Molten metal pump components

Information

  • Patent Grant
  • 7470392
  • Patent Number
    7,470,392
  • Date Filed
    Wednesday, February 4, 2004
    20 years ago
  • Date Issued
    Tuesday, December 30, 2008
    16 years ago
  • Inventors
  • Examiners
    • Kastler; Scott
    Agents
    • Rogers; David E.
    • Squire, Sanders & Dempsey L.L.P.
Abstract
Improved components for a molten metal pump include a coupling for connecting a rotor shaft to a motor shaft, a rotor shaft and a rotor. The rotor shaft has a first end and a second end wherein the first end optionally has a vertical keyway formed in the outer surface of the shaft. The second end optionally has flat, shallow threads. The coupling can be one-piece or multi-piece, includes a cavity for receiving the first end of the rotor shaft and, if the first end of the rotor shaft has a keyway, the coupling includes a projection in the cavity for being received at least partially in the keyway. The rotor includes a connective portion that connects to the second end of the rotor shaft. If the second end of the rotor shaft includes flat, shallow threads, the connective portion is essentially a bore having flat, shallow threads configured to receive the second end of the rotor shaft. Optionally, the first end of the rotor shaft may have flat, shallow threads in which case the coupling would have a cavity that receives the first end of the rotor shaft, wherein the cavity has flat, shallow threads.
Description
FIELD OF THE INVENTION

The invention relates to components used in molten metal pumps, particularly a rotor shaft, a rotor shaft coupling and a connective portion on a rotor to connect to a rotor shaft. The components are designed to facilitate connections while alleviating breakage of the components.


BACKGROUND OF THE INVENTION

As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, freon, and helium, which are released into molten metal.


Known pumps for pumping molten metal (also called “molten-metal pumps”) include a pump base (also called a housing or casing), one or more inlets to allow molten metal to enter a pump chamber (an inlet is usually an opening in the pump base that communicates with the pump chamber), a pump chamber, which is an open area formed within the pump base, and a discharge, which is a channel or conduit communicating with the pump chamber (in an axial pump the pump chamber and discharge may be the same structure or different areas of the same structure) leading from the pump chamber to the molten metal bath in which the pump base is submerged. A rotor, also called an impeller, is mounted in the pump chamber and is connected to a drive shaft. The drive shaft is typically a motor shaft coupled to a rotor shaft, wherein the motor shaft has two ends, one end being connected to a motor and the other end being coupled to the rotor shaft. The rotor shaft also has two ends, wherein one end is coupled to the motor shaft and the other end is connected to the rotor. Often, the rotor shaft is comprised of graphite, the motor shaft is comprised of steel, and these two shafts are coupled by a coupling, which is usually comprised of steel.


As the motor turns the drive shaft, the drive shaft turns the rotor and the rotor pushes molten metal out of the pump chamber, through the discharge, which may be an axial or tangential discharge, and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the rotor pushes molten metal out of the pump chamber.


Molten metal pump casings and rotors usually employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber (such as rings at the inlet (which is usually the top of the pump chamber and bottom of the pump chamber) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump chamber wall, during pump operation. A known bearing system is described in U.S. Pat. No. 5,203,681 to Cooper, the disclosure of which is incorporated herein by reference. As discussed in U.S. Pat. Nos. 5,591,243 and 6,093,000, each to Cooper, the disclosures of which are incorporated herein by reference, bearing rings can cause various operational and shipping problems and U.S. Pat. No. 6,093,000 discloses rigid coupling designs and a monolithic rotor to help alleviate this problem. Further, U.S. Pat. No. 2,948,524to Sweeney et al., U.S. Pat. No. 4,169,584 to Mangalick, U.S. Pat. No. 5,203,681 to Cooper and U.S. Pat. No. 6,123,523 to Cooper (the disclosures of the afore-mentioned patents to Cooper, insofar as such disclosures are not inconsistent with the teachings of this application, are incorporated herein by reference) all disclose molten metal pumps. Furthermore, copending U.S. patent application Ser. No. 10/773,102 to Paul V. Cooper, filed on Feb. 4, 2004 and entitled “Pump With Rotating Inlet”discloses, among other things, a pump having an inlet and rotor structure (or other displacement structure) that rotate together as the pump operates in order to alleviate jamming. The disclosure of this copending application, insofar as such disclosures are not inconsistent with the teachings of this application, is incorporated herein by reference.


The materials forming the components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.


Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Most often, circulation pumps are used in a reverbatory furnace having an external well. The well is usually an extension of a charging well where scrap metal is charged (i.e., added).


Transfer pumps are generally used to transfer molten metal from the external well of a reverbatory furnace to a different location such as a ladle or another furnace. Examples of transfer pumps are disclosed in U.S. Pat. No. 6,345,964 B1 to Cooper, the disclosure of which, insofar as such disclosures are not inconsistent with the teachings of this application, is incorporated herein by reference, and U.S. Pat. No. 5,203,681.


Gas-release pumps, such as gas-injection pumps, circulate molten metal while releasing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium, from the molten metal. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of these purposes or for any other application for which it is desirable to introduce gas into molten metal. Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second submerged in the molten metal bath. Gas is introduced into the first end and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where it enters the pump chamber. A system for releasing gas into a pump chamber is disclosed in U.S. Pat. No. 6,123,523 to Cooper. Another gas-release pump is disclosed in a co-pending U.S. patent application filed on Feb. 4, 2004 and entitled “System for Releasing Gas Into Molten Metal” to Paul V. Cooper, the disclosure of which that is not inconsistent with the teachings of this application is incorporated herein by reference.


A problem with known molten metal pumps is that machining the graphite components, such as the rotor and rotor shaft, can create weak points that may break during operation. For example, it is known to machine threads into an end of a rotor shaft in order for the end to be received in the threaded bore of a coupling so that the coupling (connected to a motor shaft at the end opposite the rotor shaft) can drive the rotor shaft. The threads formed in the end of the rotor shaft are typically pointed and create weak areas that can cause the rotor shaft to break during operation. A similar type of threaded connection is often used to connect the rotor shaft to the rotor. Further, it is known to machine an end of the rotor shaft to create opposing flat surfaces that are received in the coupling. Removing this material from the end of the rotor shaft also weakens the shaft and can cause breakage.


SUMMARY OF THE INVENTION

The present invention includes improved rotor shafts, and a coupling and rotor that can be used with one or more of the improved rotor shafts. One rotor shaft according to the invention has a first end for connecting to a coupling and a second end for connecting to a rotor. The first end has an outer surface, preferably having a generally annular outer wall, and a vertical keyway formed in the outer surface. The first end is received in a cavity of a coupling wherein the cavity includes a projection that is received at least partially in the keyway and the projection applies driving force to the rotor shaft as the coupling turns.


Another rotor shaft according to the invention has a second end including flat, shallow threads, rather than threads that end in a point (also referred to herein as “pointed threads”). This shaft is used with a rotor having a connective portion, wherein the connective portion is a bore that also includes flat, shallow threads and the second end of the rotor shaft is received in the connective portion.


A rotor shaft according to the invention may also have both a first end and a second end as described above. Further, a rotor shaft according to the invention may have a first end with shallow, flat threads that is used with a coupling having shallow, flat threads to receive the first end.


Also disclosed herein are a coupling and rotor that may be used with one or more rotor shafts according to the invention and pumps including one or more of the improved components.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a perspective view of a pump for pumping molten metal.



FIG. 1
a is a perspective view of the pump base of the pump of FIG. 1.



FIG. 2 is a side view of a rotor shaft according to the invention.



FIG. 3 is a perspective view of one end of the rotor shaft of FIG. 2 showing a keyway.



FIG. 4 is side view of the end of the rotor shaft shown in FIG. 3.



FIG. 5 is a side view of the end of the rotor shaft shown in FIGS. 3 and 4, wherein the rotor shaft has been rotated to show a through bolt hole.



FIG. 6 is a side view of the end of the rotor shaft shown in FIG. 2, wherein the end is opposite the end shown in FIGS. 3-5.



FIG. 7 is a side view of a coupling according to the invention.



FIG. 8 is a bottom, perspective view of the coupling of FIG. 7 as seen from the vantage of arrow A on FIG. 7.



FIG. 9 is a close up view of the coupling of FIG. 8.



FIG. 10 is a device that may be used as a rotor in the practice of the invention.



FIG. 11 is a cross-sectional view of the device of FIG. 10 taken along line B-B.



FIG. 12 is a partial, perspective view of the cross-section of FIG. 11.



FIG. 13 is a partial, top view of the cross-section of FIG. 11.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring now to the drawing where the purpose is to illustrate and describe different embodiments of the invention, and not to limit same, FIG. 1 shows a molten metal pump. During operation, Pump 20 is usually positioned in a molten metal bath B in a pump well, which is normally part of the open well of a reverbatory furnace.


