Monascus purpureus mutant, nucleotide sequence for monascus purpureus mutant and primers for nucleotide sequence of monascus purpureus mutant

Information

  • Patent Grant
  • 9157057
  • Patent Number
    9,157,057
  • Date Filed
    Saturday, December 28, 2013
    11 years ago
  • Date Issued
    Tuesday, October 13, 2015
    9 years ago
Abstract
The present invention relates to a mutant of Monascus purpureus NTU 568, a nucleotide sequence for Monascus purpureus NTU 568 and primers for nucleotide sequence of Monascus purpureus NTU 568, wherein the Monascus purpureus NTU 568 having the nucleotide sequence of SEQ ID NO 1, SEQ ID NO 2 or SEQ ID NO 3 is deposited with Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany) on Nov. 18, 2013, with the accession number of DSM 28072. Moreover, the nucleotide sequence for NTU 568 and the primers for the nucleotide sequence are proposed in order to facilitate the person skilled in Monascus purpureus filed capable of carrying out the strain (mutant) identification of the NTU 568 according to the present invention. Moreover, the person skilled in Monascus purpureus filed can also rapidly complete the strain (mutant) identification of the NUT 568 by using DNA molecular marker technology, without culturing any isolated Monascus purpureus strain or live Monascus purpureus bacteria.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. The ASCII copy is named sequence.txt and is 5,746 bytes in size.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a Monascus purpureus mutant, and more particularly to a mutant of Monascus purpureus NTU 568, a nucleotide sequence for Monascus purpureus NTU 568 and primers for nucleotide sequence of Monascus purpureus NTU 568.


2. Description of the Prior Art


Recently, red yeast fermented products with multi functions are subject to more and more attention due to the flourishing development of health foods. In Asia, Monascus purpureus are applied in foods and medicines for thousands years, wherein the secondary metabolites of Monascus purpureus can be divided into four kinds of:

  • (1) Pigment group: including the red pigment of rubropunctamine and monascorubramine, the yellow pigment of ankaflavin and monascin, and orange pigment of rubropunctanin and monascorubrin;
  • (2) Cholesterol-lowering substances: such as monacolin K;
  • (3) Hypotensive agent substances: such as γ-aminobutyric acid (GABA); and
  • (4) Antioxidant substances: including dimerumic acid and 3-hydoxy-4-methoxy-benzoic acid



Monascus purpureus NTU 568 is an excellent local Monascus purpureus strain, and which is studied and developed by Tzu-Ming PAN, the graduate chair of Institute of Microbiology and Biochemistry of National Taiwan University, and the R&D team thereof. Besides, currently, the health-care characteristics of preventing Alzheimer's disease, hypolipidemic effect and antioxidative of the red mold (RM) powder manufactured by using the Monascus purpureus NTU 568 have been proven, wherein the health-care characteristics of preventing Alzheimer's disease, hypolipidemic effect and antioxidative of the RM powder is carried out by the secondary metabolites of monacolins, ankaflavin and monacsin.


Nowadays, the Monascus purpureus NTU 568 is successful to be commercialized. However, in spite of that, the strain (mutant) identification and the DNA molecular marker of the Monascus purpureus NTU 568 does still not be carried out, wherein the DNA molecular marker technology is usually used for identifying the DNA sequence or the RAPD genetic variation map.


Accordingly, in view of the specific DNA sequence, the specific RAPD genetic variation map, and the DNA molecular marker of the Monascus purpureus NTU 568 still does not be finished, the inventor of the present application has made great efforts to make inventive research thereon and eventually provided a mutant of Monascus purpureus NTU 568, a nucleotide sequence for Monascus purpureus NTU 568 and primers for nucleotide sequence of Monascus purpureus NTU 568.


SUMMARY OF THE INVENTION

The primary objective of the present invention is to provide a mutant of Monascus purpureus NTU 568, a nucleotide sequence for Monascus purpureus NTU 568 and primers for nucleotide sequence of Monascus purpureus NTU 568, therefore the person skilled in Monascus purpureus filed is able to carried out the strain (mutant) identification of the Monascus purpureus NTU 568 according to the present invention. Moreover, the person skilled in Monascus purpureus filed can also rapidly complete the strain (mutant) identification of the Monascus purpureus NTU 568 by using DNA molecular marker technology, without culturing any isolated Monascus purpureus strain or live Monascus purpureus bacteria.


