mp 37-41° C.; 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H), 7.08 (s, 2H), 2.82 (td, J=12.2, 8.3 Hz, 1H), 2.32 (s, 3H), 1.85 (tdd, J=11.8, 7.9, 5.0 Hz, 1H), 1.57 (dtd, J=12.9, 8.1, 3.6 Hz, 1H); 19F NMR (471 MHz, CDCl3) 5-126.68, −140.75.


Example 28: Preparation of 2-(2,2-difluorocyclopropyl)-5-methylaniline (C90



embedded image


To a microwave reaction vial were added 2-bromo-1-(2,2-difluorocyclopropyl)-4-methylbenzene (C89) (0.627 g, 2.54 mmol), palladium(II) acetate (0.0570 g, 0.254 mmol), 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (0.316 g, 0.508 mmol), cesium carbonate (2.07 g, 6.34 mmol), diphenylmethanimine (0.920 g, 5.08 mmol), and toluene (6.34 mL). The vial was capped and heated at 100° C. for 3 hours in a Biotage Initiator® microwave reactor, with external IR-sensor temperature monitoring from the side of the vessel. The crude reaction mixture was concentrated. The residue was dissolved in methanol, and hydroxylamine hydrochloride (0.138 g, 1.98 mmol) and sodium acetate (0.219 g, 2.66 mmol) were added. The reaction mixture was allowed to stir at room temperature overnight. Hydroxylamine hydrochloride (0.138 g, 1.98 mmol) and sodium acetate (0.219 g, 2.66 mmol) were added again to the reaction mixture. After stirring at room temperature, the reaction mixture was diluted with dichloromethane, filtered, and concentrated. Purification by flash column chromatography using ethyl acetate/hexanes as eluent provided the title compound as a brown solid (0.466 g, 98%): 1H NMR (400 MHz, CHCl3) δ 6.97 (d, J=7.7 Hz, 1H), 6.61-6.52 (m, 2H), 3.74 (s, 2H), 2.51 (ddd, J=13.3, 11.5, 8.0 Hz, 1H), 2.26 (d, J=0.8 Hz, 3H), 1.90-1.75 (m, 1H), 1.55 (dtd, J=12.8, 7.7, 3.6 Hz, 1H); 19F NMR (376 MHz, CDCl3) 5-126.54, −140.87.


Example 29: Preparation of 1-(methoxymethyl)-4-methyl-2-nitrobenzene (C91



embedded image


To (4-methyl-2-nitrophenyl)methanol (0.823 g, 4.92 mmol) in tetrahydrofuran (20 mL) at 0° C. was added sodium hydride (60% oil immersion, 0.217 g, 5.42 mmol) in small portions. Gas evolution was immediately observed. The reaction mixture was stirred for 30 minutes, and then iodomethane (0.460 mL, 7.39 mmol) was added. The reaction mixture was slowly warmed to room temperature overnight. The reaction mixture was quenched with methanol, and water and dichloromethane were added. The organic layer was filtered through a phase separator and concentrated to provide the title compound as an orange wax (1.10 g, 100%): 1H NMR (400 MHz, CDCl3) δ 7.88 (t, J=1.2 Hz, 1H), 7.63 (d, J=7.9 Hz, 1H), 7.49-7.41 (m, 1H), 4.80 (s, 2H), 3.48 (s, 3H), 2.43 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 156.37, 138.33, 134.42, 132.03, 128.47, 124.97, 71.07, 58.87, 20.80; EIMS m/z 180 ([M]+).


Example 30: Preparation of 2-imino-3-(pyridin-3-yl)thiazolidin-4-one (C92



embedded image


Pyridin-3-amine (2 g, 21.25 mmol) was stirred vigorously at 0° C. in dichloromethane (80 mL) in a reaction flask. Potassium carbonate (5.87 g, 42.5 mmol) was added to the flask followed by dropwise addition of 2-chloroacetyl chloride (1.872 mL, 23.38 mmol) in dichloromethane (10 mL) over 15 minutes, and the reaction mixture was allowed to stir at room temperature for 45 minutes. The reaction mixture was partitioned between dichloromethane and water and was washed with half-saturated ammonium chloride solution. The reaction mixture was concentrated in vacuo to give an orange oil which crystallized (3.6 g). This intermediate was used without further purification: 1H NMR (300 MHz, CDCl3) δ 8.65 (dd, J=2.7, 0.8 Hz, 1H), 8.43 (dd, J=4.8, 1.5 Hz, 1H), 8.37 (s, 1H), 8.16 (ddd, J=8.4, 2.7, 1.5 Hz, 1H), 7.33 (ddt, J=8.3, 4.7, 0.6 Hz, 1H), 4.23 (s, 2H).


The crude intermediate was taken up in acetone (50 mL), potassium thiocyanate (4.13 g, 42.5 mmol) was added, and the reaction mixture was warmed to 50° C. Upon consumption of the intermediate, the reaction mixture was cooled to room temperature, filtered through Celite®, and concentrated in vacuo onto silica gel. Purification via flash chromatography with 98% ethyl:1% hexanes:2% triethylamine as eluent yielded the title compound as an off-white solid (1.4 g, 32%): 1H NMR (400 MHz, DMSO-d6) δ 9.39 (s, 1H), 8.59 (dd, J=4.8, 1.6 Hz, 1H), 8.49 (d, J=2.4 Hz, 1H), 7.76 (ddd, J=8.1, 2.5, 1.5 Hz, 1H), 7.54 (ddd, J=8.1, 4.9, 0.8 Hz, 1H), 4.18 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 171.57, 157.96, 149.22, 148.97, 136.36, 123.87, 33.82; EIMS m/z 198 ([M]+).


Example 31: Preparation of (Z)-1-(4-(2-(1-(2-cyano-4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropylphenyl)-4-oxothiazolidin-2-ylidene)urea (F76)
Step 1: Preparation of 2-(3-(4-nitrophenethyl)-1H-1,2,4-triazol-1-yl)-5-(trifluoromethyl)benzonitrile (C93)



embedded image


To a stirred solution of 3-(4-nitrophenethyl)-1H-1,2,4-triazole (C38) (2 g, 9.16 mmol) in dimethyl sulfoxide were added 2-bromo-5-(trifluoromethyl)benzonitrile (2.74 g, 10.99 mmol), cesium carbonate (4.47 g, 13.74 mmol) and copper(I) iodide (0.090 g, 0.45 mmol). The reaction mixture was heated to 100° C. for 16 hours. The reaction mixture was poured onto ice water, and the precipitate was collected by filtration. Purification by flash column chromatography with 40% ethyl acetate in n-hexane as eluent afforded the title compound as a pale yellow solid, which was used in the next step as is.


Step 2: Preparation of 2-(3-(4-aminophenethyl)-1H-1,2,4-triazol-1-yl)-5-(trifluoromethyl) benzonitrile (C94)



embedded image


To 2-(3-(4-nitrophenethyl)-1H-1, 2, 4-triazol-1-yl)-5-(trifluoromethyl) benzonitrile (C93) (2 g, 9.16 mmol) in ethanol was added palladium on carbon (0.54 g, 30% w/w). The reaction mixture was stirred under an atmosphere of hydrogen (balloon) at room temperature for 16 hours. The reaction mixture was filtered though Celite®, and the filter cake was further washed with ethanol. The filtrate was concentrated under reduced pressure to give the title compound as pale brown liquid which was used in the next step without further purification.


Step 3: Preparation of (Z)-1-(4-(2-(1-(2-cyano-4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropylphenyl)-4-oxothiazolidin-2-ylidene)urea (F76)



embedded image


To a stirred solution of 2-(3-(4-aminophenethyl)-1H-1,2,4-triazol-1-yl)-5-(trifluoromethyl) benzonitrile (C94) (1.5 g, 4.19 mmol) in acetonitrile (11.5 g, 97.32 mmol) was added 4-nitrophenylchloroformate (1.01 g, 5.03 mmol), and the reaction mixture was stirred for 1 hour. 2-Imino-3-(2-isopropylphenyl)thiazolidin-4-one (1.18 g, 5.03 mmol) was added, followed by cesium carbonate (2.05 g, 6.29 mmol) and N,N-diisopropylethylamine (1.62 g, 12.59 mmol). The resulting solution was stirred at room temperature for 16 hours. The reaction mixture was filtered through Celite®, and the filtrate was evaporated under reduced pressure. Purification by preparative HPLC afforded the title compound as a pale yellow solid (0.420 g, 16%).


The following compound was prepared in like manner to the procedure outlined in Example 31.


(Z)-1-(4-(2-(1-(4-Bromophenyl)-1H-1, 2, 4-triazol-3-yl)ethyl)phenyl)-3-(3-(2-isopropylphenyl)-4-oxothiazolidin-2-ylidene)urea (F77)



embedded image


Prepared as an off-white solid (0.030 g, 17%).


It is recognized that some reagents and reaction conditions may not be compatible with certain functionalities that may be present in certain molecules of Formula One or certain molecules used in the preparation of certain molecules of Formula One. In such cases, it may be necessary to employ standard protection and deprotection protocols comprehensively reported in the literature and well known to a person skilled in the art. In addition, in some cases it may be necessary to perform further routine synthetic steps not described herein to complete the synthesis of desired molecules. A person skilled in the art will also recognize that it may be possible to achieve the synthesis of desired molecules by performing some of the steps of the synthetic routes in a different order to that described. A person skilled in the art will also recognize that it may be possible to perform standard functional group interconversions or substitution reactions on desired molecules to introduce or modify substituents.


Biological Assays


The following bioassays against Beet Armyworm (Spodoptera exigua), Cabbage Looper (Trichoplusia ni), and Yellow Fever Mosquito (Aedes aegypti), are included herein due to the damage they inflict. Furthermore, the Beet Armyworm and Cabbage Looper are two good indicator species for a broad range of chewing pests. Additionally, the Green Peach Aphid is a good indicator species for a broad range of sap-feeding pests. The results with these four indicator species along with the Yellow Fever Mosquito show the broad usefulness of the molecules of Formula One in controlling pests in Phyla Arthropoda, Mollusca, and Nematoda (Drewes et al.)


Example A: Bioassays on Beet Armyworm (Spodoptera exigua, LAPHEG) (“BAW”) and Cabbage Looper (Trichoplusia ni, TRIPNI) (“CL”)

Beet armyworm is a serious pest of economic concern for alfalfa, asparagus, beets, citrus, corn, cotton, onions, peas, peppers, potatoes, soybeans, sugar beets, sunflowers, tobacco, and tomatoes, among other crops. It is native to Southeast Asia but is now found in Africa, Australia, Japan, North America, and Southern Europe. The larvae may feed in large swarms causing devastating crop losses. It is known to be resistant to several pesticides.


Cabbage looper is a serious pest found throughout the world. It attacks alfalfa, beans, beets, broccoli, Brussel sprouts, cabbage, cantaloupe, cauliflower, celery, collards, cotton, cucumbers, eggplant, kale, lettuce, melons, mustard, parsley, peas, peppers, potatoes, soybeans, spinach, squash, tomatoes, turnips, and watermelons, among other crops. This species is very destructive to plants due to its voracious appetite. The larvae consume three times their weight in food daily. The feeding sites are marked by large accumulations of sticky, wet, fecal material, which may contribute to higher disease pressure thereby causing secondary problems on the plants in the site. It is known to be resistant to several pesticides.


Consequently, because of the above factors control of these pests is important. Furthermore, molecules that control these pests (BAW and CL), which are known as chewing pests, will be useful in controlling other pests that chew on plants.


Certain molecules disclosed in this document were tested against BAW and CL using procedures described in the following examples. In the reporting of the results, the “BAW & CL Rating Table” was used (See Table Section).


Bioassays on BAW


Bioassays on BAW were conducted using a 128-well diet tray assay. One to five second instar BAW larvae were placed in each well (3 mL) of the diet tray that had been previously filled with 1 mL of artificial diet to which 50 μg/cm2 of the test molecule (dissolved in 50 μL of 90:10 acetone-water mixture) had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adhesive cover, vented to allow gas exchange, and held at 25° C., 14:10 light-dark for five to seven days. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged. The results are indicated in the table entitled “Table ABC: Biological Results” (See Table Section).


Bioassays on CL


Bioassays on CL were conducted using a 128-well diet tray assay. One to five second instar CL larvae were placed in each well (3 mL) of the diet tray that had been previously filled with 1 mL of artificial diet to which 50 μg/cm2 of the test molecule (dissolved in 50 μL of 90:10 acetone-water mixture) had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adhesive cover, vented to allow gas exchange, and held at 25° C., 14:10 light-dark for five to seven days. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged. The results are indicated in the table entitled “Table ABC: Biological Results” (See Table Section).


Example B: Bioassays on Yellow Fever Mosquito (Aedes aegypti, AEDSAE (“YFM”)

YFM prefers to feed on humans during the daytime and is most frequently found in or near human habitations. YFM is a vector for transmitting several diseases. It is a mosquito that can spread the dengue fever and yellow fever viruses. Yellow fever is the second most dangerous mosquito-borne disease after malaria. Yellow fever is an acute viral hemorrhagic disease and up to 50% of severely affected persons without treatment will die from yellow fever. There are an estimated 200,000 cases of yellow fever, causing 30,000 deaths worldwide each year. Dengue fever is a nasty, viral disease; it is sometimes called “breakbone fever” or “break-heart fever” because of the intense pain it can produce. Dengue fever kills about 20,000 people annually. Consequently, because of the above factors control of this pest is important. Furthermore, molecules that control this pest (YFM), which is known as a sucking pest, are useful in controlling other pests that cause human and animal suffering.


