The present invention relates generally to concrete containers, and more specifically relates to a moment connection for a concrete container wall and footing.
Concrete containers may be used for holding various quantities of liquid and solid materials. Concrete containers may be constructed above or below ground surface or in various intermediate positions relative to the ground surface. Pressure may be exerted on the walls of concrete containers either internally from material being contained or externally when the concrete container is constructed below a surface, e.g. by the weight of soil. Depending upon where the concrete container is constructed and the nature and quantity of material being held by the concrete container, a differential pressure may be pushing the walls in or out.
Concrete containers may be formed by pouring concrete in place, e.g. constructing a form, pouring the concrete into the form, and removing the form. For example, a footing may be poured in place and, after the footing is cured, walls may be poured in place.
Concrete containers may include concrete pools. Concrete pools may be constructed below the ground surface, above the ground surface, or at various intermediate heights in relation to the ground surface. Typically a concrete pool contains water that needs to be circulated and filtered. Accordingly, a concrete pool may include a gutter system to move the water in and out of the concrete pool. Movement of the water may include moving through filtration systems and chemical systems. Further, for sealing the concrete pool and to provide comfort and safety for users, a concrete pool may include a liner. A concrete pool may include a deck for user access to the concrete pool.
The use of pre-cast concrete components, e.g. walls and footings, is limited in the construction of concrete containers due to external and/or internal pressure pushing the wall away from the footing thereby creating aesthetic and functional displacements to the concrete container.
A first aspect of the invention provides a concrete container, comprising: a concrete footing including a shear key; a concrete wall inserted in the shear key; a plurality of footing reinforcing members inserted in the concrete footing on a support side of the shear key and extending above the concrete footing; a plurality of wall reinforcing members inserted in the concrete wall on a support side of the concrete wall and extending diagonally towards the concrete footing; a concrete moment connection substantially covering the plurality of footing reinforcing members extending from the concrete footing and the plurality of wall reinforcing members extending from the wall.
A second aspect of the invention provides a concrete pool, comprising: a concrete footing including a shear key; a concrete wall inserted in the shear key; a plurality of footing reinforcing members inserted in the concrete footing on a support side of the shear key and extending above the concrete footing; a plurality of wall reinforcing members inserted in the concrete wall on a support side of the concrete wall and extending diagonally towards the concrete footing; a concrete moment connection substantially covering the plurality of footing reinforcing members extending from the concrete footing and the plurality of wall reinforcing members extending from the wall.
A third aspect of the invention provides a method for installing a concrete pool, the method comprising: installing a concrete footing on a surface, wherein the preparing includes: shaping a shear key in the footing on a side opposite the surface; and casting-in-place a plurality of footing reinforcing members in the footing on a support side of the shear key and extending above the concrete footing; installing a concrete wall, wherein a bottom surface of the concrete wall is inserted in the shear key and wherein the concrete wall includes a plurality of wall reinforcing members inserted in the concrete wall on a support side of the concrete wall and extending diagonally towards the concrete footing; leveling the concrete wall; plumbing the concrete wall; substantially filling the shear key with a grout; casting a concrete moment connection substantially covering the plurality of footing reinforcing members extending from the concrete footing and the plurality of wall reinforcing members extending from the concrete wall; and casting at least three concrete corner closures, wherein each concrete corner closure connects two adjacent concrete walls.
These and other aspects, advantages and salient features of the invention will become apparent from the following detailed description, which, when taken in conjunction with the annexed drawings, where like parts are designated by like reference characters throughout the drawings, disclose embodiments of the invention.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
Referring to
Referring to
Concrete footing 4 may include pre-cast concrete footing segments, cast-in-place, or constructed in any other now known or to be developed manner. Similarly, concrete wall 6 may include pre-cast concrete wall segments, cast-in-place, or constructed in any other now known or to be developed manner. For a concrete pool, pre-cast concrete wall segments may be approximately 7.0′ to 8.0′ in height and approximately 18.0′ to 21.0′ in length.
