This document relates to methods and materials involved in binding a molecule (e.g., an antibody, a fragment of an antibody, an antibody domain, a chimeric antigen receptor (CAR), a cell engager, or an antibody-drug conjugate (ADC)) to a CD66e polypeptide. For example, this document provides binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, cell engagers, or ADCs) that bind to a CD66e polypeptide and methods and materials for using such binders to treat cancer. This document also provides cells (e.g., host cells) designed to express one or more binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, or cell engagers) having the ability to bind to a CD66e polypeptide and methods and materials for using such cells to treat cancer.
CD66e, also known as carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), is a member of the carcinoembryonic antigen (CEA) gene family. CD66e is highly expressed in neuroendocrine prostate cancer, and it contains an N-terminal Ig variable-region-like (IgV) domain and six Ig constant region-type 2-like (IgC2-like) domains, called A1-B1-A2-B2-A3-B3. The A3-B3 domains are regarded as membrane-proximal regions, and these two domains are present in splice variants of CD66e in numerous cancers.
This document provides methods and materials involved in binding a molecule (e.g., an antibody, an antigen binding fragment, an antibody domain, a CAR, a cell engager, or an ADC) to a CD66e polypeptide. For example, this document provides binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, cell engagers, or ADCs) that bind to a CD66e polypeptide and methods and materials for using one or more such binders to treat a mammal (e.g., a human) having cancer.
This document also provides cells (e.g., host cells) designed to express one or more binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, or cell engagers) having the ability to bind to a CD66e polypeptide and methods and materials for using such cells to treat cancer.
As described herein, binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more CARs, one or more cell engagers, and/or one or more ADCs) can be designed to have the ability to bind to a CD66e polypeptide. For example, a binder (e.g., an antibody, an antigen binding fragment, an antibody domain, a CAR, a cell engager, or an ADC) provided herein can have the ability to bind to a polypeptide comprising, consisting essentially of, or consisting of the amino acid sequence of a human CD66e polypeptide as set forth in SEQ ID NO:150 or SEQ ID NO:151 (see, e.g.,
In some cases, two sets of three CDRs of an antigen binding fragment provided herein (e.g., SEQ ID NOs:1-3 and 9-11 or SEQ ID NOs:17-19 and 25-27) can be engineered into a CAR to create CAR+ cells (e.g., CAR+ T cells, CAR+ stem cells such as CAR+ induced pluripotent stem cells, or CAR+ natural killer (NK) cells) having the ability to target CD66e+ cells (e.g., CD66e+ tumor cells and/or CD66e+ tumor vasculature), can be engineered into an antibody structure that includes an Fc region to create antibodies having the ability to target CD66e+ cells (e.g., CD66e+ tumor cells and/or CD66e+ tumor vasculature) and induce antibody-dependent cell-mediated cytotoxicity (ADCC) against the target CD66e+ cells, and/or can be engineered into a cell engager such as a bi-specific T cell engager (e.g., a BiTE), a bi-specific killer engager (e.g., a BiKE), and/or a tri-specific killer engager (e.g., a TriKE) to create cell engagers having the ability to target CD66e+ cells (e.g., CD66e+ tumor cells and/or CD66e+ tumor vasculature) and induce one or more immune responses (e.g., T cell immune responses and/or ADCC using a cell engager in the absence of an Fc-containing antibody) against the target CD66e+ cells. It is noted that BiKE- and TriKE-mediated killing can be referred to ADCC even though it is not initiated by an Fc domain.
In addition, as described herein, binders (e.g., one or more antibodies, one or more antigen binding fragments, and/or one or more antibody domains) provided herein can be used to create conjugates that include the binder and a drug. For example, ADCs such as full antibody-drug conjugates, Fab-drug conjugates, and/or antibody domain-drug conjugates can be designed to include an appropriate binder provided herein to create the conjugate. Such conjugates can be used to deliver the drug payload to target cells such as cancer cells (e.g., CD66e+ cancer cells) or cancer vasculature (e.g., CD66e+ cancer vasculature).
As also described herein, binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein can be used to treat a mammal (e.g., a human) having cancer. For example, a mammal (e.g., a human) having cancer (e.g., a CD66e+ cancer) can be administered a composition comprising one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) described herein to reduce the number of cancer cells within the mammal, to induce ADCC against cancer cells within the mammal, and/or to increase the survival duration of the mammal from cancer.
As also described herein, cells (e.g., host cells) can be designed to express one or more binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, or cell engagers) having the ability to bind to a CD66e polypeptide. For example, cells such as T cells (e.g., CTLs), stem cells (e.g., induced pluripotent stem cells), or NK cells can be engineered to express one or more CARs having the ability to bind to a CD66e polypeptide. Such cells (e.g., CD66e-specific CAR+ T cells or NK cells) can be used to treat cancer.
In some cases, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be used to detect the presence or absence of a CD66e polypeptide. For example, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be used to determine whether or not a sample (e.g., a biological sample such tumor biopsy) obtained from a mammal (e.g., a human) contains CD66e+ cells (e.g., CD66e+ cancer cells). Having the ability to detect the presence or absence of a CD66e polypeptide (e.g., CD66e+ cancer cells) can allow clinicians, health professionals, and patients to make better decisions about possible treatment options. For example, detection of CD66e+ cancer cells within a mammal can allow clinicians, health professionals, and patients to select an appropriate anti-cancer treatment that targets the CD66e+ cancer cells. Such treatments that targets the CD66e+ cancer cells can include administration of an anti-CD66e antibody such as SAR408701 and/or one or more of the binders described herein having the ability to bind to a CD66e polypeptide and/or administration of one or more cells (e.g., CD66e-specific CAR+ T cells or NK cells) designed to express a binder described herein.
In general, one aspect of this document features an antibody comprising (or consisting essentially of or consisting of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody.
In another aspect, this document features an antigen binding fragment comprising (or consisting essentially of or consisting of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab.
In another aspect, this document features a chimeric antigen receptor comprising (or consisting essentially of or consisting of) an antigen binding domain, a hinge, a transmembrane domain, and one or more signaling domains, wherein the antigen binding domain comprises an antibody or an antigen-binding fragment. The antibody can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody. The antigen binding fragment can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab. The antigen binding domain can comprise a scFv having the ability to bind to a CD66e polypeptide. The hinge can comprise a hinge set forth in
In another aspect, this document features a cell comprising a chimeric antigen receptor of the preceding paragraph. The cell can be a T cell, a stem cell, or an NK cell. For example, one aspect of this document features an isolated population of cells, wherein at least one cell of the population comprises a chimeric antigen receptor of the preceding paragraph. The cell can be a T cell, a stem cell, or an NK cell. In some embodiments, at least 50 percent, at least 75 percent, at least 95 percent, at least 99 percent, or 100 percent of the cells of the population can comprise the chimeric antigen receptor.
In another aspect, this document features a cell engager comprising (or consisting essentially of or consisting of) a first antigen binding domain, a linker, and a second antigen binding domain, wherein the first antigen binding domain comprises an antibody or an antigen-binding fragment. The antibody can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody. The antigen binding fragment can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab. The first antigen binding domain can comprise a scFv having the ability to bind to a CD66e polypeptide. The first antigen binding domain can be an IgG having the ability to bind to a CD66e polypeptide. The linker can comprise a linker set forth in
In another aspect, this document features a nucleic acid (e.g., an isolated nucleic acid) comprising (or consisting essentially of or consisting of) a nucleic acid sequence encoding at least part of an antibody or an antigen-binding fragment. The antibody can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody. The antigen binding fragment can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab. The nucleic acid sequence can encode the heavy chain variable domain or region of any one of the (i)-(ii). The nucleic acid sequence can encode the light chain variable domain or region of any one of the (i)-(ii). The nucleic acid can be a viral vector. The nucleic acid can be a phagemid.
In another aspect, this document features a nucleic acid (e.g., an isolated nucleic acid) comprising (or consisting essentially of or consisting of) a nucleic acid sequence encoding a chimeric antigen receptor described above or a cell engager described above. The nucleic acid can be a viral vector. The nucleic acid can be a phagemid.
In another aspect, this document features a host cell comprising a nucleic acid of either of the two preceding paragraphs. For example, one aspect of this document features an isolated population of host cells, wherein at least one host cell of the population comprises a nucleic acid of either of the two preceding paragraphs. In some embodiments, at least 50 percent, at least 75 percent, at least 95 percent, at least 99 percent, or 100 percent of the cells of the population can comprise a nucleic acid of either of the two preceding paragraphs.
In another aspect, this document features a host cell that expresses a chimeric antigen receptor described above or a cell engager described above. The host cell can be a T cell, stem cell, or NK cell. For example, one aspect of this document features an isolated population of host cells, wherein at least one host cell of the population expresses a chimeric antigen receptor described above or a cell engager described above. In some embodiments, at least 50 percent, at least 75 percent, at least 95 percent, at least 99 percent, or 100 percent of the cells of the population can express a chimeric antigen receptor described above or a cell engager described above.
In another aspect, this document features an antibody-drug conjugate (ADC) comprising (or consisting essentially of or consisting of) an antigen binding domain covalently linked to a drug, wherein the antigen binding domain comprises an antibody or an antigen binding fragment. The antibody can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody. The antigen binding fragment can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab. The antigen binding domain can comprise a scFv having the ability to bind to a CD66e polypeptide. The antigen binding domain can be an IgG having the ability to bind to a CD66e polypeptide. The drug can be selected from the group consisting of auristatins, mertansine, or pyrrolobenzodiazepine (PBD) dimers.
In another aspect, this document features a composition comprising (or consisting essentially of or consisting of) an antibody or an antigen binding fragment. The antibody can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody. The antigen binding fragment can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab. The composition can comprise the antibody. The composition can comprise the antigen binding fragment. The composition can comprise a checkpoint inhibitor. The checkpoint inhibitor can be selected from the group consisting of cemiplimab, nivolumab, pembrolizumab, JTX-4014, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012, AMP-224, AMP-514, avelumab, durvalumab, atezolizumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, and ipilimumab.
In another aspect, this document features a composition comprising (or consisting essentially of or consisting of) a cell engager described above. The composition can comprise a checkpoint inhibitor. The checkpoint inhibitor can be selected from the group consisting of cemiplimab, nivolumab, pembrolizumab, JTX-4014, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012, AMP-224, AMP-514, avelumab, durvalumab, atezolizumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, and ipilimumab.
In another aspect, this document features a composition comprising (or consisting essentially of or consisting of) a cell described above. The composition can comprise a checkpoint inhibitor. The checkpoint inhibitor can be selected from the group consisting of cemiplimab, nivolumab, pembrolizumab, JTX-4014, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012, AMP-224, AMP-514, avelumab, durvalumab, atezolizumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, and ipilimumab.
In another aspect, this document features a composition comprising (or consisting essentially of or consisting of) an ADC described above. The composition can comprise a checkpoint inhibitor. The checkpoint inhibitor can be selected from the group consisting of cemiplimab, nivolumab, pembrolizumab, JTX-4014, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012, AMP-224, AMP-514, avelumab, durvalumab, atezolizumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, and ipilimumab.
In another aspect, this document features a method of treating a mammal having cancer. The method comprises (or consists essentially of or consists of) administering, to the mammal, a composition of any of the four preceding paragraphs. The mammal can be a human. The cancer can be a CD66e+ cancer. The CD66e+ cancer can be selected from the group consisting of CD66e+ lung cancer, CD66e+ prostate cancer, CD66e+ esophageal cancer, CD66e+ stomach cancer, CD66e+ colorectal cancer, CD66e+ liver cancer, CD66e+ vaginal cancer, or CD66e+ cervical cancer. The number of cancer cells within the mammal can be reduced following the administering step.
