The subject disclosure relates to monitoring and mitigating conditions in a communication network.
As smart phones and other portable devices increasingly become ubiquitous, and data usage increases, macrocell base station devices and existing wireless infrastructure in turn require higher bandwidth capability in order to address the increased demand. To provide additional mobile bandwidth, small cell deployment is being pursued, with microcells and picocells providing coverage for much smaller areas than traditional macrocells.
One or more embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the various embodiments. It is evident, however, that the various embodiments can be practiced without these details (and without applying to any particular networked environment or standard).
To provide network connectivity to additional base station devices, the backhaul network that links the communication cells (e.g., microcells and macrocells) to network devices of the core network correspondingly expands. Similarly, to provide network connectivity to a distributed antenna system, an extended communication system that links base station devices and their distributed antennas is desirable. A guided wave communication system can be provided to enable alternative, increased or additional network connectivity and a waveguide coupling system can be provided to transmit and/or receive guided wave (e.g., surface wave) communications on a wire, such as a wire that operates as a single-wire transmission line (e.g., a utility line), that operates as a waveguide and/or that otherwise operates to guide the transmission of an electromagnetic wave.
In an embodiment, a waveguide coupler that is utilized in a waveguide coupling system can be made of a dielectric material, or other low-loss insulator (e.g., Teflon, polyethylene and etc.), or even be made of a conducting (e.g., metallic, non-metallic, etc.) material, or any combination of the foregoing materials. Reference throughout the detailed description to “dielectric waveguide” is for illustration purposes and does not limit embodiments to being constructed solely of dielectric materials. In other embodiments, other dielectric or insulating materials are possible. It will be appreciated that a variety of transmission media can be utilized with guided wave communications without departing from example embodiments. Examples of such transmission media can include one or more of the following, either alone or in one or more combinations: wires, whether insulated or not, and whether single-stranded or multi-stranded; conductors of other shapes or configurations including wire bundles, cables, rods, rails, pipes; non-conductors such as dielectric pipes, rods, rails, or other dielectric members; combinations of conductors and dielectric materials; or other guided wave transmission media.
For these and/or other considerations, in one or more embodiments, an apparatus comprises a waveguide that facilitates propagation of a first electromagnetic wave at least in part on a waveguide surface, wherein the waveguide surface does not surround in whole or in substantial part a wire surface of a wire, and, in response to the waveguide being positioned with respect to the wire, the first electromagnetic wave couples at least in part to the wire surface and travels at least partially around the wire surface as a second electromagnetic wave, and wherein the second electromagnetic wave has at least one wave propagation mode for propagating longitudinally along the wire.
In another embodiment, an apparatus comprises a waveguide that has a waveguide surface that defines a cross sectional area of the waveguide wherein a wire is positioned outside of the cross-sectional area of the waveguide such that a first electromagnetic wave, traveling along the wire at least in part on the wire surface, couples at least in part to the waveguide surface and travels at least partially around the waveguide surface as a second electromagnetic wave.
In an embodiment, a method comprises emitting, by a transmission device, a first electromagnetic wave that propagates at least in part on a waveguide surface of a waveguide, wherein the waveguide is not coaxially aligned with a wire. The method can also include configuring the waveguide in proximity of the wire to facilitate coupling of at least a part of the first electromagnetic wave to a wire surface, forming a second electromagnetic wave that propagates longitudinally along the wire and at least partially around the wire surface.
In another embodiment, an apparatus comprises, in one or more embodiments, a waveguide having a slot formed by opposing slot surfaces that are non-parallel, wherein the opposing slot surfaces are separated by a distance that enables insertion of a wire in the slot, wherein the waveguide facilitates propagation of a first electromagnetic wave at least in part on a waveguide surface, and, in response to the waveguide being positioned with respect to the wire, the first electromagnetic wave couples at least in part to a wire surface of the wire and travels at least partially around the wire surface as a second electromagnetic wave for propagating longitudinally along the wire, and wherein the second electromagnetic wave has at least one wave propagation mode.
In another embodiment, an apparatus comprises, in one or more embodiments, a waveguide, wherein the waveguide comprises a material that is not electrically conductive and is suitable for propagating electromagnetic waves on a waveguide surface of the waveguide, wherein the waveguide facilitates propagation of a first electromagnetic wave at least in part on the waveguide surface, and, in response to the waveguide being positioned with respect to a wire, the first electromagnetic wave couples at least in part to a wire surface of the wire and travels at least partially around the wire surface as a second electromagnetic wave, and wherein the second electromagnetic wave has at least one wave propagation mode for propagating longitudinally along the wire.
One embodiment of the subject disclosure includes an apparatus having a waveguide that facilitates transmission or reception of electromagnetic waves along a wire surface of a wire of a power grid that also facilitates delivery of electric energy to devices. The apparatus can further include one or more sensors that facilitate sensing of a condition that is adverse to the waveguide, the wire, the transmission or reception of electromagnetic waves that propagate along the wire surface or waveguide surface, or any combination thereof.
One embodiment of the subject disclosure includes a method for transmitting, by an apparatus having a waveguide and a sensor, electromagnetic waves that propagate along a wire surface of a wire that facilitates delivery of electric energy to devices, and sensing, by the sensor, a condition that is adverse to the electromagnetic waves that propagate along the wire surface.
One embodiment of the subject disclosure includes a machine-readable (e.g., computer-readable, processor-readable, etc.) storage medium having executable instructions that, when executed by a processor, facilitate performance of operations, including inducing with or via a waveguide, electromagnetic waves guided along a surface of a transmission medium, and collecting sensing data from a sensor, the sensing data associated with a condition that is adverse to the electromagnetic waves guided along the surface of the transmission medium.
One embodiment of the subject disclosure includes an apparatus having a processor and a memory. The processor can perform an operation of receiving telemetry information from a waveguide system coupled to a sensor, detecting from the telemetry information a condition that is adverse to one of operations of the waveguide system, the transmission or reception of the electromagnetic waves along the wire surface or the waveguide surface, or a combination thereof, and reporting the condition. The waveguide system can comprise a waveguide that can be positioned with respect to a wire of a power grid that facilitates delivery of electric energy to devices. The waveguide can also facilitate transmission or reception of electromagnetic waves along a wire surface of the wire, while the sensor can facilitate sensing conditions adverse to electromagnetic waves.
One embodiment of the subject disclosure includes a method for receiving, by a network element comprising a processor, telemetry information from a waveguide system, determining, by the network element, a condition from sensing data included in the telemetry information, and transmitting, by the network element, instructions to the waveguide system to adjust a route of the electromagnetic waves to avoid or compensate for the condition determined. The waveguide system can facilitate transmission of electromagnetic waves along a wire surface of a wire of a power grid and sensing of conditions adverse to the transmission or reception of the electromagnetic waves.
One embodiment of the subject disclosure includes a machine-readable (e.g., computer-readable, processor-readable, etc.) storage medium having executable instructions that, when executed by a processor, facilitate performance of operations, including receiving telemetry information from an apparatus that induces electromagnetic waves on a wire surface of a wire of a power grid for delivery of communication signals to a recipient communication device coupled to the power grid, and detecting a condition from the telemetry information that is adverse to a delivery of the communication signals to the recipient communication device.
Various embodiments described herein relate to a waveguide coupling system for launching and extracting guided wave (e.g., surface wave communications that are electromagnetic waves) transmissions from a wire. At millimeter-wave frequencies (e.g., 30 to 300 GHz), wherein the wavelength can be small compared to the size of the equipment, transmissions can propagate as waves guided by a waveguide, such as a strip or length of dielectric material or other coupler. The electromagnetic field structure of the guided wave can be inside and/or outside of the waveguide. When this waveguide is brought into close proximity to a wire (e.g., a utility line or other transmission line), at least a portion of the guided waves decouples from the waveguide and couples to the wire, and continue to propagate as guided waves, such as surface waves about the surface of the wire.
According to an example embodiment, a surface wave is a type of guided wave that is guided by a surface of the wire, which can include an exterior or outer surface of the wire, or another surface of the wire that is adjacent to or exposed to another type of medium having different properties (e.g., dielectric properties). Indeed, in an example embodiment, a surface of the wire that guides a surface wave can represent a transitional surface between two different types of media. For example, in the case of a bare or uninsulated wire, the surface of the wire can be the outer or exterior conductive surface of the bare or uninsulated wire that is exposed to air or free space. As another example, in the case of insulated wire, the surface of the wire can be the conductive portion of the wire that meets the insulator portion of the wire, or can otherwise be the insulator surface of the wire that is exposed to air or free space, or can otherwise be any material region between the insulator surface of the wire and the conductive portion of the wire that meets the insulator portion of the wire, depending upon the relative differences in the properties (e.g., dielectric properties) of the insulator, air, and/or the conductor and further dependent on the frequency and propagation mode or modes of the guided wave.
According to an example embodiment, guided waves such as surface waves can be contrasted with radio transmissions over free space/air or conventional propagation of electrical power or signals through the conductor of the wire. Indeed, with surface wave or guided wave systems described herein, conventional electrical power or signals can still propagate or be transmitted through the conductor of the wire, while guided waves (including surface waves and other electromagnetic waves) can propagate or be transmitted about the surface of the wire, according to an example embodiment. In an embodiment, a surface wave can have a field structure (e.g., an electromagnetic field structure) that lies primarily or substantially outside of the line, wire, or transmission medium that serves to guide the surface wave.
According to an example embodiment, the electromagnetic waves traveling along the wire and around the outer surface of the wire are induced by other electromagnetic waves traveling along a waveguide in proximity to the wire. The inducement of the electromagnetic waves can be independent of any electrical potential, charge or current that is injected or otherwise transmitted through the wires as part of an electrical circuit. It is to be appreciated that while a small current in the wire may be formed in response to the propagation of the electromagnetic wave along the wire, this can be due to the propagation of the electromagnetic wave along the wire surface, and is not formed in response to electrical potential, charge or current that is injected into the wire as part of an electrical circuit. The electromagnetic waves traveling on the wire therefore do not require a circuit to propagate along the wire surface. The wire therefore is a single wire transmission line that is not part of a circuit. Also, in some embodiments, a wire is not necessary, and the electromagnetic waves can propagate along a single line transmission medium that is not a wire.
According to an example embodiment, the term “about” a wire used in conjunction with a guided wave (e.g., surface wave) can include fundamental wave propagation modes and other guided waves having a circular or substantially circular field distribution (e.g., electric field, magnetic field, electromagnetic field, etc.) at least partially around a wire or other transmission medium. In addition, when a guided wave propagates “about” a wire or other transmission medium, it can do so according to a wave propagation mode that includes not only the fundamental wave propagation modes (e.g., zero order modes), but additionally or alternatively other non-fundamental wave propagation modes such as higher-order guided wave modes (e.g., 1st order modes, 2nd order modes, etc.), asymmetrical modes and/or other guided (e.g., surface) waves that have non-circular field distributions around a wire or other transmission medium.
For example, such non-circular field distributions can be unilateral or multi-lateral with one or more axial lobes characterized by relatively higher field strength and/or one or more nulls or null regions characterized by relatively low-field strength, zero-field strength or substantially zero field strength. Further, the field distribution can otherwise vary as a function of a longitudinal axial orientation around the wire such that one or more regions of axial orientation around the wire have an electric or magnetic field strength (or combination thereof) that is higher than one or more other regions of axial orientation, according to an example embodiment. It will be appreciated that the relative positions of the wave higher order modes or asymmetrical modes can vary as the guided wave travels along the wire.
Referring now to
Guided wave communication system 100 can be a distributed antenna system that includes one or more base station devices (e.g., base station device 104) that are communicably coupled to a macrocell site 102 or other network connection. Base station device 104 can be connected by a wired (e.g., fiber and/or cable), or by a wireless (e.g., microwave wireless) connection to macrocell site 102. Macrocells such as macrocell site 102 can have dedicated connections to the mobile network and base station device 104 can share and/or otherwise use macrocell site 102's connection. Base station device 104 can be mounted on, or attached to, utility pole 116. In other embodiments, base station device 104 can be near transformers and/or other locations situated nearby a power line.
Base station device 104 can facilitate connectivity to a mobile network for mobile devices 122 and 124. Antennas 112 and 114, mounted on or near utility poles 118 and 120, respectively, can receive signals from base station device 104 and transmit those signals to mobile devices 122 and 124 over a much wider area than if the antennas 112 and 114 were located at or near base station device 104.
It is noted that
A dielectric waveguide coupling device 106 can transmit the signal from base station device 104 to antennas 112 and 114 via utility or power line(s) that connect the utility poles 116, 118, and 120. To transmit the signal, radio source and/or coupler 106 upconverts the signal (e.g., via frequency mixing) from base station device 104 or otherwise converts the signal from the base station device 104 to a millimeter-wave band signal and the dielectric waveguide coupling device 106 launches a millimeter-wave band wave that propagates as a guided wave (e.g., surface wave or other electromagnetic wave) traveling along the utility line or other wire. At utility pole 118, another dielectric waveguide coupling device 108 receives the guided wave (and optionally can amplify it as needed or desired or operate as a digital repeater to receive it and regenerate it) and sends it forward as a guided wave (e.g., surface wave or other electromagnetic wave) on the utility line or other wire. The dielectric waveguide coupling device 108 can also extract a signal from the millimeter-wave band guided wave and shift it down in frequency or otherwise convert it to its original cellular band frequency (e.g., 1.9 GHz or other defined cellular frequency) or another cellular (or non-cellular) band frequency. An antenna 112 can transmit (e.g., wirelessly transmit) the downshifted signal to mobile device 122. The process can be repeated by dielectric waveguide coupling device 110, antenna 114 and mobile device 124, as necessary or desirable.
Transmissions from mobile devices 122 and 124 can also be received by antennas 112 and 114 respectively. Repeaters on dielectric waveguide coupling devices 108 and 110 can upshift or otherwise convert the cellular band signals to millimeter-wave band and transmit the signals as guided wave (e.g., surface wave or other electromagnetic wave) transmissions over the power line(s) to base station device 104.
In an example embodiment, system 100 can employ diversity paths, where two or more utility lines or other wires are strung between the utility poles 116, 118, and 120 (e.g., for example, two or more wires between poles 116 and 120) and redundant transmissions from base station 104 are transmitted as guided waves down the surface of the utility lines or other wires. The utility lines or other wires can be either insulated or uninsulated, and depending on the environmental conditions that cause transmission losses, the coupling devices can selectively receive signals from the insulated or uninsulated utility lines or other wires. The selection can be based on measurements of the signal-to-noise ratio of the wires, or based on determined weather/environmental conditions (e.g., moisture detectors, weather forecasts, etc.). The use of diversity paths with system 100 can enable alternate routing capabilities, load balancing, increased load handling, concurrent bi-directional or synchronous communications, spread spectrum communications, etc. (See
It is noted that the use of the dielectric waveguide coupling devices 106, 108, and 110 in
It is further noted, that while base station device 104 and macrocell site 102 are illustrated in an embodiment, other network configurations are likewise possible. For example, devices such as access points or other wireless gateways can be employed in a similar fashion to extend the reach of other networks such as a wireless local area network, a wireless personal area network or other wireless network that operates in accordance with a communication protocol such as a 802.11 protocol, WIMAX protocol, UltraWideband protocol, Bluetooth protocol, Zigbee protocol or other wireless protocol.
Turning now to
The guided wave 208 stays parallel or substantially parallel to the wire 202, even as the wire 202 bends and flexes. Bends in the wire 202 can increase transmission losses, which are also dependent on wire diameters, frequency, and materials. If the dimensions of the dielectric waveguide 204 are chosen for efficient power transfer, most of the power in the wave 206 is transferred to the wire 202, with little power remaining in wave 210. It will be appreciated that the guided wave 208 can still be multi-modal in nature (discussed herein), including having modes that are non-fundamental or asymmetric, while traveling along a path that is parallel or substantially parallel to the wire 202, with or without a fundamental transmission mode. In an embodiment, non-fundamental or asymmetric modes can be utilized to minimize transmission losses and/or obtain increased propagation distances.
It is noted that the term parallel is generally a geometric construct which often is not exactly achievable in real systems. Accordingly, the term parallel as utilized in the subject disclosure represents an approximation rather than an exact configuration when used to describe embodiments disclosed in the subject disclosure. In an embodiment, substantially parallel can include approximations that are within 30 degrees of true parallel in all dimensions.
In an embodiment, the wave 206 can exhibit one or more wave propagation modes. The dielectric waveguide modes can be dependent on the shape and/or design of the waveguide 204. The one or more dielectric waveguide modes of wave 206 can generate, influence, or impact one or more wave propagation modes of the guided wave 208 propagating along wire 202. In an embodiment, the wave propagation modes on the wire 202 can be similar to the dielectric waveguide modes since both waves 206 and 208 propagate about the outside of the dielectric waveguide 204 and wire 202 respectively. In some embodiments, as the wave 206 couples to the wire 202, the modes can change form, or new modes can be created or generated, due to the coupling between the dielectric waveguide 204 and the wire 202. For example, differences in size, material, and/or impedances of the dielectric waveguide 204 and wire 202 may create additional modes not present in the dielectric waveguide modes and/or suppress some of the dielectric waveguide modes. The wave propagation modes can comprise the fundamental transverse electromagnetic mode (Quasi-TEM00), where only small electric and/or magnetic fields extend in the direction of propagation, and the electric and magnetic fields extend radially outwards while the guided wave propagates along the wire. This guided wave mode can be donut shaped, where few of the electromagnetic fields exist within the dielectric waveguide 204 or wire 202.