Certain molecules disclosed in this document were tested against YFM using procedures described in the following paragraph. In the reporting of the results, the “YFM Rating Table” was used (See Table Section).


Master plates containing 400 μg of a molecule dissolved in 100 μL of dimethyl sulfoxide (DMSO) (equivalent to a 4000 ppm solution) are used. A master plate of assembled molecules contains 15 μL per well. To this plate, 135 μL of a 90:10 water/acetone mixture is added to each well. A robot (Biomek® NXP Laboratory Automation Workstation) is programmed to dispense 15 μL aspirations from the master plate into an empty 96-well shallow plate (“daughter” plate). There are 6 reps (“daughter” plates) created per master. The created “daughter” plates are then immediately infested with YFM larvae.


The day before plates are to be treated, mosquito eggs are placed in Millipore water containing liver powder to begin hatching (4 g into 400 mL). After the “daughter” plates are created using the robot, they are infested with 220 μL of the liver powder/larval mosquito mixture (about 1 day-old larvae). After plates are infested with mosquito larvae, a non-evaporative lid is used to cover the plate to reduce drying. Plates are held at room temperature for 3 days prior to grading. After 3 days, each well is observed and scored based on mortality. The results are indicated in the table entitled “Table ABC: Biological Results” (See Table Section).


Agriculturally Acceptable Acid Addition Salts, Salt Derivatives, Solvates, Ester Derivatives, Polymorphs, Isotopes, and Radionuclides


Molecules of Formula One may be formulated into agriculturally acceptable acid addition salts. By way of a non-limiting example, an amine function can form salts with hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, benzoic, citric, malonic, salicylic, malic, fumaric, oxalic, succinic, tartaric, lactic, gluconic, ascorbic, maleic, aspartic, benzenesulfonic, methanesulfonic, ethanesulfonic, hydroxyl-methanesulfonic, and hydroxyethanesulfonic acids. Additionally, by way of a non-limiting example, an acid function can form salts including those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Examples of preferred cations include sodium, potassium, and magnesium.


Molecules of Formula One may be formulated into salt derivatives. By way of a non-limiting example, a salt derivative may be prepared by contacting a free base with a sufficient amount of the desired acid to produce a salt. A free base may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia, and sodium bicarbonate. As an example, in many cases, a pesticide, such as 2,4-D, is made more water-soluble by converting it to its dimethylamine salt.


Molecules of Formula One may be formulated into stable complexes with a solvent, such that the complex remains intact after the non-complexed solvent is removed. These complexes are often referred to as “solvates.” However, it is particularly desirable to form stable hydrates with water as the solvent.


Molecules of Formula One containing an acid functionality may be made into ester derivatives. These ester derivatives can then be applied in the same manner as the molecules disclosed in this document are applied.


Molecules of Formula One may be made as various crystal polymorphs. Polymorphism is important in the development of agrochemicals since different crystal polymorphs or structures of the same molecule can have vastly different physical properties and biological performances.


Molecules of Formula One may be made with different isotopes. Of particular importance are molecules having 2H (also known as deuterium) or 3H (also known as tritium) in place of 1H. Molecules of Formula One may be made with different radionuclides. Of particular importance are molecules having 14C (also known as radiocarbon). Molecules of Formula One having deuterium, tritium, or 14C may be used in biological studies allowing tracing in chemical and physiological processes and half-life studies, as well as, MoA studies.


Combinations


In another embodiment of this invention, molecules of Formula One may be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more active ingredients.


In another embodiment of this invention, molecules of Formula One may be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more active ingredients each having a MoA that is the same as, similar to, but more likely—different from, the MoA of the molecules of Formula One.


In another embodiment, molecules of Formula One may be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more molecules having acaricidal, algicidal, avicidal, bactericidal, fungicidal, herbicidal, insecticidal, molluscicidal, nematicidal, rodenticidal, and/or virucidal properties.


In another embodiment, the molecules of Formula One may be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more molecules that are antifeedants, bird repellents, chemosterilants, herbicide safeners, insect attractants, insect repellents, mammal repellents, mating disrupters, plant activators, plant growth regulators, and/or synergists.


In another embodiment, molecules of Formula One may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more biopesticides.


In another embodiment, in a pesticidal composition combinations of a molecule of Formula One and an active ingredient may be used in a wide variety of weight ratios. For example, in a two-component mixture, the weight ratio of a molecule of Formula One to an active ingredient, the weight ratios in Table B may be used. However, in general, weight ratios less than about 10:1 to about 1:10 are preferred. It is also preferred sometimes to use a three, four, five, six, seven, or more, component mixture comprising a molecule of Formula One and an additional two or more active ingredients.


Weight ratios of a molecule of Formula One to an active ingredient may also be depicted as X:Y; wherein X is the parts by weight of a molecule of Formula One and Y is the parts by weight of active ingredient. The numerical range of the parts by weight for X is 0<X≦100 and the parts by weight for Y is 0<Y≦100 and is shown graphically in TABLE C. By way of non-limiting example, the weight ratio of a molecule of Formula One to an active ingredient may be 20:1.


Ranges of weight ratios of a molecule of Formula One to an active ingredient may be depicted as X1:Y1 to X2:Y2, wherein X and Y are defined as above.


In one embodiment, the range of weight ratios may be X1:Y1 to X2:Y2, wherein X1>Y1 and X2<Y2. By way of non-limiting example, the range of a weight ratio of a molecule of Formula One to an active ingredient may be between 3:1 and 1:3, inclusive of the endpoints.


In another embodiment, the range of weight ratios may be X1:Y1 to X2:Y2, wherein X1>Y1 and X2>Y2. By way of non-limiting example, the range of weight ratio of a molecule of Formula One to an active ingredient may be between 15:1 and 3:1, inclusive of the endpoints.


In another embodiment, the range of weight ratios may be X1:Y1 to X2:Y2, wherein X1<Y1 and X2<Y2. By way of non-limiting example, the range of weight ratios of a molecule of Formula One to an active ingredient may be between about 1:3 and about 1:20, inclusive of the endpoints.


It is envisioned that certain weight ratios of a molecule of Formula One to an active ingredient, as presented in Table B and C, may be synergistic.


Formulations


A pesticide is many times not suitable for application in its pure form. It is usually necessary to add other substances so that the pesticide may be used at the required concentration and in an appropriate form, permitting ease of application, handling, transportation, storage, and maximum pesticide activity. Thus, pesticides are formulated into, for example, baits, concentrated emulsions, dusts, emulsifiable concentrates, fumigants, gels, granules, microencapsulations, seed treatments, suspension concentrates, suspoemulsions, tablets, water soluble liquids, water dispersible granules or dry flowables, wettable powders, and ultra-low volume solutions.


Pesticides are applied most often as aqueous suspensions or emulsions prepared from concentrated formulations of such pesticides. Such water-soluble, water-suspendable, or emulsifiable formulations are either solids, usually known as wettable powders, water dispersible granules, liquids usually known as emulsifiable concentrates, or aqueous suspensions. Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of the pesticide, a carrier, and surfactants. The concentration of the pesticide is usually from about 10% to about 90% by weight. The carrier is usually selected from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates. Effective surfactants, comprising from about 0.5% to about 10% of the wettable powder, are found among sulfonated lignins, condensed naphthalenesulfonates, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-ionic surfactants such as ethylene oxide adducts of alkyl phenols.


Emulsifiable concentrates of pesticides comprise a convenient concentration of a pesticide, such as from about 50 to about 500 grams per liter of liquid dissolved in a carrier that is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers. Useful organic solvents include aromatics, especially xylenes and petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as the terpenic solvents including rosin derivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanol. Suitable emulsifiers for emulsifiable concentrates are selected from conventional anionic and non-ionic surfactants.


Aqueous suspensions comprise suspensions of water-insoluble pesticides dispersed in an aqueous carrier at a concentration in the range from about 5% to about 50% by weight. Suspensions are prepared by finely grinding the pesticide and vigorously mixing it into a carrier comprised of water and surfactants. Ingredients, such as inorganic salts and synthetic or natural gums may, also be added to increase the density and viscosity of the aqueous carrier. It is often most effective to grind and mix the pesticide at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer. The pesticide in suspension might be microencapsulated in plastic polymer.


Oil dispersions (OD) comprise suspensions of organic solvent-insoluble pesticides finely dispersed in a mixture of organic solvent and emulsifiers at a concentration in the range from about 2% to about 50% by weight. One or more pesticide might be dissolved in the organic solvent. Useful organic solvents include aromatics, especially xylenes and petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other solvents may include vegetable oils, seed oils, and esters of vegetable and seed oils. Suitable emulsifiers for oil dispersions are selected from conventional anionic and non-ionic surfactants. Thickeners or gelling agents are added in the formulation of oil dispersions to modify the rheology or flow properties of the liquid and to prevent separation and settling of the dispersed particles or droplets.


Pesticides may also be applied as granular compositions that are particularly useful for applications to the soil. Granular compositions usually contain from about 0.5% to about 10% by weight of the pesticide, dispersed in a carrier that comprises clay or a similar substance. Such compositions are usually prepared by dissolving the pesticide in a suitable solvent and applying it to a granular carrier, which has been pre-formed to the appropriate particle size, in the range of from about 0.5 mm to about 3 mm. Such compositions may also be formulated by making a dough or paste of the carrier and molecule, and then crushing and drying to obtain the desired granular particle size. Another form of granules is a water emulsifiable granule (EG). It is a formulation consisting of granules to be applied as a conventional oil-in-water emulsion of the active ingredient(s), either solubilized or diluted in an organic solvent, after disintegration and dissolution in water. Water emulsifiable granules comprise one or several active ingredient(s), either solubilized or diluted in a suitable organic solvent that is (are) absorbed in a water soluble polymeric shell or some other type of soluble or insoluble matrix.


Dusts containing a pesticide are prepared by intimately mixing the pesticide in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the pesticide. Dusts may be applied as a seed dressing or as a foliage application with a dust blower machine.


It is equally practical to apply a pesticide in the form of a solution in an appropriate organic solvent, usually petroleum oil, such as the spray oils, which are widely used in agricultural chemistry.


Pesticides can also be applied in the form of an aerosol composition. In such compositions, the pesticide is dissolved or dispersed in a carrier, which is a pressure-generating propellant mixture. The aerosol composition is packaged in a container from which the mixture is dispensed through an atomizing valve.


Pesticide baits are formed when the pesticide is mixed with food or an attractant or both. When the pests eat the bait, they also consume the pesticide. Baits may take the form of granules, gels, flowable powders, liquids, or solids. Baits may be used in pest harborages.


Fumigants are pesticides that have a relatively high vapor pressure and hence can exist as a gas in sufficient concentrations to kill pests in soil or enclosed spaces. The toxicity of the fumigant is proportional to its concentration and the exposure time. They are characterized by a good capacity for diffusion and act by penetrating the pest's respiratory system or being absorbed through the pest's cuticle. Fumigants are applied to control stored product pests under gas proof sheets, in gas sealed rooms or buildings, or in special chambers.


Pesticides may be microencapsulated by suspending the pesticide particles or droplets in plastic polymers of various types. By altering, the chemistry of the polymer or by changing factors in the processing, microcapsules may be formed of various sizes, solubility, wall thicknesses, and degrees of penetrability. These factors govern the speed with which the active ingredient within is released, which in turn, affects the residual performance, speed of action, and odor of the product. The microcapsules might be formulated as suspension concentrates or water dispersible granules.


Oil solution concentrates are made by dissolving pesticide in a solvent that will hold the pesticide in solution. Oil solutions of a pesticide usually provide faster knockdown and kill of pests than other formulations due to the solvents themselves having pesticidal action and the dissolution of the waxy covering of the integument increasing the speed of uptake of the pesticide. Other advantages of oil solutions include better storage stability, better penetration of crevices, and better adhesion to greasy surfaces.


Another embodiment is an oil-in-water emulsion, wherein the emulsion comprises oily globules which are each provided with a lamellar liquid crystal coating and are dispersed in an aqueous phase, wherein each oily globule comprises at least one molecule which is agriculturally active, and is individually coated with a monolamellar or oligolamellar layer comprising: (1) at least one non-ionic lipophilic surface-active agent, (2) at least one non-ionic hydrophilic surface-active agent, and (3) at least one ionic surface-active agent, wherein the globules having a mean particle diameter of less than 800 nanometers.


Other Formulation Components


Generally, when the molecules disclosed in Formula One are used in a formulation, such formulation can also contain other components. These components include, but are not limited to, (this is a non-exhaustive and non-mutually exclusive list) wetters, spreaders, stickers, penetrants, buffers, sequestering agents, drift reduction agents, compatibility agents, anti-foam agents, cleaning agents, and emulsifiers. A few components are described forthwith.


A wetting agent is a substance that when added to a liquid increases the spreading or penetration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading. Wetting agents are used for two main functions in agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders in water to make concentrates for soluble liquids or suspension concentrates; and during mixing of a product with water in a spray tank to reduce the wetting time of wettable powders and to improve the penetration of water into water-dispersible granules. Examples of wetting agents used in wettable powder, suspension concentrate, and water-dispersible granule formulations are: sodium lauryl sulfate, sodium dioctyl sulfosuccinate, alkyl phenol ethoxylates, and aliphatic alcohol ethoxylates.