In another aspect, this document features a method of treating a mammal having cancer. The method comprises (or consists essentially of or consists of) (a) administering, to the mammal, the composition of any of those same four preceding paragraphs referenced in the preceding paragraph, and (b) administering, to the mammal, a composition comprising a checkpoint inhibitor. The mammal can be a human. The cancer can be a CD66e+ cancer. The CD66e+ cancer can be selected from the group consisting of CD66e+ lung cancer, CD66e+ prostate cancer, CD66e+ esophageal cancer, CD66e+ stomach cancer, CD66e+ colorectal cancer, CD66e+ liver cancer, CD66e+ vaginal cancer, or CD66e+ cervical cancer. The checkpoint inhibitor can be selected from the group consisting of cemiplimab, nivolumab, pembrolizumab, JTX-4014, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012, AMP-224, AMP-514, avelumab, durvalumab, atezolizumab, KN035, CK-301, AUNP12, CA-170, BMS-986189, and ipilimumab. The number of cancer cells within the mammal can be reduced following the administering steps (a) and (b).
In another aspect, this document features a method for binding a binding molecule to a CD66e polypeptide. The method comprises (or consists essentially of or consists of) contacting the CD66e polypeptide with an antibody or an antigen binding fragment. The antibody can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antibody can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antibody can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antibody can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antibody can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antibody can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antibody can be a monoclonal antibody. The antibody can be an scFv antibody. The antigen binding fragment can comprise (or consist essentially of or consist of): (i) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:1 (or SEQ ID NO:1 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:2 (or SEQ ID NO:2 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:3 (or SEQ ID NO:3 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:9 (or SEQ ID NO:9 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:10 (or SEQ ID NO:10 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:11 (or SEQ ID NO:11 with one, two, or three amino acid additions, deletions, or substitutions); or (ii) a heavy chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:17 (or SEQ ID NO:17 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:18 (or SEQ ID NO:18 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:19 (or SEQ ID NO:19 with one, two, or three amino acid additions, deletions, or substitutions), and a light chain variable domain or region comprising the amino acid sequences set forth in SEQ ID NO:25 (or SEQ ID NO:25 with one, two, or three amino acid additions, deletions, or substitutions), SEQ ID NO:26 (or SEQ ID NO:26 with one, two, or three amino acid additions, deletions, or substitutions), and SEQ ID NO:27 (or SEQ ID NO:27 with one, two, or three amino acid additions, deletions, or substitutions). The antigen binding fragment can comprise the ability to bind to SEQ ID NO:150 or SEQ ID NO:151. The antigen binding fragment can comprise the heavy chain variable domain or region of the (i). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8. The antigen binding fragment can comprise the light chain variable domain or region of the (i). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. The antigen binding fragment can comprise the heavy chain variable domain or region of the (ii). The heavy chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24. The antigen binding fragment can comprise the light chain variable domain or region of the (ii). The light chain variable domain or region can comprise an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. The antigen binding fragment can be monoclonal. The antigen binding fragment can be an Fab. The contacting can be performed in vitro. The contacting can be performed in vivo. The contacting can be performed within a mammal by administering the antibody or the antigen binding fragment to the mammal. The mammal can be a human.
In another aspect, this document features a method for binding a binding molecule to a CD66e polypeptide. The method comprises (or consists essentially of or consists of) contacting the CD66e polypeptide with a chimeric antigen receptor described above, a cell engager described above, or an ADC described above. The contacting can be performed in vitro. The contacting can be performed in vivo. The contacting can be performed within a mammal by administering the chimeric antigen receptor, the cell engager, or the ADC to the mammal. The mammal can be a human.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Methods and materials are described herein for use in the present disclosure; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
This document provides binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, cell engagers, and ADCs) that bind (e.g., specifically bind) to a CD66e polypeptide (e.g., a human CD66e polypeptide). For example, the document provides binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, cell engagers, and ADCs) that bind (e.g., specifically bind) to a polypeptide comprising, consisting essentially of, or consisting of the amino acid set forth in SEQ ID NO:150 or SEQ ID NO:151 (see, e.g.,
The term “antibody” as used herein includes polyclonal antibodies, monoclonal antibodies, recombinant antibodies, humanized antibodies, human antibodies, chimeric antibodies, multi-specific antibodies (e.g., bispecific antibodies) formed from at least two antibodies, diabodies, single-chain variable fragment antibodies (e.g., scFv antibodies), and tandem single-chain variable fragments antibody (e.g., taFv). A diabody can include two chains, each having a heavy chain variable domain and a light chain variable domain, either from the same or from different antibodies (see, e.g., Hornig and Farber-Schwarz, Methods Mol. Biol., 907:713-27 (2012); and Brinkmann and Kontermann, MAbs., 9(2):182-212 (2017)). The two variable regions can be connected by a polypeptide linker (e.g., a polypeptide linker having five to ten residues in length or a polypeptide linker as set forth in
An antibody provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be configured to be a human antibody, a humanized antibody, or a chimeric antibody. In some cases, an antibody provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be a monoclonal antibody. In some cases, an antibody provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be configured as a scFv antibody.
The term “antigen binding fragment” as used herein refers to a fragment of an antibody (e.g., a fragment of a humanized antibody, a fragment of a human antibody, or a fragment of a chimeric antibody) having the ability to bind to an antigen. Examples of antigen binding fragments include, without limitation, Fab, Fab′, or F(ab′)2 antigen binding fragments. An antigen binding fragment provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be configured to be a human antigen binding fragment, a humanized antigen binding fragment, or a chimeric antigen binding fragment. In some cases, an antigen binding fragment provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be a monoclonal antigen binding fragment. In some cases, an antigen binding fragment provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be configured as an Fab antibody. In some cases, a Fab antibody can include a partial hinge sequence (e.g., SEQ ID NO:152) for disulfide bonding between heavy and light chains of the Fab.
The term “antibody domain” as used herein refers to a domain of an antibody such as a heavy chain variable domain (VH domain) or a light chain variable domain (VL domain) in the absence of one or more other domains of an antibody. In some cases, an antibody domain can be a single antibody domain (e.g., a VH domain or a VL domain) having the ability to bind to an antigen. An antibody domain provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be a human antibody domain (e.g., a human VH domain), a humanized antibody domain (e.g., a humanized VH domain), or a chimeric antibody domain (e.g., a chimeric VH domain). In some cases, an antibody domain provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be a monoclonal antibody domain. In some cases, an antibody domain provided herein can include the CDRs as described herein (e.g., as described in Table 13) and can be engineered as a single VH domain or a single VL domain.
An anti-CD66e antibody, anti-CD66e antigen binding fragment, or anti-CD66e antibody domain provided herein can be of the IgA-, IgD-, IgE-, IgG-, or IgM-type, including IgG- or IgM-types such as, without limitation, IgG1-, IgG2-, IgG3-, IgG4-, IgM1-, and IgM2-types. In some cases, an antibody provided herein (e.g., an anti-CD66e antibody) can be a scFv antibody. In some cases, an antigen binding fragment provided herein (e.g., an anti-CD66e antibody fragment) can be an Fab. In some cases, an antibody provided herein (e.g., an anti-CD66e antibody) can be a fully intact antibody having the structure set forth in
The term “chimeric antigen receptor” as used herein refers to a chimeric polypeptide that is designed to include an optional signal peptide, an antigen binding domain, an optional hinge, a transmembrane domain, and one or more intracellular signaling domains. As described herein, the antigen binding domain of a CAR provided herein can be designed to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). For example, a CAR provided herein can be designed to include the components of an antibody, antigen binding fragment, and/or antibody domain described herein (e.g., a combination of CDRs) as an antigen binding domain provided that that antigen binding domain has the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). In some examples, a CAR provided herein can be designed to include an antigen binding domain that includes two sets of three CDRs (e.g., CDR1, CDR2, and CDR3 of a heavy chain and CDR1, CDR2, and CDR3 of a light chain) of an antigen binding fragment provided herein (e.g., SEQ ID NOs:1-3 and 9-11 or SEQ ID NOs:17-19 and 25-27). In some cases, an antigen binding domain of a CAR targeting a CD66e polypeptide can be designed to include a VH domain described herein or a scFv antibody described herein.
Examples of CAR structures that can be used to make a CAR provided herein include, without limitation, those set forth in
In some cases, a CAR provided herein can be designed to include a signal peptide. Any appropriate signal peptide can be used to design a CAR described herein. Examples of signal peptide that can be used to make a CAR described herein include without limitation, a human IGKV1-39-derived signal peptide, IGKV1-16, IGKV1-33, IGKV3-11, IGKV4-1, or IGKV6-21. In some cases, a CAR provided herein can be designed to include a signal peptide that comprises, consists essentially of, or consists of one of the amino acid sequences set forth in
In some cases, a CAR provided herein can be designed to include a hinge. Any appropriate hinge can be used to design a CAR described herein. Examples of hinges that can be used to make a CAR described herein include, without limitation, Ig-derived hinges (e.g., an IgG1-derived hinge, an IgG2-derived hinge, or an IgG4-derived hinge), Ig-derived hinges containing a CD2 domain and a CD3 domain, Ig-derived hinges containing a CD2 domain and lacking a CD3 domain, Ig-derived hinges containing a CD3 domain and lacking a CD2 domain, Ig-derived hinges lacking a CD2 domain and lacking a CD3 domain, CD8α-derived hinges, CD28-derived hinges, and CD3ζ-derived hinges. A CAR provided herein can be designed to include a hinge of any appropriate length. For example, a CAR provided herein can be designed to include a hinge that is from about 3 to about 75 (e.g., from about 3 to about 65, from about 3 to about 50, from about 5 to about 75, from about 10 to about 75, from about 5 to about 50, from about 10 to about 50, from about 10 to about 40, or from about 10 to about 30) amino acid residues in length. In some cases, a linker sequence can be used as a hinge to make a CAR described herein. For example, any one of the linker sequences set forth in
In some cases, a CAR provided herein can be designed to include a hinge that comprises, consists essentially of, or consists of one of the amino acid sequences set forth in
A CAR provided herein can be designed to include any appropriate transmembrane domain. For example, the transmembrane domain of a CAR provided herein can be, without limitation, a CD3ζ transmembrane domain, a CD4 transmembrane domain, a CD8α transmembrane domain, a CD28 transmembrane domain, and a 4-1BB transmembrane domain. In some cases, a CAR provided herein can be designed to include a transmembrane domain that comprises, consists essentially of, or consists of one of the amino acid sequences set forth in
A CAR provided herein can be designed to include one or more intracellular signaling domains. For example, a CAR provided herein can be designed to include one, two, three, or four intracellular signaling domains. Any appropriate intracellular signaling domain or combination of intracellular signaling domains can be used to make a CAR described herein. Examples of intracellular signaling domains that can be used to make a CAR described herein include, without limitation, CD3ζ intracellular signaling domains, CD27 intracellular signaling domains, CD28 intracellular signaling domains, OX40 (CD134) intracellular signaling domains, 4-1BB (CD137) intracellular signaling domains, CD278 intracellular signaling domains, DAP10 intracellular signaling domains, and DAP12 intracellular signaling domains. In some cases, a CAR described herein can be designed to be a first generation CAR having a CD3ζ intracellular signaling domain. In some cases, a CAR described herein can be designed to be a second generation CAR having a CD28 intracellular signaling domain followed by a CD3ζ intracellular signaling domain. In some cases, a CAR described herein can be designed to be a third generation CAR having (a) a CD28 intracellular signaling domain followed by (b) a CD27 intracellular signaling domain, an OX40 intracellular signaling domains, or a 4-1BB intracellular signaling domain followed by (c) a CD3ζ intracellular signaling domain. In some cases, a CAR provided herein can be designed to include at least one intracellular signaling domain that comprises, consists essentially of, or consists of one of the amino acid sequences set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:8, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:9, SEQ ID NO:10, and SEQ ID NO:11, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:16, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:24, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, followed by a linker such as a linker set forth in
In some cases, a CAR targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:32, followed by a linker such as a linker set forth in
The term “cell engager” as used herein refers to a polypeptide that includes two or more antigen binding domains (e.g., two, three, or four antigen binding domains) and has the ability to link two cells together. Examples of cell engagers include, without limitation, BiTEs, BiKEs, and TriKEs. In general, a cell engager provided herein can be designed to include at least one antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and at least one antigen binding domain having the ability to bind to an antigen expressed on the surface of a cell (e.g., a T cell or an NK cell). In some cases, a cell engager described herein can link a CD66e+ cell (e.g., a CD66e+ cancer cell) to another cell (e.g., a T cell or an NK cell) via the two or more antigen binding domains of the cell engager. An example of a cell engager structure of cell engagers provided herein includes, without limitation, the structure set forth in
When a cell engager includes an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and two or more other antigen binding domains (e.g., two, three, or four other antigen binding domains), each of those other antigen binding domains can bind to different antigens expressed on the surface of different cell types or can bind to different antigens expressed on the surface of the same cell type. For example, a TriKE can be designed to have a first antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide), a second antigen binding domain having the ability to bind to a first antigen expressed on the surface of an NK cell (e.g., a CD16 polypeptide such as a CD16a polypeptide), and a third antigen binding domain having the ability to bind to a second antigen expressed on the surface of an NK cell (e.g., an NKG2A polypeptide).
