The present invention is directed to a monitor calibrator.
Prior art is represented by other monitor calibrators that lack stability when attached to the glass surface of a cathode ray tube (CRT) commonly used for computer monitors. The lack of stability is due to the way the device is attached to the monitor, and the cantilever effect that gravity has on the device once mounted.
One example cited is the Xrite DPT 92. The Xrite device uses a single large suction cup that is mounted on the device to attach to the glass surface of the monitor. Since the single large suction cup is offset from the true center of gravity of the device, the device and others designed similarly will have a tendency to droop or rotate downward due to the effect of gravity. This drooping action causes the light detector and related optics to rotate out of the plane of the CRT or monitor. Once the device rotates out of the plane of the monitor, the device may result in poor performance or unwanted error.
Another type of monitor calibrator known as the sequel device attempts to overcome the problem of drooping by attaching multiple suction cups on the mounting side of the device. In this case, the suction cups adhere to the monitor to try and improve stability, however, there is also some degree of droop or rotation. In the case of this design, the multiple suction cups are mounted to one side of the device, but the suction cups are still offset to the true center of gravity of the device, causing droop or rotation error. In addition to droop or rotation, this approach also results in adding a level of non-repeatability in measurement.
One embodiment of the invention is a monitor calibrator for mounting to a surface in order to reduce the effects of gravity on the calibrator. The calibrator has a case having a shape with a plurality of case supporting elements extending from the case uniformly distributed around a perimeter of the case.
FIGS. 8A-C are top, sectional, and bottom views of one embodiment of the case supporting elements of the present invention.
FIGS. 9A-C are top, sectional, and side views of one embodiment the part of the case of the present invention.
The invention will be described in reference to the drawings.
As shown in FIGS. 8A-C, the stability and support of the calibrator is created by the support structure 30 that has case supporting elements 31. One embodiment of the monitor calibrator 1 shows the support structure 30 with three case supporting elements 31. However,
The three case supporting elements 31 form a single triangular structure where each case supporting element 31 is equal distance to one another. This triangular shape provides stability to the support structure 30 since the case supporting elements 31 surround the center of the structure 30 and the case 10.
The top of the support structure 30 may have a cavity 32 surrounding the center of the support structure 30. The underneath 35 of the cavity 32 contains a fastening means, such as multiple female fasteners 16. On the top of the top half 12 of the case 10 there are fastening means, such as male fasteners 15, shown in
As shown in
As shown in
As shown in
As shown
After the device 1 is completely assembled, the device 1 is able to be mounted on a monitor. Once attached to the monitor or CRT, the case, supporting elements 31 compress the suction cups 60 against the surface. This compression pre-loads the case supporting elements 31. The energy caused by this pre-loading technique results in enough force that it minimizes the droop or roll experienced by other designs.
Although the present invention has been described in detail with reference to certain preferred embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiment contained herein.
The present application is a Continuation of and claims the benefit of U.S. application Ser. No. 10/023,621 filed Dec. 18, 2001, which claims the benefit of Provisional Application No. 60/256,552 filed Dec. 18, 2000, the disclosures of which are incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
60256552 | Dec 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10023621 | Dec 2001 | US |
Child | 11004197 | Dec 2004 | US |