Accordingly, to achieve the primary objective of the present invention, the inventor of the present invention provides a Monascus purpureus mutant, which is Monascus purpureus NTU 568 having a nucleotide sequence of SEQ ID NO 1, SEQ ID NO 2 or SEQ ID NO 3. The Monascus purpureus NTU 568 was deposited with Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany) on Nov. 18, 2013, with the accession number of DSM 28072. Moreover, the nucleotide sequence of the Monascus purpureus NTU 568 can be formed by treating the RAPD (Random Amplification of Polymorphic DNA) and the PCR (Polymerase Chain Reaction) process to a plurality of specific primers, wherein the specific primers comprising a first nucleotide sequence of SEQ ID NO 4, a second nucleotide sequence of SEQ ID NO5, a third nucleotide sequence of SEQ ID NO6, a fourth nucleotide sequence of SEQ ID NO7, a fifth nucleotide sequence of SEQ ID NO8, and a sixth nucleotide sequence of SEQ ID NO9.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention as well as a preferred mode of use and advantages thereof will be best understood by referring to the following detailed description of an illustrative embodiment in conjunction with the accompanying drawings, wherein:



FIG. 1 is curve plots of time vs. monacolin K production and time vs. pH value for rice substrate and dioscorea substrate;



FIG. 2 is a bar graph of pH value vs. monacolin K production as well as citrinin production;



FIG. 3 is a conserved domain analysis diagram for PKSα nucleotide sequence;



FIG. 4 is a conserved domain analysis diagram for PKSδ nucleotide sequence; and



FIG. 5 is a conserved domain analysis diagram for PKSγ nucleotide sequence.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

To more clearly describe a Monascus purpureus mutant, nucleotide sequences for the Monascus purpureus mutant and primers for the nucleotide sequences of the Monascus purpureus mutant according to the present invention, embodiments of the present invention will be described in detail with reference to the attached drawings hereinafter.



Monascus purpureus NTU 568 is an excellent local Monascus purpureus strain, and which is studied and developed by Tzu-Ming PAN, the graduate chair of Institute of Microbiology and Biochemistry of National Taiwan University, and the R&D team thereof. In the present invention, the Monascus purpureus NTU 568 has a specific nucleotide sequence of SEQ ID NO 1, SEQ ID NO 2 or SEQ ID NO 3, and was deposited with Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany) on Nov. 18, 2013, the accession number of the Monascus purpureus NTU 568 is DSM 28072. The Monascus purpureus NTU 568 includes the characteristics of: growing rapidly, strong starch hydrolysis, high metabolites production. The method for testing the viability of Monascus purpureus NTU 568 is the following: after transferring Monascus purpureus NTU 568 from a slant tube to a potato dextrose agar (PDA) for 5-day culture, digging 3 blocks of hyphal body with volume of 1 cm3; and continuously, inoculating the hyphal body into a 100 mL medium containing 2% of rice powder, so as to culture the Monascus purpureus NTU 568 with shaking manner under 30° C. and 200 rpm for 48 hours; therefore, If the cultured liquid presents red color after 48 hours of culture, the viability of Monascus purpureus NTU 568 is well. The storage method for Monascus purpureus NTU 568 is to store on a PDA medium in a slant tube under 4° C., and then sub-culturing the Monascus purpureus NTU 568 every 3 months.


Moreover, for verifying the viability of Monascus purpureus NTU 568, it moves the strain of Monascus purpureus NTU 568 from a slant tube to a culture medium of potato dextrose agar (PDA) for culturing. After 15-day culture, it digs and takes out three mycelium with the size of 1 cm3 from the PDA, and then disposes the three mycelium into a culture fluid having 2% rice powder for next-stage culture; therefore, after 48-hour culture, the Monascus purpureus NTU 568 reveals high viability because the culture fluid shows red color. Herein, it needs to further explain that, the storage method for Monascus purpureus NTU 568 is to culture the Monascus purpureus NTU 568 on a PDA medium disposed in a slant tube under the store temperature of 4° C.; moreover, the Monascus purpureus NTU 568 must be treated with one time sub-cultured per 3 months.


Next, in order to prove that the Monascus purpureus NTU 568 can indeed increase the production of monacolin K of the secondary metabolites, the various experiment results and data are presented as follows. Please refer to following table 1, which records the production of monacolin K extracted from fermented rice substrate and fermented dioscorea substrate which is fermented by using different Monascus purpureus species. According to table 1, it can find that the production of monacolin K extracted from the fermented substrate fermented by using Monascus purpureus NTU 568 is highest no matter the substrate is rice or dioscorea.











TABLE 1





species of Monascus
Fermented
Production amount of



purpureus

substrate
monacolin K (mg/g)


















M. sp. CA 505

rice
2.42




dioscorea

8.45



M.
purpureus NTU 568

rice
7.62




dioscorea

18.92



M. sp. CH 001

rice
5.92




dioscorea

17.65



M.
purpureus NTU 601

rice
0.58




dioscorea

3.54



M.
purpureus NTU 301

rice
0.51




dioscorea

3.08



M.
anka M13

rice
0.11




dioscorea

0.63



M. sp. KT

rice
0.36




dioscorea

3.89









Please refer to FIG. 1, which illustrates curve plots of time vs. monacolin K production and time vs. pH value for rice substrate and dioscorea substrate. In FIG. 1, the solid circle data points represent the production of monacolin K extracted from the fermented rice substrate, and the hollow triangle data points mean the production of monacolin K extracted from the fermented dioscorea substrate. From FIG. 1, it can find that the pH value of the fermented dioscorea substrate reduces to 3.0 from 3.5 in 12-day culture and fermentation, and there has no obvious difference between the two pH values. Oppositely, the production of monacolin K extracted from the fermented dioscorea substrate is increased to 18 mg/g. In addition, please refer to FIG. 2, there is shown a bar graph of pH value vs. monacolin K production as well as citrinin production. From FIG. 2, it is able to know that there has no obvious difference between the monacolin K production and the citrinin production.