As described herein, at least one antigen binding domain of a cell engager provided herein can be designed to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). For example, a cell engager provided herein can be designed to include the components of an antibody, antigen binding fragment, and/or antibody domain described herein (e.g., a combination of CDRs) as an antigen binding domain provided that that antigen binding domain has the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). In some examples, a cell engager provided herein can be designed to include an antigen binding domain that includes two sets of three CDRs (e.g., CDR1, CDR2, and CDR3 of a heavy chain and CDR1, CDR2, and CDR3 of a light chain) of an antigen binding fragment provided herein (e.g., SEQ ID NOs:1-3 and 9-11 or SEQ ID NOs:17-19 and 25-27). In some cases, an antigen binding domain of a cell engager targeting a CD66e polypeptide can be designed to include a VH domain described herein or a scFv/Fab antibody described herein. In some cases, an antigen binding domain of a CAR described herein that has the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can be used as an antigen binding domain of a cell engager that targets CD66e+ cells.
As described herein, a cell engager can be designed to include at least one antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and at least one other antigen binding domain. That at least one other antigen binding domain can have the ability to bind to any appropriate antigen expressed on the surface of a cell. For example, when designing a cell engager such as a BiTE to link a CD66e+ cell and a T cell, the cell engager can include an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of a T cell. Examples example of polypeptides expressed on the surface of a T cell that can be targeted by an antigen binding domain of a cell engager provided herein include, without limitation, CD3 polypeptides. Examples of antigen binding domains having the ability to bind to a polypeptide expressed on the surface of a T cell that can be used to make a cell engager provided herein (e.g., a BiTE) include, without limitation, anti-CD3 scFvs and anti-CD3 VH domains. Additional examples of amino acid sequences that can be used as antigen binding domains having the ability to bind to a polypeptide expressed on the surface of a T cell (e.g., CD3) are described in U.S. Pat. No. 6,750,325 (see, e.g., the sequence listing of U.S. Pat. No. 6,750,325).
In some cases, a cell engager provided herein can be designed to include an antigen binding domain that comprises, consists essentially of, or consists of one of the amino acid sequences set forth in
When designing a cell engager such as a BiKE or a TriKE to link a CD66e+ cell and an NK cell, the cell engager can include an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and one or more (e.g., one, two, or three) antigen binding domains having the ability to bind to a polypeptide expressed on the surface of an NK cell. Examples of polypeptides expressed on the surface of an NK cell that can be targeted by an antigen binding domain of a cell engager provided herein include, without limitation, CD16 polypeptides (e.g., CD16a polypeptides), NKG2A polypeptides, NKG2D polypeptides, NKp30 polypeptides, NKp44 polypeptides, and NKp46 polypeptides. Examples of antigen binding domains having the ability to bind to a polypeptide expressed on the surface of an NK cell that can be used to make a cell engager provided herein (e.g., a BiKE or TriKE) include, without limitation, anti-CD16a scFvs, anti-NKG2A scFvs, anti-NKG2D scFvs, anti-NKp30 scFvs (see, e.g., BioLegend Catalog #325207), anti-NKp44 scFvs, anti-NKp46 scFvs, anti-CD16a VH domains, anti-NKG2A VH domains, anti-NKG2D VH domains, anti-NKp30 VH domains, anti-NKp44 VH domains, and anti-NKp46 VH domains. Additional examples of amino acid sequences that can be used as antigen binding domains having the ability to bind to a polypeptide expressed on the surface of an NK cell (e.g., CD16, NKG2A, NKG2D, or NKp46) are described in McCall et al. (Mol. Immunol., 36(7):433-445 (1999); see, e.g., anti-CD16 scFv sequences); International Patent Application Publication No. PCT/US2017/048721 (see, e.g., the CDRs and sequence listing for anti-CD16a binding domains); U.S. Patent Application Publication No. 2011/0052606 (see, e.g., the CDRs and the sequence listing for anti-NKG2Antibodies such as Z199); U.S. Patent Application Publication No. 2011/0150870 (see, e.g., the CDRs and sequence listing for anti-NKG2D antibodies); U.S. Patent Application Publication No. 2018/0369373 (see, e.g., the CDRs and sequence listing for anti-NKp46 antibodies); and U.S. Patent Application Publication No. 2017/0368169 (see, e.g., the CDRs and sequence listing for anti-NKp46 antibodies).
In some cases, a cell engager provided herein can be designed to include an antigen binding domain (e.g., a scFv or VH) that comprises, consists essentially of, or consists of one or more of the amino acid sequences set forth in
In some cases, a cell engager provided herein can be designed to include a linker located between each antigen binding domain. Any appropriate linker can be used to design a cell engager provided herein. Examples of linkers that can be used to make a cell engager described herein include, without limitation, the linker sequences set forth in
In some cases, a cell engager provided herein can be designed to include a linker that comprises, consists essentially of, or consists of one of the amino acid sequences set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:9, SEQ ID NO:10, and SEQ ID NO:11, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:8, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:16, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:9, SEQ ID NO:10, and SEQ ID NO:11, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:8, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:16, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:24, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:32, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a heavy chain variable domain comprising SEQ ID NO:24, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiKE or a TriKE) targeting a CD66e polypeptide can be designed to include an scFv having a light chain variable domain comprising SEQ ID NO:32, followed by a linker such as a linker set forth in
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:9, SEQ ID NO:10, and SEQ ID NO:11, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of a T cell (e.g., an anti-human CD3 scFv).
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:8, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:16, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of a T cell (e.g., an anti-human CD3 scFv).
In some cases, a cell engager (e.g., a BiKE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:3, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:9, SEQ ID NO:10, and SEQ ID NO:11, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of an NK cell (e.g., an anti-human CD16a scFv or an anti-human NKG2A scFv).
In some cases, a cell engager (e.g., a BiKE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:8, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:16, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of an NK cell (e.g., an anti-human CD16a scFv or an anti-human NKG2A scFv).
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of a T cell (e.g., an anti-human CD3 scFv).
In some cases, a cell engager (e.g., a BiTE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:24, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:32, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of a T cell (e.g., an anti-human CD3 scFv).
In some cases, a cell engager (e.g., a BiKE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of an NK cell (e.g., an anti-human CD16a scFv or an anti-human NKG2A scFv).
In some cases, a cell engager (e.g., a BiKE) targeting a CD66e polypeptide can be designed to include an IgG (e.g., IgG1) configuration having (a) a heavy chain comprising, consisting essentially of, or consisting of a heavy chain variable domain comprising SEQ ID NO:24, an Ig hinge, and constant domains (e.g., CH1, CH2, and CH3 domains) and (b) a light chain comprising, consisting essentially of, or consisting of a light chain variable domain comprising SEQ ID NO:32, a constant domain (e.g., a kappa or lambda constant domain), and an antigen binding domain having the ability to bind to a polypeptide expressed on the surface of an NK cell (e.g., an anti-human CD16a scFv or an anti-human NKG2A scFv).
In one embodiment, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (i) a heavy chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:1 (or a variant of SEQ ID NO:1 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:2 (or a variant of SEQ ID NO:2 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth in SEQ ID NO:3 (or a variant of SEQ ID NO:3 with one or two amino acid modifications); and/or (ii) a light chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:9 (or a variant of SEQ ID NO:9 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:10 (or a variant of SEQ ID NO:10 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth SEQ ID NO:11 (or a variant of SEQ ID NO:11 with one or two amino acid modifications). An example of such an antigen binding fragment having these CDRs and the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) includes, without limitation, the Fab set forth in
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and (a) a heavy chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:1 (or a variant of SEQ ID NO:1 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:2 (or a variant of SEQ ID NO:2 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth in SEQ ID NO:3 (or a variant of SEQ ID NO:3 with one or two amino acid modifications) and/or (b) a light chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:9 (or a variant of SEQ ID NO:9 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:10 (or a variant of SEQ ID NO:10 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth SEQ ID NO:11 (or a variant of SEQ ID NO:11 with one or two amino acid modifications) can include any appropriate framework regions. For example, such a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) can include (a) a heavy chain variable domain that includes a framework region 1 having the amino acid sequence set forth in SEQ ID NO:4 (or a variant of SEQ ID NO:4 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 2 having the amino acid sequence set forth in SEQ ID NO:5 (or a variant of SEQ ID NO:5 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 3 having the amino acid sequence set forth in SEQ ID NO:6 (or a variant of SEQ ID NO:6 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), and a framework region 4 having the amino acid sequence set forth in SEQ ID NO:7 (or a variant of SEQ ID NO:7 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications) and/or (b) a light chain variable domain that includes a framework region 1 having the amino acid sequence set forth in SEQ ID NO:12 (or a variant of SEQ ID NO:12 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 2 having the amino acid sequence set forth in SEQ ID NO:13 (or a variant of SEQ ID NO:13 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 3 having the amino acid sequence set forth in SEQ ID NO:14 (or a variant of SEQ ID NO:14 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), and a framework region 4 having the amino acid sequence set forth in SEQ ID NO:15 (or a variant of SEQ ID NO:15 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications).
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) having any of the CDRs set forth in
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8 and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:8 and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:16. In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein can include (a) a heavy chain variable domain that includes an amino acid sequence having 100 percent identity to the amino acid sequence set forth in SEQ ID NO:8 and/or (b) a light chain variable domain that includes an amino acid sequence having 100 percent identity to the amino acid sequence set forth in SEQ ID NO:16.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:8, provided that the heavy chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:1, 2, and 3, and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:16, provided that the light chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:9, 10, and 11. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:8, provided that the heavy chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:1, 2, and 3, and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:16, provided that the light chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:9, 10, and 11.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain having the amino acid sequence set forth in SEQ ID NO:8 or the amino acid set forth in SEQ ID NO:8 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions) and/or (b) a light chain variable domain that includes the amino acid sequence set forth in SEQ ID NO:16 or the amino acid set forth in SEQ ID NO:16 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions). For example, an antibody or antigen binding fragment provided herein can have the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide), can include a heavy chain variable domain having the amino acid sequence set forth in SEQ ID NO:8 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions), provided that the heavy chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:1, 2, and 3, and can include a light chain variable domain having the amino acid sequence set forth in SEQ ID NO:16 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions), provided that the light chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:9, 10, and 11.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain comprising (i) a CDR1 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:1, (ii) a CDR2 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:2, and (iii) a CDR3 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:3, and/or (b) a light chain variable domain comprising (i) a CDR1 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:9, (ii) a CDR2 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:10, and (iii) a CDR3 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:11. As used herein, a “CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:1” is a CDR1 that has zero, one, or two amino acid substitutions within SEQ ID NO:1, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:1, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:1, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:1 include, without limitation, those set forth in Table 1.
As used herein, a “CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO:2” is a CDR2 that has zero, one, or two amino acid substitutions within SEQ ID NO:2, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:2, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:2, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO:2 include, without limitation, those set forth in Table 2.
As used herein, a “CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO:3” is a CDR3 that has zero, one, or two amino acid substitutions within SEQ ID NO:3, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:3, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:3, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO:3 include, without limitation, those set forth in Table 3.
As used herein a “CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:9” is a CDR1 that has zero, one, or two amino acid substitutions within SEQ TD NO:9, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO: 9, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:9, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:9 include, without limitation, those set forth in Table 4.
As used herein, a “CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO:10” is a CDR2 that has zero, one, or two amino acid substitutions within SEQ ID NO:10, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:10, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:10, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO:10 include, without limitation, those set forth in Table 5.
As used herein, a “CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO:11” is a CDR3 that has zero, one, or two amino acid substitutions within SEQ ID NO:11, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:11, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:11, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO:11 include, without limitation, those set forth in Table 6.
In another embodiment, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (i) a heavy chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:17 (or a variant of SEQ ID NO:17 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:18 (or a variant of SEQ ID NO:18 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth in SEQ ID NO:19 (or a variant of SEQ ID NO:19 with one or two amino acid modifications); and/or (ii) a light chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:25 (or a variant of SEQ ID NO:25 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:26 (or a variant of SEQ ID NO:26 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth SEQ ID NO:27 (or a variant of SEQ ID NO:27 with one or two amino acid modifications). An example of such an antigen binding fragment having these CDRs and the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) includes, without limitation, the Fab set forth in
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and having (a) a heavy chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:17 (or a variant of SEQ ID NO:17 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:18 (or a variant of SEQ ID NO:18 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth in SEQ ID NO:19 (or a variant of SEQ ID NO:19 with one or two amino acid modifications) and/or (b) a light chain variable domain having a CDR1 having the amino acid sequence set forth in SEQ ID NO:25 (or a variant of SEQ ID NO:25 with one or two amino acid modifications), a CDR2 having the amino acid sequence set forth in SEQ ID NO:26 (or a variant of SEQ ID NO:26 with one or two amino acid modifications), and a CDR3 having the amino acid sequence set forth SEQ ID NO:27 (or a variant of SEQ ID NO:27 with one or two amino acid modifications) can include any appropriate framework regions. For example, such a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) can include (a) a heavy chain variable domain that includes a framework region 1 having the amino acid sequence set forth in SEQ ID NO:20 (or a variant of SEQ ID NO:20 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 2 having the amino acid sequence set forth in SEQ ID NO:21 (or a variant of SEQ ID NO:21 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 3 having the amino acid sequence set forth in SEQ ID NO:22 (or a variant of SEQ ID NO:22 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), and a framework region 4 having the amino acid sequence set forth in SEQ ID NO:23 (or a variant of SEQ ID NO:23 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications) and/or (b) a light chain variable domain that includes a framework region 1 having the amino acid sequence set forth in SEQ ID NO:28 (or a variant of SEQ ID NO:28 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 2 having the amino acid sequence set forth in SEQ ID NO:29 (or a variant of SEQ ID NO:29 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), a framework region 3 having the amino acid sequence set forth in SEQ ID NO:30 (or a variant of SEQ ID NO:30 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications), and a framework region 4 having the amino acid sequence set forth in SEQ ID NO:31 (or a variant of SEQ ID NO:31 with one, two, three, four, five, six, seven, eight, nine, ten, or more amino acid modifications).
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) having any of the CDRs set forth in
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24 and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:24 and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:32. In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein can include (a) a heavy chain variable domain that includes an amino acid sequence having 100 percent identity to the amino acid sequence set forth in SEQ ID NO:24 and/or (b) a light chain variable domain that includes an amino acid sequence having 100 percent identity to the amino acid sequence set forth in SEQ ID NO:32.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:24, provided that the heavy chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:17, 18, and 19, and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90 percent identity to the amino acid sequence set forth in SEQ ID NO:32, provided that the light chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:25, 26, and 27. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein can include (a) a heavy chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:24, provided that the heavy chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:17, 18, and 19, and/or (b) a light chain variable domain that includes an amino acid sequence having at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent identity to the amino acid sequence set forth in SEQ ID NO:32, provided that the light chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:25, 26, and 27.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain having the amino acid sequence set forth in SEQ ID NO:24 or the amino acid set forth in SEQ ID NO:24 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions) and/or (b) a light chain variable domain that includes the amino acid sequence set forth in SEQ ID NO:32 or the amino acid set forth in SEQ ID NO:32 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions). For example, an antibody or antigen binding fragment provided herein can have the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide), can include a heavy chain variable domain having the amino acid sequence set forth in SEQ ID NO:24 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions), provided that the heavy chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:17, 18, and 19, and can include a light chain variable domain having the amino acid sequence set forth in SEQ ID NO:32 with one, two, three, four, five, six, seven, eight, nine, or 10 amino acid modifications (e.g., amino acid substitutions, amino acid deletions, and/or amino acid additions), provided that the light chain variable domain includes the amino acid sequences set forth in SEQ ID NOs:25, 26, and 27.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can include (a) a heavy chain variable domain comprising (i) a CDR1 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:17, (ii) a CDR2 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:18, and (iii) a CDR3 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:19, and/or (b) a light chain variable domain comprising (i) a CDR1 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:25, (ii) a CDR2 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:26, and (iii) a CDR3 that comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:27. As used herein, a “CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:17” is a CDR1 that has zero, one, or two amino acid substitutions within SEQ ID NO:17, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:17, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:17, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:17 include, without limitation, those set forth in Table 7.
As used herein, a “CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO: 18” is a CDR2 that has zero, one, or two amino acid substitutions within SEQ TD NO: 18, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:18, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO: 18, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO: 18 include, without limitation, those set forth in Table 8.
As used herein, a “CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO: 19” is a CDR3 that has zero, one, or two amino acid substitutions within SEQ TD NO: 19, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO: 19, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO: 19, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO: 19 include, without limitation, those set forth in Table 9.
As used herein, a “CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:25” is a CDR1 that has zero, one, or two amino acid substitutions within SEQ ID NO:25, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:25, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:25, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR1 that consists essentially of the amino acid sequence set forth in SEQ ID NO:25 include, without limitation, those set forth in Table 10.
As used herein, a “CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO:26” is a CDR2 that has zero, one, or two amino acid substitutions within SEQ ID NO:26, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:26, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:26, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR2 that consists essentially of the amino acid sequence set forth in SEQ ID NO:26 include, without limitation, those set forth in Table 11.
As used herein, a “CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO:27” is a CDR3 that has zero, one, or two amino acid substitutions within SEQ ID NO:27, that has zero, one, two, three, four, or five amino acid residues directly preceding SEQ ID NO:27, and/or that has zero, one, two, three, four, or five amino acid residues directly following SEQ ID NO:27, provided that the binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) maintains its basic ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of a CDR3 that consists essentially of the amino acid sequence set forth in SEQ ID NO:27 include, without limitation, those set forth in Table 12.
When designing a single chain antibody (e.g., a scFv) having a heavy chain variable domain and a light chain variable domain, the two regions can be directly connected or can be connected using any appropriate linker sequence. For example, a heavy chain variable domain having the CDRs of SEQ ID NOs:1-3 or SEQ ID NOs:17-19 can be directly connected to a light chain variable domain having the CDRs of SEQ ID NOs:9-11 or SEQ ID NOs:25-27, respectively, via a linker sequence. Examples of linker sequences that can be used to connect a heavy chain variable domain and a light chain variable domain to create a scFv include, without limitation, those linkers set forth in
As indicated herein, the amino acid sequences described herein can include amino acid modifications (e.g., the articulated number of amino acid modifications). Such amino acid modifications can include, without limitation, amino acid substitutions, amino acid deletions, amino acid additions, and combinations. In some cases, an amino acid modification can be made to improve the binding and/or contact with an antigen and/or to improve a functional activity of a binder (e.g., an antibody, antigen binding fragment, antibody domain, a CAR, a cell engager, and/or an ADC) provided herein. In some cases, an amino acid substitution within an articulated sequence identifier can be a conservative amino acid substitution. For example, conservative amino acid substitutions can be made by substituting one amino acid residue for another amino acid residue having a similar side chain. Families of amino acid residues having similar side chains can include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine), and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
In some cases, an amino acid substitution within an articulated sequence identifier can be a non-conservative amino acid substitution. Non-conservative amino acid substitutions can be made by substituting one amino acid residue for another amino acid residue having a dissimilar side chain. Examples of non-conservative substitutions include, without limitation, substituting (a) a hydrophilic residue (e.g., serine or threonine) for a hydrophobic residue (e.g., leucine, isoleucine, phenylalanine, valine, or alanine); (b) a cysteine or proline for any other residue; (c) a residue having a basic side chain (e.g., lysine, arginine, or histidine) for a residue having an acidic side chain (e.g., aspartic acid or glutamic acid); and (d) a residue having a bulky side chain (e.g., phenylalanine) for glycine or other residue having a small side chain.
Methods for generating an amino acid sequence variant (e.g., an amino acid sequence that includes one or more modifications with respect to an articulated sequence identifier) can include site-specific mutagenesis or random mutagenesis (e.g., by PCR) of a nucleic acid encoding the antibody or fragment thereof. See, for example, Zoller, Curr Opin. Biotechnol. 3: 348-354 (1992). Both naturally occurring and non-naturally occurring amino acids (e.g., artificially-derivatized amino acids) can be used to generate an amino acid sequence variant provided herein.
A representative number of binders (e.g., antibodies, antigen binding fragments, and/or antibody domains) having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) are further described in Table 13.
Table 14 includes an alternative designation that can be used to refer to each of Clones #1-#2.
The binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, cell engagers, and/or ADCs) provided herein can be produced using any appropriate method. For example, the binders (e.g., antibodies, antigen binding fragments, antibody domains, CARs, and/or cell engagers) provided herein can be produced in recombinant host cells. For example, a nucleic acid encoding a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein can be constructed, introduced into an expression vector, and expressed in suitable host cells.
In some cases, an antigen binding fragment or antibody domain provided herein can be produced by proteolytic digestion of an intact antibody. For example, an antigen binding fragment can be obtained by treating an antibody with an enzyme such as papain or pepsin. Papain digestion of whole antibodies can be used to produce F(ab)2 or Fab fragments, while pepsin digestion of whole antibodies can be used to produce F(ab′)2 or Fab′ fragments.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be substantially pure. The term “substantially pure” as used herein with reference to a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) refers to the binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) as being substantially free of other polypeptides, lipids, carbohydrates, and nucleic acid with which it is naturally associated. Thus, a substantially pure binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein is any binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) that is removed from its natural environment and is at least 60 percent pure. A substantially pure binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be at least about 65, 70, 75, 80, 85, 90, 95, or 99 percent pure.
This document also provides bispecific binders (e.g., bispecific antibodies, bispecific antigen binding fragments, and/or bispecific antibody domains) that bind to two different epitopes with at least one being an epitope of a CD66e polypeptide (e.g., a human CD66e polypeptide). In some cases, a bispecific binder provided herein can be designed to bind to two different epitopes of the same CD66e polypeptide (e.g., a human CD66e polypeptide). In some cases, a bispecific binder provided herein can bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and to an epitope on a different polypeptide (e.g., a CD3 polypeptide). Bispecific binders can be produced by chemically conjugating two different binders (e.g., antibodies, antigen binding fragments, and/or antibody domains) together. Bispecific binders also can be produced by fusing two antibody-producing cells, e.g., hybridomas, to make a hybrid cell line that produces two different heavy and two different light chains within the same cell, which can result in, for example, bispecific IgG molecules. See, Brinkmann and Kontermann, MAbs., 9(2):182-212 (2017).
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein can be fused or conjugated (e.g., covalently or non-covalently attached) to another polypeptide or other moiety to provide a fusion protein or conjugate. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein can be conjugated (e.g., covalently or non-covalently attached) to a polymer (e.g., polyethylene glycol (PEG), polyethylenimine (PEI) modified with PEG (PEI-PEG), and/or polyglutamic acid (PGA) (N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymers), hyaluronic acid, a fluorescent substance, a luminescent substance, a hapten, an enzyme, a metal chelate, a drug, a radioisotope, and/or a cytotoxic agent. Any appropriate method can be used to conjugate (e.g., covalently or non-covalently attach) another polypeptide or other moiety to a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein. For example, another polypeptide or other moiety can be conjugated to a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein using the methods described in U.S. Pat. No. 8,021,661.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be modified with a moiety that improves its stabilization and/or retention in circulation, for example, in blood, serum, or other tissues by, for example, at least 1.5-, 2-, 5-, 10-, or 50-fold. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be attached (e.g., covalently or non-covalently attached) to a polymer such as a substantially non-antigenic polymer. Examples of substantially non-antigenic polymers that can be used as described herein include, without limitation, polyalkylene oxides and polyethylene oxides. In some cases, a polymer used herein can have any appropriate molecule weight. For example, a polymer having an average molecular weight from about 200 Daltons to about 35,000 Daltons (e.g., from about 1,000 to about 15,000 Daltons or from about 2,000 to about 12,500 Daltons) can be used. In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be attached (e.g., covalently or non-covalently) to a water soluble polymer. Examples of water soluble polymers that can be used as described herein include, without limitation, hydrophilic polyvinyl polymers, polyvinylalcohol, polyvinylpyrrolidone, polyalkylene oxide homopolymers, polyethylene glycol (PEG), polypropylene glycols, polyoxyethylenated polyols, and copolymers thereof and/or block copolymers thereof provided that the water solubility of the copolymer or block copolymers is maintained.
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be attached (e.g., covalently or non-covalently attached) to one or more polyoxyalkylenes (e.g., polyoxyethylene, polyoxypropylene, or block copolymers of polyoxyethylene and polyoxypropylene), polymethacrylates, carbomers, branched or unbranched polysaccharides, or combinations thereof. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein can be covalently attached to polyoxyethylene.
This document also provides ADCs. The term “ADC” as used herein refers to a conjugate that includes (a) an antigen binding domain and (b) at least one drug covalently linked directly or indirectly to that antigen binding domain. In some cases, an ADC described herein can include (a) an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) and (b) at least one drug covalently linked directly or indirectly to that antigen binding domain. Any appropriate binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein and having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can be used as an antigen binding domain to make an ADC described herein. For example, any of the binders set forth in Table 13 can be used to make an ADC having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide). Examples of drugs that can be used to make an ADC described herein include, without limitation, auristatins (e.g., monomethyl auristatin E (MMAE)), mertansine (DM-1), and pyrrolobenzodiazepine (PBD) dimers. Any appropriate ADC linker can be used to covalently attach one or more drugs to an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) to form an ADC provided herein. For example, cleavable or non-cleavable ADC linkers can be used to covalently attach one or more drugs to an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) to form an ADC provided herein. Examples of ADC linkers can be used to covalently attach one or more drugs to an antigen binding domain having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) to form an ADC provided herein include, without limitation, ADC disulfide linkers, ADC hydrazone linkers, ADC peptide linkers, ADC thioether linkers, and ADC PEG-containing linkers.
This document also provides nucleic acid molecules (e.g., isolated nucleic acid molecules) having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein. For example, an isolated nucleic acid molecule provided herein can include a nucleic acid sequence encoding a heavy chain variable domain such as a heavy chain variable domain as set forth in
This document also provides vectors (e.g., plasmid vectors or viral vectors) containing one or more nucleic acids provided herein. An example of a plasmid vector that can be designed to include one or more nucleic acids having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein includes, without limitation, phagemids. Examples of viral vectors that can be designed to include one or more nucleic acids having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein include, without limitation, retroviral vectors, parvovirus-based vectors (e.g., adenoviral-based vectors and adeno-associated virus (AAV)-based vectors), lentiviral vectors (e.g., herpes simplex (HSV)-based vectors), poxviral vectors (e.g., vaccinia virus-based vectors and fowlpox virus-based vectors), and hybrid or chimeric viral vectors. For example, a viral vector having an adenoviral backbone with lentiviral components such as those described elsewhere (Zheng et al., Nat. Biotech., 18(2): 176-80 (2000); WO 98/22143; WO 98/46778; and WO 00/17376) or viral vectors having an adenoviral backbone with AAV components such as those described elsewhere (Fisher et al., Hum. Gene Ther., 7:2079-2087 (1996)) can be designed to include one or more nucleic acids having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein.
In some cases, a vector (e.g., a plasmid vector or a viral vector) provided herein can include a nucleic acid sequence encoding scFv or antibody domain (e.g., a VH domain) provided herein. In some cases, a vector (e.g., a plasmid vector or a viral vector) provided herein can include a nucleic acid sequence encoding CAR provided herein. In some cases, a vector (e.g., a plasmid vector or a viral vector) provided herein can include a nucleic acid sequence encoding cell engager provided herein.
A vector provided herein (e.g., a plasmid vector or viral vector provided herein) can include any appropriate promoter and other regulatory sequence (e.g., transcription and translation initiation and termination codons) operably linked the nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein. In some cases, a promoter used to drive expression can be a constitutive promotor or a regulatable promotor. Examples of regulatable promoters that can be used as described herein include, without limitation, inducible promotors, repressible promotors, and tissue-specific promoters. Examples of viral promotors that can be used as described herein include, without limitation, adenoviral promotors, vaccinia virus promotors, CMV promotors (e.g., immediate early CMV promotors), and AAV promoters.
Any appropriate method can be used to make a nucleic acid molecule (or vector such as a plasmid vector or viral vector) having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein. For example, molecule cloning techniques can be used to make a nucleic acid molecule (or vector such as a plasmid vector or viral vector) having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein as described elsewhere (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, N Y (1989); and Ausubel et al., Current Protocols in Molecular Biology, Green Publishing Associates and John Wiley & Sons, New York, N.Y. (1994)).
This document also provides host cells that include a nucleic acid provided herein (e.g., a nucleic acid having a nucleic acid sequence encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein). Host cells that can be designed to include one or more nucleic acids provided herein can be prokaryotic cells or eukaryotic cells. Examples of prokayotic cells that can be designed to include a nucleic acid provided herein include, without limitation, E. coli (e.g., Tb-1, TG-1, DH5a, XL-Blue MRF (Stratagene), SA2821, or Y1090 cells), Bacillus subtilis, Salmonella typhimurium, Serratia marcescens, or Pseudomonas (e.g., P. aerugenosa) cells. Examples of eukayotic cells that can be designed to include a nucleic acid provided herein include, without limitation, insect cells (e.g., Sf9 or Ea4 cells), yeast cells (e.g., S. cerevisiae cells), and mammalian cells (e.g., mouse, rat, hamster, monkey, or human cells). For example, VERO cells, HeLa cells, 3T3 cells, chinese hamster ovary (CHO) cells, W138 BHK cells, COS-7 cells, and MDCK cells can be designed to include a nucleic acid provided herein. Any appropriate method can be used to introduce one or more nucleic acids provided herein (e.g., a vector such as a plasmid vector or viral vector having a nucleic acid sequence encoding at least part of a binder provided herein) into a host cell. For example, calcium chloride-mediated transformation, transduction, conjugation, triparental mating, DEAE, dextran-mediated transfection, infection, membrane fusion with liposomes, high velocity bombardment with DNA-coated microprojectiles, direct microinjection into single cells, electroporation, or combinations thereof can be used to introduce a nucleic acid provided herein into a host cell (see, e.g., Sambrook et al., Molecular Biology: A Laboratory Manual, Cold Spring Harbor Laboratory, N Y (1989); Davis et al., Basic Methods in Molecular Biology (1986); and Neumann et al., EMBO J, 1:841 (1982)).
In some cases, cells such as T cells, stem cells (e.g., induced pluripotent stem cells or mesenchymal stem cells), or NK cells can be designed to express one or more nucleic acids encoding a CAR described herein. For example, a population of T cells can be infected with viral vectors designed to express nucleic acid encoding a CAR described herein (e.g., a CAR having the ability to bind to a CD66e polypeptide).
In some cases, cells such as T cells, stem cells (e.g., induced pluripotent stem cells or mesenchymal stem cells), or NK cells can be designed to express one or more nucleic acids encoding a cell engager described herein. For example, a population of T cells can be infected with viral vectors designed to express nucleic acid encoding a cell engager described herein (e.g., a cell engager having the ability to bind to a CD66e polypeptide).
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein can be produced using a method that includes (a) introducing nucleic acid encoding the polypeptide into a host cell; (b) culturing the host cell in culture medium under conditions sufficient to express the polypeptide; (c) harvesting the polypeptide from the cell or culture medium; and (d) purifying the polypeptide (e.g., to reach at least 50, 60, 70, 80, 90, 95, 97, 98, or 99 percent purity).
In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, cell engager, and/or ADC) provided herein, a nucleic acid provided herein (e.g., nucleic acid encoding an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager provided herein), a vector provided herein (e.g., a viral vector designed to express an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager provided herein), and/or a host cell provided herein (e.g., a host cell designed to express an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager provided herein) can be formulated as a pharmaceutical composition for administration to a mammal (e.g. a human) having cancer to treat that mammal. In some cases, a binder (e.g., an antibody, antigen binding fragment, antibody domain, cell engager, and/or ADC) provided herein, a nucleic acid provided herein (e.g., nucleic acid encoding an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager provided herein), a vector provided herein (e.g., a viral vector designed to express an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager provided herein), and/or a host cell provided herein (e.g., a host cell designed to express an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager provided herein) can be formulated as a pharmaceutical composition for administration to a mammal (e.g. a human) to reduce the number of cancer cells within the mammal and/or to increase the survival of the mammal suffering from cancer. For example, a binder (e.g., an antibody, antigen binding fragment, antibody domain, cell engager, and/or ADC) provided herein having the ability to bind to a CD66e polypeptide (e.g., a human CD66e polypeptide) can be formulated as a pharmaceutical composition for administration to a mammal (e.g. a human). In some cases, a pharmaceutical composition provided herein can include a pharmaceutically acceptable carrier such as a buffer, a salt, a surfactant, a sugar, a tonicity modifier, or combinations thereof as, for example, described elsewhere (Gervasi, et al., Eur. J Pharmaceutics and Biopharmaceutics, 131:8-24 (2018)). Examples of pharmaceutically acceptable carriers that can be used to make a pharmaceutical composition provided herein include, without limitation, water, lactic acid, citric acid, sodium chloride, sodium citrate, sodium succinate, sodium phosphate, a surfactant (e.g., polysorbate 20, polysorbate 80, or poloxamer 188), dextran 40, or a sugar (e.g., sorbitol, mannitol, sucrose, dextrose, or trehalose), or combinations thereof. For example, a pharmaceutical composition designed to include a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, cell engager, and/or ADC) provided herein (or a nucleic acid, a vector, or a host cell provided herein) can be formulated to include a buffer (e.g., an acetate, citrate, histidine, succinate, phosphate, or hydroxymethylaminomethane (Tris) buffer), a surfactant (e.g., polysorbate 20, polysorbate 80, or poloxamer 188), and a sugar such as sucrose. Other ingredients that can be included within a pharmaceutical composition provided herein include, without limitation, amino acids such as glycine or arginine, antioxidants such as ascorbic acid, methionine, or ethylenediaminetetraacetic acid (EDTA), anticancer agents such as enzalutamide, imanitib, gefitinib, erlotini, sunitinib, lapatinib, nilotinib, sorafenib, temsirolimus, everolimus, pazopanib, crizotinib, ruxolitinib, axitinib, bosutinib, cabozantinib, ponatinib, regorafenib, ibrutinib, trametinib, perifosine, bortezomib, carfilzomib, batimastat, ganetespib, obatoclax, navitoclax, taxol, paclitaxel, or bevacizumab, or combinations thereof. For example, a pharmaceutical composition provided herein can be formulated to include one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cells designed to express a CAR having the ability to bind to a CD66e polypeptide, one or more cell engagers, and/or one or more ADCs) provided herein in combination with one or more checkpoint inhibitors such as anti-PD-1 antibodies or PD-1 inhibitors (e.g., cemiplimab, nivolumab, pembrolizumab, JTX-4014, spartalizumab, camrelizumab, sintilimab, tislelizumab, toripalimab, dostarlimab, INCMGA00012, AMP-224, or AMP-514), anti-PD-L1 antibodies or PD-L1 inhibitors (e.g., avelumab, durvalumab, atezolizumab, KN035, CK-301, AUNP12, CA-170, or BMS-986189), and/or anti-CTLA-4 antibodies (e.g., ipilimumab).