Concrete wall 6 may be substantially planar. Concrete wall 6 is shown with a flare 22 at a top of concrete wall 6. Flare 22 may be shaped to receive a gutter system 24 and a liner 26. Flare 22 may also support a deck (not shown). Any now known or to be developed deck, gutter system 24 and liner 26 may be included. Flare 22 may be any shape that permits the installation of gutter system 24, liner 26, and deck. Referring again to
Footing reinforcing member 16 and wall reinforcing member 20 may include steel bar (i.e. “rebar”). Each footing reinforcing member 16 and each wall reinforcing member 20 may be inserted at various intervals in the concrete footing 4 and concrete wall 6 respectively. For a concrete pool, each footing reinforcing member 16 and each wall reinforcing member 20 may be inserted approximately once every foot on center. A person skilled in the art will readily recognize that footing and wall reinforcing members 16, 20 may be placed at closer or further intervals depending upon the degree of reinforcement desired. Alternatively, for concrete wall 6 with waffle design 28 each wall reinforcing member 20 may be inserted at rib 30. A plurality of wall reinforcing members 20 may be included at each rib 30 depending upon the amount of reinforcement desired. Footing reinforcing member 16 and wall reinforcing member 20 may be cast-in-place or inserted after casting. Inserted after casting may include, for example, screwing reinforcing member 16, 20 into concrete footing 4 or concrete wall 6. A person skilled in the art will readily recognize that footing reinforcing member 16 and wall reinforcing member 20 may be curved, straight, or any other shape. Footing reinforcing member 16 and wall reinforcing member 20 may extend out of concrete footing 4 and concrete wall 6 respectively. The extending of footing reinforcing member 16 may be substantially vertical. The extending of wall reinforcing member 20 may be substantially at a diagonal towards concrete footing 4. A person skilled in the art will readily recognize that reinforcement between moment connection and concrete footing and concrete wall may include a number of known and to be developed methods.
In one embodiment of invention, shear key 12 may include grouting 34. Grouting 34 may substantially fill space in the shear key 12 after concrete wall 6 has been inserted in shear key 12.
Concrete moment connection 8 may include poured concrete. Concrete moment connection 8 may substantially cover the portions of footing reinforcing member 16 extending from concrete footing 4 and wall reinforcing member 20 extending from concrete wall 6. Concrete moment connection 8 may include various shapes depending upon the forms used for pouring and the surfaces that concrete moment connection 8 is conforming to when poured. For a concrete pool, concrete moment connection 8 may be approximately the same length as concrete wall 6. For a concrete pool, concrete moment connection 8 may have width and depth of approximately 1.0′ to 1.0′.
Referring to
Preparing concrete footing 4 may include pre-cast and casting-in-place. For a concrete pool, each pre-cast concrete wall segment is approximately 7.0′ to 8.0′ in height and approximately 18.0′ to 21.0′ in length. For a concrete pool, concrete moment connection 8 may be approximately 1.0′ by 1.0.′ A joint 36 (
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
While various embodiments are described herein, it will be appreciated from the specification that various combinations of elements, variations or improvements therein may be made by those skilled in the art, and are within the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention as defined by the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
1908332 | Eichelman et al. | May 1933 | A |
1964870 | Chappell | Jul 1934 | A |
2140978 | Beeby | Dec 1938 | A |
3226935 | Schneller | Jan 1966 | A |
3407552 | Cassidy | Oct 1968 | A |
3487599 | Jansen | Jan 1970 | A |
3561017 | Holland | Feb 1971 | A |
3824751 | Shelander | Jul 1974 | A |
4015384 | Barry | Apr 1977 | A |
4106246 | LaFountaine | Aug 1978 | A |
4142339 | Crowley | Mar 1979 | A |
4164933 | Alosi | Aug 1979 | A |
4324009 | Hornsby | Apr 1982 | A |
4483025 | Meredith | Nov 1984 | A |
4569173 | Hultquist | Feb 1986 | A |
4843658 | Hodak | Jul 1989 | A |
5590497 | Moore | Jan 1997 | A |
5774906 | Ellis et al. | Jul 1998 | A |
6244005 | Wallin | Jun 2001 | B1 |
6591565 | Morello | Jul 2003 | B2 |
6854223 | Holland | Feb 2005 | B1 |
7001110 | Lockwood | Feb 2006 | B2 |
7062885 | Dickenson, Jr. | Jun 2006 | B1 |
7302777 | Sugranes | Dec 2007 | B1 |
Number | Date | Country |
---|---|---|
3441344 | May 1986 | DE |
2 566 447 | Dec 1985 | FR |
2 707 321 | Jan 1995 | FR |
2 614 052 | Oct 1998 | FR |
57-158436 | Sep 1982 | JP |
04330119 | Nov 1992 | JP |
05017957 | Jan 1993 | JP |
10-146818 | Jun 1998 | JP |
2003-293604 | Oct 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20120096634 A1 | Apr 2012 | US |