A dispersing agent is a substance that adsorbs onto the surface of particles, helps to preserve the state of dispersion of the particles, and prevents them from reaggregating. Dispersing agents are added to agrochemical formulations to facilitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water in a spray tank. They are widely used in wettable powders, suspension concentrates, and water-dispersible granules. Surfactants that are used as dispersing agents have the ability to adsorb strongly onto a particle surface and provide a charged or steric barrier to reaggregation of particles. The most commonly used surfactants are anionic, non-ionic, or mixtures of the two types. For wettable powder formulations, the most common dispersing agents are sodium lignosulfonates. For suspension concentrates, very good adsorption and stabilization are obtained using polyelectrolytes, such as sodium-naphthalene-sulfonate-formaldehyde-condensates. Tristyrylphenol ethoxylate phosphate esters are also used. Non-ionics such as alkylarylethylene oxide condensates and EO-PO block copolymers are sometimes combined with anionics as dispersing agents for suspension concentrates. In recent years, new types of very high molecular weight polymeric surfactants have been developed as dispersing agents. These have very long hydrophobic ‘backbones’ and a large number of ethylene oxide chains forming the ‘teeth’ of a ‘comb’ surfactant. These high molecular weight polymers can give very good long-term stability to suspension concentrates because the hydrophobic backbones have many anchoring points onto the particle surfaces. Examples of dispersing agents used in agrochemical formulations are: sodium lignosulfonates, sodium naphthalene sulfonate formaldehyde condensates, tristyrylphenol-ethoxylate-phosphate-esters, aliphatic alcohol ethoxylates, alkyl ethoxylates, EO-PO block copolymers, and graft copolymers.


An emulsifying agent is a substance that stabilizes a suspension of droplets of one liquid phase in another liquid phase. Without the emulsifying agent, the two liquids would separate into two immiscible liquid phases. The most commonly used emulsifier blends contain an alkylphenol or an aliphatic alcohol with twelve or more ethylene oxide units and the oil-soluble calcium salt of dodecylbenzenesulfonic acid. A range of hydrophile-lipophile balance (“HLB”) values from about 8 to about 18 will normally provide good stable emulsions. Emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.


A solubilizing agent is a surfactant that will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobic part of the micelle. The types of surfactants usually used for solubilization are non-ionics, sorbitan monooleates, sorbitan monooleate ethoxylates, and methyl oleate esters.


Surfactants are sometimes used, either alone or with other additives such as mineral or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the pesticide on the target. The types of surfactants used for bioenhancement depend generally on the nature and mode of action of the pesticide. However, they are often non-ionics such as: alkyl ethoxylates, linear aliphatic alcohol ethoxylates, and aliphatic amine ethoxylates.


A carrier or diluent in an agricultural formulation is a material added to the pesticide to give a product of the required strength. Carriers are usually materials with high absorptive capacities, while diluents are usually materials with low absorptive capacities. Carriers and diluents are used in the formulation of dusts, wettable powders, granules, and water-dispersible granules.


Organic solvents are used mainly in the formulation of emulsifiable concentrates, oil-in-water emulsions, suspoemulsions, oil dispersions, and ultra-low volume formulations, and to a lesser extent, granular formulations. Sometimes mixtures of solvents are used. The first main groups of solvents are aliphatic paraffinic oils such as kerosene or refined paraffins. The second main group (and the most common) comprises the aromatic solvents such as xylene and higher molecular weight fractions of C9 and C10 aromatic solvents. Chlorinated hydrocarbons are useful as cosolvents to prevent crystallization of pesticides when the formulation is emulsified into water. Alcohols are sometimes used as cosolvents to increase solvent power. Other solvents may include vegetable oils, seed oils, and esters of vegetable and seed oils.


Thickeners or gelling agents are used mainly in the formulation of suspension concentrates, oil dispersions, emulsions and suspoemulsions to modify the rheology or flow properties of the liquid and to prevent separation and settling of the dispersed particles or droplets. Thickening, gelling, and anti-settling agents generally fall into two categories, namely water-insoluble particulates and water-soluble polymers. It is possible to produce suspension concentrate and oil dispersion formulations using clays and silicas. Examples of these types of materials, include, but are not limited to, montmorillonite, bentonite, magnesium aluminum silicate, and attapulgite. Water-soluble polysaccharides in water based suspension concentrates have been used as thickening-gelling agents for many years. The types of polysaccharides most commonly used are natural extracts of seeds and seaweeds or are synthetic derivatives of cellulose. Examples of these types of materials include, but are not limited to, guar gum, locust bean gum, carrageenam, alginates, methyl cellulose, sodium carboxymethyl cellulose (SCMC), and hydroxyethyl cellulose (HEC). Other types of anti-settling agents are based on modified starches, polyacrylates, polyvinyl alcohol, and polyethylene oxide. Another good anti-settling agent is xanthan gum.


Microorganisms can cause spoilage of formulated products. Therefore, preservation agents are used to eliminate or reduce their effect. Examples of such agents include, but are not limited to: propionic acid and its sodium salt, sorbic acid and its sodium or potassium salts, benzoic acid and its sodium salt, p-hydroxybenzoic acid sodium salt, methyl p-hydroxybenzoate, and 1,2-benzisothiazolin-3-one (BIT).


The presence of surfactants often causes water-based formulations to foam during mixing operations in production and in application through a spray tank. In order to reduce the tendency to foam, anti-foam agents are often added either during the production stage or before filling into bottles. Generally, there are two types of anti-foam agents, namely silicones and non-silicones. Silicones are usually aqueous emulsions of dimethyl polysiloxane, while the non-silicone anti-foam agents are water-insoluble oils, such as octanol and nonanol, or silica. In both cases, the function of the anti-foam agent is to displace the surfactant from the air-water interface.


“Green” agents (e.g., adjuvants, surfactants, solvents) can reduce the overall environmental footprint of crop protection formulations. Green agents are biodegradable and generally derived from natural and/or sustainable sources, e.g. plant and animal sources. Specific examples are: vegetable oils, seed oils, and esters thereof, also alkoxylated alkyl polyglucosides.


Applications


Molecules of Formula One may be applied to any locus. Particular loci to apply such molecules include loci where alfalfa, almonds, apples, barley, beans, canola, corn, cotton, crucifers, flowers, fodder species (Rye Grass, Sudan Grass, Tall Fescue, Kentucky Blue Grass, and Clover), fruits, lettuce, oats, oil seed crops, oranges, peanuts, pears, peppers, potatoes, rice, sorghum, soybeans, strawberries, sugarcane, sugarbeets, sunflowers, tobacco, tomatoes, wheat (for example, Hard Red Winter Wheat, Soft Red Winter Wheat, White Winter Wheat, Hard Red Spring Wheat, and Durum Spring Wheat), and other valuable crops are growing or the seeds thereof are going to be planted.


Molecules of Formula One may also be applied where plants, such as crops, are growing and where there are low levels (even no actual presence) of pests that can commercially damage such plants. Applying such molecules in such locus is to benefit the plants being grown in such locus. Such benefits, may include, but are not limited to: helping the plant grow a better root system; helping the plant better withstand stressful growing conditions; improving the health of a plant; improving the yield of a plant (e.g. increased biomass and/or increased content of valuable ingredients); improving the vigor of a plant (e.g. improved plant growth and/or greener leaves); improving the quality of a plant (e.g. improved content or composition of certain ingredients); and improving the tolerance to abiotic and/or biotic stress of the plant.


Molecules of Formula One may be applied with ammonium sulfate when growing various plants as this may provide additional benefits.


Molecules of Formula One may be applied on, in, or around plants genetically modified to express specialized traits, such as Bacillus thuringiensis (for example, Cry1Ab, Cry1Ac, Cry1Fa, Cry1A.105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34Ab1/Cry35Ab1), other insecticidal toxins, or those expressing herbicide tolerance, or those with “stacked” foreign genes expressing insecticidal toxins, herbicide tolerance, nutrition-enhancement, or any other beneficial traits.


Molecules of Formula One may be applied to the foliar and/or fruiting portions of plants to control pests. Either such molecules will come in direct contact with the pest, or the pest will consume such molecules when eating the plant or while extracting sap or other nutrients from the plant.


Molecules of Formula One may also be applied to the soil, and when applied in this manner, root and stem feeding pests may be controlled. The roots may absorb such molecules thereby taking it up into the foliar portions of the plant to control above ground chewing and sap feeding pests.


Systemic movement of pesticides in plants may be utilized to control pests on one portion of the plant by applying (for example by spraying a locus) a molecule of Formula One to a different portion of the plant. For example, control of foliar-feeding insects may be achieved by drip irrigation or furrow application, by treating the soil with for example pre- or post-planting soil drench, or by treating the seeds of a plant before planting.


Molecules of Formula One may be used with baits. Generally, with baits, the baits are placed in the ground where, for example, termites can come into contact with, and/or be attracted to, the bait. Baits can also be applied to a surface of a building, (horizontal, vertical, or slant surface) where, for example, ants, termites, cockroaches, and flies, can come into contact with, and/or be attracted to, the bait.


Molecules of Formula One may be encapsulated inside, or placed on the surface of a capsule. The size of the capsules can range from nanometer size (about 100-900 nanometers in diameter) to micrometer size (about 10-900 microns in diameter).


Molecules of Formula One may be applied to eggs of pests. Because of the unique ability of the eggs of some pests to resist certain pesticides, repeated applications of such molecules may be desirable to control newly emerged larvae.


Molecules of Formula One may be applied as seed treatments. Seed treatments may be applied to all types of seeds, including those from which plants genetically modified to express specialized traits will germinate. Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis or other insecticidal toxins, those expressing herbicide tolerance, such as “Roundup Ready” seed, or those with “stacked” foreign genes expressing insecticidal toxins, herbicide tolerance, nutrition-enhancement, drought tolerance, or any other beneficial traits. Furthermore, such seed treatments with molecules of Formula One may further enhance the ability of a plant to withstand stressful growing conditions better. This results in a healthier, more vigorous plant, which can lead to higher yields at harvest time. Generally, about 1 gram of such molecules to about 500 grams per 100,000 seeds is expected to provide good benefits, amounts from about 10 grams to about 100 grams per 100,000 seeds is expected to provide better benefits, and amounts from about 25 grams to about 75 grams per 100,000 seeds is expected to provide even better benefits. Molecules of Formula One may be applied with one or more active ingredients in a soil amendment.


Molecules of Formula One may be used for controlling endoparasites and ectoparasites in the veterinary medicine sector or in the field of non-human-animal keeping. Such molecules may be applied by oral administration in the form of, for example, tablets, capsules, drinks, granules, by dermal application in the form of, for example, dipping, spraying, pouring on, spotting on, and dusting, and by parenteral administration in the form of, for example, an injection.


Molecules of Formula One may also be employed advantageously in livestock keeping, for example, cattle, chickens, geese, goats, pigs, sheep, and turkeys. They may also be employed advantageously in pets such as, horses, dogs, and cats. Particular pests to control would be flies, fleas, and ticks that are bothersome to such animals. Suitable formulations are administered orally to the animals with the drinking water or feed. The dosages and formulations that are suitable depend on the species.


Molecules of Formula One may also be used for controlling parasitic worms, especially of the intestine, in the animals listed above.


Molecules of Formula One may also be employed in therapeutic methods for human health care. Such methods include, but are limited to, oral administration in the form of, for example, tablets, capsules, drinks, granules, and by dermal application.


Molecules of Formula One may also be applied to invasive pests. Pests around the world have been migrating to new environments (for such pest) and thereafter becoming a new invasive species in such new environment. Such molecules may also be used on such new invasive species to control them in such new environments.


Before a pesticide may be used or sold commercially, such pesticide undergoes lengthy evaluation processes by various governmental authorities (local, regional, state, national, and international). Voluminous data requirements are specified by regulatory authorities and must be addressed through data generation and submission by the product registrant or by a third party on the product registrant's behalf, often using a computer with a connection to the World Wide Web. These governmental authorities then review such data and if a determination of safety is concluded, provide the potential user or seller with product registration approval. Thereafter, in that locality where the product registration is granted and supported, such user or seller may use or sell such pesticide.


Molecules according to Formula One may be tested to determine its efficacy against pests. Additionally, a molecule of Formula One may be mixed with another active ingredient to form a pesticidal composition, and then that composition is tested to determine if it is synergistic using conventional testing procedures. Furthermore, mode of action studies may be conducted to determine if said molecule has a different mode of action than other pesticides. Thereafter, such acquired data may be disseminated, such as by the internet, to third parties.


The headings in this document are for convenience only and must not be used to interpret any portion hereof.