The components of pump 20 that are exposed to the molten metal are preferably formed of structural refractory materials, which are resistant to degradation in the molten metal. Carbonaceous refractory materials, such as carbon of a dense or structural type, including graphite, graphitized carbon, clay-bonded graphite, carbon-bonded graphite, or the like have all been found to be most suitable because of cost and ease of machining. Such components may be made by mixing ground graphite with a fine clay binder, forming the non-coated component and baking, and may be glazed or unglazed. In addition, components made of carbonaceous refractory materials may be treated with one or more chemicals to make the components more resistant to oxidation. Oxidation and erosion treatments for graphite parts are practiced commercially, and graphite so treated can be obtained from sources known to those skilled in the art.


Pump 20 can be any structure or device for pumping or otherwise conveying molten metal, such as one of the pumps disclosed in U.S. Pat. No. 5,203,681 to Cooper, copending U.S. patent application to Cooper entitled “Pump with Rotating Inlet” or copending U.S. patent application to Cooper entitled “System for Releasing Gas Into Molten Metal.” The invention could also use an axial pump having an axial, rather than tangential, discharge. Preferred pump 20 has a pump base 24 for being submersed in a molten metal bath. Pump base 24 preferably includes a generally nonvolute pump chamber 26, such as a cylindrical pump chamber or what has been called a “cut” volute, although pump base 24 may have any shape pump chamber suitable of being used, including a volute-shaped chamber. Chamber 26 may be constructed to have only one opening, either in its top or bottom, if a tangential discharge is used, since only one opening is required to introduce molten metal into pump chamber 26. Generally, pump chamber 24 has two coaxial openings of the same diameter and usually one is blocked by a flow blocking plate mounted on the bottom of, or formed as part of, a device or rotor 100. (In the context of this application, “rotor” refers to any rotor that may be used to displace molten metal, and includes a device having a rotating inlet structure).


As shown in FIG. 1a, chamber 26 includes a top opening 28, bottom opening 29, and wall 31. Base 24 further includes a tangential discharge 30 (although another type of discharge, such as an axial discharge may be used) in fluid communication with chamber 26. Base 24 has sides 112, 114, 116, 118 and 120 and atop surface 110. The top portion of wall 31 is machined to receive a bearing surface, which is not yet mounted to wall 31 in this figure. The bearing surface is typically comprised of ceramic and cemented to wall 31.


One or more support posts 34 connect base 24 to a superstructure 36 of pump 20 thus supporting superstructure 36, although any structure or structures capable of supporting superstructure 36 may be used. Additionally, pump 20 could be constructed so there is no physical connection between the base and the superstructure, wherein the superstructure is independently supported. The motor, drive shaft and rotor could be suspended without a superstructure, wherein they are supported, directly or indirectly, to a structure independent of the pump base.


In the preferred embodiment, post clamps 35 secure posts 34 to superstructure 36. A preferred post clamp and preferred support posts are disclosed in a copending application entitled “Support Post System For Molten Metal Pump,” invented by Paul V. Cooper, and filed on Feb. 4, 2004, the disclosure of which is incorporated herein by reference. However, any system or device for securing posts to superstructure 36 may be used.


A motor 40, which can be any structure, system or device suitable for driving pump 20, but is preferably an electric or pneumatic motor, is positioned on superstructure 36 and is connected to an end of a drive shaft 42. A drive shaft 42 can be any structure suitable for rotating an impeller, and preferably comprises a motor shaft (not shown) coupled to a rotor shaft. The motor shaft has a first end and a second end, wherein the first end of the motor shaft connects to motor 40 and the second end of the motor shaft connects to the coupling. Rotor shaft 44 has a first end and a second end, wherein the first end is connected to the coupling and the second end is connected to device 100 or to an impeller according to the invention.


The preferred rotor is device 100 as disclosed in the previously-described copending application entitled “Pump with Rotating Inlet.”


Rotor shaft 44, best seen in FIGS. 1-6, has an annular outer surface 46, is preferably comprised of graphite, although any shape, size and material suitable for use in a molten metal pump may be used, has a first end 48 and a second end 50. First end 48 preferably includes a vertically extending keyway 52 suitable for transferring driving force to rotor shaft 44. Keyway 52 is preferably vertical, has a width of about ¾″ and a depth of about ⅜″ and a length of about 4″. Keyway 52 is preferably formed on a milling machine using a ¾″ diameter bit or tool. As used herein with respect to keyway 52, the term “vertical” or “vertically-extending” means any keyway parallel to longitudinal axis Y of shaft 44 or having an angle up to 45 degrees from being parallel with axis Y. Moreover, any width, depth and length keyway may be used that is capable of supplying adequate rotational force to shaft 44. Keyway 52, however, should not have a depth greater than ⅓ the diameter of shaft 44 nor should it have a width greater than about 3″, because keyway 52 should not significantly weaken shaft 44.