In some cases, when a pharmaceutical composition is formulated to include one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cells designed to express a CAR having the ability to bind to a CD66e polypeptide, one or more cell engagers, and/or one or more ADCs) provided herein, any appropriate concentration of the binder can be used. For example, a pharmaceutical composition provided herein can be formulated to be a liquid that includes from about 1 mg to about 500 mg (e.g., from about 1 mg to about 500 mg, from about 10 mg to about 500 mg, from about 50 mg to about 500 mg, from about 100 mg to about 500 mg, from about 0.5 mg to about 250 mg, from about 0.5 mg to about 150 mg, from about 0.5 mg to about 100 mg, from about 0.5 mg to about 50 mg, from about 1 mg to about 300 mg, from about 2 mg to about 200 mg, from about 10 mg to about 300 mg, from about 25 mg to about 300 mg, from about 50 mg to about 150 mg, or from about 150 mg to about 300 mg) of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR+ cell population, cell engager, and/or ADC) provided herein per mL. In another example, a pharmaceutical composition provided herein can be formulated to be a solid or semi-solid that includes from about 0.5 mg to about 500 mg (e.g., from about 1 mg to about 500 mg, from about 10 mg to about 500 mg, from about 50 mg to about 500 mg, from about 100 mg to about 500 mg, from about 0.5 mg to about 250 mg, from about 0.5 mg to about 150 mg, from about 0.5 mg to about 100 mg, from about 0.5 mg to about 50 mg, from about 1 mg to about 300 mg, from about 10 mg to about 300 mg, from about 25 mg to about 300 mg, from about 50 mg to about 150 mg, or from about 150 mg to about 300 mg) of a binder (e.g., an antibody, antigen binding fragment, antibody domain, cell engager, and/or ADC) provided herein. In some cases, a pharmaceutical composition containing a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be formulated as a dosage form with a titer of the binder being from about 1×105 to about 1×1012 (e.g., from about 1×105 to about 1×1010, from about 1×105 to about 1×108, from about 1×106 to about 1×1012, from about 1×106 to about 1×1012, from about 1×108 to about 1×1012, from about 1×109 to about 1×1012, from about 1×106 to about 1×1011, or from about 1×107 to about 1×1010).
In some cases, when a pharmaceutical composition is formulated to include one or more nucleic acids (e.g., vectors such as viral vectors) encoding at least part of a binder (e.g., an antibody, antigen binding fragment, antibody domain, CAR, and/or cell engager) provided herein, any appropriate concentration of the nucleic acid can be used. For example, a pharmaceutical composition provided herein can be formulated to be a liquid that includes from about 0.5 mg to about 500 mg (e.g., from about 1 mg to about 500 mg, from about 10 mg to about 500 mg, from about 50 mg to about 500 mg, from about 100 mg to about 500 mg, from about 0.5 mg to about 250 mg, from about 0.5 mg to about 150 mg, from about 0.5 mg to about 100 mg, from about 0.5 mg to about 50 mg, from about 1 mg to about 300 mg, from about 2 mg to about 200 mg, from about 10 mg to about 300 mg, from about 25 mg to about 300 mg, from about 50 mg to about 150 mg, or from about 150 mg to about 300 mg) of a nucleic acid provided herein per mL. In another example, a pharmaceutical composition provided herein can be formulated to be a solid or semi-solid that includes from about 0.5 mg to about 500 mg (e.g., from about 1 mg to about 500 mg, from about 10 mg to about 500 mg, from about 50 mg to about 500 mg, from about 100 mg to about 500 mg, from about 0.5 mg to about 250 mg, from about 0.5 mg to about 150 mg, from about 0.5 mg to about 100 mg, from about 0.5 mg to about 50 mg, from about 1 mg to about 300 mg, from about 10 mg to about 300 mg, from about 25 mg to about 300 mg, from about 50 mg to about 150 mg, or from about 150 mg to about 300 mg) of a nucleic acid provided herein.
In some cases, a pharmaceutical composition designed to include a binder (e.g., an antibody, antigen binding fragment, antibody domain, cell engager, and/or ADC) provided herein can be formulated to include one or more agents capable of reducing aggregation of the binder when formulated. Examples of such agents that can be used as described herein include, without limitation, methionine, arginine, lysine, aspartic acid, glycine, glutamic acid, and combinations thereof. In some cases, one or more of these amino acids can be included within the formulation at a concentration from about 0.5 mM to about 145 mM (e.g., from about 1 mM to about 145 mM, from about 10 mM to about 145 mM, from about 100 mM to about 145 mM, from about 0.5 mM to about 125 mM, from about 0.5 mM to about 100 mM, from about 0.5 mM to about 75 mM, or from about 10 mM to about 100 mM).
A pharmaceutical composition provided herein can be in any appropriate form. For example, a pharmaceutical composition provided herein can designed to be a liquid, a semi-solid, or a solid. In some cases, a pharmaceutical composition provided herein can be a liquid solution (e.g., an injectable and/or infusible solution), a dispersion, a suspension, a tablet, a pill, a powder, a microemulsion, a liposome, or a suppository. In some cases, a pharmaceutical composition provided herein can be lyophilized. In some cases, a pharmaceutical composition provided herein (e.g., a pharmaceutical composition that includes one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein can be formulated with a carrier or coating designed to protect against rapid release. For example, a pharmaceutical composition provided herein can be formulated as a controlled release formulation or as a regulated release formulation as described elsewhere (U.S. Patent Application Publication Nos. 2019/0241667; 2019/0233522; and 2019/0233498).
This document also provides methods for administering a composition (e.g., a pharmaceutical composition provided herein) containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) to a mammal (e.g., a human). For example, a composition (e.g., a pharmaceutical composition provided herein) containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, and/or host cell (e.g., CAR+ cells) provided herein) can be administered to a mammal (e.g., a human) having cancer to treat that mammal. In some cases, a composition (e.g., a pharmaceutical composition provided herein) containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, and/or host cell (e.g., CAR+ cells) provided herein) can be administered to a mammal (e.g. a human) to reduce the number of cancer cells within the mammal and/or to increase the survival of the mammal suffering from cancer.
Any appropriate cancer can be treated using a composition (e.g., a pharmaceutical composition provided herein) containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein). For example, a mammal (e.g., a human) having cancer can be treated by administering a composition (e.g., a pharmaceutical composition) containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein to that mammal. Examples of cancers that can be treated as described herein include, without limitation, lung cancer, prostate cancer, esophageal cancer, stomach cancer, colorectal cancer, liver cancer, vaginal cancer, cervical cancer, pancreatic cancer, and breast cancer. In some cases, a mammal (e.g., a human) having a CD66e+ cancer (e.g., a CD66e+ lung cancer, a CD66e+ prostate cancer, a CD66e+ esophageal cancer, a CD66e+ stomach cancer, a CD66e+ colorectal cancer, a CD66e+ liver cancer, a CD66e+ vaginal cancer, or a CD66e+ cervical cancer) can be administered a composition (e.g., a pharmaceutical composition) containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein to treat that mammal (e.g., to reduce the number of cancer cells within the mammal).
Any appropriate method can be used to administer a composition (e.g., a pharmaceutical composition) provided herein to a mammal (e.g., a human). For example, a composition provided herein (e.g., a pharmaceutical composition containing one or more binders provided herein such as one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs provided herein) can be administered to a mammal (e.g., a human) intravenously (e.g., via an intravenous injection or infusion), subcutaneously (e.g., via a subcutaneous injection), intraperitoneally (e.g., via an intraperitoneal injection), orally, via inhalation, or intramuscularly (e.g., via intramuscular injection). In some cases, the route and/or mode of administration of a composition (e.g., a pharmaceutical composition provided herein) can be adjusted for the mammal being treated.
In some cases, an effective amount of a composition containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) (e.g., a pharmaceutical composition provided herein) can be an amount that reduces the number of cancer cells within a mammal having cancer without producing significant toxicity to the mammal. In some cases, an effective amount of a composition containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) (e.g., a pharmaceutical composition provided herein) can be an amount that increases the survival time of a mammal having cancer as compared to a control mammal having comparable cancer and not treated with the composition. For example, an effective amount of a binder (e.g., an antibody, antigen binding fragment, antibody domain, cell engager, and/or ADC) provided herein can be from about 0.001 mg/kg to about 100 mg/kg (e.g., from about 0.001 mg/kg to about 90 mg/kg, from about 0.001 mg/kg to about 80 mg/kg, from about 0.001 mg/kg to about 70 mg/kg, from about 0.001 mg/kg to about 60 mg/kg, from about 0.001 mg/kg to about 50 mg/kg, from about 0.001 mg/kg to about 40 mg/kg, from about 0.001 mg/kg to about 30 mg/kg, from about 0.005 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 100 mg/kg, from about 0.05 mg/kg to about 100 mg/kg, from about 0.1 mg/kg to about 100 mg/kg, from about 0.5 mg/kg to about 100 mg/kg, from about 1 mg/kg to about 100 mg/kg, from about 5 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 25 mg/kg, from about 0.1 mg/kg to about 30 mg/kg, from about 0.15 mg/kg to about 25 mg/kg, from about 0.2 mg/kg to about 20 mg/kg, from about 0.5 mg/kg to about 20 mg/kg, from about 1 mg/kg to about 30 mg/kg, from about 1 mg/kg to about 25 mg/kg, from about 1 mg/kg to about 20 mg/kg, from about 2 mg/kg to about 20 mg/kg, from about 5 mg/kg to about 30 mg/kg, from about 10 mg/kg to about 30 mg/kg, from about 15 mg/kg to about 30 mg/kg, from about 20 mg/kg to about 30 mg/kg, from about 3 mg/kg to about 30 mg/kg, from about 0.5 mg/kg to about 10 mg/kg, from about 1 mg/kg to about 10 mg/kg, from about 1 mg/kg to about 5 mg/kg, or from about 1 mg/kg to about 3 mg/kg). The effective amount can remain constant or can be adjusted as a sliding scale or variable dose depending on the mammal's response to treatment. Various factors can influence the actual effective amount used for a particular application. For example, the severity of cancer when treating a mammal having cancer, the route of administration, the age and general health condition of the mammal, excipient usage, the possibility of co-usage with other therapeutic or prophylactic treatments such as use of other agents (e.g., checkpoint inhibitors), and the judgment of the treating physician may require an increase or decrease in the actual effective amount of a composition provided herein (e.g., a pharmaceutical composition containing one or more binders provided herein) that is administered.
In some cases, an effective frequency of administration of a composition containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) (e.g., a pharmaceutical composition provided herein) can be a frequency that reduces the number of cancer cells within a mammal having cancer without producing significant toxicity to the mammal. In some cases, an effective frequency of administration of a composition containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) (e.g., a pharmaceutical composition provided herein) can be a frequency that increases the survival time of a mammal having cancer as compared to a control mammal having comparable cancer and not treated with the composition. For example, an effective frequency of administration of a pharmaceutical composition provided herein such as a pharmaceutical composition containing one or more binders provided herein can be from about twice daily to about once a year (e.g., from about twice daily to about once a month, from about twice daily to about once a week, from about once daily to about once a month, or from one once daily to about once a week). In some cases, the frequency of administration of a pharmaceutical composition provided herein such as a pharmaceutical composition containing one or more binders provided herein can be daily. The frequency of administration of a pharmaceutical composition provided herein such as a pharmaceutical composition containing one or more binders provided herein can remain constant or can be variable during the duration of treatment. Various factors can influence the actual effective frequency used for a particular application. For example, the severity of the cancer, the route of administration, the age and general health condition of the mammal, excipient usage, the possibility of co-usage with other therapeutic or prophylactic treatments such as use of other agents (e.g., checkpoint inhibitors), and the judgment of the treating physician may require an increase or decrease in the actual effective frequency of administration of a composition provided herein (e.g., a pharmaceutical composition containing one or more binders provided herein).