Tables











TABLE B






Weight Ratios




Molecule of the Formula One:active ingredient








100:1 to 1:100




50:1 to 1:50




20:1 to 1:20




10:1 to 1:10




5:1 to 1:5




3:1 to 1:3




2:1 to 1:2




1:1


























TABLE C







active ingredient
100
X, Y

X, Y


X, Y





(Y) Parts by weight
50
X, Y
X, Y
X, Y


X, Y
X, Y





20
X, Y

X, Y
X, Y

X, Y

X, Y




15
X, Y
X, Y




X, Y
X, Y
X, Y



10
X, Y

X, Y









5
X, Y
X, Y
X, Y



X, Y





3
X, Y
X, Y

X, Y
X, Y

X, Y
X, Y
X, Y



2
X, Y

X, Y
X, Y

X, Y

X, Y




1
X, Y
X, Y
X, Y
X, Y
X, Y
X, Y
X, Y
X, Y
X, Y




1
2
3
5
10
15
20
50
100









molecule of Formula One



(X) Parts by weight
















TABLE 2







Structure and preparation method for F Series molecules









No.
Structure
Prep.*












F1


embedded image


11





F2


embedded image


11





F3


embedded image


11





F4


embedded image


11





F5


embedded image


11





F6


embedded image


11





F7


embedded image


11





F8


embedded image


11





F9


embedded image


11





F10


embedded image


11





F11


embedded image


11





F12


embedded image


11





F13


embedded image


11





F14


embedded image


11





F15


embedded image


9





F16


embedded image


11





F17


embedded image


11





F18


embedded image


11





F19


embedded image


11





F20


embedded image


11





F21


embedded image


9





F22


embedded image


9





F23


embedded image


11





F24


embedded image


9





F25


embedded image


11





F26


embedded image


9





F27


embedded image


11





F28


embedded image


9





F29


embedded image


11





F30


embedded image


11





F31


embedded image


9





F32


embedded image


11





F33


embedded image


11





F34


embedded image


11





F35


embedded image


9





F36


embedded image


9





F37


embedded image


9





F38


embedded image


9





F39


embedded image


9





F40


embedded image


9





F41


embedded image


9





F42


embedded image


9





F43


embedded image


9





F44


embedded image


9





F45


embedded image


9





F46


embedded image


9





F47


embedded image


9





F48


embedded image


9





F49


embedded image


9





F50


embedded image


9





F51


embedded image


9





F52


embedded image


9





F53


embedded image


9





F54


embedded image


9





F55


embedded image


9





F56


embedded image


9





F57


embedded image


9





F58


embedded image


9





F59


embedded image


9





F60


embedded image


9





F61


embedded image


9





F62


embedded image


9





F63


embedded image


9





F64


embedded image


9





F65


embedded image


9





F66


embedded image


9





F67


embedded image


9





F68


embedded image


9





F69


embedded image


9





F70


embedded image


10





F71


embedded image


10





F72


embedded image


9





F73


embedded image


9





F74


embedded image


11





F75


embedded image


10





F76


embedded image


31





F77


embedded image


31





F78


embedded image


10





*prepared according to example number













TABLE 3







Structure and preparation method for C series molecules









No.
Structure
Prep*












C1


embedded image


1





C2


embedded image


2





C3


embedded image


2





C4


embedded image


3





C5


embedded image


3





C6


embedded image


4





C7


embedded image


5





C8


embedded image


5





C9


embedded image


5





C10


embedded image


5





C11


embedded image


5





C12


embedded image


5





C13


embedded image


5





C14


embedded image


5





C15


embedded image


5





C16


embedded image


5





C17


embedded image


5





C18


embedded image


5





C19


embedded image


5





C20


embedded image


5





C21


embedded image


5





C22


embedded image


6, 8





C23


embedded image


6





C24


embedded image


6





C25


embedded image


6





C26


embedded image


6





C27


embedded image


6





C28


embedded image


6





C29


embedded image


7





C30


embedded image


7





C31


embedded image


7





C32


embedded image


7





C33


embedded image


7





C34


embedded image


9





C35


embedded image


12





C36


embedded image


12





C37


embedded image


12





C38


embedded image


13





C39


embedded image


13





C40


embedded image


13





C41


embedded image


14





C42


embedded image


14





C43


embedded image


14





C44


embedded image


15





C45


embedded image


16





C46


embedded image


17





C47


embedded image


18





C48


embedded image


18





C49


embedded image


19





C50


embedded image


19





C51


embedded image


19





C52


embedded image


20





C53


embedded image


20





C54


embedded image


20





C55


embedded image


20





C56


embedded image


20





C57


embedded image


20





C58


embedded image


20





C59


embedded image


20





C60


embedded image


20





C61


embedded image


20





C62


embedded image


20





C63


embedded image


20





C64


embedded image


20





C65


embedded image


20





C66


embedded image


20





C67


embedded image


20





C68


embedded image


21





C69


embedded image


21





C70


embedded image


21





C71


embedded image


21





C72


embedded image


21





C73


embedded image


21





C74


embedded image


21





C75


embedded image


21





C76


embedded image


21





C77


embedded image


21





C78


embedded image


21





C79


embedded image


21





C80


embedded image


21





C81


embedded image


21





C82


embedded image


21





C83


embedded image


21





C84


embedded image


22





C85


embedded image


23





C86


embedded image


24





C87


embedded image


25





C88


embedded image


26





C89


embedded image


27





C90


embedded image


28





C91


embedded image


29





C92


embedded image


30





C93


embedded image


31





C94


embedded image


31





*prepared according to example number













TABLE 4







Analytical data for molecules in Table 2
















13CNMR.



No.
Mp (° C.)
Mass (m/z)

1H NMR


19F NMR






F1

ESIMS 623
(400 MHz, CDCl3) δ

13C NMR (151 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.74-
δ 172.54, 169.82, 165.31,





7.62 (m, 2H), 7.44-
159.46, 148.22, 143.30,





7.29 (m, 6H), 7.24-
141.02, 136.90, 136.81,





7.13 (m, 3H), 6.98-
135.98, 135.54, 132.54,





6.80 (m, 1H), 3.95 (d, J =
131.20, 128.95, 128.60,





2.6 Hz, 2H), 3.09 (s,
126.73, 122.34, 121.13,





4H), 2.66 (p, J = 6.9
119.01, 33.64, 33.00,





Hz, 1H), 2.38 (d, J =
30.20, 28.37, 23.82,





0.8 Hz, 3H), 1.18 (dd, J =
23.74, 20.82;





6.9, 3.2 Hz, 6H)

19F NMR (376 MHz , CDCl3)







δ −58.05


F2

ESIMS 637
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.73-
δ −58.05





7.63 (m, 2H), 7.40-






7.31 (m, 6H), 7.23-






7.17 (m, 2H), 7.12 (d, J =






8.3 Hz, 1H), 6.92-






6.89 (m, 1H), 3.95 (d, J =






2.5 Hz, 2H), 3.08-






3.01 (m, 3H), 2.72-






2.61 (m, 1H), 2.42-






2.36 (m, 3H), 2.34 (s,






3H), 1.18 (dd, J = 6.9,






2.9 Hz, 6H)



F3

ESIMS 599
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.44 (s, 1H), 7.73-
δ 171.52, 168.83, 165.30,





7.62 (m, 2H), 7.43-
159.22, 156.63, 154.64,





7.37 (m, 2H), 7.35 (dq,
148.23, 148.21, 141.02,





J = 8.7, 0.9 Hz, 2H),
136.89, 135.85, 135.53,





7.27 (s, 1H), 7.22-
134.70, 134.67, 131.94,





7.16 (m, 3H), 7.16-
131.88, 130.05, 128.96,





7.10 (m, 1H), 7.10-
122.35, 121.98, 121.87,





7.04 (m, 1H), 4.04-
121.40, 121.14, 119.35,





3.84 (m, 2H), 3.09 (s,
119.11, 116.48, 116.32,





4H), 2.46-2.33 (m,
33.65, 32.97, 30.18,





3H)
20.72;







19F NMR (376 MHz, CDCl3)







δ −58.05, −124.57


F4

ESIMS 611
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.71-
δ 172.15, 169.66, 165.32,





7.64 (m, 2H), 7.40 (d, J =
159.60, 152.54, 141.00,





8.5 Hz, 2H), 7.37-
136.66, 136.06, 135.53,





7.31 (m, 2H), 7.27 (d, J =
131.48, 130.52, 129.93,





1.9 Hz, 2H), 7.21-
128.92, 123.21, 122.34,





7.15 (m, 2H), 7.00-
121.12, 118.98, 112.13,





6.93 (m, 2H), 3.99-
56.01, 33.65, 32.96,





3.85 (m, 2H), 3.79 (s,
30.20, 20.45;





3H), 3.09 (s, 4H), 2.36

19F NMR (376 MHz, CDCl3)






(s, 3H)
δ −58.05


F5

ESIMS 649
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.72 (d, J =
δ 171.93, 169.22, 165.30,





8.1 Hz, 1H), 7.70-
159.11, 148.22, 144.33,





7.62 (m, 2H), 7.44 (d, J =
141.01, 136.88, 135.83,





8.1 Hz, 1H), 7.41-
135.53, 132.64, 131.35,





7.31 (m, 4H), 7.18 (d, J =
130.83, 128.95, 127.64,





8.5 Hz, 2H), 7.11 (d,
125.68, 125.42, 124.08,





J = 3.5 Hz, 2H), 4.03-
122.35, 121.40, 121.13,





3.86 (m, 2H), 3.09 (s,
119.07, 33.64, 32.96,





4H), 2.49 (s, 3H)
30.19, 21.31;







19F NMR (376 MHz, CDCl3)







δ −58.05, −61.14


F6

ESIMS 615
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.70-
δ 171.51, 168.72, 165.31,





7.64 (m, 2H), 7.45 (d, J =
159.26, 148.22, 141.01,





8.2 Hz, 1H), 7.43-
138.32, 136.85, 135.88,





7.37 (m, 2H), 7.37-
135.53, 132.31, 131.78,





7.31 (m, 2H), 7.27 (dd,
130.55, 130.05, 129.33,





J = 2.1, 0.8 Hz, 1H),
128.95, 122.35, 121.13,





7.21-7.15 (m, 3H),
119.07, 33.65, 33.00,





7.10 (dd, J = 2.0, 0.9
30.19, 20.91;





Hz, 1H), 4.06-3.86

19F NMR (376 MHz, CDCl3)






(m, 2H), 3.09 (s, 4H),
δ −58.05





2.41 (d, J = 0.8 Hz, 3H)



F7

ESIMS 623
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.73-
δ 172.45, 169.60, 165.31,





7.60 (m, 2H), 7.42-
159.46, 148.22, 141.01,





7.37 (m, 2H), 7.37-
137.07, 137.02, 136.80,





7.32 (m, 2H), 7.32-
135.96, 135.54, 133.55,





7.27 (m, 2H), 7.19 (dd,
130.74, 129.86, 128.95,





J = 8.7, 2.1 Hz, 3H),
128.86, 122.35, 121.40,





6.93 (s, 1H), 3.95 (d, J =
121.13, 119.00, 33.65,





2.6 Hz, 2H), 3.09 (s,
33.00, 32.82, 30.20,





4H), 2.41-2.33 (m,
22.97, 20.87, 14.17;





4H), 1.59-1.55 (m,

19F NMR (376 MHz, CDCl3)






3H), 0.91 (t, J = 7.3
δ −58.05





Hz, 3H)



F8

ESIMS 625
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.72-
δ −58.05





7.61 (m, 2H), 7.44-






7.37 (m, 2H), 7.37-






7.30 (m 2H) 7.24-






6.90 (m, 2H), 4.04 (q, J =






7.0 Hz, 2H), 3.99-






3.83 (m, 3H), 3.09 (s,






4H), 2.35 (s, 3H), 1.30






(t, J = 7.0 Hz, 3H)



F9
225-230
ESIMS 641
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.72-
δ −58.05, −114.43





7.62 (m, 2H), 7.40 (d, J =






8.5 Hz, 1H), 7.37-






7.31 (m, 2H), 7.22-






7.14 (m, 3H), 7.09 (d, J =






10.6 Hz, 1H), 6.92






(d, J = 7.1 Hz, 2H),






3.95 (d, J = 2.6 Hz,






2H), 3.09 (s, 4H), 2.63






(q, J = 7.4 Hz, 1H),






2.35-2.22 (m, 3H),






1.17 (dd, J = 6.8, 1.9






Hz, 6H)



F10

ESIMS 653
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.72-
δ −58.05





7.60 (m, 2H), 7.40 (dd,






J = 8.6, 2.1 Hz, 2H),






7.34 (dq, J = 7.8, 1.0






Hz, 2H), 7.24-7.13






(m, 4H), 7.00 (s, 1H),






6.94 (d, J = 8.5 Hz,






1H), 4.30 (dt, J = 6.0,






3.0 Hz, 1H), 3.99-3.81






(m, 2H), 3.09 (s, 4H),






2.35 (s, 3H), 1.70-






1.56 (m, 2H), 1.21 (dd,






J = 10.5, 6.1 Hz, 3H),






0.88 (dt, J = 12.0, 7.4






Hz, 3H)



F11

ESIMS 639
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.73-
δ −58.05





7.62 (m, 2H), 7.45-






7.37 (m, 2H), 7.37-






7.30 (m, 2H), 7.25-






7.14 (m, 4H), 7.06-






6.89 (m, 2H), 4.51 (p, J =






6.0 Hz, 1H), 3.90 (d,






J = 3.6 Hz, 2H), 3.09






(s, 4H), 2.35 (d, J = 0.8






Hz, 3H), 1.25 (dd, J =






9.3, 6.0 Hz, 6H)



F12

ESIMS 665
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.71-
δ 171.41, 168.66, 165.30,





7.61 (m, 2H), 7.44-
159.17, 148.23, 142.78,





7.38 (m, 2H), 7.38-
141.02, 137.79, 136.90,





7.30 (m, 4H), 7.19 (d, J =
135.84, 135.54, 131.68,





8.5 Hz, 2H), 7.13
130.62, 128.96, 126.75,





(dd, J = 1.9, 1.0 Hz,
122.35, 121.13, 121.02,





2H), 4.07-3.81 (m,
119.08, 33.65, 32.89,





2H), 3.09 (s, 4H), 2.44
30.20, 20.88;





(d, J = 0.7 Hz, 3H)