Shaft 44 may also include multiple keyways, in which case the dimensions of each of the keyways need be sufficient to provide, in the aggregate, adequate driving force to rotor shaft 44. Any rotor shaft described or claimed herein that has “a keyway” refers to a rotor shaft having at least one keyway.


A through-bolt hole 53 is included at end 48 of rotor shaft 44. Hole 53 is preferably ½″ in diameter, although any suitable diameter may be used. The purpose of through-bolt hole 53 is to receive a bolt (not shown) that locates rotor shaft 44 in the proper location relative pump base 26 and any suitable structure that provides this function may be used.


Rotor shaft 44 has an optional ceramic sleeve 56, which helps to prevent shaft 44 from being broken.


Shaft 44 also has a second end 50 that includes shallow, flat threads 54. The preferred threads on shaft 54 (and the preferred threads on rotor 100) preferably have a width W of about 0.495″ and a height X of about 0.100″ and the grooves that receive the threads have a width W1 of about 0.505″ and are about 0.005″-0.010″ deeper than the height X of the thread. The threads thus have a spacing of about one thread per inch. The threads preferably are flat, are not tapered outward and second end 50 preferably, but not necessarily, has a tapered portion that helps to properly locate end 50 in connective portion 110 of rotor 100, do not end in a point, which further helps to alleviate breakage.


A preferred coupling 200 is made of steel, although any suitable material may be used, has a first coupling member 202 for receiving and being connected to an end of motor shaft 40 and member 202 may be any structure suitable for this purpose, although it is preferred that the connection is made using one or more set screws or bolts (not shown) that are threaded through openings 203. A second coupling member 204 is preferably cylindrical and includes a cavity 206 for receiving first end 48 of rotor shaft 44. Cavity 206 preferably has an annular inner wall 208 and apertures 210 though which a through bolt (not shown) is passed. A projection 212 is preferably steel and is dimensioned to be received at least partially in keyway 52 such that it can provide driving force to rotor shaft 44. In this embodiment, projection 212 is a ¾″ diameter steel rod embedded approximately halfway in to annular wall 206, and is about 3″-4″ in length. Projection 212 may be attached or connected to member 204 in any suitable manner, such as by welding. Projection 212 applies driving force to rotor shaft 44 as coupling 200 turns.


Rotor 100, shown in FIGS. 10-13, has a connective portion 110 that includes a threaded bore 112 for receiving end 50. Bore 112 includes flat, shallow threads 112 that mate with threads 54 of end 50. Any rotor design, however, having a suitable connective portion may be utilized.


Alternatively, a shaft according to the invention may have a first end including flat, shallow threads for connecting to a coupling. In that case, the coupling would have a cavity for receiving the first end of the rotor shaft wherein the cavity would include flat, shallow threads that would mate with the threads on the first end of the rotor shaft. Moreover, the first end of the rotor shaft may have a keyway and some threads.


Alternatively, a shaft according to the invention may have just a first end with flat, shallow threads, just a second end with flat, shallow threads or just a first end with a keyway, or a first end with flat, shallow threads and a second end with flat, shallow threads.


Having thus described different embodiments of the invention, other variations and embodiments that do not depart from the spirit of the invention will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired product.

Claims
  • 1. A molten metal pump comprising: a motor;a drive shaft comprising a motor shaft coupled to a rotor shaft, the rotor shaft having a first end and a second end wherein the first end has an outer surface and a keyway, the keyway comprising a groove formed in the outer surface;a coupling having a first coupling member for coupling to the motor shaft and a second coupling member for connecting to the rotor shaft, the second coupling member having a projection that is removably received in the keyway;a pump base having a pump chamber and a discharge; anda rotor positioned at least partially in the pump chamber, the second end of the rotor shaft received in the connective portion.
  • 2. The pump according to claim 1 wherein the rotor shaft is comprised of graphite.
  • 3. The pump according to claim 1 wherein the coupling is comprised of steel.
  • 4. The pump according to claim 1 wherein the pump is a gas-release pump and includes a gas-release conduit attached to the discharge.
  • 5. The pump according to claim 1 wherein the pump is a gas-release pump and includes a metal-transfer conduit attached to the discharge and a gas-release conduit attached to the metal-transfer conduit.
  • 6. The pump according to claim 1 wherein the pump is a transfer pump and includes a metal-transfer conduit attached to the discharge.
  • 7. The pump according to claim 1 wherein the projection is substantially the same length as the keyway.
  • 8. The pump according to claim 1 wherein the rotor includes a connective portion having flat, shallow threads, and the second end of the shaft has flat, shallow threads.
  • 9. The pump according to claim 1 wherein the keyway has a width of ¾″.
  • 10. The pump according to claim 1 wherein the keyway has a depth of ⅜″.
  • 11. The pump according to claim 1 wherein the keyway is 4″ long.
  • 12. The pump according to claim 1 wherein the keyway is vertical.
  • 13. The pump according to claim 1 wherein the rotor shaft has a diameter and the keyway has a depth equal to or less than ⅓ of the diameter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority under 35 U.S.C. §§ 119 and 120 to, U.S. patent application Ser. No. 10/619,405, filed on Jul. 14, 2003 still pending, by Paul V. Cooper, and U.S. patent application Ser. No. 10/620,318, filed on Jul. 14, 2003 still pending, by Paul V. Cooper.

US Referenced Citations (334)
Number Name Date Kind
209219 Bookwalter Oct 1878 A
251104 Finch Dec 1881 A
364804 Cole Jun 1887 A
506572 Wagener Oct 1893 A
585188 Davis Jun 1897 A
898499 O'Donnell Sep 1908 A
1100475 Franckaerts Jun 1914 A
1331997 Neal Feb 1920 A
1454967 Gill May 1923 A
1518501 Gill Dec 1924 A
1522765 Wilke Jan 1925 A
1526851 Hall Feb 1925 A
1669668 Marshall May 1928 A
1673594 Schmidt Jun 1928 A
1717969 Goodner Jun 1929 A
1896201 Sterner-Rainer Feb 1933 A
2038221 Kagi Apr 1936 A
2280979 Rocke Apr 1942 A
2290961 Heuer Jul 1942 A
2488447 Tangen et al. Nov 1949 A
2515478 Tooley et al. Jul 1950 A
2528210 Stewart Oct 1950 A
2566892 Jacobs Sep 1951 A
2677609 Moore et al. May 1954 A
2698583 House et al. Jan 1955 A
2787873 Hadley Apr 1957 A
2808782 Thompson et al. Oct 1957 A
2821472 Peterson et al. Jan 1958 A
2832292 Edwards Apr 1958 A
2865618 Abell Dec 1958 A
2901677 Chessman et al. Aug 1959 A
2948524 Sweeney et al. Aug 1960 A
2978885 Davison Apr 1961 A
2984524 Franzen May 1961 A
2987885 Hodge Jun 1961 A
3010402 King Nov 1961 A
3048384 Sweeney et al. Aug 1962 A
3070393 Silverberg et al. Dec 1962 A
3092030 Wunder Jun 1963 A
3227547 Szekely Jan 1966 A
3244109 Barske Apr 1966 A
3251676 Johnson May 1966 A
3255702 Gehrm Jun 1966 A
3272619 Sweeney et al. Sep 1966 A
3289473 Louda Dec 1966 A
3291473 Sweeney et al. Dec 1966 A
3400923 Howie et al. Sep 1968 A
3417929 Secrest et al. Dec 1968 A
3459133 Scheffler Aug 1969 A
3459346 Tinnes Aug 1969 A
3487805 Satterthwaite Jan 1970 A
3512762 Umbricht May 1970 A
3512788 Kilbane May 1970 A
3575525 Fox et al. Apr 1971 A
3618917 Fredrikson Nov 1971 A
3650730 Derham et al. Mar 1972 A
3689048 Foulard et al. Sep 1972 A
3715112 Carbonnel Feb 1973 A
3743263 Szekely Jul 1973 A
3743500 Foulard et al. Jul 1973 A
3753690 Emley et al. Aug 1973 A
3759635 Carter et al. Sep 1973 A
3767382 Bruno et al. Oct 1973 A
3776660 Anderson et al. Dec 1973 A
3785632 Kraemer et al. Jan 1974 A
3814400 Seki Jun 1974 A
3824042 Barnes et al. Jul 1974 A
3836280 Koch Sep 1974 A
3839019 Bruno et al. Oct 1974 A
3871872 Downing et al. Mar 1975 A
3873305 Claxton et al. Mar 1975 A
3886992 Maas et al. Jun 1975 A
3915694 Ando Oct 1975 A
3954134 Maas et al. May 1976 A
3961778 Carbonnel et al. Jun 1976 A
3966456 Ellenbaum et al. Jun 1976 A
3972709 Chin et al. Aug 1976 A
3984234 Claxton et al. Oct 1976 A
3985000 Hartz Oct 1976 A
3997336 van Linden et al. Dec 1976 A
4003560 Carbonnel Jan 1977 A
4018598 Markus Apr 1977 A
4052199 Mangalick Oct 1977 A
4055390 Young Oct 1977 A
4068965 Lichti Jan 1978 A
4091970 Kimiyama et al. May 1978 A
4119141 Thut et al. Oct 1978 A
4126360 Miller et al. Nov 1978 A
4128415 van Linden et al. Dec 1978 A
4144562 Cooper Mar 1979 A
4169584 Mangalick Oct 1979 A
4192011 Cooper et al. Mar 1980 A
4213091 Cooper Jul 1980 A
4213176 Cooper Jul 1980 A
4219882 Cooper et al. Aug 1980 A
4244423 Thut et al. Jan 1981 A
4286985 van Linden et al. Sep 1981 A
4322245 Claxton Mar 1982 A
4347041 Cooper Aug 1982 A
4351514 Koch Sep 1982 A
4360314 Pennell Nov 1982 A
4370096 Church Jan 1983 A
4372541 Bocourt et al. Feb 1983 A
4375937 Cooper Mar 1983 A
4392888 Eckert et al. Jul 1983 A
4410299 Shimoyama Oct 1983 A
4456424 Araoka Jun 1984 A
4456974 Cooper Jun 1984 A
4470846 Dube Sep 1984 A
4489475 Struttmann Dec 1984 A
4504392 Groteke Mar 1985 A
4537624 Tenhover et al. Aug 1985 A
4537625 Tenhover et al. Aug 1985 A
4556419 Otsuka et al. Dec 1985 A
4557766 Tenhover et al. Dec 1985 A
4586845 Morris May 1986 A
4593597 Albrecht et al. Jun 1986 A
4598899 Cooper Jul 1986 A
4600222 Appling Jul 1986 A
4609442 Tenhover et al. Sep 1986 A