Waves 206 and 208 can comprise a fundamental TEM mode where the fields extend radially outwards, and also comprise other, non-fundamental (e.g., asymmetric, higher-level, etc.) modes. While particular wave propagation modes are discussed above, other wave propagation modes are likewise possible such as transverse electric (TE) and transverse magnetic (TM) modes, based on the frequencies employed, the design of the dielectric waveguide 204, the dimensions and composition of the wire 202, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc. It should be noted that, depending on the frequency, the electrical and physical characteristics of the wire 202 and the particular wave propagation modes that are generated, guided wave 208 can travel along the conductive surface of an oxidized uninsulated wire, an unoxidized uninsulated wire, an insulated wire and/or along the insulating surface of an insulated wire.
In an embodiment, a diameter of the dielectric waveguide 204 is smaller than the diameter of the wire 202. For the millimeter-band wavelength being used, the dielectric waveguide 204 supports a single waveguide mode that makes up wave 206. This single waveguide mode can change as it couples to the wire 202 as surface 208. If the dielectric waveguide 204 were larger, more than one waveguide mode can be supported, but these additional waveguide modes may not couple to the wire 202 as efficiently, and higher coupling losses can result. However, in some alternative embodiments, the diameter of the dielectric waveguide 204 can be equal to or larger than the diameter of the wire 202, for example, where higher coupling losses are desirable or when used in conjunction with other techniques to otherwise reduce coupling losses (e.g., impedance matching with tapering, etc.).
In an embodiment, the wavelength of the waves 206 and 208 are comparable in size, or smaller than a circumference of the dielectric waveguide 204 and the wire 202. In an example, if the wire 202 has a diameter of 0.5 cm, and a corresponding circumference of around 1.5 cm, the wavelength of the transmission is around 1.5 cm or less, corresponding to a frequency of 20 GHz or greater. In another embodiment, a suitable frequency of the transmission and the carrier-wave signal is in the range of 30-100 GHz, perhaps around 30-60 GHz, and around 38 GHz in one example. In an embodiment, when the circumference of the dielectric waveguide 204 and wire 202 is comparable in size to, or greater, than a wavelength of the transmission, the waves 206 and 208 can exhibit multiple wave propagation modes including fundamental and/or non-fundamental (symmetric and/or asymmetric) modes that propagate over sufficient distances to support various communication systems described herein. The waves 206 and 208 can therefore comprise more than one type of electric and magnetic field configuration. In an embodiment, as the guided wave 208 propagates down the wire 202, the electrical and magnetic field configurations will remain the same from end to end of the wire 202. In other embodiments, as the guided wave 208 encounters interference or loses energy due to transmission losses, the electric and magnetic field configurations can change as the guided wave 208 propagates down wire 202.
In an embodiment, the dielectric waveguide 204 can be composed of nylon, Teflon, polyethylene, a polyamide, or other plastics. In other embodiments, other dielectric materials are possible. The wire surface of wire 202 can be metallic with either a bare metallic surface, or can be insulated using plastic, dielectric, insulator or other sheathing. In an embodiment, a dielectric or otherwise non-conducting/insulated waveguide can be paired with either a bare/metallic wire or insulated wire. In other embodiments, a metallic and/or conductive waveguide can be paired with a bare/metallic wire or insulated wire. In an embodiment, an oxidation layer on the bare metallic surface of the wire 202 (e.g., resulting from exposure of the bare metallic surface to oxygen/air) can also provide insulating or dielectric properties similar to those provided by some insulators or sheathings.
It is noted that the graphical representations of waves 206, 208 and 210 are presented merely to illustrate the principles that wave 206 induces or otherwise launches a guided wave 208 on a wire 202 that operates, for example, as a single wire transmission line. Wave 210 represents the portion of wave 206 that remains on the dielectric waveguide 204 after the generation of guided wave 208. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on the frequencies employed, the particular wave propagation mode or modes, the design of the dielectric waveguide 204, the dimensions and composition of the wire 202, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc.
It is noted that dielectric waveguide 204 can include a termination circuit or damper 214 at the end of the dielectric waveguide 204 that can absorb leftover radiation or energy from wave 210. The termination circuit or damper 214 can prevent and/or minimize the leftover radiation or energy from wave 210 reflecting back toward transmitter circuit 212. In an embodiment, the termination circuit or damper 214 can include termination resistors, and/or other components that perform impedance matching to attenuate reflection. In some embodiments, if the coupling efficiencies are high enough, and/or wave 210 is sufficiently small, it may not be necessary to use a termination circuit or damper 214. For the sake of simplicity, these transmitter and termination circuits or dampers 212 and 214 are not depicted in the other figures, but in those embodiments, transmitter and termination circuits or dampers may possibly be used.
Further, while a single dielectric waveguide 204 is presented that generates a single guided wave 208, multiple dielectric waveguides 204 placed at different points along the wire 202 and/or at different axial orientations about the wire can be employed to generate and receive multiple guided waves 208 at the same or different frequencies, at the same or different phases, at the same or different wave propagation modes. The guided wave or waves 208 can be modulated to convey data via a modulation technique such as phase shift keying, frequency shift keying, quadrature amplitude modulation, amplitude modulation, multi-carrier modulation and via multiple access techniques such as frequency division multiplexing, time division multiplexing, code division multiplexing, multiplexing via differing wave propagation modes and via other modulation and access strategies.
Turning now to
In an example embodiment, the dielectric waveguide 304 is curved or otherwise has a curvature, and can be placed near a wire 302 such that a portion of the curved dielectric waveguide 304 is parallel or substantially parallel to the wire 302. The portion of the dielectric waveguide 304 that is parallel to the wire can be an apex of the curve, or any point where a tangent of the curve is parallel to the wire 302. When the dielectric waveguide 304 is near the wire, the guided wave 306 travelling along the wire 302 can couple to the dielectric waveguide 304 and propagate as guided wave 308 about the dielectric waveguide 304. A portion of the guided wave 306 that does not couple to the dielectric waveguide 304 propagates as guided wave 310 (e.g., surface wave or other electromagnetic wave) along the wire 302.
The guided waves 306 and 308 stay parallel to the wire 302 and dielectric waveguide 304, respectively, even as the wire 302 and dielectric waveguide 304 bend and flex. Bends can increase transmission losses, which are also dependent on wire diameters, frequency, and materials. If the dimensions of the dielectric waveguide 304 are chosen for efficient power transfer, most of the energy in the guided wave 306 is coupled to the dielectric waveguide 304 and little remains in guided wave 310.
In an embodiment, a receiver circuit can be placed on the end of waveguide 304 in order to receive wave 308. A termination circuit can be placed on the opposite end of the waveguide 304 in order to receive guided waves traveling in the opposite direction to guided wave 306 that couple to the waveguide 304. The termination circuit would thus prevent and/or minimize reflections being received by the receiver circuit. If the reflections are small, the termination circuit may not be necessary.
It is noted that the dielectric waveguide 304 can be configured such that selected polarizations of the surface wave 306 are coupled to the dielectric waveguide 304 as guided wave 308. For instance, if guided wave 306 is made up of guided waves or wave propagation modes with respective polarizations, dielectric waveguide 304 can be configured to receive one or more guided waves of selected polarization(s). Guided wave 308 that couples to the dielectric waveguide 304 is thus the set of guided waves that correspond to one or more of the selected polarization(s), and further guided wave 310 can comprise the guided waves that do not match the selected polarization(s).
The dielectric waveguide 304 can be configured to receive guided waves of a particular polarization based on an angle/rotation around the wire 302 that the dielectric waveguide 304 is placed. For instance, if the guided wave 306 is polarized horizontally, most of the guided wave 306 transfers to the dielectric waveguide as wave 308. As the dielectric waveguide 304 is rotated 90 degrees around the wire 302, though, most of the energy from guided wave 306 would remain coupled to the wire as guided wave 310, and only a small portion would couple to the wire 302 as wave 308.
It is noted that waves 306, 308, and 310 are shown using three circular symbols in
It is noted also that guided wave communications over wires can be full duplex, allowing simultaneous communications in both directions. Waves traveling one direction can pass through waves traveling in an opposite direction. Electromagnetic fields may cancel out at certain points and for short times due to the superposition principle as applied to waves. The waves traveling in opposite directions propagate as if the other waves weren't there, but the composite effect to an observer may be a stationary standing wave pattern. As the guided waves pass through each other and are no longer in a state of superposition, the interference subsides. As a guided wave (e.g., surface wave or other electromagnetic wave) couples to a waveguide and move away from the wire, any interference due to other guided waves (e.g., surface waves or other electromagnetic wave) decreases. In an embodiment, as guided wave 306 (e.g., surface wave or other electromagnetic wave) approaches dielectric waveguide 304, another guided wave (e.g., surface wave or other electromagnetic wave) (not shown) traveling from left to right on the wire 302 passes by causing local interference. As guided wave 306 couples to dielectric waveguide 304 as wave 308, and moves away from the wire 302, any interference due to the passing guided wave subsides.
It is noted that the graphical representations of waves 306, 308 and 310 are presented merely to illustrate the principles that guided wave 306 induces or otherwise launches a wave 308 on a dielectric waveguide 304. Guided wave 310 represents the portion of guided wave 306 that remains on the wire 302 after the generation of wave 308. The actual electric and magnetic fields generated as a result of such guided wave propagation may vary depending on one or more of the shape and/or design of the dielectric waveguide, the relative position of the dielectric waveguide to the wire, the frequencies employed, the design of the dielectric waveguide 304, the dimensions and composition of the wire 302, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc.
Turning now to
When the dielectric waveguide 404 is placed with the end parallel to the wire 402, the guided wave 406 travelling along the dielectric waveguide 404 couples to the wire 402, and propagates as guided wave 408 about the wire surface of the wire 402. In an example embodiment, the guided wave 408 can be characterized as a surface wave or other electromagnetic wave.
It is noted that the graphical representations of waves 406 and 408 are presented merely to illustrate the principles that wave 406 induces or otherwise launches a guided wave 408 on a wire 402 that operates, for example, as a single wire transmission line. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on one or more of the shape and/or design of the dielectric waveguide, the relative position of the dielectric waveguide to the wire, the frequencies employed, the design of the dielectric waveguide 404, the dimensions and composition of the wire 402, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc.
In an embodiment, an end of dielectric waveguide 404 can taper towards the wire 402 in order to increase coupling efficiencies. Indeed, the tapering of the end of the dielectric waveguide 404 can provide impedance matching to the wire 402, according to an example embodiment of the subject disclosure. For example, an end of the dielectric waveguide 404 can be gradually tapered in order to obtain a desired level of coupling between waves 406 and 408 as illustrated in
In an embodiment, the coupling device 410 can be placed such that there is a short length of the dielectric waveguide 404 between the coupling device 410 and an end of the dielectric waveguide 404. Maximum coupling efficiencies are realized when the length of the end of the dielectric waveguide 404 that is beyond the coupling device 410 is at least several wavelengths long for whatever frequency is being transmitted.
Turning now to
The output signals (e.g., Tx) of the communications interface 501 can be combined with a millimeter-wave carrier wave generated by a local oscillator 512 at frequency mixer 510. Frequency mixer 510 can use heterodyning techniques or other frequency shifting techniques to frequency shift the output signals from communications interface 501. For example, signals sent to and from the communications interface 501 can be modulated signals such as orthogonal frequency division multiplexed (OFDM) signals formatted in accordance with a Long-Term Evolution (LTE) wireless protocol or other wireless 3G, 4G, 5G or higher voice and data protocol, a Zigbee, WIMAX, UltraWideband or IEEE 802.11 wireless protocol or other wireless protocol. In an example embodiment, this frequency conversion can be done in the analog domain, and as a result, the frequency shifting can be done without regard to the type of communications protocol that the base station 520, mobile devices 522, or in-building devices 524 use. As new communications technologies are developed, the communications interface 501 can be upgraded or replaced and the frequency shifting and transmission apparatus can remain, simplifying upgrades. The carrier wave can then be sent to a power amplifier (“PA”) 514 and can be transmitted via the transmitter receiver device 506 via the diplexer 516.
Signals received from the transmitter/receiver device 506 that are directed towards the communications interface 501 can be separated from other signals via diplexer 516. The transmission can then be sent to low noise amplifier (“LNA”) 518 for amplification. A frequency mixer 521, with help from local oscillator 512 can downshift the transmission (which is in the millimeter-wave band or around 38 GHz in some embodiments) to the native frequency. The communications interface 501 can then receive the transmission at an input port (Rx).
In an embodiment, transmitter/receiver device 506 can include a cylindrical or non-cylindrical metal (which, for example, can be hollow in an embodiment, but not necessarily drawn to scale) or other conducting or non-conducting waveguide and an end of the dielectric waveguide 502 can be placed in or in proximity to the waveguide or the transmitter/receiver device 506 such that when the transmitter/receiver device 506 generates a transmission, the guided wave couples to dielectric waveguide 502 and propagates as a guided wave 504 about the waveguide surface of the dielectric waveguide 502. Similarly, if guided wave 504 is incoming (coupled to the dielectric waveguide 502 from a wire), guided wave 504 then enters the transmitter/receiver device 506 and couples to the cylindrical waveguide or conducting waveguide. While transmitter/receiver device 506 is shown to include a separate waveguide—an antenna, cavity resonator, klystron, magnetron, travelling wave tube, or other radiating element can be employed to induce a guided wave on the waveguide 502, without the separate waveguide.
In an embodiment, dielectric waveguide 502 can be wholly constructed of a dielectric material (or another suitable insulating material), without any metallic or otherwise conducting materials therein. Dielectric waveguide 502 can be composed of nylon, Teflon, polyethylene, a polyamide, other plastics, or other materials that are non-conducting and suitable for facilitating transmission of electromagnetic waves on an outer surface of such materials. In another embodiment, dielectric waveguide 502 can include a core that is conducting/metallic, and have an exterior dielectric surface. Similarly, a transmission medium that couples to the dielectric waveguide 502 for propagating electromagnetic waves induced by the dielectric waveguide 502 or for supplying electromagnetic waves to the dielectric waveguide 502 can be wholly constructed of a dielectric material (or another suitable insulating material), without any metallic or otherwise conducting materials therein.
It is noted that although
The transmitter/receiver device 506 can be communicably coupled to a communications interface 501, and alternatively, transmitter/receiver device 506 can also be communicably coupled to the one or more distributed antennas 112 and 114 shown in
Before coupling to the dielectric waveguide 502, the one or more waveguide modes of the guided wave generated by the transmitter/receiver device 506 can couple to one or more wave propagation modes of the guided wave 504. The wave propagation modes can be different than the hollow metal waveguide modes due to the different characteristics of the hollow metal waveguide and the dielectric waveguide. For instance, wave propagation modes can comprise the fundamental transverse electromagnetic mode (Quasi-TEM00), where only small electrical and/or magnetic fields extend in the direction of propagation, and the electric and magnetic fields extend radially outwards from the dielectric waveguide 502 while the guided waves propagate along the dielectric waveguide 502. The fundamental transverse electromagnetic mode wave propagation mode does not exist inside a waveguide that is hollow. Therefore, the hollow metal waveguide modes that are used by transmitter/receiver device 506 are waveguide modes that can couple effectively and efficiently to wave propagation modes of dielectric waveguide 502.
Turning now to
It is noted that the graphical representations of waves 608 and 610 are presented merely to illustrate the principles that guided wave 608 induces or otherwise launches a wave 610 on a dielectric waveguide 604. The actual electric and magnetic fields generated as a result of such wave propagation may vary depending on the frequencies employed, the design of the dielectric waveguide 604, the dimensions and composition of the wire 602, as well as its surface characteristics, its optional insulation, the electromagnetic properties of the surrounding environment, etc.
Turning now to
In some embodiments, repeater device 710 can repeat the transmission associated with wave 706, and in other embodiments, repeater device 710 can be associated with a distributed antenna system and/or base station device located near the repeater device 710. Receiver waveguide 708 can receive the wave 706 from the dielectric waveguide 704 and transmitter waveguide 712 can launch guided wave 716 onto dielectric waveguide 714. Between receiver waveguide 708 and transmitter waveguide 712, the signal can be amplified to correct for signal loss and other inefficiencies associated with guided wave communications or the signal can be received and processed to extract the data contained therein and regenerated for transmission. In an embodiment, a signal can be extracted from the transmission and processed and otherwise emitted to mobile devices nearby via distributed antennas communicably coupled to the repeater device 710. Similarly, signals and/or communications received by the distributed antennas can be inserted into the transmission that is generated and launched onto dielectric waveguide 714 by transmitter waveguide 712. Accordingly, the repeater system 700 depicted in
It is noted that although
In an embodiment, repeater device 710 can be placed at locations where there are discontinuities or obstacles on the wire 702. These obstacles can include transformers, connections, utility poles, and other such power line devices. The repeater device 710 can help the guided (e.g., surface) waves jump over these obstacles on the line and boost the transmission power at the same time. In other embodiments, a dielectric waveguide can be used to jump over the obstacle without the use of a repeater device. In that embodiment, both ends of the dielectric waveguide can be tied or fastened to the wire, thus providing a path for the guided wave to travel without being blocked by the obstacle.