19F NMR (376 MHz, CDCl3)







δ −57.20, −58.05


F13

ESIMS 679
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.74-
δ 172.01, 169.38, 165.31,





7.61 (m, 2H), 7.43-
159.38, 150.48, 148.21,





7.32 (m, 4H), 7.32-
141.02, 136.78, 135.97,





7.27 (m, 1H), 7.23-
135.53, 133.28, 131.57,





7.12 (m, 3H), 7.07 (d, J =
130.45, 128.94, 124.49,





2.1 Hz, 1H), 6.98 (d,
122.34, 121.40, 121.14,





J = 8.4 Hz, 1H), 4.42-
119.35, 119.07, 114.34,





4.25 (m, 2H), 3.99-
66.72, 33.65, 32.87,





3.85 (m, 2H), 3.09 (s,
30.20, 20.61;





4H), 2.38 (s, 3H)

19F NMR (376 MHz, CDCl3)







δ −58.05, −74.12


F14

ESIMS 653
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.74-
δ 172.14, 169.71, 165.32,





7.57 (m, 2H), 7.46-
159.58, 149.47, 141.02,





7.38 (m, 2H), 7.38-
136.67, 136.11, 135.54,





7.31 (m, 2H), 7.24-
132.06, 130.81, 129.86,





7.14 (m, 4H), 7.11 (d, J =
128.93, 127.68, 122.35,





8.4 Hz, 1H), 7.01 (d,
121.35, 121.14, 118.97,





J = 2.2 Hz, 1H), 3.89
79.97, 33.65, 32.89,





(s, 2H), 3.09 (s, 4H),
30.22, 29.20, 20.65;





2.36 (s, 3H), 1.34 (s,

19F NMR (376 MHz, CDCl3)






9H)
δ −58.05


F15

ESIMS 637
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.41 (s, 1H), 7.72-
δ −58.06





7.59 (m, 2H), 7.41-






7.29 (m, 5H), 7.20 (s,






1H), 7.11 (d, J = 8.4






Hz, 2H), 6.90 (s, 1H),






3.95 (d, J = 2.6 Hz,






2H), 3.29 (q, J = 7.0






Hz 1H), 3.18 (dd, J =






13.5, 6.8 Hz, 1H), 2.84






(dd, J = 13.5, 8.1 Hz,






1H), 2.66 (p, J = 6.8






Hz, 1H), 2.38 (s, 3H),






1.32 (d, J = 6.9 Hz,






2H), 1.26 (t, J = 7.1






Hz, 2H), 1.17 (dd, J =






6.9, 2.1 Hz, 6H)



F16

ESIMS 681
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
10.50 (s, 1H), 8.52 (d,
δ −58.05





J = 8.7 Hz, 1H), 8.43






(s, 1H), 7.89 (d, J = 2.2






Hz, 1H), 7.70-7.63






(m, 2H), 7.41 (d, J =






8.7 Hz, 1H), 7.36 (t, J =






8.0 Hz, 2H), 7.30 (s,






2H), 6.88 (s, 1H), 3.96






(s, 2H), 3.81 (s, 3H),






3.10 (s, 4H), 2.66 (q, J =






6.8 Hz, 1H), 2.37 (s,






3H), 1.23 (d, J = 6.9






Hz, 3H), 1.16 (d, J =






6.9 Hz, 3H)



F17

ESIMS 641
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 8.18 (t, J =
δ 172.50, 170.41, 164.96,





8.4 Hz, 1H), 7.73-
159.49, 143.14, 141.06,





7.61 (m, 2H), 7.44-
137.57, 136.94, 135.48,





7.27 (m, 5H), 7.00 (d, J =
132.32, 131.30, 128.48,





8.8 Hz, 1H), 6.95
126.79, 124.45, 124.36,





(dd, J = 12.0, 1.9 Hz,
124.28, 122.36, 121.13,





1H), 6.89 (d, J = 1.0
120.62, 114.85, 114.69,





Hz, 1H), 3.96 (d, J =
33.43, 33.00, 29.89,





2.0 Hz, 2H), 3.09 (s,
28.39, 23.87, 23.67,





4H), 2.64 (p, J = 6.8
20.84;





Hz, 1H), 2.38 (s, 3H),

19F NMR (376 MHz, CDCl3)






1.18 (dd, J = 6.9, 5.3
δ −58.05, −131.12





Hz, 6H)



F18

ESIMS 658
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 8.22 (d, J =
δ 172.52, 170.39, 164.92,





8.4 Hz, 1H), 7.71-
159.58, 148.27, 148.25,





7.61 (m, 2H), 7.54 (s,
143.16, 141.07, 137.71,





1H), 7.42-7.28 (m,
136.89, 135.49, 132.69,





4H), 7.23 (d, J = 2.0
132.24, 131.27, 128.92,





Hz, 1H), 7.15 (dd, J =
128.43, 127.71, 126.80,





8.5, 2.0 Hz, 1H), 6.94-
122.65, 122.36, 121.40,





6.83 (m, 1H), 3.96 (s,
121.15, 120.86, 33.25,





2H), 3.08 (s, 4H),
33.01, 29.91, 28.40,





(p, J = 6.8 Hz, 1H), 2.65
23.99, 23.60, 20.85;





2.38 (s, 3H), 1.19 (dd,

19F NMR (376 MHz, CDCl3)






J = 16.4, 6.8 Hz, 6H)
δ −58.04


F19

ESIMS 659
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.67 (d, J =
δ 172.63, 171.33, 164.50,





9.0 Hz, 2H), 7.42-
160.04, 158.43, 156.43,





7.28 (m, 4H), 6.91 (s,
148.31, 143.24, 141.71,





1H), 6.84 (d, J = 8.7
141.15, 136.88, 135.44,





Hz, 2H), 6.71 (s, 1H),
132.34, 131.24, 128.54,





3.95 (d, J = 2.0 Hz,
126.73, 122.38, 121.40,





2H), 3.10 (s, 4H), 2.67
121.19, 119.35, 111.82,





(p, J = 6.8 Hz, 1H),
111.67, 33.55, 33.06,





2.38 (s, 3H), 1.19 (dd,
29.38, 28.38, 23.91,





J = 14.2, 6.8 Hz, 6H)
23.66, 20.82;







19F NMR (376 MHz, CDCl3)







δ −58.04, −118.31


F20

ESIMS 653
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.44 (s, 1H), 8.21 (d, J =
δ −58.05





8.2 Hz, 1H), 7.68






(dd, J = 9.2, 2.3 Hz,






4H), 7.40-7.28 (m,






4H), 6.91 (d, J = 1.7






Hz, 1H), 6.85 (dd, J =






8.2, 1.8 Hz, 1H), 6.75






(d, J = 1.7 Hz, 1H),






3.94 (d, J = 1.3 Hz,






2H), 3.78 (s, 3H), 3.09






(s, 4H), 2.38 (s, 3H),






1.18 (dd, J = 9.8, 6.9






Hz, 6H)



F21

ESIMS 625
(300 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.75-
δ 172.27, 169.48, 165.30,





7.62 (m, 2H), 7.46-
159.41, 148.22, 148.20,





7.28 (m, 6H), 7.22-
141.00, 139.19, 136.77,





7.13 (m, 3H), 7.01 (s
135.95, 135.52, 133.51,





1H), 4.42-4.21 (m,
132.75, 130.56, 129.50,





2H), 3.93 (d, J = 1.9
129.37, 128.94, 122.34,





Hz, 2H), 3.27 (s, 3H),
121.12, 118.98, 71.27,





3.09 (s, 4H), 2.42 (s,
58.38, 33.64, 32.99,





3H)
30.19, 21.06;







19F NMR (471 MHz, CDCl3)







δ −58.05


F22

ESIMS 643
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 8.19 (t, J =
δ 172.25, 164.96, 159.45,





8.4 Hz, 1H), 7.75-
153.11, 151.17, 148.27,





7.59 (m, 2H), 7.46-
148.24, 141.06, 139.28,





7.27 (m, 5H), 7.05-
137.57, 135.48, 133.46,





6.90 (m, 3H), 4.37 (d J =
132.59, 130.63, 129.68,





12.6 Hz, 1H), 4.27
129.38, 124.47, 122.36,





(d, J = 12.6 Hz, 1H),
121.40, 121.13, 120.57,





3.93 (d, J = 3.8 Hz,
119.34, 114.82, 114.67,





2H), 3.26 (s, 3H), 3.09
71.39, 58.27, 33.43,





(s, 4H), 2.42 (s, 3H)
32.98, 29.88;







19F NMR (376 MHz, CDCl3)







δ −58.05, −131.32


F23

ESIMS 641
(400 MHz, CDCl3) δ
19 F NMR (471 MHz, CDCl3)




([M + H]+)
8.42 (s, 1H), 7.73-
δ −58.05, −116.34





7.62 (m, 2H), 7.47-






7.28 (m, 5H), 7.24 (s,






1H), 7.12 (t, J = 8.3






Hz 1H) 7.06-6.94






(m, 1H), 6.90 (d, J =






1.7 Hz, 1H), 3.96 (d, J =






2.8 Hz, 2H), 3.10 (s,






4H), 2.65 (p, J = 6.9






Hz, 1H), 2.38 (s, 3H),






1.18 (dd, J = 6.8, 1.4






Hz, 6H)



F24

ESIMS 671
(400 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)





([M + H]+)
8.44 (d, J = 3.3 Hz,
δ −58.05, −131.44





1H), 8.20 (td, J = 8.5,






3.4 Hz, 1H), 7.72-7.64






(m, 3H), 7.35 (d, J =






8.2 Hz, 3H), 7.23 (d, J =






7.9 Hz, 1H), 7.04-






6.89 (m, 4H), 4.32 (q, J =






6.0 Hz, 1H), 3.91 (d,






J = 1.2 Hz, 2H), 3.09






(s, 4H), 2.35 (s, 3H),






1.71-1.53 (m, 1H),






1.26-1.16 (m, 3H),






0.88 (dt, J = 11.5, 7.5






Hz, 3H)



F25

ESIMS 691
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 8.08 (d, J =
δ 172.50, 170.78, 164.76,





8.3 Hz, 1H), 7.72-
159.90, 148.30, 143.18,





7.61 (m, 2H), 7.51-
141.11, 137.42, 136.87,





7.39 (m, 2H), 7.39-
135.46, 133.28, 132.77,





7.28 (m, 5H), 6.88 (s
132.13, 131.31, 128.30,





1H), 3.96 (s, 2H), 3.20-
126.81, 124.93, 123.88,





3.03 (m, 4H), 2.64 (p,
122.76, 122.36, 121.15,





J = 6.9 Hz, 1H), 2.37
120.27, 33.34, 33.05,





(s, 3H), 1.18 (dd, J =
29.85, 28.38, 24.04,





16.6, 6.8 Hz, 6H)
23.32, 20.82;







19F NMR (471 MHz, CDCl3)







δ −58.05, −60.69


F26


(300 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)






8.44 (d, J = 2.6 Hz,
δ −58.05, −131.18





1H), 8.19 (t, J = 8.4






Hz, 1H), 7.72-7.62






(m, 2H), 7.41-7.27






(m, 6H), 7.06-6.95






(m, 1H), 6.93 (d, J =






2.1 Hz, 1H), 3.96 (d, J =






1.4 Hz, 2H), 3.09 (s,






4H), 2.37 (d, J = 6.6






Hz, 5H), 1.56 (s, 2H),






0.91 (t, J = 7.3 Hz, 3H)



F27

ESIMS 695
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 8.17 (t, J =
δ −58.05, −62.36, −131.33





8.4 Hz, 1H), 7.75






(dd, J = 8.3, 1.8 Hz,






1H), 7.72-7.64 (m,






2H), 7.61 (d, J = 8.3






Hz, 1H), 7.41-7.29






(m, 4H), 7.08-6.91






(m, 2H), 3.99 (d, J =






0.9 Hz, 2H), 3.09 (s,






4H), 2.75 (p, J = 6.8






Hz, 1H), 1.27-1.14






(m, 6H)



F28

ESIMS 657
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.74-
δ −58.05 , −126.53 (dd, J =





7.60 (m, 2H), 7.45-
257.7, 153.1 Hz), −139.27





7.37 (m, 2H), 7.34 (d, J =
(dd, J = 320.8, 153.0 Hz)





8.7 Hz, 2H), 7.32-






7.27 (m, 2H), 723-






7.15 (m, 2H), 7.06 (s,






1H), 4.09-3.84 (m,






2H), 3.09 (s, 4H), 2.56






(dtd, J = 20.4, 12.3,






8.3 Hz, 1H), 2.42 (d, J =






1.7 Hz, 3H), 1.76






(dddd, J = 16.4, 11.7,






4.9, 2.4 Hz, 1H), 1.66-






1.47 (m, 2H)



F29

ESIMS 677
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.74 (d, J =
δ −58.05, −62.34





8.2 Hz, 1H), 7.71-






7.64 (m, 2H), 7.61 (d, J =






8.2 Hz, 1H), 7.43-






7.29 (m, 5H), 7.19 (d, J =






8.4 Hz, 2H), 7.13 (s,






1H), 3.98 (d, J = 1.4






Hz, 2H), 3.09 (s, 4H),






2.76 (p, J = 6.8 Hz,






1H), 1.22 (dd, J = 6.9,






3.0 Hz, 6H)



F30

ESIMS 675
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 8.20 (td, J =
δ −58.05-126.54 (dd, J =





8.4, 3.1 Hz, 1H),
237.3, 153.0 Hz), −131.36





7.76-7.58 (m, 2H),
(d, J = 9.9 Hz), −139.28





7.43-7.26 (m, 5H),
(dd, J = 286.6, 153.0 Hz)





7.14-6.86 (m, 3H),






4.07-3.88 (m, 2H), ,






3.09 (s, 4H), 2.54 (dtd,






J = 20.4, 12.3, 8.3 Hz,






1H), 2.42 (d, J = 1.8






Hz, 3H), 1.76 (dtt, J =






11.7, 8.3, 4.3 Hz, 1H),






1.65-1.56 (m, 1H)



F31

ESIMS 639
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.42 (d, J = 4.4 Hz,
δ −58.07





1H), 7.74-7.61 (m,






2H), 7.52 (dd, J = 8.0,






4.5 Hz, 1H), 7.43-7.29






(m, 5H), 7.24-7.11






(m, 2H), 7.11-6.98






(m, 1H), 6.92 (s, 1H),






4.14 (q, J = 6.3 Hz,






1H), 4.02-3.87 (m,






2H), 3.14 (d, J = 16.0






Hz, 3H), 3.09 (s, 4H),






2.41 (s, 3H), 1.35 (dd,






J = 9.5, 6.4 Hz, 3H)



F32
163-165





F33
89-91





F34
225-227
ESIMS 642
(400 MHz, CDCl3) δ

19F NMR (400 MHz,





([M + H]+)
8.81 (s, 1H), 8.71 (s,
CDCl3): δ −62.15.