4611790 Otsuka et al. Sep 1986 A
4634105 Withers et al. Jan 1987 A
4640666 Sodergard Feb 1987 A
4651806 Allen et al. Mar 1987 A
4696703 Henderson et al. Sep 1987 A
4701226 Henderson et al. Oct 1987 A
4714371 Cuse Dec 1987 A
4717540 McRae et al. Jan 1988 A
4743428 McRae et al. May 1988 A
4747583 Gordon et al. May 1988 A
4770701 Henderson et al. Sep 1988 A
4786230 Thut Nov 1988 A
4802656 Hudault et al. Feb 1989 A
4804168 Otsuka et al. Feb 1989 A
4810314 Henderson et al. Mar 1989 A
4834573 Asano et al. May 1989 A
4842227 Harrington et al. Jun 1989 A
4844425 Piras et al. Jul 1989 A
4851296 Tenhover et al. Jul 1989 A
4859413 Harris et al. Aug 1989 A
4867638 Handtmann et al. Sep 1989 A
4884786 Gillespie Dec 1989 A
4898367 Cooper Feb 1990 A
4923770 Grasselli et al. May 1990 A
4930986 Cooper Jun 1990 A
4931091 Waite et al. Jun 1990 A
4940214 Gillespie Jul 1990 A
4940384 Amra et al. Jul 1990 A
4954167 Cooper Sep 1990 A
4973433 Gilbert et al. Nov 1990 A
4989736 Andersson et al. Feb 1991 A
5006232 Lidgitt et al. Apr 1991 A
5028211 Mordue et al. Jul 1991 A
5049841 Cooper et al. Sep 1991 A
5078572 Amra et al. Jan 1992 A
5088893 Gilbert et al. Feb 1992 A
5092821 Gilbert et al. Mar 1992 A
5098134 Monckton Mar 1992 A
5099554 Cooper Mar 1992 A
5131632 Olson Jul 1992 A
5143357 Gilbert et al. Sep 1992 A
5145322 Senior, Jr. et al. Sep 1992 A
5152631 Bauer Oct 1992 A
5158440 Cooper et al. Oct 1992 A
5162858 Shoji et al. Nov 1992 A
5165858 Gilbert et al. Nov 1992 A
5172458 Cooper Dec 1992 A
5177304 Nagel Jan 1993 A
5191154 Nagel Mar 1993 A
5192193 Cooper et al. Mar 1993 A
5202100 Nagel et al. Apr 1993 A
5203681 Cooper Apr 1993 A
5209641 Hoglund et al. May 1993 A
5215448 Cooper Jun 1993 A
5268020 Claxton Dec 1993 A
5286163 Amra et al. Feb 1994 A
5298233 Nagel Mar 1994 A
5301620 Nagel et al. Apr 1994 A
5308045 Cooper May 1994 A
5310412 Gilbert et al. May 1994 A
5318360 Langer et al. Jun 1994 A
5322547 Nagel et al. Jun 1994 A
5324341 Nagel et al. Jun 1994 A
5330328 Cooper Jul 1994 A
5354940 Nagel Oct 1994 A
5358549 Nagel et al. Oct 1994 A
5358697 Nagel Oct 1994 A
5364078 Pelton Nov 1994 A
5369063 Gee et al. Nov 1994 A
5383651 Blasen et al. Jan 1995 A
5388633 Mercer, II et al. Feb 1995 A
5395405 Nagel et al. Mar 1995 A
5399074 Nose et al. Mar 1995 A
5407294 Giannini Apr 1995 A
5425410 Reynolds Jun 1995 A
5431551 Aquino et al. Jul 1995 A
5435982 Wilkinson Jul 1995 A
5436210 Wilkinson et al. Jul 1995 A
5443572 Wilkinson et al. Aug 1995 A
5454423 Tsuchida et al. Oct 1995 A
5468280 Areaux Nov 1995 A
5470201 Gilbert et al. Nov 1995 A
5484265 Horvath et al. Jan 1996 A
5489734 Nagel et al. Feb 1996 A
5491279 Robert et al. Feb 1996 A
5495746 Sigworth Mar 1996 A
5505143 Nagel Apr 1996 A
5509791 Turner Apr 1996 A
5537940 Nagel et al. Jul 1996 A
5543558 Nagel et al. Aug 1996 A
5555822 Loewen et al. Sep 1996 A
5558501 Wang et al. Sep 1996 A
5558505 Mordue et al. Sep 1996 A
5571486 Robert et al. Nov 1996 A
5585532 Nagel Dec 1996 A
5586863 Gilbert et al. Dec 1996 A
5597289 Thut Jan 1997 A
5613245 Robert Mar 1997 A
5622481 Thut Apr 1997 A
5629464 Bach et al. May 1997 A
5634770 Gilbert et al. Jun 1997 A
5640706 Nagel et al. Jun 1997 A
5640707 Nagel et al. Jun 1997 A
5640709 Nagel et al. Jun 1997 A
5655849 McEwan et al. Aug 1997 A
5662725 Cooper Sep 1997 A
5676520 Thut Oct 1997 A
5678244 Shaw et al. Oct 1997 A
5678807 Cooper Oct 1997 A
5679132 Rauenzahn et al. Oct 1997 A
5685701 Chandler et al. Nov 1997 A
5690888 Robert Nov 1997 A
5695732 Sparks et al. Dec 1997 A
5716195 Thut Feb 1998 A
5717149 Nagel et al. Feb 1998 A
5718416 Flisakowski et al. Feb 1998 A