Turning now to
In the embodiment shown in
Turning now to
In various embodiments, waveguide coupling device 902 can receive a transmission from another waveguide coupling device, wherein the transmission has a plurality of subcarriers. Diplexer 906 can separate the transmission from other transmissions, and direct the transmission to low-noise amplifier (“LNA”) 908. A frequency mixer 928, with help from a local oscillator 912, can downshift the transmission (which is in the millimeter-wave band or around 38 GHz in some embodiments) to a lower frequency, whether it is a cellular band (−1.9 GHz) for a distributed antenna system, a native frequency, or other frequency for a backhaul system. An extractor 932 can extract the signal on the subcarrier that corresponds to antenna or other output component 922 and direct the signal to the output component 922. For the signals that are not being extracted at this antenna location, extractor 932 can redirect them to another frequency mixer 936, where the signals are used to modulate a carrier wave generated by local oscillator 914. The carrier wave, with its subcarriers, is directed to a power amplifier (“PA”) 916 and is retransmitted by waveguide coupling device 904 to another repeater system, via diplexer 920.
At the output device 922 (antenna in a distributed antenna system), a PA 924 can boost the signal for transmission to the mobile device. An LNA 926 can be used to amplify weak signals that are received from the mobile device and then send the signal to a multiplexer 934 which merges the signal with signals that have been received from waveguide coupling device 904. The signals received from coupling device 904 have been split by diplexer 920, and then passed through LNA 918, and downshifted in frequency by frequency mixer 938. When the signals are combined by multiplexer 934, they are upshifted in frequency by frequency mixer 930, and then boosted by PA 910, and transmitted back to the launcher or on to another repeater by waveguide coupling device 902. In an embodiment bidirectional repeater system 900 can be just a repeater without the antenna/output device 922. It will be appreciated that in some embodiments, a bidirectional repeater system 900 could also be implemented using two distinct and separate uni-directional repeaters. In an alternative embodiment, a bidirectional repeater system 900 could also be a booster or otherwise perform retransmissions without downshifting and upshifting. Indeed in example embodiment, the retransmissions can be based upon receiving a signal or guided wave and performing some signal or guided wave processing or reshaping, filtering, and/or amplification, prior to retransmission of the signal or guided wave.
Turning now to
In
In
It is to be appreciated that while three different embodiments showing a) waveguide surfaces that surround less than 180 degrees of the wire, b) non parallel slot surfaces, and c) coaxially unaligned wires and waveguide were shown separately in
Turning now to
For the purposes of this disclosure, a waveguide does not surround, in substantial part, a wire surface of a wire when the waveguide does not surround an axial region of the surface, when viewed in cross-section, of more than 180 degrees. For avoidance of doubt, a waveguide does not surround, in substantial part a surface of a wire when the waveguide surrounds an axial region of the surface, when viewed in cross-section, of 180 degrees or less.
It is to be appreciated that while
At 1304, based upon configuring or positioning the waveguide in proximity of the wire, the guided wave then couples at least a part of the first electromagnetic wave to a wire surface, forming a second electromagnetic wave (e.g., a surface wave) that propagates at least partially around the wire surface, wherein the wire is in proximity to the waveguide. This can be done in response to positioning a portion of the dielectric waveguide (e.g., a tangent of a curve of the dielectric waveguide) near and parallel to the wire, wherein a wavelength of the electromagnetic wave is smaller than a circumference of the wire and the dielectric waveguide. The guided wave, or surface wave, stays parallel to the wire even as the wire bends and flexes. Bends can increase transmission losses, which are also dependent on wire diameters, frequency, and materials. The coupling interface between the wire and the waveguide can also be configured to achieve the desired level of coupling, as described herein, which can include tapering an end of the waveguide to improve impedance matching between the waveguide and the wire.
The transmission that is emitted by the transmitter can exhibit one or more waveguide modes. The waveguide modes can be dependent on the shape and/or design of the waveguide. The propagation modes on the wire can be different than the waveguide modes due to the different characteristics of the waveguide and the wire. When the circumference of the wire is comparable in size to, or greater, than a wavelength of the transmission, the guided wave exhibits multiple wave propagation modes. The guided wave can therefore comprise more than one type of electric and magnetic field configuration. As the guided wave (e.g., surface wave) propagates down the wire, the electrical and magnetic field configurations may remain substantially the same from end to end of the wire or vary as the transmission traverses the wave by rotation, dispersion, attenuation or other effects.
The waveguide system 1402 can be coupled to a power line 1410 for facilitating data communications in accordance with embodiments described in the subject disclosure. In an example embodiment, the waveguide 1406 can comprise all or part of the system 500, such as shown in
The communications interface 1408 can comprise the communications interface 501 shown in
Signals received by the communications interface 1408 for up-conversion can include without limitation signals supplied by a base station 1414 over a wired or wireless interface of the communications interface 1408, wireless signals transmitted by mobile devices 1420 to the base station 1414 for delivery over the wired or wireless interface of the communications interface 1408, signals supplied by in-building communication devices 1418 over the wired or wireless interface of the communications interface 1408, and/or wireless signals supplied to the communications interface 1408 by mobile devices 1412 roaming in a wireless communication range of the communications interface 1408. In embodiments where the waveguide system 1402 functions as a repeater, such as shown in
The electromagnetic waves propagating along the surface of the power 1410 can be modulated and formatted to include packets or frames of data that include a data payload and further include networking information (such as header information for identifying one or more destination waveguide systems 1402). The networking information may be provided by the waveguide system 1402 or an originating device such as the base station 1414, mobile devices 1420, or in-building devices 1418, or a combination thereof. Additionally, the modulated electromagnetic waves can include error correction data for mitigating signal disturbances. The networking information and error correction data can be used by a destination waveguide system 1402 for detecting transmissions directed to it, and for down-converting and processing with error correction data transmissions that include voice and/or data signals directed to recipient communication devices communicatively coupled to the destination waveguide system 1402.
Referring now to the sensors 1404 of the waveguide system 1402, the sensors 1404 can comprise one or more of a temperature sensor 1404a, a disturbance detection sensor 1404b, a loss of energy sensor 1404c, a noise sensor 1404d, a vibration sensor 1404e, an environmental (e.g., weather) sensor 1404f, and/or an image sensor 1404g. The sensors 1404 can detect any one of a variety of conditions that may be adverse to electromagnetic waves that propagate along a wire surface of a wire. For example, the temperature sensor 1404a can be used to measure ambient temperature, a temperature of the waveguide 1406, a temperature of the power line 1410, temperature differentials (e.g., compared to a setpoint or baseline, between 1046 and 1410, etc.), or any combination thereof. In one embodiment, temperature metrics can be collected and reported periodically to a network management system 1601 by way of the base station 1414.
The disturbance detection sensor 1404b can perform measurements on the power line 1410 to detect disturbances such as signal reflections, which may indicate a presence of a downstream disturbance that may impede the propagation of electromagnetic waves on the power line 1410. A signal reflection can represent a distortion resulting from, for example, an electromagnetic wave transmitted on the power line 1410 by the waveguide 1406 that reflects in whole or in part back to the waveguide 1406 from a disturbance in the power line 1410 located downstream from the waveguide 1406.
Signal reflections can be caused by obstructions on the power line 1410. For example, a tree limb shown in
The disturbance detection sensor 1404b can comprise a circuit to compare magnitudes of electromagnetic wave reflections to magnitudes of original electromagnetic waves transmitted by the waveguide 1406 to determine how much a downstream disturbance in the power line 1410 attenuates transmissions. The disturbance detection sensor 1404b can further comprise a spectral analyzer circuit for performing spectral analysis on the reflected waves. The spectral data generated by the spectral analyzer circuit can be compared with spectral profiles via pattern recognition, an expert system, curve fitting, matched filtering or other artificial intelligence, classification or comparison technique to identify a type of disturbance based on, for example, the spectral profile that most closely matches the spectral data. The spectral profiles can be stored in a memory of the disturbance detection sensor 1404b or may be remotely accessible by the disturbance detection sensor 1404b. The profiles can comprise spectral data that models different disturbances that may be encountered on power lines 1410 to enable the disturbance detection sensor 1404b to identify disturbances locally. An identification of the disturbance if known can be reported to the network management system 1601 by way of the base station 1414. The disturbance detection sensor 1404b can also utilize the waveguide 1406 to transmit electromagnetic waves as test signals to determine a roundtrip time for an electromagnetic wave reflection. The round trip time measured by the disturbance detection sensor 1404b can be used to calculate a distance traveled by the electromagnetic wave up to a point where the reflection takes place, which enables the disturbance detection sensor 1404b to calculate a distance from the waveguide 1406 to the downstream disturbance on the power line 1410.
The distance calculated can be reported to the network management system 1601 by way of the base station 1414. In one embodiment, the location of the waveguide system 1402 on the power line 1410 may be known to the network management system 1601, which the network management system 1601 can use to determine a location of the disturbance on the power line 1410 based on a known topology of the power grid. In another embodiment, the waveguide system 1402 can provide its location to the network management system 1601 to assist in the determination of the location of the disturbance on the power line 1410. The location of the waveguide system 1402 can be obtained by the waveguide system 1402 from a pre-programmed location of the waveguide system 1402 stored in a memory of the waveguide system 1402, or the waveguide system 1402 can determine its location using a GPS receiver (not shown) included in the waveguide system 1402.
The power management system 1405 provides energy to the aforementioned components of the waveguide system 1402. The power management system 1405 can receive energy from solar cells, or from a transformer (not shown) coupled to the power line 1410, or by inductive coupling to the power line 1410 or another nearby power line. The power management system 1405 can also include a backup battery and/or a super capacitor or other capacitor circuit for providing the waveguide system 1402 with temporary power. The loss of energy sensor 1404c can be used to detect when the waveguide system 1402 has a loss of power condition and/or the occurrence of some other malfunction. For example, the loss of energy sensor 1404c can detect when there is a loss of power due to defective solar cells, an obstruction on the solar cells that causes them to malfunction, loss of power on the power line 1410, and/or when the backup power system malfunctions due to expiration of a backup battery, or a detectable defect in a super capacitor. When a malfunction and/or loss of power occurs, the loss of energy sensor 1404c can notify the network management system 1601 by way of the base station 1414.
The noise sensor 1404d can be used to measure noise on the power line 1410 that may adversely affect transmission of electromagnetic waves on the power line 1410. The noise sensor 1404d can sense unexpected electromagnetic interference, noise bursts, or other sources of disturbances that may interrupt transmission of modulated electromagnetic waves on a surface of a power line 1410. A noise burst can be caused by, for example, a corona discharge, or other source of noise. The noise sensor 1404d can compare the measured noise to a noise profile obtained by the waveguide system 1402 from an internal database of noise profiles or from a remotely located database that stores noise profiles via pattern recognition, an expert system, curve fitting, matched filtering or other artificial intelligence, classification or comparison technique. From the comparison, the noise sensor 1404d may identify a noise source (e.g., corona discharge or otherwise) based on, for example, the noise profile that provides the closest match to the measured noise. The noise sensor 1404d can also detect how noise affects transmissions by measuring transmission metrics such as bit error rate, packet loss rate, jitter, packet retransmission requests, etc. The noise sensor 1404d can report to the network management system 1601 by way of the base station 1414 the identity of noise sources, their time of occurrence, and transmission metrics, among other things.
The vibration sensor 1404e can include accelerometers and/or gyroscopes to detect 2D or 3D vibrations on the power line 1410. The vibrations can be compared to vibration profiles that can be stored locally in the waveguide system 1402, or obtained by the waveguide system 1402 from a remote database via pattern recognition, an expert system, curve fitting, matched filtering or other artificial intelligence, classification or comparison technique. Vibration profiles can be used, for example, to distinguish fallen trees from wind gusts based on, for example, the vibration profile that provides the closest match to the measured vibrations. The results of this analysis can be reported by the vibration sensor 1404e to the network management system 1601 by way of the base station 1414.
The environmental sensor 1404f can include a barometer for measuring atmospheric pressure, ambient temperature (which can be provided by the temperature sensor 1404a), wind speed, humidity, wind direction, and rainfall, among other things. The environmental sensor 1404f can collect raw information and process this information by comparing it to environmental profiles that can be obtained from a memory of the waveguide system 1402 or a remote database to predict weather conditions before they arise via pattern recognition, an expert system, knowledge-based system or other artificial intelligence, classification or other weather modeling and prediction technique. The environmental sensor 1404f can report raw data as well as its analysis to the network management system 1601.
The image sensor 1404g can be a digital camera (e.g., a charged coupled device or CCD imager, infrared camera, etc.) for capturing images in a vicinity of the waveguide system 1402. The image sensor 1404g can include an electromechanical mechanism to control movement (e.g., actual position or focal points/zooms) of the camera for inspecting the power line 1410 from multiple perspectives (e.g., top surface, bottom surface, left surface, right surface and so on). Alternatively, the image sensor 1404g can be designed such that no electromechanical mechanism is needed in order to obtain the multiple perspectives. The collection and retrieval of imaging data generated by the image sensor 1404g can be controlled by the network management system 1601, or can be autonomously collected and reported by the image sensor 1404g to the network management system 1601.
Other sensors that may be suitable for collecting telemetry information associated with the waveguide system 1402 and/or the power lines 1410 for purposes of detecting, predicting and/or mitigating disturbances that can impede electromagnetic wave transmissions on power lines 1410 (or any other form of a transmission medium of electromagnetic waves) may be utilized by the waveguide system 1402.
The network management system 1601 can be communicatively coupled to equipment of a utility company 1602 and equipment of a communications service provider 1604 for providing each entity, status information associated with the power grid 1603 and the communication system 1605, respectively. The network management system 1601, the equipment of the utility company 1602, and the communications service provider 1604 can access communication devices utilized by utility company personnel 1606 and/or communication devices utilized by communications service provider personnel 1608 for purposes of providing status information and/or for directing such personnel in the management of the power grid 1603 and/or communication system 1605.
If at step 1708 a disturbance is detected/identified or predicted/estimated to occur, the waveguide system 1402 proceeds to step 1710 to determine if the disturbance adversely affects (or alternatively, is likely to adversely affect or the extent to which it may adversely affect) transmission or reception of messages in the communication system 1605. In one embodiment, a duration threshold and a frequency of occurrence threshold can be used at step 1710 to determine when a disturbance adversely affects communications in the communication system 1605. For illustration purposes only, assume a duration threshold is set to 500 ms, while a frequency of occurrence threshold is set to 5 disturbances occurring in an observation period of 10 sec. Thus, a disturbance having a duration greater than 500 ms will trigger the duration threshold. Additionally, any disturbance occurring more than 5 times in a 10 sec time interval will trigger the frequency of occurrence threshold.
In one embodiment, a disturbance may be considered to adversely affect signal integrity in the communication systems 1605 when the duration threshold alone is exceeded. In another embodiment, a disturbance may be considered as adversely affecting signal integrity in the communication systems 1605 when both the duration threshold and the frequency of occurrence threshold are exceeded. The latter embodiment is thus more conservative than the former embodiment for classifying disturbances that adversely affect signal integrity in the communication system 1605. It will be appreciated that many other algorithms and associated parameters and thresholds can be utilized for step 1710 in accordance with example embodiments. It will be further appreciated that any activity, event, or condition detectable by sensors, other suitable detection equipment, or other means for detection that can adversely affect signal integrity of electromagnetic wave transmissions in the communication system 1605 can be applied to, used by, or combined with any of the embodiments described in the subject disclosure singly or in any combination to detect and reduce or substantially eliminate such adverse affects on the signal integrity of electromagnetic wave transmissions in the communication system 1605 to thereby achieve a goal of maintaining a desirable quality level of communication services in the communication system 1605.
Referring back to method 1700, if at step 1710 the disturbance detected at step 1708 does not meet the condition for adversely affected communications (e.g., neither exceeds the duration threshold nor the frequency of occurrence threshold), the waveguide system 1402 may proceed to step 1702 and continue processing messages. For instance, if the disturbance detected in step 1708 has a duration of 1 ms with a single occurrence in a 10 sec time period, then neither threshold will be exceeded. Consequently, such a disturbance may be considered as having a nominal effect on signal integrity in the communication system 1605 and thus would not be flagged as a disturbance requiring mitigation. Although not flagged, the occurrence of the disturbance, its time of occurrence, its frequency of occurrence, spectral data, and/or other useful information, may be reported to the network management system 1601 as telemetry data for monitoring purposes.