1H), 8.17 (s, 1H), 7.40-






7.32 (m, 4H), 7.18 (d,






J = 8.4 Hz, 3H), 6.90






(s, 1H), 3.95 (s, 2H),






3.15-3.09 (m, 4H),






2.68-2.64 (m, 1H),






2.37 (s, 3H), 1.19-






1.16 (m, 6H)



F35

ESIMS 573
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.44 (s, 1H), 7.74-
δ 173.14, 169.89, 165.34,





7.62 (m, 2H), 7.49 (d, J =
159.61, 148.23, 141.04,





8.5 Hz, 2H), 7.40-
136.80, 136.10, 135.55,





7.32 (m, 2H), 7.30 (s,
129.01, 122.36, 121.15,





1H), 7.26-7.18 (m,
119.19, 57.02, 53.43,





2H), 5.30 (s, 1H), 4.50
33.69, 32.76, 30.23,





(tt, J = 12.3, 3.8 Hz,
28.11, 26.11, 25.12;





1H), 3.69 (s, 2H), 3.12

19F NMR (376 MHz, CDCl3)






(s, 4H), 2.45-2.23 (m,
δ −58.05





2H), 1.88 (d, J = 13.0






Hz, 2H), 1.67 (dd, J =






22.9, 12.5 Hz, 2H),






1.47-1.15 (m, 3H)



F36

ESIMS 607
(300 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)





([M + H]+)
8.43 (s, 1H), 7.72-
δ −58.04





7.63 (m, 2H), 7.48-






7.28 (m, 6H), 7.15 (d, J =






8.0 Hz, 2H), 7.08-






6.89 (m, 2H), 6.80 (d, J =






4.7 Hz, 1H), 6.60 (d,






J = 4.7 Hz, 1H), 3.07






(s, 4H), 2.65 (dq, J =






13.5, 6.8 Hz, 1H), 2.39






(t, J = 0.7 Hz, 3H),






1.15 (dd, J = 26.4, 6.9






Hz, 6H)



F37

ESIMS 625
(500 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)





([M + H]+)
8.43 (d, J = 1.0 Hz,
δ −58.04, −132.30





1H), 8.29 (s, 1H), 7.72-






7.61 (m, 2H), 7.34






(td, J = 14.2, 13.7, 8.0






Hz, 4H), 7.11 (s, 1H),






6.99 (d, J = 14.1 Hz,






2H), 6.91 (d, J = 12.1






Hz, 1H), 6.82 (d, J =






4.7 Hz, 1H), 6.61 (d, J =






4.7 Hz, 1H), 3.07 (s,






3H), 2.64 (h, J = 6.8






Hz, 1H), 2.39 (s, 2H),






1.37-1.22 (m, 2H),






1.20 (d, J = 6.9 Hz,






2H), 1.11 (d, J = 6.8






Hz, 2H), 0.84 (s, 2H)



F38

ESIMS 621
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.7 Hz,
δ −58.03





1H), 7.80-7.69 (m,






2H), 7.63 (d, J = 16.2






Hz, 1H), 7.51 (s, 4H),






7.42-7.30 (m, 5H)






7.07 (dd, J = 16.2, 0.7






Hz, 1H), 6.98-6.85






(m, 1H), 3.97 (d, J =






3.0 Hz, 2H), 2.67 (p, J =






6.9 Hz, 1H), 2.39 (d,






J = 0.8 Hz, 3H), 1.25-






1.14 (m, 6H)



F39

ESIMS 635
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ −58.03





1H), 7.87 (d, J = 16.1






Hz, 1H), 7.79-7.70






(m, 2H), 7.60 (d, J =






8.5 Hz, 1H), 7.46-7.28






(m, 7H), 7.08-6.96






(m, 1H), 6.96-6.84






(m, 1H), 3.97 (d, J =






2.8 Hz, 2H), 2.67 (p, J =






6.8 Hz, 1H), 2.46 (s,






3H), 2.39 (t, J = 0.7






Hz, 3H), 1.19 (dd, J =






6.8, 4.8 Hz, 6H)



F40

ESIMS 651
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.48 (d, J = 0.6 Hz,
δ 172.43, 170.19, 163.74,





1H), 7.92 (d, J = 16.4
159.35, 158.29, 148.20,





Hz, 1H), 7.77-7.71
143.27, 141.14, 139.48,





(m, 2H), 7.49 (d, J =
136.95, 135.55, 132.45,





8.4 Hz, 1H), 7.44-7.30
131.25, 130.12, 128.58,





(m, 4H), 7.17 (dd, J =
128.23, 126.76, 122.37,





16.4, 0.7 Hz, 1H), 6.92
120.96, 120.80, 116.31,





(s, 1H), 6.87 (dd, J =
110.70, 101.71, 55.58,





8.3, 2.1 Hz, 1H), 3.98
32.99, 28.40, 23.81,





(d, J = 3.0 Hz, 2H),
20.84;





3.92 (s, 3H), 2.67 (p, J =

19F NMR (376 MHz, CDCl3)






6.9 Hz, 2H), 2.50 (d,
δ −58.03, −124.56





J = 1.0 Hz, 1H), 2.39






(s, 3H), 1.19 (dd, J =






6.9, 4.6 Hz, 6H)



F41

ESIMS 597
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ 171.47, 169.35, 163.08,





1H), 7.80-7.69 (m,
159.16, 156.62, 154.63,





2H), 7.64 (d, J = 16.2
148.29, 141.20, 138.19,





Hz, 1H), 7.52 (s, 4H),
135.47, 134.75, 134.72,





7.43-7.34 (m, 2H),
134.45, 132.00, 131.95,





7.28 (d, J = 8.4 Hz,
130.03, 127.85, 122.41,





2H), 7.21-7.12 (m,
121.93, 121.83, 121.41,





1H), 7.12-7.01 (m,
120.98, 119.36, 118.99,





2H), 4.05-3.89 (m,
116.51, 116.35, 115.93,





2H), 2.41 (d, J = 0.9
32.99, 20.73;





Hz, 3H)

19F NMR (376 MHz, CDCl3)







δ −58.03, −124.56


F42

ESIMS 609
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ 172.07, 170.17, 163.07,





1H), 7.80-7.69 (m,
159.51, 152.50, 148.25,





2H), 7.63 (d, J = 16.2
141.19, 141.12, 138.40,





Hz, 1H), 7.51 (s, 4H),
135.43, 131.71, 130.53,





7.42-7.28 (m, 4H),
129.93, 129.85, 127.82,





7.07 (dd, J = 16.3, 0.7
123.12, 122.37, 120.99,





Hz, 1H), 7.02-6.94
120.89, 118.84, 115.73,





(m, 2H), 4.04-3.86
112.08, 56.08, 32.95,





(m, 2H), 3.80 (s, 3H),
20.46;





2.36 (s, 3H)

19F NMR (376 MHz, CDCl3)







δ −58.03


F43

ESIMS 647
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ 171.87, 169.74, 163.07,





1H), 7.80-7.68 (m,
159.05, 148.29, 144.37,





3H), 7.63 (d, J = 16.3
141.20, 138.17, 135.46,





Hz, 1H), 7.51 (s, 4H),
134.44, 132.57, 131.94,





7.48-7.41 (m, 1H),
131.33, 130.88, 127.84,





7.37 (dq, J = 8.8, 1.0
122.41, 121.41, 120.97,





Hz, 2H), 7.23 (s, 1H),
119.35, 118.96, 115.92,





7.15-7.01 (m, 2H),
32.98, 21.33, 21.31;





4.05-3.87 (m, 2H),

19F NMR (376 MHz, CDCl3)






2.50 (d, J = 1.2 Hz, 3H)
δ −58.03, −61.11


F44

ESIMS 614
(500 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.7 Hz,
δ 171.46, 169.24, 163.08,





1H), 7.76-7.71 (m,
159.20, 148.29, 141.20,





2H), 7.63 (d, J = 16.2
138.36, 138.22, 135.47,





Hz, 1H), 7.52 (d, J =
134.45, 132.26, 131.92,





0.9 Hz, 4H), 7.46 (d, J =
131.84, 130.54, 130.07,





8.2 Hz, 1H), 7.37
129.32, 127.84, 122.41,





(dq, J = 8.8, 1.0 Hz,
121.41, 120.98, 118.96,





2H), 7.31-7.27 (m,
115.91, 33.03, 20.92;





2H), 7.12-7.03 (m,

19F NMR (471 MHz, CDCl3)






2H), 4.06-3.89 (m,
δ −58.03





2H), 2.42 (s, 3H)



F45

ESIMS 621
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ 172.40, 170.11, 163.08,





1H), 7.77-7.70 (m,
159.41, 148.29, 141.20,





2H), 7.63 (d, J = 16.2
138.31, 137.12 137.02,





Hz, 1H), 7.51 (s, 4H),
135.47, 134.47, 133.50,





7.40-7.32 (m, 3H),
131.86, 130.79, 129.88,





7.32-7.26 (m, 1H),
128.85, 127.85, 122.40,





7.07 (dd, J = 16.3, 0.6
121.41, 120.97, 119.35,





Hz, 1H), 6.94 (d, J =
118.90, 115.87, 32.84,





1.6 Hz, 1H), 3.97 (d, J =
22.98, 20.88, 14.18;





2.8 Hz, 2H), 2.37 (d,

19F NMR (376 MHz, CDCl3)






J = 11.1 Hz, 4H), 1.65-
δ −58.03





1.51 (m, 4H), 0.92 (t, J =






7.3 Hz, 3H)



F46

ESIMS 623
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ −58.03





1H), 7.77-7.71 (m,






2H), 7.64 (d, J = 16.2






Hz, 1H), 7.52 (d, J =






1.3 Hz, 3H), 7.42-7.29






(m, 3H), 7.11-7.03






(m, 1H), 7.03-6.99






(m, 1H), 6.96 (d, J =






8.5 Hz, 1H), 4.05 (q, J =






7.0 Hz, 2H), 3.93 (d,






J = 6.0 Hz, 2H), 2.36






(s, 3H), 1.55 (s, 2H),






1.31 (t, J = 7.0 Hz, 3H)



F47

ESIMS 639
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (s, 1H), 7.78-
δ 172.47, 170.33, 163.13,





7.70 (m, 2H), 7.64 (d, J =
163.06, 161.15, 159.29,





16.2 Hz, 1H), 7.52 (s,
148.30, 146.27, 146.21,





4H), 7.43-7.34 (m,
141.21, 138.20, 135.46,





2H), 7.32 (s, 1H), 7.14-
134.43, 131.96, 131.03,





7.02 (m, 2H), 6.96-
130.98, 128.53, 127.86,





6.86 (m, 1H), 3.97 (d, J =
124.18, 124.03, 122.41,





3.0 Hz, 2H), 2.74-
121.41, 120.98, 119.35,





2.53 (m, 1H), 2.29 (dd,
118.96, 115.94, 115.08,





J = 1.8, 0.8 Hz, 3H),
113.60, 113.41, 32.96,





1.18 (dd, J = 6.8, 4.4
28.78, 23.68, 23.64,





Hz, 6H)
14.28, 14.25;







19F NMR (376 MHz, CDCl3)







δ −58.03, −114.31


F48

ESIMS 651
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ 172.14, 170.29, 163.11,





1H), 7.77-7.71 (m,
159.59, 151.05, 148.29,





2H), 7.64 (d, J = 16.2
141.20, 138.49, 135.48,





Hz, 1H), 7.52 (d, J =
134.53, 131.74, 131.42,





1.7 Hz, 4H), 7.42-7.32
130.15, 130.02, 128.54,





(m, 3H), 7.26-7.21
127.85, 124.18, 122.41,





(m, 1H), 7.10-6.97
121.41, 120.98, 118.88,





(m, 2H), 6.95 (d, J =
115.78, 115.09, 114.07,





8.5 Hz, 1H), 4.32 (qd, J =
75.67, 32.91, 29.13,





6.0, 3.0 Hz, 1H),
29.11, 20.47, 18.99, 9.45,





3.92 (d, J = 2.0 Hz,
9.39;





2H), 2.36 (s, 3H), 1.64

19F NMR (471 MHz, CDCl3)






(ddd, J = 21.5, 13.9,
δ −58.03





6.9 Hz, 2H), 1.22 (dd, J =






6.8, 6.0 Hz, 3H),






0.89 (dt, J = 10.0, 7.4






Hz, 3H)



F49

ESIMS 637
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.55-8.46 (m, 1H),
δ −58.03





7.79-7.70 (m, 2H),






7.64 (d, J = 16.2 Hz,






1H), 7.52 (d, J = 1.5






Hz, 4H), 7.43-7.32






(m, 3H), 7.26-7.19






(m, 1H), 7.07 (dd, J =






16.2, 0.7 Hz, 1H), 7.02-






6.93 (m, 2H), 4.52 (p,






J = 6.1 Hz, 1H), 3.93






(d, J = 3.6 Hz, 2H),






2.36 (d, J = 0.8 Hz,






3H), 1.26 (t, J = 6.0






Hz, 6H)



F50

ESIMS 663
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ −57.19, −58.03





1H), 7.80-7.68 (m,






2H), 7.64 (d, J = 16.2






Hz, 1H), 7.52 (s, 4H),






7.45-7.31 (m, 4H),






7.29 (s, 1H), 7.17-






7.01 (m, 2H), 4.06-






3.87 (m, 2H), 2.44 (d, J =






0.7 Hz, 3H)



F51

ESIMS 677
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.48 (dd, J = 5.7, 0.6
δ −58.03, −74.11





Hz, 1H), 7.78-7.69






(m, 2H), 7.64 (d, J =






16.2 Hz, 1H), 7.51 (s,






3H), 7.43-7.32 (m,






3H), 7.32-7.27 (m,






2H), 7.15-7.02 (m,






2H), 6.99 (d, J = 8.4






Hz, 1H), 4.45-4.25






(m, 2H), 4.05-3.85






(m, 2H), 2.39 (d, J =






0.8 Hz, 3H)



F52

ESIMS 651
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (d, J = 0.6 Hz,
δ −58.03





1H), 7.81-7.69 (m,






2H), 7.64 (d, J = 16.2






Hz, 1H), 7.52 (d, J =






3.0 Hz, 4H), 7.43-7.31 19






(m, 3H), 7.23-7.15






(m, 1H), 7.15-7.07






(m, 1H), 7.04 (dd, J =






9.4, 1.3 Hz, 1H), 3.91






(s, 2H), 2.37 (s, 3H),






1.55 (s, 1H), 1.35 (s,






9H)



F53

ESIMS 623
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (s, 1H), 7.80-
δ −58.03





7.70 (m, 2H), 7.64 (d, J =






16.2 Hz, 1H), 7.51 (s,






3H), 7.46-7.28 (m,






5H), 7.14-6.95 (m,






3H), 4.38 (d, J = 12.5






Hz, 1H), 4.29 (d, J =






12.5 Hz, 1H), 3.95 (d, J =






3.5 Hz, 2H), 3.29 (s,






3H), 2.43 (s, 3H)



F54


(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)






10.66 (s, 1H), 8.68 (d,
δ −58.03





J = 8.8 Hz, 1H), 8.50






(d, J = 0.6 Hz, 1H),






8.21 (d, J = 2.1 Hz,






1H), 7.83-7.69 (m,






3H), 7.63 (d, J = 16.1






Hz, 1H), 7.44-7.29






(m, 4H), 7.12 (d, J =






16.3 Hz, 1H), 6.89 (s,






1H), 3.98 (s, 2H), 3.87






(s, 3H), 2.68 (p, J = 6.8






Hz, 1H), 2.38 (s, 3H),






1.29-1.20 (m, 3H),






1.17 (d, J = 6.9 Hz, 3H)



F55

ESIMS 639
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.50 (d, J = 0.6 Hz,
δ 172.46, 170.92, 162.73,





1H), 8.37 (t, J = 8.4
159.44, 153.19, 151.25,





Hz, 1H), 7.80-7.69
148.36, 143.13, 141.27,





(m, 2H), 7.59 (d, J =
136.99, 135.41, 133.54,





16.2 Hz, 1H), 7.51 (d, J =
132.44, 132.39, 132.27,





3.0 Hz, 1H), 7.45-
131.35, 128.47, 126.83,





7.36 (m, 1H), 7.33 (d, J =
126.77, 123.76, 122.43,





8.2 Hz, 2H), 7.26
121.40, 121.01, 120.39,





(dd, J = 12.1, 1.9 Hz,
119.35, 117.05, 112.64,





3H), 7.05 (d, J = 16.2
33.02, 28.42, 23.88,





Hz, 1H), 6.90 (t, J =
23.71, 20.85;





1.3 Hz, 1H), 3.98 (d, J =

19F NMR (376 MHz, CDCl3)






2.3 Hz, 2H), 2.65 (h,
δ −58.03, −131.00





J = 6.8 Hz, 1H), 2.39






(s, 3H), 1.19 (dd, J =






8.0, 6.8 Hz, 6H)



F56
122-123
ESIMS 656
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.50 (s, 1H), 8.40 (d, J =
δ 172.48, 170.89, 162.71,





8.6 Hz, 1H), 7.79-
159.52, 148.36, 143.15,





7.69 (m, 2H), 7.66 (s,
141.27, 136.94, 135.41,





1H), 7.61-7.43 (m,
134.77, 133.14, 132.65,





3H), 7.35 (dd, J = 25.3
132.19, 131.32, 128.41,





8.1 Hz, 4H), 7.07 (d, J =
127.41, 126.84, 126.37,





16.2 Hz, 1H), 6.90 (s,
122.89, 122.43, 121.40,





1H), 3.99 (s, 2H), 2.66
121.00, 120.58, 117.19,





(p, J = 6.8 Hz, 1H),
33.04, 28.43, 23.99,





2.39 (s, 3H), 1.25 (dd,
23.63, 20.86;





J = 18.6, 7.0 Hz, 3H)
F19 NMR (376 MHz, CDCl3)





1.18 (d, J = 6.9 Hz, 3H)
δ −58.03


F57

ESIMS 657
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.51 (s, 1H), 7.74 (d, J =
δ 172.60, 171.67, 162.17,





8.8 Hz, 2H), 7.55 (d,
159.81, 158.49, 156.50,





J = 16.2 Hz, 1H), 7.38
148.48, 143.24, 141.40,





(d, J = 8.7 Hz, 3H),
136.91, 135.31, 132.40,





7.31 (d, J = 8.2 Hz,
132.30, 131.28, 128.53,





1H), 7.11 (dd, J = 17.6,
126.76, 122.45, 121.40,





12.6 Hz, 3H), 6.92 (s,
121.09, 119.40, 119.35,





1H), 6.82 (s, 1H), 3.97
110.15, 33.09, 28.39,





(d, J = 2.2 Hz, 2H),
23.91, 23.68, 20.82;





2.68 (s, 1H), 2.39 (s,

19F NMR (376 MHz, CDCl3)






3H), 1.21 (dd, J = 17.4,
δ −58.02, −117.46





6.8 Hz, 6H)



F58

ESIMS 651
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.52-8.47 (m, 1H),
δ 172.61, 169.88, 163.06,





8.36 (d, J = 8.4 Hz,
159.50, 148.28, 148.09,





1H), 7.79 (s, 1H), 7.76-
143.28, 141.21, 136.88,





7.69 (m, 2H), 7.62
135.46, 134.89, 132.47,





(dd, J = 16.2, 7.6 Hz,
131.65, 131.15, 128.62,





1H), 7.41-7.30 (m,
128.24, 126.76, 122.41,





3H), 7.18 (d, J = 8.9
120.94, 120.84, 118.85,





Hz, 1H), 7.11-7.02
115.73, 107.80, 55.59,





(m, 2H), 6.92 (s, 2H),
33.00, 28.40, 23.91,





3.96 (d, J = 1.5 Hz,
23.66, 20.88;





2H), 3.86 (s, 3H), 2.68

19F NMR (376 MHz, CDCl3)






(p, J = 6.8 Hz, 1H),
δ −58.03





2.39 (s, 3H), 1.19 (dd,






J = 12.2, 6.9 Hz, 6H)



F59

ESIMS 641
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.50 (s, 1H), 8.38 (t, J =
δ −58.03, −131.23





8.4 Hz, 1H), 7.83-






7.65 (m, 2H), 7.59 (d, J =






16.2 Hz, 1H), 7.50-






7.27 (m, 5H), 7.11-






6.96 (m, 3H), 4.38 (d, J =






12.6 Hz, 1H), 4.29






(d, J = 12.6 Hz, 1H),






3.95 (d, J = 4.0 Hz,






3H), 3.27 (s, 3H), 2.44






(s, 3H)



F60

ESIMS 669
(400 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)





([M + H]+)
8.50 (d, J = 0.6 Hz,
δ −58.03, −131.28





1H), 8.38 (td, J = 8.4,






2.7 Hz, 1H), 7.81-7.68






(m, 2H), 7.59 (d, J =






16.2 Hz, 1H), 7.48 (d, J =






2.8 Hz, 1H), 7.43-






7.29 (m, 3H), 7.24 (d, J =






8.9 Hz, 2H), 7.10-






6.98 (m, 2H), 6.95 (d, J =






8.5 Hz, 1H), 4.33






(qd, J = 5.9, 2.3 Hz,






1H), 3.93 (d, J = 1.7






Hz, 2H), 2.36 (s, 3H),






1.73-1.57 (m, 2H),






1.22 (dd, J = 7.0, 6.1






Hz, 3H), 0.89 (dt, J =






9.3, 7.4 Hz, 3H)



F61

ESIMS 639
(400 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)





([M + H]+)
8.50 (s, 1H), 7.78-
δ −58.03, −113.58





7.70 (m, 3H), 7.59-






7.46 (m, 2H), 7.41-






7.29 (m, 5H), 7.17 (d, J =






16.4 Hz, 1H), 7.11






(dd, J = 8.5, 2.1 Hz,






1H), 6.95-6.84 (m,






1H), 3.98 (d, J = 3.2






Hz, 2H), 2.66 (p, J =






6.9 Hz, 1H), 2.39 (s,






3H), 1.19 (dd, J = 6.8,






4.0 Hz, 6H)



F62
114-126
ESIMS 689
(400 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.51 (s, 1H), 8.31 (d, J =
δ 172.45, 171.22, 162.55,





8.6 Hz, 1H), 7.80-
159.73, 148.40, 143.15,





7.70 (m, 4H), 7.64 (d, J =
141.32, 136.90, 135.38,





16.2 Hz, 1H), 7.48 (s,
135.32, 132.95, 132.17,





1H), 7.38 (dt, J = 8.3,
132.07, 131.36, 130.90,





1.7 Hz, 3H), 7.31 (dd, J =
128.28, 126.83, 124.78,





8.2, 1.8 Hz, 1H),
123.30, 122.61, 122.44,





7.13 (d, J = 16.2 Hz,
121.40, 121.01, 119.80,





1H), 6.89 (d, J = 1.7
119.35, 117.89, 36.63,





Hz, 1H), 3.99 (s, 2H),
33.07, 28.40, 24.68,





2.65 (p, J = 6.8 Hz,
24.06, 23.33, 20.83;





1H), 2.38 (s, 3H), 1.19

19F NMR (471 MHz, CDCl3)






(dd, J = 18.9, 6.8 Hz,
δ −58.03, −60.94





6H)



F63
193-203

(300 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)






8.50 (d, J = 0.6 Hz,
δ −58.03, −131.03





1H), 8.37 (t, J = 8.4






Hz, 1H), 7.78-7.70






(m, 2H), 7.59 (d, J =






16.2 Hz, 1H), 7.51 (d, J =






2.9 Hz, 1H), 7.43-






7.27 (m, 6H), 7.05 (d, J =






16.2 Hz, 1H), 6.93 (s,






1H), 3.98 (d, J = 1.5






Hz, 2H), 2.44-2.30






(m, 5H), 1.61 (d, J =






7.7 Hz, 2H), 0.92 (t, J =






7.3 Hz, 3H)



F64


(300 MHz, CDCl3) δ

19F NMR (471 MHz, CDCl3)






8.50 (d, J = 0.6 Hz,
δ −58.03, −62.35, −131.25





1H), 8.35 (t, J = 8.4






Hz, 1H), 7.81-7.69






(m, 3H), 7.66-7.54






(m, 2H), 7.49-7.27






(m, 6H), 7.06 (d, J =






16.2 Hz, 1H), 4.02 (s,






2H), 2.76 (p, J = 6.8






Hz, 1H), 1.23 (dd, J =






6.9, 3.2 Hz, 6H)



F65

ESIMS 675
(300 MHz, CDCl3) δ

13C NMR (126 MHz, CDCl3)





([M + H]+)
8.49 (s, 1H), 7.81-
δ 172.00, 169.89, 163.05,





7.69 (m, 3H), 7.69-
159.07, 150.78, 148.30,





7.56 (m, 2H), 7.52 (s,
141.21, 138.06, 135.46,





4H), 7.37 (d, J = 9.5
134.40, 133.05, 132.07,





Hz, 4H), 7.07 (d, J =
129.47, 127.85, 127.07,





16.2 Hz, 1H), 4.01 (d, J =
125.82, 124.58, 122.41,





0.9 Hz, 2H), 2.77 (p,
121.40, 120.98, 119.35,





J = 6.9 Hz, 1H), 1.23
119.03, 116.01, 77.27,





(d, J = 6.8 Hz, 6H)
33.05, 28.90, 23.51;







19F NMR (471 MHz, CDCl3)







δ −58.03, −62.33


F66

ESIMS 655
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.49 (s, 1H), 7.80-
δ −58.03 , −126.55 (dd, J =





7.69 (m, 2H), 7.64 (d, J =
252.8, 153.0 Hz), −139.22





16.2 Hz, 1H), 7.52
(dd, J = 315.2, 153.0 Hz)





(d, J = 1.7 Hz, 3H),






7.37 (d, J = 8.6 Hz,






2H), 7.34-7.27 (m,






3H), 7.14-7.01 (m,






2H), 4.08-3.89 (m,






2H), 2.57 (dtd, J =






21.6, 12.9, 8.8 Hz, 1H),






2.42 (d, J = 1.5 Hz,






3H), 1.79 (s, 1H), 1.61






(ddd, J = 17.0, 8.0, 3.9






Hz, 2H)



F67

ESIMS 673
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.50 (s, 1H), 8.38 (td, J =
δ −58.03-126.54 (dd, J =





8.4, 2.9 Hz, 1H),
237.7, 153.0 Hz), −131.26





7.80-7.67 (m, 2H),
(d, J = 3.4 Hz), −139.24





7.59 (d, J = 16.2 Hz,
(dd, J = 287.8, 153.0 Hz)





1H), 7.49 (dd, J = 17.9,






3.0 Hz, 1H), 7.43-7.28






(m, 5H), 7.15-6.99






(m, 2H), 4.08-3.90






(m, 2H), 2.65-2.45






(m, 1H), 2.43 (s, 3H),






1.85-1.68 (m, 1H),






1.55 (s, 2H)q



F68

ESIMS 659
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.52 (d, J = 6.4 Hz,
δ −58.02, −117.43





1H), 7.74 (d, J = 8.9






Hz, 2H), 7.55 (d, J =






16.1 Hz, 1H), 7.39 (d, J =






8.8 Hz, 2H), 7.34-






7.27 (m, 1H), 7.20-






6.96 (m, 4H), 6.77 (s,






1H), 4.39 (d, J = 12.4






Hz, 1H), 4.30 (d, J =






12.6 Hz, 1H), 4.04-






3.82 (m, 2H), 3.39 (s,






1H), 3.29 (s, 2H), 2.40






(d, J = 22.4 Hz, 4H)



F69
197-200
ESIMS 622
(300 MHz, CDCl3) δ

19F NMR (300 MHz, CDCl3)





([M + H]+)
9.08 (s, 1H), 8.38 (s,
δ −58.39





1H), 7.96 (d, J = 9.0






Hz, 1H), 7.76 (d, J =






6.6 Hz, 1H), 7.67 (d, J =






16.5 Hz, 1H), 7.52 (s,






4H), 7.37 (s, 1H), 7.32






(d, J = 6.0 Hz, 2H),






7.06 (d, J = 16.5 Hz,






1H), 6.91 (s, 1H), 3.97






(s, 2H), 2.69-2.65 (m,






1H), 2.39 (s, 3H), 1.17-






1.21 (m, 6H)



F70
160-162
ESIMS 622
(300 MHz, CDCl3) δ

19F NMR (300 MHz, CDCl3)





([M + H]+)
8.50 (s, 1H), 8.37 (s,
δ −58.03





1H), 8.20 (d, J = 8.7






Hz, 1H), 7.90 (br s,






2H), 7.74 (d, J = 9.3






Hz, 2H), 7.60 (d, J =






16.2 Hz, 1H), 7.28-






7.36 (m, 4H), 7.11 (d, J =






16.5 Hz, 1H), 6.87 (s,






1H), 4.00 (s, 2H), 2.62-






2.67 (m, 1H), 2.37 (s,






3H), 1.16- 1.19 (m,






6H)



F71
237-239
ESIMS 623
(300 MHz, CDCl3): δ

19F NMR (300 MHz, CDCl3)





([M + H]+)
9.09 (s, 1H), 8.39 (s,
δ −58.39





2H), 8.21 (d, J = 8.4






Hz, 1H), 7.91-7.79






(m, 3H), 7.78 (s, 1H),






7.67-7.60 (m, 1H)






7.38-7.32 (m, 2H)






7.10 (d, J = 16.5 Hz,






1H), 6.89 (d, J = 9.3






Hz, 1H), 4.00 (s, 2H),






2.66-2.62 (m, 1H),






2.37 (s, 3H), 1.18 (d, J =






6.9 Hz, 6H)



F72
225-227
ESIMS 640
(300 MHz, DMSO-d6) δ





([M + H]+)
9.90 (s, 1H), 9.17 (s,






1H), 9.02 (s, 2H), 8.86






(s, 1H), 7.69 (d, J = 8.0






Hz, 1H), 7.62-7.55






(m, 3H), 7.39 (d, J =






8.4 Hz, 1H), 7.27 (d, J =






7.2 Hz, 1H), 7.16 (d,






J = 16.0 Hz, 1H), 7.05






(s, 1H), 4.20 (d, J =






17.6 Hz, 1H), 4.07 (d, J =






17.6 Hz, 1H), 2.67-






2.64 (m, 1H), 2.31 (s,






3H), 1.13 (dd, J = 27.2,






6.8 Hz, 6H)



F73
193-203
ESIMS 635
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.39 (s, 1H), 7.74-
δ −58.05





7.62 (m, 2H), 7.44-






7.29 (m, 7H), 7.16-






7.06 (m, 2H), 6.91 (t, J =






1.3 Hz, 1H), 4.03-






3.87 (m, 2H), 2.67 (p, J =






6.8 Hz, 1H), 2.52 (dt,






J = 9.6, 5.5 Hz, 1H),






2.38 (s, 4H), 1.68 (dt, J =






8.9, 5.1 Hz, 1H),






1.50-1.38 (m, 1H),






1.18 (dd, J = 6.9, 5.0






Hz, 6H)



F74
141-144
ESIMS 626
(300 MHz, CDCl3): δ

19F NMR (300 MHz, CDCl3)





([M + H]+)
9.01 (s, 1H), 8.36 (s,
δ −58.42





1H), 8.09-8.04 (m,






2H), 7.87 (d, J = 9.0






Hz, 1H), 7.78-7.71






(m, 2H), 7.57 (d, J =






8.4 Hz, 1H), 7.35-7.26






(m, 2H), 6.85 (s, 1H),






3.97 (s, 2H), 3.09 (s,






4H), 2.65-2.60 (m,






1H), 2.36 (s, 3H), 1.57-






1.15 (m, 6H)



F75

ESIMS 568
(400 MHz, CDCl3) δ

19F NMR (376 MHz, CDCl3)





([M + H]+)
8.75-8.64 (m, 1H),
δ −58.05





8.60 (t, J = 2.5 Hz,






1H), 8.44 (d, J = 4.5






Hz 1H) 7.80-7.59






(m, 3H), 7.56-7.43






(m, 2H), 7.38 (dd, J =






22.3, 8.5 Hz, 3H), 7.25-






7.13 (m, 2H), 4.12 (s,






2H), 3.98 (s, 1H), 3.11






(d, J = 8.8 Hz, 4H)



F76
235-237
ESIMS 618.02
(300 MHz, DMSO-d6) δ





([M + H]+)
9.65 (s, 1H), 9.19 (s,






1H), 8.59 (s, 1H), 8.39






(br s, 1H), 8.28 (d, J =






9.6 Hz, 1H), 8.09 (d, J =






8.7 Hz, 1H), 7.53-7.42






(m, 3H), 7.32 (t, J =






8.1 Hz, 1H), 7.23 (d, J =






7.8 Hz, 1H), 7.14 (d,






J = 8.4 Hz, 2H), 4.22-






4.02 (m, 2H), 3.00 (s,






4H), 2.72-2.67 (m,






1H), 1.13 (dd, J = 6.9






18.9 Hz, 6H)



F77
120-123
ESIMS 603.33
(300 MHz, CDCl3) δ





([M + H]+)
8.41 (s, 1H), 7.61 (d, J =






2 Hz, 1H), 7.60 (d, J =






2.0 Hz, 1H), 7.53-






7.49 (m, 4H), 7.39-






7.32 (m, 3H), 7.19-






7.16 (m, 3H), 7.09 (d, J =






8.4 Hz, 1H), 3.95 (d,






J = 2.0 Hz, 2H), 3.08






(s, 4H), 2.73-2.69 (m,






1H), 1.21-1.19 (m,






6H)



F78

HRMS-ESI
(400 MHz, CDCl3) δ





(m/z) [M + H]+
8.51 (s, 1H), 8.41 (t, J =





calcd for
8.4 Hz, 1H), 7.85-





C27H24F4N6O3S,
7.68 (m, 2H), 7.62 (d, J =





588.1567;
16.0 Hz, 2H), 7.46-





found,
7.28 (m, 4H), 7.08 (d, J =





589.1640
16.2 Hz, 1H), 4.53 (t,






J = 12.3 Hz, 1H), 3.72






(s, 2H), 2.33 (t, J =






12.1 Hz, 2H), 1.89 (d, J =






12.9 Hz, 2H), 1.68 (t,






J = 17.3 Hz, 2H), 1.51-






1.14 (m, 4H)



















BAW & CL Rating Table










% Control (or Mortality)
Rating







50-100
A



More than 0-Less than 50
B



Not Tested
C



No activity noticed in this bioassay
D




















YFM Rating Table










% Control (or Mortality)
Rating







80-100
A



More than 0-Less than 80
B



Not Tested
C



No activity noticed in this bioassay
D

















TABLE ABC







Biological Results











Species












No.
BAW
CL
YFM
















F1
A
A
C



F2
A
A
C



F3
A
A
C



F4
C
C
C



F5
A
A
C



F6
A
A
C



F7
A
A
C



F8
A
A
C



F9
A
A
C



F10
A
A
C



F11
A
A
C



F12
A
A
C



F13
A
A
C



F14
A
A
A



F15
A
A
A



F16
A
A
C



F17
A
A
C



F18
A
A
C



F19
A
A
C



F20
A
A
C



F21
A
A
C



F22
A
A
C



F23
A
A
A



F24
A
A
C



F25
A
A
C



F26
A
A
A



F27
A
A
C



F28
A
A
C



F29
A
A
C



F30
A
A
C



F31
A
A
C



F32
A
A
C



F33
A
A
C



F34
D
A
C



F35
A
A
C



F36
A
A
C



F37
A
A
C



F38
A
A
A



F39
A
A
C



F40
A
A
C



F41
A
A
C



F42
A
A
C



F43
A
A
C



F44
A
A
C



F45
A
A
C



F46
A
A
C



F47
A
A
C



F48
A
A
C



F49
A
A
C



F50
A
A
C



F51
A
A
C



F52
A
A
C



F53
A
A
C



F54
A
A
C



F55
A
A
C



F56
A
A
C



F57
A
A
C



F58
A
A
C



F59
A
A
C



F60
A
A
A



F61
A
A
C



F62
A
A
C



F63
A
A
C



F64
A
A
C



F65
A
A
C



F66
A
A
C



F67
A
A
C



F68
A
A
C



F69
A
A
C



F70
A
A
C



F71
A
A
C



F72
A
A
C



F73
A
A
C



F74
A
A
C



F75
A
A
C



F76
A
A
A



F77
A
A
A



F78
A
A
C









Claims
  • 1. A molecule of the following formula
  • 2. A molecule according to claim 1, wherein Ar1 is (1a)
  • 3. A molecule according to claim 1, wherein Het is (1b)
  • 4. A molecule according to claim 1, wherein L1 is (1c)
  • 5. A molecule according to claim 1, wherein L1 is (1d)
  • 6. A molecule according to claim 1, wherein L1 is (1e)
  • 7. A molecule according to claim 1, wherein Ar2 is (1f)
  • 8. A molecule according to claim 1, wherein R15 is H.
  • 9. A molecule according to claim 1, wherein Q1 is O.
  • 10. A molecule according to claim 1, wherein Q2 is S.
  • 11. A molecule according to claim 1, wherein L2 is (1g)
  • 12. A molecule according to claim 1, wherein L2 is (1h)
  • 13. A molecule according to claim 1, wherein R16 and R17 along with C(Q2)(Nx), is (1i)
  • 14. A molecule according to claim 1, wherein R16 and R17 along with C(Q2)(Nx), is (1j)
  • 15. A molecule according to claim 1, wherein (A) Ar1 is (1a)
  • 16. A molecule according to claim 1, wherein (A) Ar1 is (1a)
  • 17. A molecule according to claim 1 wherein said molecule is selected from one of the following molecules
  • 18. A pesticidal composition comprising (a) a molecule according to claim 1 and(b) an active ingredient.
  • 19. A process to control a pest said process comprising applying to a locus, a pesticidally effective amount of a molecule according to claim 1.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 of U.S. Provisional Patent Application Ser. Nos. 62/214,252 and 62/214,255, both filed Sep. 4, 2015, which are hereby incorporated by reference in their entireties.

Non-Patent Literature Citations (1)
Entry
Stanojević et al., Journal of Liquid Chromatography & Related Technologies, 2014, 37(20), pp. 2814-2828.
Related Publications (1)
Number Date Country
20170064962 A1 Mar 2017 US
Provisional Applications (2)
Number Date Country
62214252 Sep 2015 US
62214255 Sep 2015 US