Next, in order to prove that the Monascus purpureus NTU 568 can indeed increase the production of monascin and ankaflavin of the secondary metabolites, the various experiment data are presented as follows. Please refer to following table 2, which records the production of monascin and ankaflavin extracted from different red mold fermented products. From table 2, it can apparently find that red mold fermented product fermented by using the Monascus purpureus NTU 568 includes the monascin of 11.65 mg/0.5 g and the ankaflavin of 1.77 mg/0.5 g, but others red mold fermented products does not includes monascin and ankaflavin.











TABLE 2






Production amount
Production amount



of monascin
of ankaflavin


Red mold species/products
(mg/0.5 g)
(mg/0.5 g)








Monascus product





(NU SKIN)





Monascus product (CPC)






Monascus product 1





(jensheng)





Monascus product (Koda)






Monascus product





(Prince Pharmaceutical)





Monascus product





(Standard)





Monascus product 2





(jensheng)





Monascus product 3





(jensheng)





Monascus product





(SANHE)





Monascus product





(YU-SHAN)





Monascus product





(WEI-CHUAN)





Monascus
purpureus

11.65
1.77


NTU 568









Furthermore, in order to identify the DNA sequence of the Monascus purpureus NTU 568, it obtain the whole genome sequence of the Monascus purpureus NTU 568 by way of pyrosequencing, wherein the whole genome sequence of the Monascus purpureus NTU 568 includes 3,326 contigs with the total sequence length of 247,174,841 bps. Moreover, in the 3,326 contigs, the largest length of a specific contig is 175,588 bps.


Next, the Aspergillus is taken as a reference species and the software of FGENESH (SoftBerry, Inc., NY, USA) is then used for analyzing and predicting the DNA sequence of the Monascus purpureus NTU 568. The analysis and predict result shows 8,191 sequence data of mRNA and protein, wherein the total sequence length of the mRNA is 13,140,800 bps. Therefore, the whole genome sequence of the Monascus purpureus NTU 568 and the mRNA and protein sequence data are further edited to a single FASTA file, and then the FASTA file is transformed into a BLAST data by using the software of BLAST+ (Boratyn et al., 2013) for executing the gene search and alignment.


The gene search and alignment are executed by using polyketide synthases (PKSs) mechanism and model. Please refer to following table 3, which records several PKS fragments in PKS conserved domain. Therefore, the gene alignment between the PKS fragments of M. pilosus mok A and the BLASTp data of the Monascus purpureus NTU 568 as well as the BLASTn data of the Monascus purpureus NTU 568 have been completed.