In some cases, an effective duration of administration of a composition containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) (e.g., a pharmaceutical composition provided herein) can be a duration that reduces the number of cancer cells within a mammal without producing significant toxicity to the mammal. In some cases, an effective duration of administration of a composition containing one or more binders (e.g., one or more antibodies, one or more antigen binding fragments, one or more antibody domains, one or more cell engagers, and/or one or more ADCs) provided herein (or a nucleic acid, vector, or host cell (e.g., CAR+ cells) provided herein) (e.g., a pharmaceutical composition provided herein) can be a duration that increases the survival time of a mammal having cancer as compared to a control mammal having comparable cancer and not treated with the composition. For example, an effective duration of administration of a pharmaceutical composition provided herein such as a pharmaceutical composition containing one or more binders provided herein can vary from a single time point of administration to several weeks to several months (e.g., 4 to 12 weeks). Multiple factors can influence the actual effective duration used for a particular application. For example, the severity of the cancer, the route of administration, the age and general health condition of the mammal, excipient usage, the possibility of co-usage with other therapeutic or prophylactic treatments such as use of other agents (e.g., checkpoint inhibitors), and the judgment of the treating physician may require an increase or decrease in the actual effective duration of administration of a composition provided herein (e.g., a pharmaceutical composition containing one or more binders provided herein).
In some cases, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be used to detect the presence or absence of a CD66e polypeptide (e.g., a human CD66e polypeptide) in vitro, in situ, or in vivo (e.g., in vivo imaging within a mammal such as a human). For example, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be designed to include a label (e.g., a covalently attached radioactive, enzymatic, colorimetric, or fluorescent label). The labelled binder can be used to detect the presence or absence of a CD66e polypeptide (e.g., a human CD66e polypeptide) within a biological sample in vitro. Examples of biological samples that can be assessed using a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein include, without limitation, serum samples, plasma samples, tissue samples, biopsy samples, cell line samples, and tissue culture samples. In some cases, a biological sample that can be assessed as described herein can include mammalian body tissues and/or cells such as leukocytes, ovary tissue or cells, prostate tissue or cells, heart tissue or cells, placenta tissue or cells, pancreas tissue or cells, liver tissue or cells, spleen tissue or cells, lung tissue or cells, breast tissue or cells, head and neck tissue or cells, endometrium tissue or cells, colon tissue or cells, colorectal tissue or cells, cervix tissue or cells, stomach tissue or cells, or umbilical tissue or cells that may express a CD66e polypeptide (e.g., a human CD66e polypeptide). In some cases, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be immobilized, e.g., on a support, and retention of a CD66e polypeptide (e.g., a human CD66e polypeptide) from a biological sample on the support can be detected, and/or vice versa. In some cases, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein can be used in applications such as fluorescence polarization, microscopy, ELISA, centrifugation, chromatography, and/or cell sorting (e.g., fluorescence activated cell sorting).
In some cases, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein containing a label (e.g., a covalently attached radioactive label) can be used to detect the presence or absence of a CD66e polypeptide (e.g., a human CD66e polypeptide) within a mammal (e.g., a human). For example, a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein that is labelled (e.g., covalently labelled) with a radiolabel or an MRI detectable label can be administered to a mammal (e.g., a human), and that mammal can be assessed using a means for detecting the detectable label. In some cases, a mammal can be scanned to evaluate the location(s) of a labelled binder provided herein within the mammal. For example, the mammal can be imaged using NMR or other tomographic techniques.
Examples of labels that can be attached (e.g., covalently or non-covalently attached) to a binder (e.g., an antibody, antigen binding fragment, and/or antibody domain) provided herein include, without limitation, radiolabels such as 131I, 111In, 123I, 99mTc, 32P, 33P, 125I, 3H, 14C, and 188Rh, fluorescent labels such as fluorescein and rhodamine, nuclear magnetic resonance active labels, positron emitting isotopes detectable by a positron emission tomography (“PET”) scanner, chemiluminescers such as luciferin, and enzymatic markers such as a peroxidase or a phosphatase. In some cases, short-range radiation emitters such as isotopes detectable by short-range detector probes can be used.
The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
CD66e contains an N-terminal Ig variable-region-liken (IgV) domain and six Ig constant region-type 2-like (IgC2-like) domains, N-A1-B1-A2-B2-A3-B3 joined to a GPI-anchor to the plasma membrane. Notably, the membrane-proximal A3B3 domains are found in splice variants of CD66e in numerous cancers so they were considered potent therapeutic epitopes. Here, two Fab antibody fragments (Clones: #1 and #2;
The sequences of Clone #1 were used to make an hIgG1 that exhibited CEACAM5-dependent cytotoxic activity in ADCC assays with the NEPC cell line, NCI-H660, and the PrAd cell line, Du145 in the presence of either primary NK cells or PBMCs. Moreover, constructed third generation CARs containing an scFv having the CDRs of Clone #1 were delivered to T cells that were shown to efficiently kill CEACAM5 positive prostate cancer cells while no detectable cytotoxicity was founded in CEACAM5 negative cells. These results demonstrate an immunotherapeutic potential of Clone #1 hIgG1 for NEPC treatment with considerably low off-target toxicity.
Human immunoglobulin 1 Fc region (hIgG1 Fc) fused CEACAM5 A3B3 (residues 501-682), CEACAM5 A1B1 (residues 145-322), CEACAM5 A2B2 (residues 323-500), and CEACAM6 AB (residues 145-296) were synthesized and then cloned into pSectag2A plasmid (Invitrogen, V90020). Each plasmid DNA was complexed with PEI-Max (Polysciences, 24765-1) and supplied to culture of the Freestyle human embryonic kidney cell-line (Gibco, R79007) for the transient transfection. Seven days post-transfection, Fc-fused recombinant proteins were purified by affinity chromatography with protein A resin (Captiva, NC0997253). Elution of bound proteins to protein A was eluted by adding 50 mM Glycine buffer pH 3.0, and then storage buffer was changed to phospho-buffered saline pH 7.4 (PBS) by using PD-10 desalting column (GE, 45-000-148). Protein purity was estimated in either SDS-PAGE or size exclusion chromatography packed with Superdex 200 increase 10/300 GL (GE healthcare, 28990944). The concentration of each proteins was determined by Nano Drop spectrophotometer 2000C (Thermo, ND2000C). N-glycosylation mutants of A3B3 domain of CEACAM5 (N508Q, N529Q, N553Q, N560Q, N580Q, N612Q, N650Q, and N665Q) were constructed by site-directed mutagenesis with Q5-site directed mutagenesis kit (NEB, E0554S), and those proteins were expressed and purified in same manner for wild type of CEACAM5.
A combinatorial phage-displayed human Fab library (1×1011 clones) was constructed by grafting naturally occurring V(D)J recombination regions of heavy chain (HC) and VJ recombination regions of light chain (LC) into the IGHV3-11 and IGKV1-39 germline framework, respectively. In order to amplify complementary determining region 3 (CDR3) and J genes for HC or LC, RNA extracted from PBMCs of 50 healthy blood donors was used for cDNA synthesis with Superscript™ IV first-strand Synthesis System (Invitrogen, 18091050) and random hexamer and oligo dT primers were applied to annealing step. Incorporation of amplified CDR3 and J-genes into the selected human frameworks was performed by subsequent overlapping PCR with Q5 polymerase (NEB, M0491), and prepared insert DNA and pCAT2 plasmid (in-house plasmid, modified pCom3X) were digested with NotI and ApaI restriction enzymes. Digested insert and vector were ligated in 1:1 ratio by using T4 DNA ligase (NEB, M0202). Circularized plasmid DNA was transformed into TG1 E. coli competent cells (Lucigen, 605502), and 100 times electroporation were carried out. M13KO7 helper phage (NEB, N0315S) was amplified in TOP10F′ E. coli and then used for subsequent phage-displayed library production. For panning, phages were pre-blocked with 3% bovine serum albumin (BSA) in PBS (w/v) for 1 hour at room temperature. Blocked phages incubated with 10 nM biotinylated CEACAM5 A3B3-Fc for 1 hour at room temperature in the presence of 300 nM competitors comprising CEACAM5 A1B1-Fc, CEACAM5 A2B2-Fc, and CEACAM6 AB-Fc. Bound phages were separated by streptavidin coated magnetic beads (Invitrogen, 11-205-D) and washed 10 times with 1 mL of PBS pH 7.4 containing 0.1% Tween-20 (w/v). Elution of bound phages was conducted by adding 10 mM tris-HCl pH 8.0 containing 25 mM dithiothreitol (DTT) for 10 minutes. After three rounds of panning, binding of 192 individual clones was analyzed in ELISA and then selected clones were sequenced after plasmid rescue.
Purification of scFv, Fab, and IgG
The pCAT2 plasmid containing scFv or Fab was transformed into HB2151 E. coli competent cells, and then transformed colonies were selected in ampicillin containing LB plate (100 μg/mL final concentration) for overnight in incubator at 37° C. Next day, a colony was inoculated in liquid LB+ampicillin media and cultured in 37° C. shaking incubator. 0.1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) as final concentration was added to culture at OD600 of between 0.4-0.6 corresponding to around 4×108 cells/mL. The culture was relocated to shaking incubator set as 30° C., 200 rpm. Next day, induced E. coli cells were harvested and resuspended in 1/10 volume of periplasm extraction buffer containing polymyxin B (0.5 mg/mL in PBS pH 7.4) and then incubated on ice for an hour. Supernatant was collected then loaded into pre-packed Ni-NTA resin. Bound scFv or Fab was eluted by adding 300 mM imidazole in PBS pH 7.4 and then imidazole was removed. For IgG preparation, IgG cloned plasmid DNA was transfected to HEK239F cells, and expressed for 5-7 days post-transfection. IgGs were purified as previously described in Fc-fused antigen preparation.
Binding and specificity of scFv, Fab, or IgG to CEACAM related proteins were analyzed through indirect ELISA. Briefly, Fc-fused CEACAM5 polypeptides, CEACAM6 polypeptides, extra-cellular domain of CEACAM5 (R&D systems, 4128-CM), CEACAM6 (R&D systems, 3934-CM), or cynomolgus CEACAM5 (Sino biological, 90891-C08H) was coated on a 96 well plate (Corning, 3690) at 200 ng/well (50 μL volume) in PBS for 2 hours at room temperature. Blocking was carried out with 3% BSA in PBS for overnight at 4° C. Next day, various concentration of scFv, Fab, or IgG was treated to antigen coated plates and incubated for 1 hour at room temperature. After washing three times, anti-FLAG mouse antibody (M2 clone)-HRP conjugated (Sigma, A8592, 1:3000 dilution) or anti-human kappa goat antibody-HRP conjugated (Invitrogen, A18853, 1:3000 dilution) was treated for binding detection. Same volume of TMB (Thermo, PI34028) was added as a substrate, and then enzymatic reaction was stopped by adding of 2N sulfonic acid. The monomeric Fc fused-CD16a (Fc γRIIIa), CD64 (Fc γRIa) and CD32 (Fc γRIIa) were obtained from Prof. Wei Li (University of Pittsburgh, PA) and used for Fc gamma receptor (FcγR) binding test.
Isolation of Clone #1 Fab Specifically targeting A3B3 Domains of CEACAM5 with High Specificity
The following was performed to develop anti-CEACAM5 antibodies (e.g., fully human antibodies). Briefly, domains of CEACAM5 and CEACAM6 with fusion of human IgG1 Fc were designed and purified. A3B3 domain was regarded as an ideal epitope for targeting membrane proximal region of CEACAM5 (
Epitope Mapping of IG9 Fab with N-Linked Glycan Removal Mutants of A3B3 Domains
It was hypothesized that N-linked glycans in A3B3 domains of CEACAM5 may be involved in the binding of 1G9 Fab either directly or indirectly because the A3B3 domains have eight N-linked glycosylation motifs (N-X-S/T; X is natural 19 amino acids except for proline) at N508, N529, N553, N560, N580 in A3 domain and N612, N650, N665 in B3 domain. Those N-linked glycans may cover exposed surface of A3B3 domains. To explore the contribution of N-linked glycans to generating epitopes for 1G9 Fab, eight mutant proteins of A3B3 domains were constructed with substituted asparagine (N) to glutamine (Q) at each N-glycosylation motif. The N580Q, N612Q, N650Q, and N665Q mutant proteins were successfully purified with lowering yield, but other four mutants, N508Q, N529Q, N553Q, and N560Q, were not expressed in HEK293F (
NCI-H660, Du145, and 293T cells were purchased from ATCC. Du145 was maintained EMEM supplemented with 10% v/v FBS (Gibco) and 1% penicillin-streptomycin (P/S, Gibco). 293T was maintained DMEM supplemented with 10% FBS and 1% P/S. NCI-H660 was cultured RPMI1640 (ATCC) supplemented with 5% FBS, 1× insulin-transferrin-selenium (ITS-G Giboc), 10 nM hydrocortisone, extra 2 mM L-glutamine, and 1% P/S. Du145-CEACAM5 cells, stably expressed CEACAM5, was generated by stable infection with lentiviruses derived from the pLenti lentiviral plasmid (Origene, RC206434L3) using established methods, and were cultured in EMEM supplemented with 10% FBS, 1% P/S, and 1 μg/mL puromycin (Gibco).
Freestyle 293F cells (Thermofisher) was used for generating of CEACAM family expressing cells. Plasmids cloned each gene for human CEACAM members were transfected to the cells with PEI Max (Polysciences). Each gene for human CEACAM members with FLAG-tag at C-terminal were purchased from Origene (RC224086 for CEACAM21; RC214882 for CEACAM20; RC215478 for CEACAM18; RC224965 for CEACAM16; RC230069 for CEACAM1; RC212214 for CEACAM7; RC204740 for CEACAM8; RC202454 for CEACAM6; and RC206434 for CEACAM5).
Generation of Third Generation of CAR-T Cells Using scFv Having the CDRs of Clone #1
The DNA for a third generation of CAR encoding an scFv having the CDRs of Clone #1, a human IgG4 hinge, a CD28 transmembrane region, and costimulatory cytosolic domains of CD28, 4-1BB, and CD3 zeta was cloned into pLVX-EF1a-IRES-ZsGreen1 by EcoRI and BamHI restriction enzymes and T4 DNA ligase. For the production of lentiviral supernatant, the day before transduction, 293T cells were seeded at 4×106 cells per T75 flask. After 24 hours, the lentiviruses were generated by co-transfecting 293T cells with plasmids encoding anti-CEACAM5 CAR (8 μg), pMD.2G (2 μg), and a packaging vector psPAX2 (4 μg) using PEI-based transfection system. Supernatants were collected after 48 hours and 72 hours and filtered through a 0.45 μm membrane. Then, pan T cells (Precision for medicine) were activated by Dynabeads human T-activator CD3/CD28 (Gibco), were transduced with lentiviral supernatants with 8 μg/mL polybrene (Sigma), followed by centrifugation for 45 minutes at 800×g (no acceleration and no deceleration), and then incubated at 37° C. 24 hours later, media with viruses was changed, and T cells were expanded in the T cell media (RPMI1640 supplemented with an extra 2 mM glutamax, 10% human serum, and 1% P/S) in the presence of hIL-2 (fed every 2 days, 50 IU/mL, Miltenyi Biotec).
To determine the cell surface expression levels of CEACAM5 or CEACAM family proteins, the cells were stained with PE-conjugated anti-CEACAM5 IgG1 (Miltenyi Biotec, 130-114-217) or PE-conjugated anti-FLAG mouse antibody (Miltenyi Biotec, 130-101-576). To confirm cell surface binding of selected antibodies, cells were treated with a hIgG1 having the CDRs of Clone #1, a hIgG1 having the CDRs of Clone #2, or the Clone #1 Fab for 1 hour at 4° C. and then stained with Alexa647-conjugated goat anti-human IgG (Invitrogen, A21445) or FITC conjugated-goat anti-human kappa light chain (Invitrogen, A18854) for 0.5 hours at 4° C. For the internalization assays, cells (1×105 cells/well in 96-well plate) were treated with Alexa488-labeled antibodies for durations between 0 and 30 hours. After incubation of antibodies, cells were washed with cold PBS, and then the remained cell surface binding antibodies were analyzed using Alexa488 fluorescence. For CAR expression on anti-CEACAM5 CAR-T cells, CD4+ T or CD8+ T cells were gated using APC-conjugated anti-human CD4 antibody (ebioscience, 17-0049-42) and eFluor450-conjugated anti-human CD8 antibody (ebioscience, 48-0088-42), and CAR expression was examined using FITC-labeled recombinant Protein L (Acrobiosystems, RPL-PF141).
The LDH-Glo cytotoxicity assay kit (Promega, J2381) was used to measure ADCC or cell killing activity of anti-CEACAM5 CAR-T through release of cytosolic LDH from target cells. For ADCC, PBMCs or enriched NK cells from PBMCs as effector cells were incubated with the NCI-H660 or Du145 (1×104 cells/well in 96-well plate) as target cells at effector-to-target (E:T) ratio of 20:1 (for PBMCs) or 5:1 (for NK cells) in the presence of a hIgG1 having the CDRs of Clone #1 or a hIgG1 having the CDRs of Clone #2 for 4 hours. For cell killing activity of anti-CEACAM5 CAR-T, control T or CAR-T cells as effector cells were incubated with NCI-H660, Du145-CEACAM5, or Du145 cells as target cells at the indicated E:T ratio for 24 hours in 96-well plate. Controls conducted for the calculation of percent cytotoxicity (% cytotoxicity) were performed according to the manufacturer's instructions. % cytotoxicity with the following formula: (experimental-effector minimum-target minimum)/(target maximum-target minimum)×100.
The CellTiter-Glo Luminescent cell viability assay kit (Promega, G7571) was used to measure cell viability in the presence of the hIgG1 having the CDRs of Clone #1. Cells (5×103 cells/well in white 96-well plate) were plated and cultured for 12 hours prior to treatment with the indicated antibodies for 72 hours. Normalized % ATP values were calculated by normalizing luminescence values for vehicle-treated wells.
Cell migration was measured using transwell (8-μm pore size, Corning 3422). Cells (1×105 cells/well) were resuspended in serum-free medium and then added to the upper chamber in the presence of the hIgG1 having the CDRs of Clone #1. Lower chambers contained 10% FBS. No FBS condition was conducted as negative control. After incubation for 3 days at 37° C., cells remained at the upper surface of the membrane were removed using a swab, while the cells that migrated to the lower membrane surface were fixed and stained with 0.5% crystal violet in 20% methanol solution. Cells migrating through the filter were quantified by dissolving the stained cells using 10% acetic acid solution and then absorbance was measured at 590 nm. Normalized % of migration values were calculated by normalizing absorbance values for 10% FBS-treated wells in absence of antibody.
Control T cells and CAR-T cells were plated in 24-well plate (2×104 cells/well) and co-cultured with target cells at the indicated E:T ratio for 48 hours at 37° C. Subsequently, cytokine levels of supernatants were analyzed using human IFNγ, TNFα, IL-2, IL-4, IL-13, and GM-CSF ELISA kit (Thermofisher) respectively, following the manufacturer's instructions.
IG9 hIgG1 Induces CEACAM5-Dependent ADCC
During the characterization of 1G9, Clone #2 Fab (also referred to as 1C1 Fab) also was isolated. The 1C1 hIgG1 specifically bound to A3B3 domains of CEACAM5 like 1G9 hIgG1 (
1G9 hIgG1 Inhibits Cell Migration and Invasion
As CEACAM5 play a role in regulation of cell adhesion and migration as cell adhesion molecule, the role of 1G9 hIgG1 in prostate cancer cell migration was explored using transwell assay. The NCI-H660 and Du145-CEACAM5 cells exhibited impaired migration by treatment of 1G9 hIgG1, in a dose-dependent manner, compared with serum-treated cells while no migration effects of 1G9 hIgG1 were observed in CEACAM5-negative Du145 cells (
Based on the epitope mapping and limited internalization of hIgG1 1G9, it was concluded that the 1G9 antibody could be used for CAR-T cell therapy. Lentiviral 2nd and 3rd generation anti-CEACAM5 CAR constructs encoding a single chain variable fragment (scFv) derived from 1G9, a transmembrane domain, and a costimulatory intracellular domain as shown in
To determine the cytotoxicity of anti-CEACAM5 CAR-T cells for target cells in vitro, anti-CEACAM5 CAR-T cells were co-cultured with CEACAM5-positive NCI-H660 and Du145-CEACAM5, at the E:T ratios of 1:4, 1:2, 1:1, 2:1, 4:1 and 8:1 for 24 hours. The cytotoxicity (%) of 2nd and 3rd generation CAR-T cells against NCI-H660 cells was higher than that of the control T cell group at every E:T ratio. The 3rd generation CAR-T cells exhibited more potent cytotoxicity compared to the 2nd generation CAR-T cells (
For evaluation of hIgG1 1G9, Du145 and Du145-CEACAM5 cells (1×107 cell/mice) in 200 μL of a 1:1 mixture of PBS/Matrigel (BD Biosciences, 354234) were injected subcutaneously (s.c.) into the right flank of Balb/c scid mice (6-8 weeks old, male, The Jackson Laboratory). When the tumor volume reached approximately 200 mm3, mice were randomized, and hIgG1 1G9 (20 mg/kg or 5 mg/kg) or vehicle (buffer control) were intraperitoneally administered twice per week. For validation of CAR-T, NOD-scid IL2Rgnull mice (NSG mice, 6-8 weeks old, male, The Jackson Laboratory) were engrafted s.c. (right flank) with Du145 and Du145-CEACAM5 (1×107 cells/mice) in 200 μL of a 1:1 mixture of PBS/Matrigel. When the tumors were 150 mm3, mice were treated with control T cells or CAR-T cells (5×106 cells/mice) every 4 days, two times, via tail vein. Tumor dimensions were measured with caliper, and tumor volume was calculated by the formula V=1/2×length×(width)2. Animals were euthanized when the tumor volume reached >1.0 cm3.
Anti-CEACAM5 hIgG1 IG9 and CAR-T Cells Inhibited Growth of CEACAM5-Positive Prostate Cancer Xenografts
To evaluate the cytotoxic potential of hIgG1 1G9 in vivo, mouse xenograft models of Du145 and Du145-CEACAM5 were used. Mice bearing approximately 200 mm3 tumors were treated with hIgG1 1G9 at 20 or 5 mg/kg. hIgG1 1G9 significantly slowed the growth of Du145-CEACAM5 tumor (
The cytotoxicity of anti-CEACAM5 CAR-T cells also was investigated in mice using xenograft models. NSG mice were s.c. implanted with Du145 and Du145-CEACAM5 cells, and control T cells or anti-CEACAM5 CAR-T cells were intravenously injected into mice via tail vein two times. Anti-CEACAM5 CAR-T cell-treated mice suppressed tumor growth and had longer survival compared to control T cell-treated mice in Du145-CEACAM5 tumor, but not Du145 tumor (
The heavy and light variable domains of the Fab's of Clones #1 and #2 along with an anti-NKG2A are used to create vectors designed to express BiKEs (BiKE #1 and BiKE #2) having the ability to bind to CD66e polypeptides and NKG2A polypeptides.
A synthesized gene for digested gene for anti-CEA×NKG2A BiKE is digested by NotI and NheI restriction enzymes and then is ligated into pCAT2 vector by T4 DNA ligase. Re-circularized plasmid DNA is transformed into HB2151 E. coli competent cells, and then transformants are selected in ampicillin containing LB plate (100 μg/mL final concentration) for overnight in incubator at 37° C. Next day, a colony is inoculated in liquid LB+ampicillin media and is cultured in 37° C. shaking incubator until mid-log growth phase. At OD600 of between 0.4˜0.6, 0.1 mM of isopropyl 3-D-1-thiogalactopyranoside (IPTG) is added to the culture, and it is continued to grow on shaking incubator at 30° C. and 200 rpm. Next day, induced E. coli cells are harvested by centrifugation at 6,000 g for 10 minutes. The cell pellet is resuspended in 1/10 volume of periplasm extraction buffer containing polymyxin B (0.5 mg/mL in PBS pH 7.4) and is then incubated on ice for an hour. The supernatant is collected by centrifugation at 12,000 g for 20 minutes. Filtered supernatant is loaded into a disposable column, which is pre-packed with Ni-NTA resin. After loading, the resin is washed with 5-bed volume of 30 mM imidazole in PBS pH 7.4, then Bound BiKE molecule is eluted by adding 300 mM imidazole in PBS pH 7.4. The remaining imidazole is removed through PD-10 desalting column, pre-packed with PBS pH 7.4.
Embodiment 1. An antibody comprising:
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 63/158,205, filed Mar. 8, 2021. The disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2022/019375 | 3/8/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63158205 | Mar 2021 | US |