5735668 Klien Apr 1998 A
5735935 Areaux Apr 1998 A
5741422 Eichenmiller et al. Apr 1998 A
5744117 Wilkinson et al. Apr 1998 A
5745861 Bell et al. Apr 1998 A
5755847 Quayle May 1998 A
5772324 Falk Jun 1998 A
5776420 Nagel Jul 1998 A
5785494 Vild et al. Jul 1998 A
5805067 Bradley et al. Sep 1998 A
5810311 Davison et al. Sep 1998 A
5842832 Thut Dec 1998 A
5858059 Abramovich et al. Jan 1999 A
5864316 Bradley et al. Jan 1999 A
5866095 McGeever et al. Feb 1999 A
5875385 Stephenson et al. Feb 1999 A
5935528 Stephenson et al. Aug 1999 A
5944496 Cooper Aug 1999 A
5947705 Mordue et al. Sep 1999 A
5949369 Bradley et al. Sep 1999 A
5951243 Cooper Sep 1999 A
5993726 Huang Nov 1999 A
5993728 Vild Nov 1999 A
5995041 Bradley et al. Nov 1999 A
6019576 Thut Feb 2000 A
6024286 Bradley et al. Feb 2000 A
6027685 Cooper Feb 2000 A
6036745 Gilbert et al. Mar 2000 A
6074455 van Linden et al. Jun 2000 A
6093000 Cooper Jul 2000 A
6096109 Nagel et al. Aug 2000 A
6113154 Thut Sep 2000 A
6123523 Cooper Sep 2000 A
6152691 Thut Nov 2000 A
6187096 Thut Feb 2001 B1
6217823 Vild et al. Apr 2001 B1
6231639 Eichenmiller et al. May 2001 B1
6243366 Bradley et al. Jun 2001 B1
6250881 Mordue et al. Jun 2001 B1
6254340 Vild et al. Jul 2001 B1
6270717 Tremblay et al. Aug 2001 B1
6280157 Cooper Aug 2001 B1
6298759 Thut Oct 2001 B1
6303074 Cooper Oct 2001 B1
6345964 Cooper Feb 2002 B1
6358467 Mordue Mar 2002 B1
6398525 Cooper Jun 2002 B1
6439860 Greer Aug 2002 B1
6451247 Mordue et al. Sep 2002 B1
6457950 Cooper et al. Oct 2002 B1
6464458 Vild et al. Oct 2002 B2
6495948 Garrett, III Dec 2002 B1
6497559 Grant Dec 2002 B1
6524066 Thut Feb 2003 B2
6533535 Thut Mar 2003 B2
6551060 Mordue et al. Apr 2003 B2
6648026 Look et al. Nov 2003 B2
6679936 Quackenbush Jan 2004 B2
6689310 Cooper Feb 2004 B1
6695510 Look et al. Feb 2004 B1
6709234 Gilbert et al. Mar 2004 B2
6716147 Hinkle et al. Apr 2004 B1
6723276 Cooper Apr 2004 B1
6805834 Thut Oct 2004 B2
6843640 Mordue et al. Jan 2005 B2
6848497 Sale et al. Feb 2005 B2
6869564 Gilbert et al. Mar 2005 B2
6881030 Thut Apr 2005 B2
6887424 Ohno et al. May 2005 B2
6887425 Mordue et al. May 2005 B2
6896271 Uchida et al. May 2005 B2
20010000465 Thut Apr 2001 A1
20010012758 Bradley et al. Aug 2001 A1
20020041788 Look et al. Apr 2002 A1
20020102159 Thut Aug 2002 A1
20020146313 Thut Oct 2002 A1
20020187947 Jarai et al. Dec 2002 A1
20030059302 Mordue et al. Mar 2003 A1
20030075844 Mordue et al. Apr 2003 A1
20030151176 Ohno et al. Aug 2003 A1
20030185679 Mordue et al. Oct 2003 A1
20040007284 Look et al. Jan 2004 A1
20040022632 Thut Feb 2004 A1
20040056395 Thut Mar 2004 A1
20040076533 Cooper Apr 2004 A1
20040084172 Vincent et al. May 2004 A1
20040115079 Cooper Jun 2004 A1
20040123970 Neff Jul 2004 A1
20040199435 Abrams et al. Oct 2004 A1
20040215204 Davison et al. Oct 2004 A1
20040262825 Cooper Dec 2004 A1
20050013713 Cooper Jan 2005 A1
20050013714 Cooper Jan 2005 A1
20050013715 Cooper Jan 2005 A1
20050053499 Cooper Mar 2005 A1
20050077730 Thut Apr 2005 A1
20050081607 Patel et al. Apr 2005 A1
20050116398 Tremblay Jun 2005 A1
Foreign Referenced Citations (13)
Number Date Country
683469 Mar 1964 CA
392268 Sep 1965 CH
1800446 Dec 1969 DE
0665378 Feb 1995 EP
942648 Nov 1963 GB
1185314 Mar 1970 GB
2217784 Mar 1989 GB
58-048796 Mar 1983 JP
63-104773 May 1998 JP
90756 Jan 1958 NO
416401 Jun 1974 SU
773312 Oct 1980 SU
WO 9825031 Jun 1998 WO
Related Publications (1)
Number Date Country
20050013714 A1 Jan 2005 US
Continuations (2)
Number Date Country
Parent 10619405 Jul 2003 US
Child 10773105 US
Parent 10620318 Jul 2003 US
Child 10619405 US