TABLE 3





Accession




no.
Description
Sequence







cd00833
a polyketide synthases
IAIVGMACRFPGAADPDE



(PKSs) polymerize simple fatty
FWENLLEGRDAISEIPEDRWDA



acids into a large variety of
DGYYPDPGKPGKTYTRRGGFL



different products, called
DDVDAFDAAFFGISPREAEAM



polyketides, by successive
DPQQRLLLEVAWEALEDAGYS



decarboxylating Claisen
PESLAGSRTGVFVGASSSDYLE



condensations.
LLARDPDEIDAYAATGTSRAFL



PKSs can be divided into 2
ANRISYFFDLRGPSLTVDTACSS



groups, modular type I PKSs
SLVALHLACQSLRSGECDLALV



consisting of one or more large
GGVNLILSPDMFVGFSKAGML



multifunctional proteins and
SPDGRCRPFDADADGYVRGEG



iterative type II PKSs, complexes
VGVVVLKRLSDALRDGDRIYA



of several monofunctional
VIRGSAVNQDGRTKGITAPSGE



subunits.
AQAALIRRAYARAGVDPSDID




YVEAHGTGTPLGDPIEVEALA




KVFGGSRSADQPLLIGSVKSNI




GHLEAAAGLAGLIKVVLALEH




GVIPPNLHFETPNPKIDFEESPL




RVPTEARPWPAPAGPRRAGVSS




FGFGGTNAHVIL





DQ176595
PKS domain sequence of
ACGACATCGTAGGGGGT



polyketide synthase mokA of
GCGTTCGCGAGTCGCGATGAC



monacolin K biosynthetic gene
CTCGGTCATCTTGGCGCTGCC



cluster in M. pilosus
AATCGAACCACTCTCCGCCTG




GCCCTGCTTGTAATCGAAGAC




CGCTTGGAACAAGGGGGCCG




GTTCCGCTGTTTCGGCGGTGG




CCCCCGGGACCTCGAATCCGA




GGCGCTCGAGCAGCACCCCG




TAGGGCACGCGGGCGTGCTG




CATGGCCTCGCGCACCTTGTC




CTTGGTGGCGACCAGGTGCTC




GCCAAAGGTGATGTGCGGGA




CGAAGTTGCGGAAGCGCAGC




GGGAGCAGGTTGGCGAAAAA




GCCCATGCCCGCCAGTTCATC




CACGTTCGTGCGATTGGTGTC




GGCCAGGCCTATGCTGAAGTC




GCTGCTGCCCGTCAATCGTGC




CAGGAGCACGTGGTACGCAG




CCAGGTAGAATTGCATGGGCG




TGGCTTTGTGCTTGCGACTGC




GCTCGCGGATGCGGAAAGCG




ACCATGGGGTCGAGACGCGC




GATCGCTTCGTGTTGCTTCCA




CGAGTTGGGCTGGCGGGCGT




GGTTCGGGCTATTAAGGCCAT




CTTCGCCCAGAAGCATCCGCG




GGAGGACCGGGGACACCACG




CCCGTGGGCTGGTGGTGCATC




GATTCCCAGTACGCGAGGTCC




GCATCCATCTGGCCGGACTCG




AGCGCTTCTCGCTGCCGCGTC




GCGAGGTCTGCAAATTGAGG




GACGTGCTTGTCGAGGGTCA




CGCCGCCGTATAACTGGCTCG




CTTCGACAAAGATATT









Therefore, the gene alignment results reveal that, besides the well-known PKS genomes of citrinin (Accession: AB243687.1), monacolin K (Accession: DQ176595.1) and PKS1 (Accession: AJ414729.1), the whole genome sequence of the Monascus purpureus NTU 568 further includes 7 candidate gene fragment in PKS conserved domain, wherein the 7 candidate gene fragment are named as PKSε, PKSθ, PKSγ, PKSκ, PKSδ, PKSα, and PKSσ recorded in following table 4. Moreover, after completing the DELTA-BLAST analysis, the PKS fragments of PKSγ, PKSδ and PKSα are regarded as new PKS fragments of M. purpureus which are never recorded or written in any literatures or data base.












TABLE 4





PKS
Contig




ID
no.
Protein sequence ID
E value


















PKSε
986
148__exon_(s)_431197__−
1e−102




_443034__3945_aa,_chain_+



PKSθ
195
1001__12_exon_(s)_2896331__−
1e−102




_2908604_ _3854_aa,_chain_+



PKSγ
549
535__6_exon_(s)_1607184__−
7e−98




_1614486_ _2307_aa,_chain_−



PKSκ
1154
396__5_exon_(s)_1203158__−
6e−92




_1210134__2245_aa,_chain_+



PKSδ
977
403__6_exon_(s)_1222398__−
7e−77




_1229259__2188_aa,_chain_+



PKSα
657
38__6_exon_(s)_101837__−
9e−72




_106246__1263_aa,_chain_−



PKSσ
200
757__13_exon_(s)_2356480__−
5e−59




_2361939__1583_aa,_chain_−









Based above gene search and alignment results, it is able to assume that the gene fragment of PKSα may be a novel gene fragment (sequence) for the Monascus purpureus NTU 568. Therefore, as listed in the following Sequence Listing, the nucleotide sequence of PKSα is defined as SEQ ID NO 1, and the sequence length of the nucleotide sequence of SEQ ID NO 1 is 1,390 bps. Furthermore, the nucleotide sequence of PKSα is treated with a BLASTx sequence alignment, and the alignment results are recorded in following table 5.












TABLE 5







Max identity



Accession no.
Description
(%)
E value







XP_002149769
PKS: Talaromyces
64.2
0




marneffei ATCC






18224




XP_002340038
PKS: Talaromyces
63.2
0




stipitatus ATCC






10500




EFW23245
PKS: Coccidioides
60.5
0




posadasii str. Silveira





XP_003070229
PKS: Coccidioides
60.4
0




posadasii C735 delta






SOWgp




EJB11047
citrinin (PKS):
60.3
0




Coccidioides
immitis






C735 RS




XP_001243185
hypothetical protein
60.3
0



(CIMG_07081):






Coccidioides
immitis






RS




XP_002487778
PKS: Talaromyces
59.3
0




stipitatus ATCC






10500




EOD53036
putative polyketide
57.8
0



synthase protein:






Neofusicoccum







parvum UCRNP2





CAK40124
unnamed protein
58.8
0



product: Aspergillus






niger





XP_001393501
polyketide
58.8
0



synthase: Aspergillus






niger CBS 513.88










Continuously, please refer to FIG. 3, there is shown a conserved domain analysis diagram for PKSα nucleotide sequence. From FIG. 3, it is able to know that the conserved domain PKS of PKSα is PKS_KS, which belongs to type II polyketide synthases (PKS). Moreover, from the table 5, it can further find that the PKS most similar to the PKSα is Talaromyces marneffei ATCC 1822 (identity=64.2), and there has no PKSs of Monascus genus similar or the same to the PKSα. So that, it is able to confirm that the gene fragment of PKSα is a novel gene fragment (sequence) for the Monascus purpureus NTU 568 based above comparison and analysis.