Referring back to step 1710, if on the other hand the disturbance satisfies the condition for adversely affected communications (e.g., exceeds either or both thresholds), the waveguide system 1402 can proceed to step 1712 and report the incident to the network management system 1601. The report can include raw sensing data collected by the sensors 1404, a description of the disturbance if known by the waveguide system 1402, a time of occurrence of the disturbance, a frequency of occurrence of the disturbance, a location associated with the disturbance, parameters readings such as bit error rate, packet loss rate, retransmission requests, jitter, latency and so on. If the disturbance is based on a prediction by one or more sensors of the waveguide system 1402, the report can include a type of disturbance expected, and if predictable, an expected time occurrence of the disturbance, and an expected frequency of occurrence of the predicted disturbance when the prediction is based on historical sensing data collected by the sensors 1404 of the waveguide system 1402.
At step 1714, the network management system 1601 can determine a mitigation, circumvention, or correction technique, which may include directing the waveguide system 1402 to reroute traffic to circumvent the disturbance if the location of the disturbance can be determined. In one embodiment, the waveguide system 1402 detecting the disturbance may direct a repeater 1802 such as the one shown in
In another embodiment, the waveguide system 1402 can redirect traffic by instructing a first repeater 1812 situated upstream of the disturbance and a second repeater 1814 situated downstream of the disturbance to redirect traffic from a primary power line 1804 temporarily to a secondary power line 1806 and back to the primary power line 1804 in a manner that avoids the disturbance 1801 as shown in
To avoid interrupting existing communication sessions occurring on a secondary power line 1806, the network management system 1601 may direct the waveguide system 1402 (in the embodiments of
At step 1716, while traffic is being rerouted to avoid the disturbance, the network management system 1601 can notify equipment of the utility company 1602 and/or equipment of the communications service provider 1604, which in turn may notify personnel of the utility company 1606 and/or personnel of the communications service provider 1608 of the detected disturbance and its location if known. Field personnel from either party can attend to resolving the disturbance at a determined location of the disturbance. Once the disturbance is removed or otherwise mitigated by personnel of the utility company and/or personnel of the communications service provider, such personnel can notify their respective companies and/or the network management system 1601 utilizing field equipment (e.g., a laptop computer, smartphone, etc.) communicatively coupled to network management system 1601, and/or equipment of the utility company and/or the communications service provider. The notification can include a description of how the disturbance was mitigated and any changes to the power lines 1410 that may change a topology of the communication system 1605.
Once the disturbance has been resolved, the network management system 1601 can direct the waveguide system 1402 at step 1720 to restore the previous routing configuration used by the waveguide system 1402 or route traffic according to a new routing configuration if the restoration strategy used to mitigate the disturbance resulted in a new network topology of the communication system 1605. In another embodiment, the waveguide system 1402 can be configured to monitor mitigation of the disturbance by transmitting test signals on the power line 1410 to determine when the disturbance has been removed. Once the waveguide 1402 detects an absence of the disturbance it can autonomously restore its routing configuration without assistance by the network management system 1601 if it determines the network topology of the communication system 1605 has not changed, or it can utilize a new routing configuration that adapts to a detected new network topology.
In another embodiment, the network management system 1601 can receive at step 1755 telemetry information from one or more waveguide systems 1402. The telemetry information can include among other things an identity of each waveguide system 1402 submitting the telemetry information, measurements taken by sensors 1404 of each waveguide system 1402, information relating to predicted, estimated, or actual disturbances detected by the sensors 1404 of each waveguide system 1402, location information associated with each waveguide system 1402, an estimated location of a detected disturbance, an identification of the disturbance, and so on. The network management system 1601 can determine from the telemetry information a type of disturbance that may be adverse to operations of the waveguide, transmission of the electromagnetic waves along the wire surface, or both. The network management system 1601 can also use telemetry information from multiple waveguide systems 1402 to isolate and identify the disturbance. Additionally, the network management system 1601 can request telemetry information from waveguide systems 1402 in a vicinity of an affected waveguide system 1402 to triangulate a location of the disturbance and/or validate an identification of the disturbance by receiving similar telemetry information from other waveguide systems 1402.
In yet another embodiment, the network management system 1601 can receive at step 1756 an unscheduled activity report from maintenance field personnel. Unscheduled maintenance may occur as result of field calls that are unplanned or as a result of unexpected field issues discovered during field calls or scheduled maintenance activities. The activity report can identify changes to a topology configuration of the power grid 1603 resulting from field personnel addressing discovered issues in the communication system 1605 and/or power grid 1603, changes to one or more waveguide systems 1402 (such as replacement or repair thereof), mitigation of disturbances performed if any, and so on.
At step 1758, the network management system 1601 can determine from reports received according to steps 1752 through 1756 if a disturbance will occur based on a maintenance schedule, or if a disturbance has occurred or is predicted to occur based on telemetry data, or if a disturbance has occurred due to an unplanned maintenance identified in a field activity report. From any of these reports, the network management system 1601 can determine whether a detected or predicted disturbance requires rerouting of traffic by the affected waveguide systems 1402 or other waveguide systems 1402 of the communication system 1605.
When a disturbance is detected or predicted at step 1758, the network management system 1601 can proceed to step 1760 where it can direct one or more waveguide systems 1402 to reroute traffic to circumvent the disturbance similar to the illustrations of
Returning back step 1760 and upon its completion, the process can continue with step 1762. At step 1762, the network management system 1601 can monitor when the disturbance(s) have been mitigated by field personnel. Mitigation of a disturbance can be detected at step 1762 by analyzing field reports submitted to the network management system 1601 by field personnel over a communications network (e.g., cellular communication system) utilizing field equipment (e.g., a laptop computer or handheld computer/device). If field personnel have reported that a disturbance has been mitigated, the network management system 1601 can proceed to step 1764 to determine from the field report whether a topology change was required to mitigate the disturbance. A topology change can include rerouting a power line 1410, reconfiguring a waveguide system 1402 to utilize a different power line 1410, otherwise utilizing an alternative link to bypass the disturbance and so on. If a topology change has taken place, the network management system 1601 can direct at step 1770 one or more waveguide systems 1402 to use a new routing configuration that adapts to the new topology.
If, however, a topology change has not been reported by field personnel, the network management system 1601 can proceed to step 1766 where it can direct one or more waveguide systems 1402 to send test signals to test a routing configuration that had been used prior to the detected disturbance(s). Test signals can be sent to affected waveguide systems 1402 in a vicinity of the disturbance. The test signals can be used to determine if signal disturbances (e.g., electromagnetic wave reflections) are detected by any of the waveguide systems 1402. If the test signals confirm that a prior routing configuration is no longer subject to previously detected disturbance(s), then the network management system 1601 can at step 1772 direct the affected waveguide systems 1402 to restore a previous routing configuration. If, however, test signals analyzed by one or more waveguide systems 1402 and reported to the network management system 1601 indicate that the disturbance(s) or new disturbance(s) are present, then the network management system 1601 will proceed to step 1768 and report this information to field personnel to further address field issues. The network management system 1601 can in this situation continue to monitor mitigation of the disturbance(s) at step 1762.
In the aforementioned embodiments, the waveguide systems 1402 can be configured to be self-adapting to changes in the power grid 1603 and/or to mitigation of disturbances. That is, one or more affected waveguide systems 1402 can be configured to self monitor mitigation of disturbances and reconfigure traffic routes without requiring instructions to be sent to them by the network management system 1601. In this embodiment, the one or more waveguide systems 1402 that are self-configurable can inform the network management system 1601 of its routing choices so that the network management system 1601 can maintain a macro-level view of the communication topology of the communication system 1605.
While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in
Referring now to
Generally, program modules comprise routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
The terms “first,” “second,” “third,” and so forth, as used in the claims, unless otherwise clear by context, is for clarity only and doesn't otherwise indicate or imply any order in time. For instance, “a first determination,” “a second determination,” and “a third determination,” does not indicate or imply that the first determination is to be made before the second determination, or vice versa, etc.
The illustrated embodiments of the embodiments herein can be also practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
Computing devices typically comprise a variety of media, which can comprise computer-readable storage media and/or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and comprises both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data or unstructured data.
Computer-readable storage media can comprise, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms “tangible” or “non-transitory” herein as applied to storage, memory or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se.
Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.
Communications media typically embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and comprises any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media comprise wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
With reference again to
The system bus 1908 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 1906 comprises ROM 1910 and RAM 1912. A basic input/output system (BIOS) can be stored in a non-volatile memory such as ROM, erasable programmable read only memory (EPROM), EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 1902, such as during startup. The RAM 1912 can also comprise a high-speed RAM such as static RAM for caching data.
The computer 1902 further comprises an internal hard disk drive (HDD) 1914 (e.g., EIDE, SATA), which internal hard disk drive 1914 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1916, (e.g., to read from or write to a removable diskette 1918) and an optical disk drive 1920, (e.g., reading a CD-ROM disk 1922 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 1914, magnetic disk drive 1916 and optical disk drive 1920 can be connected to the system bus 1908 by a hard disk drive interface 1924, a magnetic disk drive interface 1926 and an optical drive interface 1928, respectively. The interface 1924 for external drive implementations comprises at least one or both of Universal Serial Bus (USB) and Institute of Electrical and Electronics Engineers (IEEE) 1394 interface technologies. Other external drive connection technologies are within contemplation of the embodiments described herein.
The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 1902, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a hard disk drive (HDD), a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods described herein.
A number of program modules can be stored in the drives and RAM 1912, comprising an operating system 1930, one or more application programs 1932, other program modules 1934 and program data 1936. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1912. The systems and methods described herein can be implemented utilizing various commercially available operating systems or combinations of operating systems. Examples of application programs 1932 that can be implemented and otherwise executed by processing unit 1904 include the diversity selection determining performed by repeater device 806. Base station device 508 shown in
A user can enter commands and information into the computer 1902 through one or more wired/wireless input devices, e.g., a keyboard 1938 and a pointing device, such as a mouse 1940. Other input devices (not shown) can comprise a microphone, an infrared (IR) remote control, a joystick, a game pad, a stylus pen, touch screen or the like. These and other input devices are often connected to the processing unit 1904 through an input device interface 1942 that can be coupled to the system bus 1908, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a universal serial bus (USB) port, an IR interface, etc.
A monitor 1944 or other type of display device can be also connected to the system bus 1908 via an interface, such as a video adapter 1946. It will also be appreciated that in alternative embodiments, a monitor 1944 can also be any display device (e.g., another computer having a display, a smart phone, a tablet computer, etc.) for receiving display information associated with computer 1902 via any communication means, including via the Internet and cloud-based networks. In addition to the monitor 1944, a computer typically comprises other peripheral output devices (not shown), such as speakers, printers, etc.
The computer 1902 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1948. The remote computer(s) 1948 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically comprises many or all of the elements described relative to the computer 1902, although, for purposes of brevity, only a memory/storage device 1950 is illustrated. The logical connections depicted comprise wired/wireless connectivity to a local area network (LAN) 1952 and/or larger networks, e.g., a wide area network (WAN) 1954. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.
When used in a LAN networking environment, the computer 1902 can be connected to the local network 1952 through a wired and/or wireless communication network interface or adapter 1956. The adapter 1956 can facilitate wired or wireless communication to the LAN 1952, which can also comprise a wireless AP disposed thereon for communicating with the wireless adapter 1956.
When used in a WAN networking environment, the computer 1902 can comprise a modem 1958 or can be connected to a communications server on the WAN 1954 or has other means for establishing communications over the WAN 1954, such as by way of the Internet. The modem 1958, which can be internal or external and a wired or wireless device, can be connected to the system bus 1908 via the input device interface 1942. In a networked environment, program modules depicted relative to the computer 1902 or portions thereof, can be stored in the remote memory/storage device 1950. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used.
The computer 1902 can be operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This can comprise Wireless Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
Wi-Fi can allow connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n, ac, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which can use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands for example or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.
In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 2018 can authorize and authenticate PS-based data sessions with served mobile devices. Data sessions can comprise traffic, or content(s), exchanged with networks external to the wireless network platform 2010, like wide area network(s) (WANs) 2050, enterprise network(s) 2070, and service network(s) 2080, which can be embodied in local area network(s) (LANs), can also be interfaced with mobile network platform 2010 through PS gateway node(s) 2018. It is to be noted that WANs 2050 and enterprise network(s) 2060 can embody, at least in part, a service network(s) like IP multimedia subsystem (IMS). Based on radio technology layer(s) available in technology resource(s) 2017, packet-switched gateway node(s) 2018 can generate packet data protocol contexts when a data session is established; other data structures that facilitate routing of packetized data also can be generated. To that end, in an aspect, PS gateway node(s) 2018 can comprise a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s) (not shown)) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks.
In embodiment 2000, wireless network platform 2010 also comprises serving node(s) 2016 that, based upon available radio technology layer(s) within technology resource(s) 2017, convey the various packetized flows of data streams received through PS gateway node(s) 2018. It is to be noted that for technology resource(s) 2017 that rely primarily on CS communication, server node(s) can deliver traffic without reliance on PS gateway node(s) 2018; for example, server node(s) can embody at least in part a mobile switching center. As an example, in a 3GPP UMTS network, serving node(s) 2016 can be embodied in serving GPRS support node(s) (SGSN).
For radio technologies that exploit packetized communication, server(s) 2014 in wireless network platform 2010 can execute numerous applications that can generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s) can comprise add-on features to standard services (for example, provisioning, billing, customer support . . . ) provided by wireless network platform 2010. Data streams (e.g., content(s) that are part of a voice call or data session) can be conveyed to PS gateway node(s) 2018 for authorization/authentication and initiation of a data session, and to serving node(s) 2016 for communication thereafter. In addition to application server, server(s) 2014 can comprise utility server(s), a utility server can comprise a provisioning server, an operations and maintenance server, a security server that can implement at least in part a certificate authority and firewalls as well as other security mechanisms, and the like. In an aspect, security server(s) secure communication served through wireless network platform 2010 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 2012 and PS gateway node(s) 2018 can enact. Moreover, provisioning server(s) can provision services from external network(s) like networks operated by a disparate service provider; for instance, WAN 2050 or Global Positioning System (GPS) network(s) (not shown). Provisioning server(s) can also provision coverage through networks associated to wireless network platform 2010 (e.g., deployed and operated by the same service provider), such as the distributed antennas networks shown in
It is to be noted that server(s) 2014 can comprise one or more processors configured to confer at least in part the functionality of macro network platform 2010. To that end, the one or more processor can execute code instructions stored in memory 2030, for example. It is should be appreciated that server(s) 2014 can comprise a content manager 2015, which operates in substantially the same manner as described hereinbefore.
In example embodiment 2000, memory 2030 can store information related to operation of wireless network platform 2010. Other operational information can comprise provisioning information of mobile devices served through wireless platform network 2010, subscriber databases; application intelligence, pricing schemes, e.g., promotional rates, flat-rate programs, couponing campaigns; technical specification(s) consistent with telecommunication protocols for operation of disparate radio, or wireless, technology layers; and so forth. Memory 2030 can also store information from at least one of telephony network(s) 2040, WAN 2050, enterprise network(s) 2060, or SS7 network 2070. In an aspect, memory 2030 can be, for example, accessed as part of a data store component or as a remotely connected memory store.
In order to provide a context for the various aspects of the disclosed subject matter,
The communication device 2100 can comprise a wireline and/or wireless transceiver 2102 (herein transceiver 2102), a user interface (UI) 2104, a power supply 2114, a location receiver 2116, a motion sensor 2118, an orientation sensor 2120, and a controller 2106 for managing operations thereof. The transceiver 2102 can support short-range or long-range wireless access technologies such as Bluetooth®, ZigBee®, WiFi, DECT, or cellular communication technologies, just to mention a few (Bluetooth® and ZigBee® are trademarks registered by the Bluetooth® Special Interest Group and the ZigBee® Alliance, respectively). Cellular technologies can include, for example, CDMA-1X, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, LTE, as well as other next generation wireless communication technologies as they arise. The transceiver 2102 can also be adapted to support circuit-switched wireline access technologies (such as PSTN), packet-switched wireline access technologies (such as TCP/IP, VoIP, etc.), and combinations thereof.
The UI 2104 can include a depressible or touch-sensitive keypad 2108 with a navigation mechanism such as a roller ball, a joystick, a mouse, or a navigation disk for manipulating operations of the communication device 2100. The keypad 2108 can be an integral part of a housing assembly of the communication device 2100 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth®. The keypad 2108 can represent a numeric keypad commonly used by phones, and/or a QWERTY keypad with alphanumeric keys. The UI 2104 can further include a display 2110 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 2100. In an embodiment where the display 2110 is touch-sensitive, a portion or all of the keypad 2108 can be presented by way of the display 2110 with navigation features.
The display 2110 can use touch screen technology to also serve as a user interface for detecting user input. As a touch screen display, the communication device 2100 can be adapted to present a user interface having graphical user interface (GUI) elements that can be selected by a user with a touch of a finger. The touch screen display 2110 can be equipped with capacitive, resistive or other forms of sensing technology to detect how much surface area of a user's finger has been placed on a portion of the touch screen display. This sensing information can be used to control the manipulation of the GUI elements or other functions of the user interface. The display 2110 can be an integral part of the housing assembly of the communication device 2100 or an independent device communicatively coupled thereto by a tethered wireline interface (such as a cable) or a wireless interface.
The UI 2104 can also include an audio system 2112 that utilizes audio technology for conveying low volume audio (such as audio heard in proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 2112 can further include a microphone for receiving audible signals of an end user. The audio system 2112 can also be used for voice recognition applications. The UI 2104 can further include an image sensor 2113 such as a charged coupled device (CCD) camera for capturing still or moving images.
The power supply 2114 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and/or charging system technologies for supplying energy to the components of the communication device 2100 to facilitate long-range or short-range portable communications. Alternatively, or in combination, the charging system can utilize external power sources such as DC power supplied over a physical interface such as a USB port or other suitable tethering technologies.
The location receiver 2116 can utilize location technology such as a global positioning system (GPS) receiver capable of assisted GPS for identifying a location of the communication device 2100 based on signals generated by a constellation of GPS satellites, which can be used for facilitating location services such as navigation. The motion sensor 2118 can utilize motion sensing technology such as an accelerometer, a gyroscope, or other suitable motion sensing technology to detect motion of the communication device 2100 in three-dimensional space. The orientation sensor 2120 can utilize orientation sensing technology such as a magnetometer to detect the orientation of the communication device 2100 (north, south, west, and east, as well as combined orientations in degrees, minutes, or other suitable orientation metrics).
The communication device 2100 can use the transceiver 2102 to also determine a proximity to a cellular, WiFi, Bluetooth®, or other wireless access points by sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or signal time of arrival (TOA) or time of flight (TOF) measurements. The controller 2106 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), programmable gate arrays, application specific integrated circuits, and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies for executing computer instructions, controlling, and processing data supplied by the aforementioned components of the communication device 2100.
Other components not shown in
In the subject specification, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can comprise both volatile and nonvolatile memory, by way of illustration, and not limitation, volatile memory, non-volatile memory, disk storage, and memory storage. Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can comprise random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.
Moreover, it will be noted that the disclosed subject matter can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, watch, tablet computers, netbook computers, etc.), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
Some of the embodiments described herein can also employ artificial intelligence (AI) to facilitate automating one or more features described herein. For example, artificial intelligence can be used to determine positions around a wire that dielectric waveguides 604 and 606 should be placed in order to maximize transfer efficiency. The embodiments (e.g., in connection with automatically identifying acquired cell sites that provide a maximum value/benefit after addition to an existing communication network) can employ various AI-based schemes for carrying out various embodiments thereof. Moreover, the classifier can be employed to determine a ranking or priority of the each cell site of the acquired network. A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4, . . . , xn), to a confidence that the input belongs to a class, that is, f(x)=confidence(class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches comprise, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.
As will be readily appreciated, one or more of the embodiments can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing UE behavior, operator preferences, historical information, receiving extrinsic information). For example, SVMs can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to a predetermined criteria which of the acquired cell sites will benefit a maximum number of subscribers and/or which of the acquired cell sites will add minimum value to the existing communication network coverage, etc.
As used in some contexts in this application, in some embodiments, the terms “component,” “system” and the like are intended to refer to, or comprise, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution. As an example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor, wherein the processor can be internal or external to the apparatus and executes at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can comprise a processor therein to execute software or firmware that confers at least in part the functionality of the electronic components. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.
Further, the various embodiments can be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device or computer-readable storage/communications media. For example, computer readable storage media can include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disk (CD), digital versatile disk (DVD)), smart cards, and flash memory devices (e.g., card, stick, key drive). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.
In addition, the words “example” and “exemplary” are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Moreover, terms such as “user equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “mobile device” (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings.
Furthermore, the terms “user,” “subscriber,” “customer,” “consumer” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based, at least, on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.
As employed herein, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units.
As used herein, terms such as “data storage,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory.
What has been described above includes mere examples of various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, but one of ordinary skill in the art can recognize that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement which achieves the same or similar purpose may be substituted for the embodiments described or shown by the subject disclosure. The subject disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, can be used in the subject disclosure. For instance, one or more features from one or more embodiments can be combined with one or more features of one or more other embodiments. In one or more embodiments, features that are positively recited can also be negatively recited and excluded from the embodiment with or without replacement by another structural and/or functional feature. The steps or functions described with respect to the embodiments of the subject disclosure can be performed in any order. The steps or functions described with respect to the embodiments of the subject disclosure can be performed alone or in combination with other steps or functions of the subject disclosure, as well as from other embodiments or from other steps that have not been described in the subject disclosure. Further, more than or less than all of the features described with respect to an embodiment can also be utilized.
Number | Name | Date | Kind |
---|---|---|---|
395814 | Henry et al. | Jan 1889 | A |
529290 | Harry et al. | Nov 1894 | A |
1721785 | Meyer | Jul 1929 | A |
1798613 | Manson et al. | Mar 1931 | A |
1860123 | Yagi | May 1932 | A |
2058611 | Merkle et al. | Oct 1936 | A |
2106770 | Southworth et al. | Feb 1938 | A |
2129711 | Southworth | Sep 1938 | A |
2129714 | Southworth et al. | Sep 1938 | A |
2147717 | Schelkunoff | Feb 1939 | A |
2187908 | Mccreary | Jan 1940 | A |
2199083 | Schelkunoff | Apr 1940 | A |
2232179 | King | Feb 1941 | A |
2283935 | King | May 1942 | A |
2398095 | Katzin | Apr 1946 | A |
2402622 | Hansen | Jun 1946 | A |
2405242 | Southworth et al. | Aug 1946 | A |
2407068 | Fiske et al. | Sep 1946 | A |
2407069 | Fiske | Sep 1946 | A |
2410113 | Turner, Jr. | Oct 1946 | A |
2411338 | Roberts | Nov 1946 | A |
2415089 | Feldman et al. | Feb 1947 | A |
2415807 | Barrow et al. | Feb 1947 | A |
2419205 | Feldman et al. | Apr 1947 | A |
2420007 | Olden | May 1947 | A |
2422058 | Whinnery | Jun 1947 | A |
2432134 | Bagnall | Dec 1947 | A |
2461005 | Southworth | Feb 1949 | A |
2471021 | Bradley | May 1949 | A |
2488400 | Harder | Nov 1949 | A |
2513205 | Roberts et al. | Jun 1950 | A |
2514679 | Southworth | Jul 1950 | A |
2519603 | Reber | Aug 1950 | A |
2540839 | Southworth | Feb 1951 | A |
2541843 | Tiley et al. | Feb 1951 | A |
2542980 | Barrow | Feb 1951 | A |
2557110 | Jaynes | Jun 1951 | A |
2562281 | Mumford | Jul 1951 | A |
2596190 | Wiley | May 1952 | A |
2599864 | Robertson-Shersby-Ha et al. | Jun 1952 | A |
2659817 | Cutler et al. | Nov 1953 | A |
2677055 | Allen | Apr 1954 | A |
2685068 | Goubau | Jul 1954 | A |
2688732 | Kock | Sep 1954 | A |
2691766 | Clapp | Oct 1954 | A |
2706279 | Aron | Apr 1955 | A |
2711514 | Rines | Jun 1955 | A |
2723378 | Clavier et al. | Nov 1955 | A |
2727232 | Pryga | Dec 1955 | A |
2735092 | Brown | Feb 1956 | A |
2740826 | Bondon | Apr 1956 | A |
2745101 | Marie | May 1956 | A |
2748350 | Miller et al. | May 1956 | A |
2749545 | Kostriza | Jun 1956 | A |
2754513 | Goubau | Jul 1956 | A |
2761137 | Atta et al. | Aug 1956 | A |
2769147 | Black et al. | Oct 1956 | A |
2769148 | Clogston et al. | Oct 1956 | A |
2794959 | Fox | Jun 1957 | A |
2805415 | Berkowitz | Sep 1957 | A |
2806177 | Haeff et al. | Sep 1957 | A |
2806972 | Sensiper | Sep 1957 | A |
2810111 | Cohn | Oct 1957 | A |
2819451 | Sims et al. | Jan 1958 | A |
2820083 | Hendrix | Jan 1958 | A |
2825060 | Ruze et al. | Feb 1958 | A |
2835871 | Raabe | May 1958 | A |
2851686 | Hagaman et al. | Sep 1958 | A |
2852753 | Walter et al. | Sep 1958 | A |
2867776 | Wilkinson, Jr. | Jan 1959 | A |
2883135 | Smalley et al. | Apr 1959 | A |
2883136 | Smalley et al. | Apr 1959 | A |
2900558 | Watkins et al. | Aug 1959 | A |
2910261 | Ward et al. | Oct 1959 | A |
2912695 | Cutler | Nov 1959 | A |
2914741 | Unger | Nov 1959 | A |
2915270 | Gladsden et al. | Dec 1959 | A |
2921277 | Goubau | Jan 1960 | A |
2925458 | Lester et al. | Feb 1960 | A |
2933701 | Lanctot et al. | Apr 1960 | A |
2946970 | Hafner et al. | Jul 1960 | A |
2949589 | Hafner | Aug 1960 | A |
2960670 | Marcatili et al. | Nov 1960 | A |
2970800 | Smalley et al. | Feb 1961 | A |
2972148 | Rupp et al. | Feb 1961 | A |
2974297 | Ros | Mar 1961 | A |
2981949 | Elliott et al. | Apr 1961 | A |
2990151 | Phillips et al. | Jun 1961 | A |
2993205 | Cooper et al. | Jul 1961 | A |
3016520 | Adam et al. | Jan 1962 | A |
3025478 | Marcatili et al. | Mar 1962 | A |
3028565 | Walker et al. | Apr 1962 | A |
3040278 | Griemsmann et al. | Jun 1962 | A |
3045238 | Cheston et al. | Jul 1962 | A |
3046550 | Schlaud et al. | Jul 1962 | A |
3047822 | Lakatos et al. | Jul 1962 | A |
3065945 | Newsome et al. | Nov 1962 | A |
3072870 | Walker | Jan 1963 | A |
3077569 | Ikrath et al. | Feb 1963 | A |
3096462 | Feinstein et al. | Jul 1963 | A |
3101472 | Goubau | Aug 1963 | A |
3109175 | Lloyd | Oct 1963 | A |
3129356 | Phillips | Apr 1964 | A |
3134951 | Huber et al. | May 1964 | A |
3146297 | Hahne | Aug 1964 | A |
3146453 | Hagaman | Aug 1964 | A |
3201724 | Hafner | Aug 1965 | A |
3205462 | Meinke | Sep 1965 | A |
3218384 | Shaw | Nov 1965 | A |
3219954 | Rutelli | Nov 1965 | A |
3234559 | Bartholoma et al. | Feb 1966 | A |
3255454 | Walter et al. | Jun 1966 | A |
3296364 | Jefferson et al. | Jan 1967 | A |
3296685 | Menahem et al. | Jan 1967 | A |
3310808 | Friis et al. | Mar 1967 | A |
3316344 | Toms et al. | Apr 1967 | A |
3316345 | Toms et al. | Apr 1967 | A |
3318561 | Robertson, Jr. et al. | May 1967 | A |
3321763 | Ikrath et al. | May 1967 | A |
3329958 | Anderson et al. | Jul 1967 | A |
3351947 | Hart et al. | Nov 1967 | A |
3355738 | Algeo et al. | Nov 1967 | A |
3369788 | Eisele | Feb 1968 | A |
3389394 | Lewis et al. | Jun 1968 | A |
3392388 | Tsuneo et al. | Jul 1968 | A |
3392395 | Hannan | Jul 1968 | A |
3411112 | Honig et al. | Nov 1968 | A |
3413637 | Goebels, Jr. et al. | Nov 1968 | A |
3413642 | Cook | Nov 1968 | A |
3414903 | Bartlett et al. | Dec 1968 | A |
3420596 | Osterberg | Jan 1969 | A |
3427573 | White et al. | Feb 1969 | A |
3448455 | Alfandari et al. | Jun 1969 | A |
3453617 | Brickey et al. | Jul 1969 | A |
3459873 | Harris et al. | Aug 1969 | A |
3465346 | Patterson et al. | Sep 1969 | A |
3474995 | Amidon et al. | Oct 1969 | A |
3482251 | Bowes | Dec 1969 | A |
3487158 | Killian | Dec 1969 | A |
3495262 | Paine | Feb 1970 | A |
3500422 | Grady et al. | Mar 1970 | A |
3509463 | Woodward et al. | Apr 1970 | A |
3522560 | Hayany | Aug 1970 | A |
3524192 | Sakiotis et al. | Aug 1970 | A |
3529205 | Miller | Sep 1970 | A |
3530481 | Tanaka et al. | Sep 1970 | A |
3531803 | Hudspeth et al. | Sep 1970 | A |
3536800 | Hubbard | Oct 1970 | A |
3555553 | Boyns | Jan 1971 | A |
3557341 | Sochilin et al. | Jan 1971 | A |
3566317 | Theodore | Feb 1971 | A |
3568204 | Blaisdell | Mar 1971 | A |
3569979 | Munk et al. | Mar 1971 | A |
3573838 | Ajioka | Apr 1971 | A |
3588754 | Theodore | Jun 1971 | A |
3588755 | Kunio et al. | Jun 1971 | A |
3589121 | Mulvey | Jun 1971 | A |
3594494 | Ross et al. | Jul 1971 | A |
3599219 | Hansen et al. | Aug 1971 | A |
3603904 | Theodore | Sep 1971 | A |
3603951 | Bracken et al. | Sep 1971 | A |
3609247 | Halstead | Sep 1971 | A |
3623114 | Seaton | Nov 1971 | A |
3624655 | Yamada et al. | Nov 1971 | A |
3638224 | Bailey et al. | Jan 1972 | A |
3653622 | Farmer | Apr 1972 | A |
3666902 | Owen et al. | May 1972 | A |
3668459 | Symons et al. | Jun 1972 | A |
3668574 | Barlow | Jun 1972 | A |
3672202 | Barber et al. | Jun 1972 | A |
3686596 | Thomas | Aug 1972 | A |
3693922 | Gueguen | Sep 1972 | A |
3699574 | Plunk et al. | Oct 1972 | A |
3703690 | Ravenscroft et al. | Nov 1972 | A |
3704001 | Sloop | Nov 1972 | A |
3725937 | Schreiber | Apr 1973 | A |
3753086 | Shoemaker et al. | Aug 1973 | A |
3760127 | Grossi et al. | Sep 1973 | A |
3765021 | Chiron et al. | Oct 1973 | A |
3772528 | Anderson et al. | Nov 1973 | A |
3775769 | Heeren et al. | Nov 1973 | A |
3787872 | Kauffman | Jan 1974 | A |
3796970 | Snell | Mar 1974 | A |
3806931 | Wright | Apr 1974 | A |
3833909 | Schaufelberger | Sep 1974 | A |
3835407 | Yariv et al. | Sep 1974 | A |
3845426 | Barlow | Oct 1974 | A |
3858214 | Jones | Dec 1974 | A |
3877032 | Rosa | Apr 1975 | A |
3888446 | O'Brien et al. | Jun 1975 | A |
3896380 | Martin | Jul 1975 | A |
3906508 | Foldes | Sep 1975 | A |
3911415 | Whyte | Oct 1975 | A |
3921949 | Coon | Nov 1975 | A |
3925763 | Wadhwani | Dec 1975 | A |
3935577 | Hansen et al. | Jan 1976 | A |
3936836 | Wheeler et al. | Feb 1976 | A |
3936838 | Foldes et al. | Feb 1976 | A |
3952984 | Dimitry et al. | Apr 1976 | A |
3956751 | Herman | May 1976 | A |
3959794 | Chrepta et al. | May 1976 | A |
3973087 | Fong et al. | Aug 1976 | A |
3973240 | Fong et al. | Aug 1976 | A |
3976358 | Thompson et al. | Aug 1976 | A |
3983560 | MacDougall et al. | Sep 1976 | A |
4010799 | Kern et al. | Mar 1977 | A |
4012743 | Maciejewski et al. | Mar 1977 | A |
4020431 | Saunders et al. | Apr 1977 | A |
4026632 | Hill et al. | May 1977 | A |
4030048 | Foldes et al. | Jun 1977 | A |
4030953 | Rutschow et al. | Jun 1977 | A |
4031536 | Alford et al. | Jun 1977 | A |
4035054 | Lattanzi et al. | Jul 1977 | A |
4047180 | Kuo et al. | Sep 1977 | A |
4079361 | Woode et al. | Mar 1978 | A |
4080600 | Toman et al. | Mar 1978 | A |
4099184 | Rapshys et al. | Jul 1978 | A |
4114121 | Barlow et al. | Sep 1978 | A |
4115782 | Han et al. | Sep 1978 | A |
4123759 | Hines et al. | Oct 1978 | A |
4125768 | Jackson et al. | Nov 1978 | A |
4129872 | Toman et al. | Dec 1978 | A |
4141015 | Wong et al. | Feb 1979 | A |
4149170 | Campbell et al. | Apr 1979 | A |
4155108 | Tuttle et al. | May 1979 | A |
4156241 | Mobley et al. | May 1979 | A |
4166669 | Leonberger et al. | Sep 1979 | A |
4175257 | Smith et al. | Nov 1979 | A |
4188595 | Cronson et al. | Feb 1980 | A |
4190137 | Shimada et al. | Feb 1980 | A |
4191953 | Woode et al. | Mar 1980 | A |
4195302 | Leupelt et al. | Mar 1980 | A |
4210357 | Adachi et al. | Jul 1980 | A |
4216449 | Kach | Aug 1980 | A |
4220957 | Britt et al. | Sep 1980 | A |
4231042 | Turrin et al. | Oct 1980 | A |
4234753 | Clutter | Nov 1980 | A |
4238974 | Fawcett et al. | Dec 1980 | A |
4246584 | Noerpel et al. | Jan 1981 | A |
4247858 | Eichweber et al. | Jan 1981 | A |
4250489 | Dudash et al. | Feb 1981 | A |
4268804 | Spinner et al. | May 1981 | A |
4274097 | Krall et al. | Jun 1981 | A |
4274112 | Leysieffer et al. | Jun 1981 | A |
4278955 | Lunden et al. | Jul 1981 | A |
4293833 | Popa et al. | Oct 1981 | A |
4298877 | Sletten et al. | Nov 1981 | A |
4300242 | Nava et al. | Nov 1981 | A |
4307938 | Dyott et al. | Dec 1981 | A |
4316646 | Siebens et al. | Feb 1982 | A |
4319074 | Yaste et al. | Mar 1982 | A |
4329690 | Parker et al. | May 1982 | A |
4333082 | Susman et al. | Jun 1982 | A |
4335613 | Luukkala et al. | Jun 1982 | A |
4336719 | Lynnworth | Jun 1982 | A |
4345256 | Rainwater et al. | Aug 1982 | A |
4366565 | Herskowitz | Dec 1982 | A |
4367446 | Hall et al. | Jan 1983 | A |
4378143 | Winzer | Mar 1983 | A |
4384289 | Fernandes et al. | May 1983 | A |
4398058 | Gerth et al. | Aug 1983 | A |
4398121 | Chodorow et al. | Aug 1983 | A |
4413263 | Amitay et al. | Nov 1983 | A |
4447811 | Hamid | May 1984 | A |
4458250 | Bodnar et al. | Jul 1984 | A |
4463329 | Suzuki et al. | Jul 1984 | A |
4468672 | Dragone | Aug 1984 | A |
4475209 | Udren | Oct 1984 | A |
4477814 | Brumbaugh et al. | Oct 1984 | A |
4482899 | Dragone et al. | Nov 1984 | A |
4488156 | DuFort et al. | Dec 1984 | A |
4491386 | Negishi et al. | Jan 1985 | A |
4495498 | Petrelis et al. | Jan 1985 | A |
4516130 | Dragone | May 1985 | A |
4525432 | Saito et al. | Jun 1985 | A |
4525693 | Suzuki et al. | Jun 1985 | A |
4533875 | Lau et al. | Aug 1985 | A |
4541303 | Kuzunishi et al. | Sep 1985 | A |
4550271 | Lau et al. | Oct 1985 | A |
4553112 | Saad et al. | Nov 1985 | A |
4556271 | Hubbard | Dec 1985 | A |
4558325 | Stroem et al. | Dec 1985 | A |
4565348 | Larsen | Jan 1986 | A |
4566012 | Choung et al. | Jan 1986 | A |
4567401 | Barnett et al. | Jan 1986 | A |
4568943 | Bowman | Feb 1986 | A |
4573215 | Oates et al. | Feb 1986 | A |
4589424 | Vaguine et al. | May 1986 | A |
4598262 | Chen et al. | Jul 1986 | A |
4599598 | Komoda et al. | Jul 1986 | A |
4604624 | Amitay et al. | Aug 1986 | A |
4604627 | Saad et al. | Aug 1986 | A |
4618867 | Gans et al. | Oct 1986 | A |
4636753 | Geller et al. | Jan 1987 | A |
4638322 | Lamberty et al. | Jan 1987 | A |
4641916 | Oestreich et al. | Feb 1987 | A |
4642651 | Kuhn et al. | Feb 1987 | A |
4644365 | Horning et al. | Feb 1987 | A |
4647329 | Oono et al. | Mar 1987 | A |
4660050 | Phillips et al. | Apr 1987 | A |
4665660 | Krall et al. | May 1987 | A |
4672384 | Roy et al. | Jun 1987 | A |
4673943 | Hannan | Jun 1987 | A |
4680558 | Ghosh et al. | Jul 1987 | A |
4694599 | Hart et al. | Sep 1987 | A |
4704611 | Edwards et al. | Nov 1987 | A |
4715695 | Nishimura et al. | Dec 1987 | A |
4717974 | Baumeister et al. | Jan 1988 | A |
4730172 | Bengeult | Mar 1988 | A |
4730888 | Darcie et al. | Mar 1988 | A |
4731810 | Watkins | Mar 1988 | A |
4735097 | Lynnworth et al. | Apr 1988 | A |
4743915 | Rammos et al. | May 1988 | A |
4743916 | Bengeult | May 1988 | A |
4745377 | Stern et al. | May 1988 | A |
4746241 | Burbank, III et al. | May 1988 | A |
4749244 | Luh | Jun 1988 | A |
4755830 | Plunk et al. | Jul 1988 | A |
4757324 | Dhanjal et al. | Jul 1988 | A |
4758962 | Fernandes | Jul 1988 | A |
4764738 | Fried et al. | Aug 1988 | A |
4772891 | Svy | Sep 1988 | A |
4777457 | Ghosh et al. | Oct 1988 | A |
4785304 | Stern et al. | Nov 1988 | A |
4786913 | Barendregt et al. | Nov 1988 | A |
4788553 | Phillips | Nov 1988 | A |
4792771 | Siu et al. | Dec 1988 | A |
4792812 | Rinehart et al. | Dec 1988 | A |
4799031 | Lang et al. | Jan 1989 | A |
4800350 | Bridges et al. | Jan 1989 | A |
4801937 | Fernandes | Jan 1989 | A |
4818963 | Green et al. | Apr 1989 | A |
4818990 | Fernandes | Apr 1989 | A |
4825221 | Suzuki et al. | Apr 1989 | A |
4829310 | Losee et al. | May 1989 | A |
4829314 | Barbier et al. | May 1989 | A |
4831346 | Brooker et al. | May 1989 | A |
4832148 | Becker et al. | May 1989 | A |
4835517 | Van et al. | May 1989 | A |
4839659 | Stern et al. | Jun 1989 | A |
4845508 | Krall et al. | Jul 1989 | A |
4847610 | Ozawa et al. | Jul 1989 | A |
4849611 | Whitney et al. | Jul 1989 | A |
4851788 | Ives et al. | Jul 1989 | A |
4855749 | DeFonzo | Aug 1989 | A |
4866454 | Droessler et al. | Sep 1989 | A |
4873534 | Wohlleben et al. | Oct 1989 | A |
4879544 | Maki et al. | Nov 1989 | A |
4881028 | Bright et al. | Nov 1989 | A |
4886980 | Fernandes et al. | Dec 1989 | A |
4897663 | Kusano et al. | Jan 1990 | A |
4904996 | Fernandes | Feb 1990 | A |
4915468 | Kim et al. | Apr 1990 | A |
4916460 | Powell et al. | Apr 1990 | A |
4922180 | Saffer et al. | May 1990 | A |
4929962 | Begout et al. | May 1990 | A |
4931808 | Munson et al. | Jun 1990 | A |
4932620 | Foy | Jun 1990 | A |
4946202 | Perricone et al. | Aug 1990 | A |
4965856 | Swanic | Oct 1990 | A |
4977593 | Ballance | Dec 1990 | A |
4977618 | Allen | Dec 1990 | A |
4989011 | Rosen et al. | Jan 1991 | A |
4998095 | Shields | Mar 1991 | A |
5003318 | Hall et al. | Mar 1991 | A |
5006846 | Granville et al. | Apr 1991 | A |
5006859 | Wong et al. | Apr 1991 | A |
5015914 | Ives et al. | May 1991 | A |
5017936 | Massey et al. | May 1991 | A |
5017937 | Newham et al. | May 1991 | A |
5018180 | Shoulders | May 1991 | A |
5019832 | Ekdahl et al. | May 1991 | A |
5036335 | Jairam et al. | Jul 1991 | A |
H956 | Reindel | Aug 1991 | H |
5042903 | Jakubowski et al. | Aug 1991 | A |
5043538 | Hughey et al. | Aug 1991 | A |
5043629 | Doane et al. | Aug 1991 | A |
5044722 | Voser et al. | Sep 1991 | A |
5045820 | Oehlerking et al. | Sep 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5065760 | Krause et al. | Nov 1991 | A |
5065969 | McLean et al. | Nov 1991 | A |
5072228 | Kuwahara et al. | Dec 1991 | A |
5082349 | Cordova-Plaza et al. | Jan 1992 | A |
5086467 | Malek | Feb 1992 | A |
5107231 | Knox et al. | Apr 1992 | A |
5109232 | Monte et al. | Apr 1992 | A |
5113197 | Luh et al. | May 1992 | A |
5117237 | Legg | May 1992 | A |
5121129 | Lee et al. | Jun 1992 | A |
5126750 | Wang et al. | Jun 1992 | A |
5132968 | Cephus | Jul 1992 | A |
5134251 | Martin et al. | Jul 1992 | A |
5134423 | Haupt et al. | Jul 1992 | A |
5134965 | Tokuda et al. | Aug 1992 | A |
5136671 | Dragone et al. | Aug 1992 | A |
5142767 | Adams et al. | Sep 1992 | A |
5148509 | Kannabiran et al. | Sep 1992 | A |
5152861 | Hann | Oct 1992 | A |
5153676 | Bergh et al. | Oct 1992 | A |
5166698 | Ashbaugh et al. | Nov 1992 | A |
5174164 | Wilheim et al. | Dec 1992 | A |
5175560 | Lucas et al. | Dec 1992 | A |
5182427 | Mcgaffigan | Jan 1993 | A |
5187409 | Ito et al. | Feb 1993 | A |
5193774 | Rogers et al. | Mar 1993 | A |
5198823 | Litchford et al. | Mar 1993 | A |
5212755 | Holmberg et al. | May 1993 | A |
5214394 | Wong et al. | May 1993 | A |
5214438 | Smith et al. | May 1993 | A |
5216616 | Masters | Jun 1993 | A |
5218657 | Tokudome et al. | Jun 1993 | A |
5235662 | Prince et al. | Aug 1993 | A |
5239537 | Sakauchi | Aug 1993 | A |
5241321 | Tsao et al. | Aug 1993 | A |
5241701 | Andoh et al. | Aug 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5254809 | Martin | Oct 1993 | A |
5265266 | Trinh | Nov 1993 | A |
5266961 | Milroy et al. | Nov 1993 | A |
5276455 | Fitzsimmons et al. | Jan 1994 | A |
5278687 | Jannson et al. | Jan 1994 | A |
5280297 | Profera et al. | Jan 1994 | A |
5291211 | Tropper et al. | Mar 1994 | A |
5298911 | Li et al. | Mar 1994 | A |
5299773 | Bertrand et al. | Apr 1994 | A |
5304999 | Roberts et al. | Apr 1994 | A |
5311596 | Scott et al. | May 1994 | A |
5327149 | Kuffer et al. | Jul 1994 | A |
5329285 | McCandless et al. | Jul 1994 | A |
5341088 | David | Aug 1994 | A |
5345522 | Vali et al. | Sep 1994 | A |
5347287 | Speciale et al. | Sep 1994 | A |
5352984 | Piesinger et al. | Oct 1994 | A |
5353036 | Baldry | Oct 1994 | A |
5359338 | Hatcher et al. | Oct 1994 | A |
5371623 | Eastmond et al. | Dec 1994 | A |
5379455 | Koschek et al. | Jan 1995 | A |
5380224 | Dicicco | Jan 1995 | A |
5381160 | Landmeier | Jan 1995 | A |
5389442 | Kathiresan et al. | Feb 1995 | A |
5400040 | Lane et al. | Mar 1995 | A |
5402140 | Rodeffer et al. | Mar 1995 | A |
5402151 | Duwaer | Mar 1995 | A |
5404146 | Rutledge et al. | Apr 1995 | A |
5410318 | Wong et al. | Apr 1995 | A |
5412654 | Perkins | May 1995 | A |
5428364 | Lee et al. | Jun 1995 | A |
5428818 | Meidan et al. | Jun 1995 | A |
5434575 | Jelinek et al. | Jul 1995 | A |
5440660 | Dombrowski et al. | Aug 1995 | A |
5451969 | Toth et al. | Sep 1995 | A |
5457469 | Diamond et al. | Oct 1995 | A |
5479176 | Zavrel, Jr. | Dec 1995 | A |
5481268 | Higgins | Jan 1996 | A |
5482525 | Kajioka et al. | Jan 1996 | A |
5486839 | Rodeffer et al. | Jan 1996 | A |
5488380 | Harvey et al. | Jan 1996 | A |
5495546 | Bottoms et al. | Feb 1996 | A |
5499308 | Arai et al. | Mar 1996 | A |
5499311 | DeCusatis et al. | Mar 1996 | A |
5502392 | Arjavalingam et al. | Mar 1996 | A |
5512906 | Speciale | Apr 1996 | A |
5513176 | Dean et al. | Apr 1996 | A |
5514965 | Westwood et al. | May 1996 | A |
5515059 | How et al. | May 1996 | A |
5519408 | Schnetzer et al. | May 1996 | A |
5528208 | Kobayashi et al. | Jun 1996 | A |
5539421 | Hong et al. | Jul 1996 | A |
5543000 | Lique | Aug 1996 | A |
5557283 | Sheen | Sep 1996 | A |
5559359 | Reyes | Sep 1996 | A |
5566022 | Segev | Oct 1996 | A |
5566196 | Scifres | Oct 1996 | A |
5576721 | Hwang et al. | Nov 1996 | A |
5586054 | Jensen et al. | Dec 1996 | A |
5592183 | Henf | Jan 1997 | A |
5600630 | Takahashi et al. | Feb 1997 | A |
5603089 | Searle et al. | Feb 1997 | A |
5619015 | Kirma | Apr 1997 | A |
5621421 | Kolz et al. | Apr 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5628050 | McGraw et al. | May 1997 | A |
5630223 | Bahu et al. | May 1997 | A |
5637521 | Rhodes et al. | Jun 1997 | A |
5640168 | Heger et al. | Jun 1997 | A |
5646936 | Shah et al. | Jul 1997 | A |
5650788 | Jha | Jul 1997 | A |
5652554 | Krieg et al. | Jul 1997 | A |
5663693 | Doughty et al. | Sep 1997 | A |
5671304 | Duguay | Sep 1997 | A |
5677699 | Strickland | Oct 1997 | A |
5677909 | Heide | Oct 1997 | A |
5680139 | Huguenin et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5684495 | Dyott et al. | Nov 1997 | A |
5686930 | Brydon | Nov 1997 | A |
5724168 | Oschmann et al. | Mar 1998 | A |
5726980 | Rickard | Mar 1998 | A |
5748153 | McKinzie et al. | May 1998 | A |
5750941 | Ishikawa et al. | May 1998 | A |
5757323 | Spencer | May 1998 | A |
5767807 | Pritchett | Jun 1998 | A |
5768689 | Borg | Jun 1998 | A |
5769879 | Levay et al. | Jun 1998 | A |
5784033 | Boldissar, Jr. | Jul 1998 | A |
5784034 | Konishi et al. | Jul 1998 | A |
5784683 | Sistanizadeh et al. | Jul 1998 | A |
5787673 | Noble | Aug 1998 | A |
5793334 | Harrison et al. | Aug 1998 | A |
5800494 | Campbell et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5812524 | Moran et al. | Sep 1998 | A |
5818390 | Hill | Oct 1998 | A |
5818396 | Harrison et al. | Oct 1998 | A |
5818512 | Fuller | Oct 1998 | A |
5845391 | Miklosko et al. | Dec 1998 | A |
5848054 | Mosebrook et al. | Dec 1998 | A |
5850199 | Wan et al. | Dec 1998 | A |
5854608 | Leisten | Dec 1998 | A |
5859618 | Miller, II et al. | Jan 1999 | A |
5861843 | Sorace et al. | Jan 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5870060 | Chen et al. | Feb 1999 | A |
5872544 | Schay | Feb 1999 | A |
5872547 | Martek | Feb 1999 | A |
5873324 | Kaddas et al. | Feb 1999 | A |
5886666 | Schellenberg et al. | Mar 1999 | A |
5890055 | Chu et al. | Mar 1999 | A |
5892480 | Killen | Apr 1999 | A |
5898133 | Bleich et al. | Apr 1999 | A |
5898830 | Wesinger, Jr. et al. | Apr 1999 | A |
5900847 | Ishikawa et al. | May 1999 | A |
5903373 | Welch et al. | May 1999 | A |
5905438 | Weiss et al. | May 1999 | A |
5905949 | Hawkes et al. | May 1999 | A |
5910790 | Ohmuro et al. | Jun 1999 | A |
5917977 | Barrett et al. | Jun 1999 | A |
5922081 | Seewig et al. | Jul 1999 | A |
5926128 | Brash et al. | Jul 1999 | A |
5933422 | Suzuki et al. | Aug 1999 | A |
5936589 | Kawahata | Aug 1999 | A |
5948044 | Varley et al. | Sep 1999 | A |
5948108 | Lu et al. | Sep 1999 | A |
5952964 | Chan et al. | Sep 1999 | A |
5952972 | Ittipiboon et al. | Sep 1999 | A |
5952984 | Kuramoto et al. | Sep 1999 | A |
5955992 | Shattil | Sep 1999 | A |
5959578 | Kreutel et al. | Sep 1999 | A |
5959590 | Sanford et al. | Sep 1999 | A |
5973641 | Smith et al. | Oct 1999 | A |
5973899 | Williams | Oct 1999 | A |
5977650 | Rickard et al. | Nov 1999 | A |
5978738 | Brown et al. | Nov 1999 | A |
5982276 | Stewart | Nov 1999 | A |
5986331 | Letavic et al. | Nov 1999 | A |
5987099 | O'Neill et al. | Nov 1999 | A |
5990848 | Annamaa et al. | Nov 1999 | A |
5994984 | Stancil et al. | Nov 1999 | A |
5994998 | Fisher et al. | Nov 1999 | A |
6005694 | Liu | Dec 1999 | A |
6005758 | Spencer et al. | Dec 1999 | A |
6009124 | Smith | Dec 1999 | A |
6011520 | Howell et al. | Jan 2000 | A |
6011524 | Jervis et al. | Jan 2000 | A |
6014110 | Bridges et al. | Jan 2000 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6023619 | Kaminsky | Feb 2000 | A |
6026173 | Svenson et al. | Feb 2000 | A |
6026208 | Will et al. | Feb 2000 | A |
6026331 | Feldberg et al. | Feb 2000 | A |
6031455 | Grube et al. | Feb 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6037894 | Pfizenmaier et al. | Mar 2000 | A |
6038425 | Jeffrey et al. | Mar 2000 | A |
6049647 | Register et al. | Apr 2000 | A |
6057802 | Nealy | May 2000 | A |
6061035 | Kinasewitz et al. | May 2000 | A |
6063234 | Chen et al. | May 2000 | A |
6075451 | Lebowitz et al. | Jun 2000 | A |
6075493 | Sugawara et al. | Jun 2000 | A |
6076044 | Brown | Jun 2000 | A |
6078297 | Kormanyos et al. | Jun 2000 | A |
6088001 | Burger et al. | Jul 2000 | A |
6095820 | Luxon et al. | Aug 2000 | A |
6100846 | Li et al. | Aug 2000 | A |
6103031 | Aeschbacher et al. | Aug 2000 | A |
6107897 | Hewett et al. | Aug 2000 | A |
6111553 | Steenbuck et al. | Aug 2000 | A |
6114998 | Schefte et al. | Sep 2000 | A |
6121885 | Masone et al. | Sep 2000 | A |
6122753 | Masuo et al. | Sep 2000 | A |
6140911 | Fisher et al. | Oct 2000 | A |
6140976 | Locke et al. | Oct 2000 | A |
6142434 | Brinkman et al. | Nov 2000 | A |
6146330 | Tujino et al. | Nov 2000 | A |
6150612 | Grandy et al. | Nov 2000 | A |
6151145 | Srivastava et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6158383 | Watanabe et al. | Dec 2000 | A |
6163296 | Lier et al. | Dec 2000 | A |
6166694 | Ying et al. | Dec 2000 | A |
6167055 | Ganek et al. | Dec 2000 | A |
6175917 | Arrow et al. | Jan 2001 | B1 |
6177801 | Chong et al. | Jan 2001 | B1 |
6184828 | Shoki et al. | Feb 2001 | B1 |
6195058 | Nakamura et al. | Feb 2001 | B1 |
6195395 | Frodsham et al. | Feb 2001 | B1 |
6198440 | Krylov et al. | Mar 2001 | B1 |
6208161 | Suda et al. | Mar 2001 | B1 |
6208308 | Lemons et al. | Mar 2001 | B1 |
6208903 | Richards et al. | Mar 2001 | B1 |
6211836 | Manasson et al. | Apr 2001 | B1 |
6211837 | Crouch et al. | Apr 2001 | B1 |
6215443 | Komatsu et al. | Apr 2001 | B1 |
6219006 | Rudish et al. | Apr 2001 | B1 |
6222503 | Gietema et al. | Apr 2001 | B1 |
6225960 | Collins et al. | May 2001 | B1 |
6229327 | Boll et al. | May 2001 | B1 |
6236365 | Karr et al. | May 2001 | B1 |
6239377 | Nishikawa et al. | May 2001 | B1 |
6239379 | Cotter et al. | May 2001 | B1 |
6239761 | Guo et al. | May 2001 | B1 |
6241045 | Reeve et al. | Jun 2001 | B1 |
6243049 | Chandler et al. | Jun 2001 | B1 |
6246821 | Hemken et al. | Jun 2001 | B1 |
6252553 | Solomon et al. | Jun 2001 | B1 |
6259337 | Wen et al. | Jul 2001 | B1 |
6266016 | Bergstedt et al. | Jul 2001 | B1 |
6266025 | Popa et al. | Jul 2001 | B1 |
6268835 | Toland et al. | Jul 2001 | B1 |
6271790 | Smith et al. | Aug 2001 | B2 |
6271799 | Rief et al. | Aug 2001 | B1 |
6271952 | Epworth et al. | Aug 2001 | B1 |
6278357 | Croushore et al. | Aug 2001 | B1 |
6278370 | Underwood et al. | Aug 2001 | B1 |
6281855 | Aoki et al. | Aug 2001 | B1 |
6282354 | Jones et al. | Aug 2001 | B1 |
6283425 | Liljevik | Sep 2001 | B1 |
6285325 | Nalbandian et al. | Sep 2001 | B1 |
6292139 | Yamamoto et al. | Sep 2001 | B1 |
6292143 | Romanofsky | Sep 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6300898 | Schneider et al. | Oct 2001 | B1 |
6300906 | Rawnick et al. | Oct 2001 | B1 |
6301420 | Greenaway et al. | Oct 2001 | B1 |
6308085 | Shoki et al. | Oct 2001 | B1 |
6311288 | Heeren et al. | Oct 2001 | B1 |
6317028 | Valiulis et al. | Nov 2001 | B1 |
6317092 | de Schweinitz et al. | Nov 2001 | B1 |
6320509 | Brady et al. | Nov 2001 | B1 |
6320553 | Ergene et al. | Nov 2001 | B1 |
6323819 | Ergene et al. | Nov 2001 | B1 |
6329959 | Varadan et al. | Dec 2001 | B1 |
6348683 | Verghese et al. | Feb 2002 | B1 |
6351247 | Linstrom et al. | Feb 2002 | B1 |
6357709 | Parduhn et al. | Mar 2002 | B1 |
6362788 | Louzir | Mar 2002 | B1 |
6362789 | Trumbull et al. | Mar 2002 | B1 |
6366238 | DeMore et al. | Apr 2002 | B1 |
6373436 | Chen et al. | Apr 2002 | B1 |
6373441 | Porath et al. | Apr 2002 | B1 |
6376824 | Michenfelder et al. | Apr 2002 | B1 |
6388564 | Piercy et al. | May 2002 | B1 |
6396440 | Chen et al. | May 2002 | B1 |
6404773 | Williams et al. | Jun 2002 | B1 |
6404775 | Leslie | Jun 2002 | B1 |
6421021 | Rupp et al. | Jul 2002 | B1 |
6433736 | Timothy et al. | Aug 2002 | B1 |
6433741 | Tanizaki et al. | Aug 2002 | B2 |
6436536 | Peruzzotti et al. | Aug 2002 | B2 |
6441723 | Mansfield, Jr. et al. | Aug 2002 | B1 |
6445351 | Baker et al. | Sep 2002 | B1 |
6445774 | Kidder et al. | Sep 2002 | B1 |
6452467 | McEwan | Sep 2002 | B1 |
6452569 | Park et al. | Sep 2002 | B1 |
6452923 | Gerszberg et al. | Sep 2002 | B1 |
6455769 | Belli et al. | Sep 2002 | B1 |
6456251 | Rao et al. | Sep 2002 | B1 |
6462700 | Schmidt et al. | Oct 2002 | B1 |
6463295 | Yun et al. | Oct 2002 | B1 |
6469676 | Fehrenbach et al. | Oct 2002 | B1 |
6473049 | Takeuchi et al. | Oct 2002 | B2 |
6480168 | Lam et al. | Nov 2002 | B1 |
6483470 | Hohnstein et al. | Nov 2002 | B1 |
6489928 | Sakurada | Dec 2002 | B2 |
6489931 | Liu et al. | Dec 2002 | B2 |
6492957 | Carillo, Jr. et al. | Dec 2002 | B2 |
6501433 | Popa et al. | Dec 2002 | B2 |
6507573 | Brandt et al. | Jan 2003 | B1 |
6510152 | Gerszberg et al. | Jan 2003 | B1 |
6515635 | Chiang et al. | Feb 2003 | B2 |
6522305 | Sharman et al. | Feb 2003 | B2 |
6531991 | Adachi et al. | Mar 2003 | B2 |
6532215 | Muntz et al. | Mar 2003 | B1 |
6534996 | Amrany et al. | Mar 2003 | B1 |
6535169 | Fourdeux et al. | Mar 2003 | B2 |
6542739 | Garner | Apr 2003 | B1 |
6549106 | Martin et al. | Apr 2003 | B2 |
6549173 | King et al. | Apr 2003 | B1 |
6552693 | Leisten et al. | Apr 2003 | B1 |
6559811 | Cash et al. | May 2003 | B1 |
6563981 | Weisberg et al. | May 2003 | B2 |
6567573 | Domash et al. | May 2003 | B1 |
6573803 | Ziegner et al. | Jun 2003 | B1 |
6573813 | Joannopoulos et al. | Jun 2003 | B1 |
6580295 | Takekuma et al. | Jun 2003 | B2 |
6584084 | Barany et al. | Jun 2003 | B1 |
6584252 | Schier et al. | Jun 2003 | B1 |
6587077 | Vail et al. | Jul 2003 | B2 |
6593893 | Hou et al. | Jul 2003 | B2 |
6594238 | Wallentin et al. | Jul 2003 | B1 |
6596944 | Clark et al. | Jul 2003 | B1 |
6600456 | Gothard et al. | Jul 2003 | B2 |
6606057 | Chiang et al. | Aug 2003 | B2 |
6606066 | Fawcett et al. | Aug 2003 | B1 |
6606077 | Ebling et al. | Aug 2003 | B2 |
6611252 | DuFaux et al. | Aug 2003 | B1 |
6614237 | Ademian et al. | Sep 2003 | B2 |
6631229 | Norris et al. | Oct 2003 | B1 |
6634225 | Reime et al. | Oct 2003 | B1 |
6639484 | Tzuang et al. | Oct 2003 | B2 |
6639566 | Knop et al. | Oct 2003 | B2 |
6642887 | Owechko et al. | Nov 2003 | B2 |
6643254 | Abe et al. | Nov 2003 | B1 |
6650296 | Wong et al. | Nov 2003 | B2 |
6653598 | Sullivan et al. | Nov 2003 | B2 |
6653848 | Adamian et al. | Nov 2003 | B2 |
6657437 | LeCroy et al. | Dec 2003 | B1 |
6659655 | Dair et al. | Dec 2003 | B2 |
6661391 | Ohara et al. | Dec 2003 | B2 |
6668104 | Mueller-Fiedler et al. | Dec 2003 | B1 |
6670921 | Sievenpiper et al. | Dec 2003 | B2 |
6671824 | Hyland et al. | Dec 2003 | B1 |
6677899 | Lee et al. | Jan 2004 | B1 |
6680903 | Moriguchi et al. | Jan 2004 | B1 |
6683580 | Kuramoto | Jan 2004 | B2 |
6686832 | Abraham et al. | Feb 2004 | B2 |
6686873 | Patel et al. | Feb 2004 | B2 |
6686875 | Wolfson et al. | Feb 2004 | B1 |
6697027 | Mahon et al. | Feb 2004 | B2 |
6697030 | Gleener | Feb 2004 | B2 |
6703981 | Meitzler et al. | Mar 2004 | B2 |
6714165 | Verstraeten | Mar 2004 | B2 |
6720935 | Lamensdorf et al. | Apr 2004 | B2 |
6725035 | Jochim et al. | Apr 2004 | B2 |
6727470 | Reichle et al. | Apr 2004 | B2 |
6727891 | Moriya et al. | Apr 2004 | B2 |
6728439 | Weisberg et al. | Apr 2004 | B2 |
6728552 | Chatain et al. | Apr 2004 | B2 |
6731210 | Swanson et al. | May 2004 | B2 |
6731649 | Silverman | May 2004 | B1 |
6737934 | Yamada | May 2004 | B2 |
6741705 | Nelson et al. | May 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6750827 | Manasson et al. | Jun 2004 | B2 |
6754470 | Hendrickson et al. | Jun 2004 | B2 |
6755312 | Dziedzic et al. | Jun 2004 | B2 |
6756538 | Murga-Gonzalez et al. | Jun 2004 | B1 |
6765479 | Stewart et al. | Jul 2004 | B2 |
6768454 | Kingsley et al. | Jul 2004 | B2 |
6768456 | Lalezari et al. | Jul 2004 | B1 |
6768471 | Bostwick et al. | Jul 2004 | B2 |
6768474 | Hunt et al. | Jul 2004 | B2 |
6771216 | Patel et al. | Aug 2004 | B2 |
6771225 | Tits et al. | Aug 2004 | B2 |
6771739 | Beamon et al. | Aug 2004 | B1 |
6774859 | Schantz et al. | Aug 2004 | B2 |
6788865 | Kawanishi et al. | Sep 2004 | B2 |
6788951 | Aoki et al. | Sep 2004 | B2 |
6789119 | Zhu et al. | Sep 2004 | B1 |
6792290 | Proctor, Jr. et al. | Sep 2004 | B2 |
6798223 | Huang et al. | Sep 2004 | B2 |
6806710 | Renz et al. | Oct 2004 | B1 |
6809633 | Cern et al. | Oct 2004 | B2 |
6809695 | Le Bayon et al. | Oct 2004 | B2 |
6812895 | Anderson et al. | Nov 2004 | B2 |
6819744 | Galli et al. | Nov 2004 | B1 |
6822615 | Quan et al. | Nov 2004 | B2 |
6839032 | Teshirogi et al. | Jan 2005 | B2 |
6839160 | Tsuda et al. | Jan 2005 | B2 |
6839846 | Mangold et al. | Jan 2005 | B2 |
6842157 | Phelan et al. | Jan 2005 | B2 |
6842430 | Melnik et al. | Jan 2005 | B1 |
6850128 | Park | Feb 2005 | B2 |
6853351 | Mohuchy et al. | Feb 2005 | B1 |
6856273 | Bognar et al. | Feb 2005 | B1 |
6859185 | Royalty et al. | Feb 2005 | B2 |
6859187 | Ohlsson et al. | Feb 2005 | B2 |
6859590 | Zaccone | Feb 2005 | B1 |
6861998 | Louzir | Mar 2005 | B2 |
6864851 | McGrath et al. | Mar 2005 | B2 |
6864853 | Judd et al. | Mar 2005 | B2 |
6867744 | Toncich et al. | Mar 2005 | B2 |
6868258 | Hayata et al. | Mar 2005 | B2 |
6870465 | Song et al. | Mar 2005 | B1 |
6873265 | Bleier et al. | Mar 2005 | B2 |
6885674 | Hunt et al. | Apr 2005 | B2 |
6886065 | Sides et al. | Apr 2005 | B2 |
6888623 | Clements | May 2005 | B2 |
6901064 | Billhartz et al. | May 2005 | B2 |
6904218 | Sun et al. | Jun 2005 | B2 |
6906676 | Killen et al. | Jun 2005 | B2 |
6906681 | Hoppenstein et al. | Jun 2005 | B2 |
6909893 | Aoki et al. | Jun 2005 | B2 |
6917974 | Stytz et al. | Jul 2005 | B1 |
6920289 | Zimmerman et al. | Jul 2005 | B2 |
6920315 | Wilcox et al. | Jul 2005 | B1 |
6920407 | Phillips et al. | Jul 2005 | B2 |
6922135 | Abraham et al. | Jul 2005 | B2 |
6924732 | Yokoo et al. | Aug 2005 | B2 |
6924776 | Le et al. | Aug 2005 | B2 |
6933887 | Regnier et al. | Aug 2005 | B2 |
6934655 | Jones et al. | Aug 2005 | B2 |
6937595 | Barzegar et al. | Aug 2005 | B2 |
6943553 | Zimmermann et al. | Sep 2005 | B2 |
6944555 | Blackett et al. | Sep 2005 | B2 |
6947147 | Motamedi et al. | Sep 2005 | B2 |
6947376 | Deng et al. | Sep 2005 | B1 |
6947635 | Kohns et al. | Sep 2005 | B2 |
6948371 | Tanaka et al. | Sep 2005 | B2 |
6950567 | Kline et al. | Sep 2005 | B2 |
6952143 | Kinayman et al. | Oct 2005 | B2 |
6952183 | Yuanzhu et al. | Oct 2005 | B2 |
6956506 | Koivumaeki et al. | Oct 2005 | B2 |
6958729 | Metz et al. | Oct 2005 | B1 |
6965302 | Mollenkopf et al. | Nov 2005 | B2 |
6965355 | Durham et al. | Nov 2005 | B1 |
6965784 | Kanamaluru et al. | Nov 2005 | B2 |
6967627 | Roper et al. | Nov 2005 | B2 |
6970502 | Kim et al. | Nov 2005 | B2 |
6970682 | Crilly, Jr. et al. | Nov 2005 | B2 |
6972729 | Wang et al. | Dec 2005 | B2 |
6980091 | White, II et al. | Dec 2005 | B2 |
6982611 | Cope et al. | Jan 2006 | B2 |
6982679 | Kralovec et al. | Jan 2006 | B2 |
6983174 | Hoppenstein et al. | Jan 2006 | B2 |
6985118 | Killen et al. | Jan 2006 | B2 |
6992639 | Lier et al. | Jan 2006 | B1 |
6999667 | Jang et al. | Feb 2006 | B2 |
7008120 | Zaborsky et al. | Mar 2006 | B2 |
7009471 | Elmore | Mar 2006 | B2 |
7012489 | Fisher et al. | Mar 2006 | B2 |
7012572 | Schaffner et al. | Mar 2006 | B1 |
7016585 | Diggle, III et al. | Mar 2006 | B2 |
7019704 | Weiss et al. | Mar 2006 | B2 |
7023400 | Hill et al. | Apr 2006 | B2 |
7026917 | Berkman et al. | Apr 2006 | B2 |
7027003 | Sasaki et al. | Apr 2006 | B2 |
7027454 | Dent et al. | Apr 2006 | B2 |
7032016 | Cerami et al. | Apr 2006 | B2 |
7038636 | Larouche et al. | May 2006 | B2 |
7039048 | Monta et al. | May 2006 | B1 |
7042403 | Sievenpiper et al. | May 2006 | B2 |
7042416 | Kingsley et al. | May 2006 | B2 |
7042420 | Ebling et al. | May 2006 | B2 |
7054286 | Ertel et al. | May 2006 | B2 |
7054376 | Rubinstain et al. | May 2006 | B1 |
7054513 | Herz et al. | May 2006 | B2 |
7055148 | Marsh et al. | May 2006 | B2 |
7057558 | Yasuho et al. | Jun 2006 | B2 |
7057573 | Ohira et al. | Jun 2006 | B2 |
7058524 | Hayes et al. | Jun 2006 | B2 |
7061370 | Cern et al. | Jun 2006 | B2 |
7061891 | Kilfoyle et al. | Jun 2006 | B1 |
7064726 | Kitamori et al. | Jun 2006 | B2 |
7068998 | Zavidniak et al. | Jun 2006 | B2 |
7069163 | Gunther et al. | Jun 2006 | B2 |
7075414 | Giannini et al. | Jul 2006 | B2 |
7075485 | Song et al. | Jul 2006 | B2 |
7075496 | Hidai et al. | Jul 2006 | B2 |
7082321 | Kuwahara et al. | Jul 2006 | B2 |
7084742 | Haines et al. | Aug 2006 | B2 |
7088221 | Chan | Aug 2006 | B2 |
7088306 | Chiang et al. | Aug 2006 | B2 |
7098405 | Glew et al. | Aug 2006 | B2 |
7098773 | Berkman et al. | Aug 2006 | B2 |
7102581 | West et al. | Sep 2006 | B1 |
7106265 | Robertson et al. | Sep 2006 | B2 |
7106270 | Iigusa et al. | Sep 2006 | B2 |
7106273 | Brunson et al. | Sep 2006 | B1 |
7109939 | Lynch et al. | Sep 2006 | B2 |
7113002 | Otsuka et al. | Sep 2006 | B2 |
7113134 | Berkman et al. | Sep 2006 | B1 |
7119755 | Harvey et al. | Oct 2006 | B2 |
7120338 | Gunn, III et al. | Oct 2006 | B2 |
7120345 | Naitou et al. | Oct 2006 | B2 |
7122012 | Bouton et al. | Oct 2006 | B2 |
7123191 | Goldberg et al. | Oct 2006 | B2 |
7123801 | Fitz et al. | Oct 2006 | B2 |
7125512 | Crump et al. | Oct 2006 | B2 |
7126557 | Warnagiris et al. | Oct 2006 | B2 |
7126711 | Fruth | Oct 2006 | B2 |
7130516 | Wu et al. | Oct 2006 | B2 |
7132950 | Stewart et al. | Nov 2006 | B2 |
7133930 | Sabio et al. | Nov 2006 | B2 |
7134012 | Doyle et al. | Nov 2006 | B2 |
7134135 | Cerami et al. | Nov 2006 | B2 |
7136397 | Sharma et al. | Nov 2006 | B2 |
7136772 | Duchi et al. | Nov 2006 | B2 |
7137605 | Guertler et al. | Nov 2006 | B1 |
7138767 | Chen et al. | Nov 2006 | B2 |
7138958 | Syed et al. | Nov 2006 | B2 |
7139328 | Thomas et al. | Nov 2006 | B2 |
7145440 | Gerszberg et al. | Dec 2006 | B2 |
7145552 | Hollingsworth et al. | Dec 2006 | B2 |
7151497 | Crystal et al. | Dec 2006 | B2 |
7151508 | Schaffner et al. | Dec 2006 | B2 |
7155238 | Katz et al. | Dec 2006 | B2 |
7161934 | Buchsbaum et al. | Jan 2007 | B2 |
7164354 | Panzer et al. | Jan 2007 | B1 |
7167139 | Kim et al. | Jan 2007 | B2 |
7171087 | Takahashi et al. | Jan 2007 | B2 |
7171308 | Campbell et al. | Jan 2007 | B2 |
7171493 | Shu et al. | Jan 2007 | B2 |
7176589 | Rouquette et al. | Feb 2007 | B2 |
7180459 | Damini et al. | Feb 2007 | B2 |
7180467 | Fabrega-Sanchez | Feb 2007 | B2 |
7183922 | Mendolia et al. | Feb 2007 | B2 |
7183991 | Bhattacharyya et al. | Feb 2007 | B2 |
7183998 | Wilhelm et al. | Feb 2007 | B2 |
7193562 | Kish et al. | Mar 2007 | B2 |
7194528 | Davidow et al. | Mar 2007 | B1 |
7199680 | Fukunaga et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7200658 | Goeller et al. | Apr 2007 | B2 |
7205950 | Imai et al. | Apr 2007 | B2 |
7212163 | Huang et al. | May 2007 | B2 |
7215220 | Jia et al. | May 2007 | B1 |
7215928 | Gage et al. | May 2007 | B2 |
7218285 | Davis et al. | May 2007 | B2 |
7224170 | Graham et al. | May 2007 | B2 |
7224243 | Cope et al. | May 2007 | B2 |
7224272 | White, II et al. | May 2007 | B2 |
7224320 | Cook et al. | May 2007 | B2 |
7224985 | Caci et al. | May 2007 | B2 |
7228123 | Moursund et al. | Jun 2007 | B2 |
7234413 | Suzuki et al. | Jun 2007 | B2 |
7234895 | Richardson et al. | Jun 2007 | B2 |
7239284 | Staal et al. | Jul 2007 | B1 |
7243610 | Ishii et al. | Jul 2007 | B2 |
7248148 | Kline et al. | Jul 2007 | B2 |
7250772 | Furse et al. | Jul 2007 | B2 |
7255821 | Priedeman, Jr. et al. | Aug 2007 | B2 |
7259657 | Mollenkopf et al. | Aug 2007 | B2 |
7260424 | Schmidt et al. | Aug 2007 | B2 |
7266154 | Gundrum et al. | Sep 2007 | B2 |
7266275 | Hansen et al. | Sep 2007 | B2 |
7268722 | Gottwald et al. | Sep 2007 | B2 |
7272281 | Stahulak et al. | Sep 2007 | B2 |
7272362 | Jeong et al. | Sep 2007 | B2 |
7274305 | Luttrell | Sep 2007 | B1 |
7274936 | Stern-Berkowitz et al. | Sep 2007 | B2 |
7276990 | Sievenpiper et al. | Oct 2007 | B2 |
7280033 | Berkman | Oct 2007 | B2 |
7280803 | Nelson et al. | Oct 2007 | B2 |
7282922 | Lo et al. | Oct 2007 | B2 |
7286099 | Lier et al. | Oct 2007 | B1 |
7289449 | Rubinstein et al. | Oct 2007 | B1 |
7289704 | Wagman et al. | Oct 2007 | B1 |
7289828 | Cha et al. | Oct 2007 | B2 |
7292125 | Mansour et al. | Nov 2007 | B2 |
7292196 | Waterhouse et al. | Nov 2007 | B2 |
7295161 | Gaucher et al. | Nov 2007 | B2 |
7297869 | Hiller et al. | Nov 2007 | B2 |
7301440 | Mollenkopf | Nov 2007 | B2 |
7301508 | O'Loughlin et al. | Nov 2007 | B1 |
7307357 | Kopp et al. | Dec 2007 | B2 |
7307596 | West et al. | Dec 2007 | B1 |
7308264 | Stern-Berkowitz et al. | Dec 2007 | B2 |
7308370 | Mason, Jr. et al. | Dec 2007 | B2 |
7309873 | Ishikawa | Dec 2007 | B2 |
7310065 | Anguera et al. | Dec 2007 | B2 |
7310335 | Garcia-Luna-Aceves et al. | Dec 2007 | B1 |
7311605 | Moser | Dec 2007 | B2 |
7312686 | Bruno | Dec 2007 | B2 |
7313087 | Patil et al. | Dec 2007 | B2 |
7313312 | Kimball et al. | Dec 2007 | B2 |
7315224 | Gurovich et al. | Jan 2008 | B2 |
7315678 | Siegel | Jan 2008 | B2 |
7318564 | Marshall et al. | Jan 2008 | B1 |
7319717 | Zitting et al. | Jan 2008 | B2 |
7321291 | Gidge et al. | Jan 2008 | B2 |
7321707 | Noda et al. | Jan 2008 | B2 |
7324046 | Wu et al. | Jan 2008 | B1 |
7324817 | Iacono et al. | Jan 2008 | B2 |
7329815 | Johnston et al. | Feb 2008 | B2 |
7333064 | Timothy et al. | Feb 2008 | B1 |
7333593 | Beamon et al. | Feb 2008 | B2 |
7339466 | Mansfield et al. | Mar 2008 | B2 |
7339897 | Larsson et al. | Mar 2008 | B2 |
7340768 | Rosenberger et al. | Mar 2008 | B2 |
7345623 | McEwan et al. | Mar 2008 | B2 |
7346244 | Gowan et al. | Mar 2008 | B2 |
7346359 | Damarla et al. | Mar 2008 | B2 |
7353293 | Hipfinger et al. | Apr 2008 | B2 |
7355560 | Nagai | Apr 2008 | B2 |
7358808 | Berkman et al. | Apr 2008 | B2 |
7358921 | Snyder et al. | Apr 2008 | B2 |
7369085 | Jacomb-Hood | May 2008 | B1 |
7369095 | Thudor et al. | May 2008 | B2 |
7376191 | Melick et al. | May 2008 | B2 |
7380272 | Sharp et al. | May 2008 | B2 |
7381089 | Hosler, Sr. | Jun 2008 | B2 |
7382232 | Gidge et al. | Jun 2008 | B2 |
7383577 | Hrastar et al. | Jun 2008 | B2 |
7388450 | Camiade et al. | Jun 2008 | B2 |
7397422 | Tekawy et al. | Jul 2008 | B2 |
7398946 | Marshall | Jul 2008 | B1 |
7400304 | Lewis et al. | Jul 2008 | B2 |
7403169 | Svensson et al. | Jul 2008 | B2 |
7406337 | Kim et al. | Jul 2008 | B2 |
7408426 | Broyde et al. | Aug 2008 | B2 |
7408507 | Paek et al. | Aug 2008 | B1 |
7408923 | Khan et al. | Aug 2008 | B1 |
7410606 | Atkinson et al. | Aug 2008 | B2 |
7417587 | Iskander et al. | Aug 2008 | B2 |
7418178 | Kudou et al. | Aug 2008 | B2 |
7418273 | Suyama et al. | Aug 2008 | B2 |
7420474 | Elks et al. | Sep 2008 | B1 |
7420525 | Colburn et al. | Sep 2008 | B2 |
7423604 | Nagai et al. | Sep 2008 | B2 |
7426554 | Kennedy et al. | Sep 2008 | B2 |
7427927 | Borleske et al. | Sep 2008 | B2 |
7430257 | Shattil | Sep 2008 | B1 |
7430932 | Mekhanoshin et al. | Oct 2008 | B2 |
7443334 | Rees et al. | Oct 2008 | B2 |
7444404 | Wetherall et al. | Oct 2008 | B2 |
7446567 | Otsuka et al. | Nov 2008 | B2 |
7450000 | Gidge et al. | Nov 2008 | B2 |
7450001 | Berkman | Nov 2008 | B2 |
7453352 | Kline et al. | Nov 2008 | B2 |
7453393 | Duivenvoorden et al. | Nov 2008 | B2 |
7456650 | Lee et al. | Nov 2008 | B2 |
7459834 | Knowles et al. | Dec 2008 | B2 |
7460834 | Johnson et al. | Dec 2008 | B2 |
7463877 | Iwamura | Dec 2008 | B2 |
7465879 | Glew et al. | Dec 2008 | B2 |
7466225 | White, II et al. | Dec 2008 | B2 |
7468657 | Yaney | Dec 2008 | B2 |
7477285 | Johnson et al. | Jan 2009 | B1 |
7479776 | Renken et al. | Jan 2009 | B2 |
7479841 | Stenger et al. | Jan 2009 | B2 |
7486247 | Ridgway et al. | Feb 2009 | B2 |
7490275 | Zerbe et al. | Feb 2009 | B2 |
7492317 | Tinsley et al. | Feb 2009 | B2 |
7496674 | Jorgensen et al. | Feb 2009 | B2 |
7498822 | Lee et al. | Mar 2009 | B2 |
7502619 | Katz et al. | Mar 2009 | B1 |
7504938 | Eiza et al. | Mar 2009 | B2 |
7508834 | Berkman et al. | Mar 2009 | B2 |
7509009 | Suzuki et al. | Mar 2009 | B2 |
7509675 | Aaron et al. | Mar 2009 | B2 |
7511662 | Mathews et al. | Mar 2009 | B2 |
7512090 | Benitez Pelaez et al. | Mar 2009 | B2 |
7515041 | Eisold et al. | Apr 2009 | B2 |
7516487 | Szeto et al. | Apr 2009 | B1 |
7518529 | O'Sullivan et al. | Apr 2009 | B2 |
7518952 | Padden et al. | Apr 2009 | B1 |
7519323 | Mohebbi et al. | Apr 2009 | B2 |
7522115 | Waltman et al. | Apr 2009 | B2 |
7522812 | Zitting | Apr 2009 | B2 |
7525501 | Black et al. | Apr 2009 | B2 |
7525504 | Song et al. | Apr 2009 | B1 |
7531803 | Mittleman et al. | May 2009 | B2 |
7532792 | Skovgaard et al. | May 2009 | B2 |
7535867 | Kilfoyle et al. | May 2009 | B1 |
7539381 | Li et al. | May 2009 | B2 |
7541981 | Piskun et al. | Jun 2009 | B2 |
7545818 | Chen et al. | Jun 2009 | B2 |
7546214 | Rivers, Jr. et al. | Jun 2009 | B2 |
7548212 | Chekroun et al. | Jun 2009 | B2 |
7551921 | Petermann et al. | Jun 2009 | B2 |
7554998 | Simonsson et al. | Jun 2009 | B2 |
7555182 | Martin et al. | Jun 2009 | B2 |
7555186 | De et al. | Jun 2009 | B2 |
7555187 | Bickham et al. | Jun 2009 | B2 |
7557563 | Cowan et al. | Jul 2009 | B2 |
7561025 | Gerszberg et al. | Jul 2009 | B2 |
7567154 | Elmore | Jul 2009 | B2 |
7567740 | Bayindir et al. | Jul 2009 | B2 |
7570137 | Kintis et al. | Aug 2009 | B2 |
7570470 | Holley | Aug 2009 | B2 |
7577398 | Tennant et al. | Aug 2009 | B2 |
7580643 | Moore et al. | Aug 2009 | B2 |
7581702 | Wheeler et al. | Sep 2009 | B2 |
7583074 | Lynch et al. | Sep 2009 | B1 |
7583233 | Goldberg et al. | Sep 2009 | B2 |
7584470 | Barker et al. | Sep 2009 | B2 |
7589630 | