The invention relates to a method for monitoring an electrical power supply network.
As is known, in the event of an overload an electrical power supply network originally synchronous with respect to its network frequency can be separated into individual electrical islands which are no longer intrinsically synchronous as a consequence of automatic opening of corresponding switching connections after defined electrical threshold values have been determined. Owing to the equilibrium between electrical power generation and electrical power consumption no longer being guaranteed in the individual zones of the power supply network immediately after islanding, after a certain delay a network frequency individual to the island or characteristic of the respective island in each case is established in the individual islands—determined by the self-regulating effect of the power supply network and the use of primary regulation of the power generators present in the power supply network. The network frequency must be reduced again to the respective frequency target value of, by way of example, 50 Hz or 60 Hz as promptly as possible with the power generation units available within the respective island section in order to prevent complete breakdown of the electrical power supply network or damage to the large electrical components forming part of the power supply network.
According to this the object of the invention is to disclose a method for monitoring an electrical power supply network which can quickly and reliably indicate possible islanding within the power supply network.
This object is achieved according to the invention by a method having the features as claimed. Advantageous embodiments of the inventive method are disclosed in the subclaims.
According to this it is provided according to the invention that a temporal frequency change value is determined for at least two sections or for at least two points of the power supply network, which value indicates the respective temporal frequency change in the network frequency, and a conclusion is drawn regarding possible islanding within the power supply network, and a warning signal which indicates the possible islanding within the power supply network is generated if the difference between the frequency change values exceeds a predetermined frequency change threshold value.
A fundamental advantage of the inventive method can be seen in that possible islanding can be detected and displayed especially quickly since the temporal frequency change in the network frequency is evaluated for different points of the power supply network and the situation is monitored to see if a predetermined frequency change threshold value is exceeded. The inventors have found that by monitoring the frequency change values of different points of the power supply network possible islanding can be detected especially quickly and reliably.
The power supply network is preferably a distribution network, for example a distribution network of the medium voltage level or a distribution network of the low voltage level, or a transportation network, for example a transportation network of the high voltage level or a high voltage network.
The frequency change values for the at least two sections or for the at least two points are preferably measured by direct measurement of the frequency change values in these at least two sections or at these at least two points.
With respect to the formation of the frequency change values, it is deemed advantageous if the network frequencies are each measured for the at least two sections or for the at least two points of the power supply network by forming a time-dependent frequency value, and the time-dependent frequency values are derived with respect to time by forming one of the temporal frequency change values respectively.
A conclusion is preferably drawn regarding the existence of islanding within the power supply network and an islanding signal indicating islanding within the power supply network is generated if the difference between the frequency values exceeds a predetermined frequency threshold value.
After forming the islanding signal, the islanding signal is preferably only reset again or switched off if the difference between the frequency values falls below a predetermined first resetting threshold value, and the difference between the temporal frequency change values falls below a predetermined second resetting threshold value. Delayed or controlled resetting of an islanding signal once formed has the advantage of an untimely and possibly premature all-clear signal being avoided.
It is deemed advantageous if the first resetting threshold value matches the frequency threshold value or is less than the frequency threshold value.
The second resetting threshold value preferably matches the frequency change threshold value or is less than the frequency change threshold value.
It is also deemed advantageous if a pre-warning signal indicating possible islanding within the power supply network is generated if the difference between the network frequencies exceeds a predetermined pre-warning threshold value.
For measuring the network frequency and/or the frequency change values in the at least two sections or at the at least two points of the power supply network, it is deemed advantageous if what are known as pointer-type measuring instruments are used. It is therefore deemed advantageous if at least one pointer measured value, the respective frequency value pertaining to the pointer measured value and the respective temporal frequency change value are determined in each case by a pointer-type measuring instrument in the at least two sections or at the at least two points of the power supply network, the frequency values and the frequency change values are transferred to a central device, and the received frequency values and the received frequency change values are evaluated by the central device and the warning signal and/or the islanding signal is/are generated as a function of the received frequency values and/or the received frequency change values.
The phase difference by way of example between the phases of the voltage pointer in the at least two sections, its change (slip) and the change in slip (acceleration) of the voltage pointer are ascertained using the pointer-type measuring instruments.
The invention also relates to an arrangement for monitoring an electrical power supply network. With respect to such an arrangement it is provided according to the invention that arranged in at least two sections or at at least two points at least of the power supply network is at least one measuring instrument respectively which is capable of determining a frequency value indicating the respective network frequency and/or a temporal frequency change value indicating the respective temporal frequency change in the network frequency, and there is a central device which is capable of drawing a conclusion regarding possible islanding within the power supply network and of generating a warning signal indicating the possible islanding within the power supply network if the difference between the frequency change values exceeds a predetermined frequency change threshold value.
Reference is made with respect to the advantages of the inventive arrangement to the above statements in conjunction with the inventive method since the advantages of the inventive arrangement substantially match those of the inventive method.
The central device is preferably a device separate from the measuring instruments and is connected by a communications link to the measuring instruments.
Alternatively the central device can be integrated in a measuring instrument or can form part of one of the measuring instruments.
The invention also relates to a central device for an arrangement as has been described above. According to the invention it is provided with respect to such a central device that the central device has a computing device which is capable of receiving from at least two measuring instruments one temporal frequency change value respectively, indicating the respective temporal frequency change in the network frequency, and/or of determining the temporal frequency change values from measured values of the at least two measuring instruments and of generating a warning signal indicating possible islanding within the power supply network if the difference between the frequency change values exceeds a predetermined frequency change threshold value.
Reference is made with respect to the advantages of the inventive central device to the above statements in conjunction with the inventive method since the advantages of the inventive central device substantially match those of the inventive method.
The invention will be explained in more detail below with reference to exemplary embodiments, in which by way of example:
For the sake of clarity, the same reference numerals will always be used in the figures for identical or comparable components.
A power supply network is illustrated only schematically in
A central device is connected to the three measuring instruments 20, 30, 40, and this includes a computing device 60 and a memory 70. A program P is stored in the memory 70, and this determines the mode of operation of the computing device 60.
The three measuring instruments 20, 30, 40 may by way of example be pointer-type measuring instruments, which are known a PMUs (Phasor Measuring Unit). Pointer-type measuring instruments of this kind are conventionally capable of determining pointer variables (i.e. complex measured values according to amount and phase), such as voltage pointer measured values or current pointer measured values by way of example.
It is assumed by way of example hereinafter that the three measuring instruments 20, 30, 40 each measure the network frequency at the point within the power supply network 10 associated with it and transfer the corresponding frequency values to the central device 50. The frequency values are identified in
Furthermore, the three measuring instruments 20, 30, 40 each also ascertain frequency change values f1′, f2′ and f3′ which indicate the temporal frequency change in the network frequency at the respective point in the power supply system 10. The three measuring instruments 20, 30, 40 can form the temporal frequency change values f1′, f2′ and f3′ by way of example by a mathematical derivation of the time-dependent frequency values f1, f2 and f3 with respect to time, i.e. according to
f1′=df1/dt
f2′=df2/dt
f3′=df3/dt
The computing device 60 of the central device 50 receives the three frequency values f1, f2 and f3 and the three frequency change values f1′, f2′ and f3′ and at the output side generates a pre-warning signal Svw, a warning signal Sw and/or an islanding signal Si if predetermined criteria are met in the program p and/or in the memory 70.
An exemplary embodiment for the mode of operation of the central device 50 shall be explained below with reference to
In the first decision module 80 the central device 50 checks whether the difference between the frequency change values f1′, f2′ and f3′ at the input side exceeds a predetermined frequency change threshold value Df′max or not.
If the first decision module 80 finds that at least one of the three differences exceeds the predetermined frequency change threshold value Df′max, then it generates the warning signal Sw at the output side, by way of example with logic “1”.
If, by contrast, the first decision module 80 finds that none of the three differences exceeds the predetermined frequency change threshold value Df′max, then a warning signal Sw by way of example with logic “0” is generated at the output side.
The logic level is therefore allocated by way of example as follows:
|f1′−f2′|>Df′maxSw=“1”
|f1′−f3′|>Df′maxSw=“1”
|f2′−f3′|>Df′maxSw=“1”
|f1′−f2′|≦Df′max
and
|f1′−f3′|≦Df′max
and
≦|f2′−f3′|≦Df′maxSw=“0”
The second decision module 90 checks the three frequency values f1, f2 and f3, which are supplied by the three measuring instruments 20, 30 and 40 according to
The following applies therefore by way of example for the allocation of the logic signal level:
|f1−f2|>DfpreSvw=“1”
|f1−f3|>DfpreSvw=“1”
|f2−f3|>DfpreSvw=“1”
|f1−f2|≦Dfpre
and
|f1−f3|≦Dfpre
and
|f2−f3|≦Dfpre Svw=“0”
The third decision module 100 serves to form an islanding signal Si if the frequency values f1, f2 and f3 supplied by the three measuring instruments 20, 30 and 40 according to
The following applies therefore by way of example for the allocation of the logic signal level:
|f1−f2|>DfmaxSi=“1”
|f1−f3|>DfmaxSi=“1”
|f2−f3|>DfmaxSi=“1”
|f1−f2|≦Dfmax
and
|f1−f3|≦Dfmax
and
|f2−f3|≦DfmaxSi=“1”
It can be seen in
If the islanding signal Si is generated with logic “1” by the third decision module 100, then this logic “1” is transferred from the signal memory 110, so the islanding signal Si is output at the output of the signal memory 110 with logic “1”.
The logic signal level “1” is stored by the signal memory 110 and passed at the output side even if the islanding signal Si is in the meantime no longer being generated by the third decision module 100. The islanding signal Si output by the signal memory 110 is only reset to logic “0” if both a first resetting signal Sr1 and a second resetting signal Sr2 exhibit logic “1”. In other words, only if the output signal generated by the third decision module 100 exhibits logic “0” and at the same time the two resetting signals Sr1 and Sr2 exhibit logic “1” is the signal level of the islanding signal Si reset and the islanding signal Si output with logic “0”.
The first resetting signal can be formed by way of example with logic “1” if the difference between the frequency values exceeds a predetermined first resetting threshold value.
The second resetting signal Sr2 can be generated by way of example with logic “1” if the difference between the temporal frequency change values falls below a predetermined second resetting threshold value.
The frequency threshold value Dfmax by way of example, which is used by the third decision module 100, can be employed to form the first resetting signal Sr1. In this case the first resetting signal Sr1 can be easily generated by inverting the islanding signal Si, output by the third decision module 100, by means of an inverter 120. The inverter 120 inverts the islanding signal Si of the third decision module 100 and outputs the inverted islanding signal Si to the signal memory 110 as a first resetting signal Sr1.
In the case of the second resetting signal Sr2 the frequency change threshold value Df′max by way of example can be taken into account, and this is used by the first decision module 80 in the course of generating the warning signal Sw. A second inverter 130 by way of example can invert the output signal of the first decision module 80, i.e. invert the warning signal Sw, and feed the inverted warning signal Sw as a second resetting signal Sr2 into the signal memory 110.
In the course of the described generation of the two resetting signals Sr1 and Sr2, there is a resetting of an islanding signal S1, set previously to logic “1”, at the output of the signal memory 110 only if the islanding signal Si emitted at the output side by the third decision module exhibits logic “0” and at the same time the warning signal Sw of the first decision module 80 exhibits logic “0”.
The explanations in connection with
Although the invention has been illustrated and described in detail by preferred exemplary embodiments it is not restricted by the disclosed examples and a person skilled in the art can derive other variations herefrom without departing from the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/053408 | 2/29/2012 | WO | 00 | 8/29/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/127447 | 9/6/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6219623 | Wills | Apr 2001 | B1 |
20030218888 | Suzui | Nov 2003 | A1 |
20040021470 | Adams et al. | Feb 2004 | A1 |
20070100504 | Moxley | May 2007 | A1 |
20070103004 | Chou | May 2007 | A1 |
20070143044 | Huang | Jun 2007 | A1 |
20080179966 | Horio et al. | Jul 2008 | A1 |
20080204044 | Ponnaluri | Aug 2008 | A1 |
20100286838 | Guzman-Casillas | Nov 2010 | A1 |
20110309690 | West | Dec 2011 | A1 |
20130058139 | Bae | Mar 2013 | A1 |
20130155734 | El-Barbari | Jun 2013 | A1 |
20130169309 | Bickel | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
0182444 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20150008898 A1 | Jan 2015 | US |