Moreover, the gene fragment of PKSδ can also be assumed as a novel gene fragment (sequence) for the Monascus purpureus NTU 568. As listed in the following Sequence Listing, the nucleotide sequence of PKSδ is defined as SEQ ID NO 2, and the sequence length of the nucleotide sequence of SEQ ID NO 2 is 1,024 bps. In order to identify whether the assumption is correct or not, the nucleotide sequence of PKSδ is treated with a BLASTx sequence alignment, and the alignment results are recorded in following table 6.












TABLE 6







Max identity



Accession no.
Description
(%)
E value







XP_001270321
PKS: Aspergillus
80.1
0




clavatus NRRL 1





ENH62327
Lovastatin nonaketide
39.1
0



synthase: Fusarium






oxysporum f. sp.






cubense race 1




EKV12048
Phenolpthiocerol
36.9
0



synthesis polyketide





synthase ppsA:






Penicillium
digitatum






PHI26




ELA32194
polyketide synthase:
36.5
0




Colletotrichum







gloeosporioides Nara






gc5




ELA38363
polyketide synthase:
37.3
0




Colletotrichum







gloeosporioides Nara






gc5




EKV06858
hypothetical protein
34.7
0



PDIG_76310:






Penicillium
digitatum






PH126




EFQ35173
containing protein:
36.6
0




Glomerella







graminicola M1.001





XP_664395
hypothetical protein
34.3
0



AN6791.2:






Aspergillus
nidulans






FGSC A4




ENH88027
polyketide synthase:
37.1
0




Colletotrichum







orbiculare MAFF






240422




ELQ32864
fatty acid synthase
37.8
0



S-acetyltransferase:






Magnaporthe
oryzae






Y34









Please refer to FIG. 4, there is shown a conserved domain analysis diagram for PKSδ nucleotide sequence. From FIG. 4, it is able to know that the conserved domain PKS of PKSδ is PKS_KS-DH-MT-ER-KR-ACP, which belongs to type I polyketide synthases (PKS). Moreover, from the table 6, it can further find that the PKS most similar to the PKSδ is the polyketide synthases (PKS) of Aspergillus clavatus NRRL 1 (identity=80.1), and there has no PKSs of Monascus genus similar or the same to the PKSδ. So that, it is able to confirm that the gene fragment of PKSδ is a novel gene fragment (sequence) for the Monascus purpureus NTU 568 based above comparison and analysis.


Besides, the gene fragment of PKSγ can also be assumed as a novel gene fragment (sequence) for the Monascus purpureus NTU 568. As listed in the following Sequence Listing, the nucleotide sequence of PKSγ is defined as SEQ ID NO 3, and the sequence length of the nucleotide sequence of SEQ ID NO 3 is 1,096 bps. In order to identify whether the assumption is correct or not, the nucleotide sequence of PKSγ is treated with a BLASTx sequence alignment, and the alignment results are recorded in following table 7.












TABLE 7







Max identity



Accession no.
Description
(%)
E value







XP_002485355
PKS: Talaromyces
44.8
0




stipitatus ATCC






10500




ADA79525
PKS: Delitschia
44.9
0




winteri





XP_001273762
PKS: Aspergillus
45.1
0




clavatus NRRL 1





XP_002482833
PKS: Talaromyces
44.4
0




stipitatus ATCC






10500




XP_001258783
PKS: Neosartorya
45.5
0




fischeri NRRL 181





XP_001816573
PKS: Aspergillus
44.8
0




oryzae RIB40





EDP53518
PKS: Aspergillus
45.8
0




fumigatus A1163





XP_748462
PKS: Aspergillus
45.6
0




fumigatus Af293





BAE54571
unnamed protein
44.2
0



product: Aspergillus






oryzae RIB40





XP_002383534
PKS: Aspergillus
44.3
0




flavus NRRL3357










Please refer to FIG. 5, there is shown a conserved domain analysis diagram for PKSγ nucleotide sequence. From FIG. 5, it is able to know that the conserved domain PKS of PKSγ is PKS_KS-DH-MT-ER, which belongs to type I polyketide synthases (PKS). Moreover, from the table 7, it can further find that the PKS most similar to the PKSγ is the polyketide synthases (PKS) of Talaromyces stipitatus ATCC 10500 (identity=44.8), and there has no PKSs of Monascus genus similar or the same to the PKSγ. So that, it is able to confirm that the gene fragment of PKSγ is a novel gene fragment (sequence) for the Monascus purpureus NTU 568 based above comparison and analysis.


Thus, through above descriptions, the novel gene fragments and the related nucleotide sequence of the Monascus purpureus NTU 568 have been introduced. Next, for the nucleotide sequence of the Monascus purpureus NTU 568 can be formed by treating the RAPD (Random Amplification of Polymorphic DNA) and the PCR (Polymerase Chain Reaction) process to a plurality of specific primers, the specific primers will be introduced in follows.


As the following table 8 shows, the primers designed by the software of Geneious 4.5.8 are recorded. According to the following Sequence Listing, the nucleotide sequence of primer PKSα F is defined as SEQ ID NO 4 and has 19 bp sequence length, the nucleotide sequence of primer PKSα R is defined as SEQ ID NO 5 and has 19 bp sequence length, the nucleotide sequence of primer PKSδ F is defined as SEQ ID NO 6 and has 20 bp sequence length, and the nucleotide sequence of primer PKSδ R is defined as SEQ ID NO 7 and has 20 bp sequence length. Moreover, according to the following Sequence Listing, the nucleotide sequence of primer PKSγ F is defined as SEQ ID NO 8 and has 20 bp sequence length, and the nucleotide sequence of primer PKSγ R is defined as SEQ ID NO 9 and has 20 bp sequence length.











TABLE 8





Primer
Sequence



ID
(5′ → 3′)
Target







PKSα F
G A C T G C G G T C A T C C G G C C C
PKSα





PKSα R
G C G T G T C C C C G G A G C T A C A






PKSδ F
G C G A G C C A A C C G T C T G G A C C
PKSδ





PKSδ R
C G A G A C G A C C A C C G T T G C C C






PKSγ F
G C G A G C C A A C C G T C T G G A C C
PKSγ





PKSγ R
C G A G A C G A C C A C C G T T G C C C









Continuously, the primers listed in the table 8 are executed RAPD through PCR process, wherein the polymerase chain reaction cocktail contains 3 ng DNA, 20 nM primers, a 1× Exsel reaction buffer, 0.5 U Exsel DNA polymerase (Bertec Enterprise, Taipei, Taiwan), and 100 M dNTPs. The reaction conditions of the PCR is as described: (1) 35-cycle processes with 95° C. (5 min) for heating, 95° C. (30 sec) for heating and −62° C. (1 min) for cooling; and (2) 70° C. (10 min) for reaction. Moreover, after completing the PCR process, it is able to execute the electrophoresis analysis for the PCR products by using 1% agarose gel, wherein the MISSION BIOTECH Co. Ltd. is commissioned to complete the electrophoresis analysis. After electrophoresis analysis and genome sequencing, it is able to confirm and prove that the PKSα, PKSγ and PKSδ are indeed the novel gene fragment (sequence) for the Monascus purpureus NTU 568.















Sequence



PKS
Length



ID
(bp)
Sequence







α
1390
G A C T G C G G T C A T C C G G C C C A G G A A A C C A G




A A T G G A T A T C T G G C G C C T T C T A G A A C C T G G




A T A G T G G C C G G A T C C C T C G C G C T G G G A G C




C T G G G T G A C T A T G A G G G A G G C G T T G G A A




C C G G A G G C G C C A T A A T T A T T G A T G A G G G C




C G C G C G G A A G T C C T C G T T C C A G G G C G T C A




G C T T G G T G G C A A T C T T C A T G T T A T G T T C T G




G C A A G G C T T T T A T G G A T G G A T T C A T G G T G G




T A A A G C T T G C C T G G G G T G G G A T G T A A C C T T




C A T T A A T C A T G A G G A G C A C C T T G A T G A G G G




A A A T G A C C C C T G A C G T A C A C T C G G T A T G T C




C G A T G A G G C C C T T G A C A G A G C C A A A G T G C




A G T G G T G T T G A G C G A T T G G G G C C C C C A A G T




A C T C T C A G G A T A C T C T C A T A T T C T G C T G G G T




C T C C C A C A G G A G T G C C A G T G C C G T G A G C T T




C A A C G A C A G T A A T C T G T T T A G G C A C C A G A T




G G G C C T C C C T G G T A A C G T C C T T G A A G A G C T




C T G A A A G G G A G G G C G A G T T T G G C A C G A A G




A T T G G G G T G C A G T T C T G G T T T T G A T A G A C A




G C G G T G C T C G C A A T G G T C C C C A G G A T C T G G




T C G C C G T C C T C A A T T G C A G T G C T G A G C T T C




T T C A A G A A G A C A G C A G C A A T G C C T T C A C C




G C G A C A A T A G C C A T C T G C A T G A G C G T C G A




A T G G C T T G C A T T G G C C C G T T G G A C T C A G G A




A G G A C G C C C C T G C C A A G T T C T G G A A C C A G




A G A G G A T T C G T C A T T A C A T T C G T A C C A C C G




G C C A G G G C A G C G G T A C A C T C G C C G C T G A G




G A T A G C T T T G C A G G C C T G A T G A A C T G C T A




C A G C G G A C G A G G A G C A T G C A G T G T C G A T G




G T C A G G C C A G G A C C G G T C C A G C C G A A G T A




G T G G C T G A T C T T T C C T G C A A T G A A G C T C T T




C A G G T T G C C A G T G G C C G A G A A G G C A T T C G




G A G C A T G G C A G G C A A T G T T G T T C T C A T A G T




C C G C A G C G C A A A C G C C A A T A T A G C A C C C A




A T C T G C T T G T C A A C G C T G G G G T T G C A G A A A




T A T C C C G A C T G T T C G A C A G C C T G A T A G G C G A




T T T G C A G C A T G T G G C G C T G C T G A G G A T C C G




T C G A G G C A A T C T C T C G C G G G C T C T T C T T G A




A G A A C T T G T G A T C A A A G G C A T C G T G G T C T C




G G A T A A A G T T T C C A A A C C A C T T C C G T T T C G




T A T C G A G C T C G C G G A A T A T T G T G T C G A A G G




T A A A G C G T T C C T T G G G T A C T T C C T G G T G C




T G T G A C T C C C C C C T G C A G A G C A A G T C C C A




G A A C C C T T C G A G G T C A T C T G C A C C G G C C A




C C T T A C A C G A C A T G C C A A T G A C G G C G A T G




T C G T T T T C G T C G A C C G C A T G G G C G T A T T T




C A A A G C A G A T G T A G C T C C G G G G A C A C G C A





δ
1024
G C G A G C C A A C C G T C T G G A C C A A C T C G A C C




G T C A T T C T C T C A A A G T C C T G A C G G A T C T G C




C C T C C T A T C C C T G G A T G C A T T C C C T C C G G T T




C T G G T A C G A G T C T C G T C T A A G C T A T G A C T A T




C G C C A T C G A T C A C A C C C T C G T C A C C A C C T G




G T A G G G G C T C C C A C G G C G G A T C A C A A C G C A




C T G G A G C C G A G A T G G A G A A A C T A C C T G C G G




G T C T C C G A G A G C C C C T G G A T A C G C G A G C A C




G T C G T T C A G T C T C G C A T A A T C T A C C C A G G T G




C G G G A T T C A T C G T G A T G G C A A T C G A G G C T G




C C G C T C A G C T G G C G G A T T C G T C G A A G A A G G




T C A A G G G G T T C G A G C T G C G A G A T G T C C A G A




T C A A C C G G G C A T T G C A G G T G C C G G A A G G C G




A A G A A G G C G T T G A A A C C A T A C T C C A C C T G C




G T C C G T A T C A G G C G C A G G G C C T C A C C A A G G




G C T C G C A C T G G G A C G A G T T C G T C A T C T A T T




C C T A C C A G T C A A C G C A G G G C T G G C A A G A C




C A C G C G C G T G G C T T G A T C G T G A C A C A C T A




C C A C A G C A A C A A G G C G G G G T T T G A T C T G C




A T C G G G A A G A C G A G A T A C A G C T G C A G A T G




C A T C G G G A G C A A T A C C T G A G A T C C T C T G G G




C T A T G C T T G T C G A C A A T C G A A C T G G A T G C G




T T C T A C G A T C G C C T C G G C C A G A T G G G C A T G




G A A T T T G G T C C G G C A T T C C G C A A C C T G T C G




A G C A T C C G A C A C T G C A A C G G C C A G A G T G T




C T G T C A G C T G C G T A T T C C A G A C A C C A A A G




T G C A G A T G C C A G A C G A G T T T G A G T T T A A G




C A T G T T A T T C A C C C C A T C A C G C T G G A T A A C




A T C T T C C A C A T G G T T C T G C C C T C T C G A G T A




G G A T C G G G T G C A T C G A T G A G G G A T G C G C A




T G T T C C G G T C T C C C T G C A G A G T C T G T A T A




T T G C T G C C G A T A T A A A A A G C A A C C C T G G G




A C C C T C C T T A C A G G C C A A T C C A C C A T T A C




G C A T G A G G A C G A C A G C G G T T T T G G G G C A




A C G G T G G T C G T C T C G





γ
1096
A G C A C C T C G G A G C A A C G G T T C T T G C G A T T G




C A A A T A C A A T G A G T G G G A A A C T G A G C T T G C




T C A A T T C C T T C C C G G A T T C A A C T G T T C T C A C




C C T G G A T G A A A T T A C G A A T T C G A G C A C T C A




G A C G T T C G G A C G A G C G G A C G T C A T C C T G A G




C A A C C A T G G G G T C A A C C C A A G A T G G T A T C A




T G G G G A A T T A T T A G G G C C A T G C G G G C G C T T




T A T C G A T T A C T C T G A C A T T G A A G G T A C C A C




G A G T C A T A T T G C A G A T G A C A G T C A G G C T G A




T G A A A T C T T G A T C C A T A G C G A A G T C T G T G C




C A G G A T T G A C C T C G A C T G T C T T C T C A A G C A




T C G A C C A G T G C T G G T T T C T G A A G T C T T A G A




A G T C G C G C A C A A T T T G G T T A G A G A G A G A A




T C G T G A A T A T T G G A G G C A A A G A G C C C A A G




A T A T T C T C A T T C T C A C A A C T A C A A C T T G C A




T T T G A C C A C C T G G C A T C T A T G C A G G A C A C T




G T G C C T A C T A T C A T C A C G G C C G A A G A C G G C




T G T C A A G T C A G C G T C T C G C C A C C A T C C T T C




G G C T C C A C C C C A T T C A T C T T C T C C C C G G A C




A A A G T G T A T C T T C T C G T G G G G G G C C T G A G C




G G T C T T G G C C T T G A G C T G G C C G A A T G G A T G




G T G C T C C G T G G C G C G C G T C A G C T T G C T T T C




A T G T C T C G A T C G G G T G C A G G A A A C G C C G C T




G C G A C T G C T A T G C T G G C G A G A T T G G C G G C A




A A A G G G G C G C G A A C A A C G G T G T A C C G A T G




C G A T G T G A C C G A T T T C T C C G C A G T G G G A C A




A T G C A T C A T G C A G A T A G G G C C T C A G T T A G G




C G G T A T T T T C C A T G C C G C T G C G G T G A T T G A




T G A C T G C C C C C T G C A G C A G A T G T C C G T T T C




C C A A T G G T G T C G C A C A A T C T C G C C C A A G G T




C C G C G G A G C A G A C A A C C T T G A T C G A G C A A




C A G C A G G C A T G G A C T T G G A C T T T T T C A T C T




G C T T C T C C T C T G C C T C A G C A G T G G T T G G A A




C C A A G G C C C A G G C A A G C T A T G T G G C C G G C




A A C A C C T A C A T G G A C G C C C T G A T G C G G A G




C C G T C G A C A G C G C G G A C T A A G T G G C A C G G




C C A T T A A T A T C G G C A T G G T G A T A G G G A T T G




G T C T G G T C G C T G C G G A T G C T A A G C T T G A G




G C A A G C A T G A A A C G G A C T G G T T T C G A T C C




G G T C A A T G A G T A T G A A T T C T T C T G T C T G A T




A G A A G A G G C A G T T C A G A C A G G A C G C T C G C




T G A C G A C C T C C G A C G A C G G G A A C A T G G A G




A G T T T C C G G A T T G T T A C T G G G G C T C G C G T G




A C A G G G C C A C A G T G C T









Thus, through the descriptions, the mutant of Monascus purpureus NTU 568, nucleotide sequence for Monascus purpureus NTU 568 and primers for nucleotide sequence of Monascus purpureus NTU 568 of the present invention has been completely introduced and disclosed; in summary, the present invention has the following advantages:


In the present invention, the nucleotide sequence for Monascus purpureus NTU 568 and the primers for the nucleotide sequence are proposed in order to facilitate the person skilled in Monascus purpureus filed capable of carrying out the strain (mutant) identification of the Monascus purpureus NTU 568 according to the present invention. Moreover, the person skilled in Monascus purpureus filed can also rapidly complete the strain (mutant) identification of the Monascus purpureus NTU 568 by using DNA molecular marker technology, without culturing any isolated Monascus purpureus strain or live Monascus purpureus bacteria.


The above description is made on embodiments of the present invention. However, the embodiments are not intended to limit scope of the present invention, and all equivalent implementations or alterations within the spirit of the present invention still fall within the scope of the present invention.

Claims
  • 1. A Monascus Purpureus mutant, which is a Monascus purpureus NTU 568 having a nucleotide sequence of SEQ ID NO 1, SEQ ID NO 2 or SEQ ID NO 3, and was deposited with Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany) on Nov. 18, 2013, the accession number of the Monascus purpureus NTU 568 being DSM 28072; wherein the method for testing the viability of Monascus purpureus NTU 568 is the following: after transferring Monascus purpureus NTU 568 from a slant tube to a potato dextrose agar (PDA) for 5-day culture, digging 3 blocks of hyphal body with volume of 1 cm3; and continuously, inoculating the hyphal body into a 100 mL medium containing 2% of rice powder or dioscorea powder, so as to culture the Monascus purpureus NTU 568 with shaking manner under 30° C. and 200 rpm for 48 hours; therefore, If the cultured liquid presents red color after 48 hours of culture, the viability of Monascus purpureus NTU 568 is well;wherein the storage method for Monascus purpureus NTU 568 is to store on a PDA medium in a slant tube under 4° C., and then sub-culturing the Monascus purpureus NTU 568 every 3 months;wherein the nucleotide sequence of the Monascus Purpureus strain NTU 568 can be identified by using following primers:
  • 2. The Monascus Purpureus mutant of claim 1, wherein the Monascus purpureus NTU 568 can increase the production of monacolin K in the secondary metabolites thereof.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. application Ser. No. 12/946,823, filed on Nov. 15, 2010, the content of which is incorporated herein by reference in its entirety.

US Referenced Citations (1)
Number Name Date Kind
20100221366 Pan Sep 2010 A1
Non-Patent Literature Citations (2)
Entry
Lee et al. Appl Microbiol Biotechnol. 2006, 72:1254-1262.
Lee et al. J. Agric. Food Chem., 2007, 55 (16), pp. 6493-6502.
Related Publications (1)
Number Date Country
20140242675 A1 Aug 2014 US
Continuation in Parts (1)
Number Date Country
Parent 12946823 Nov 2010 US
Child 14142814 US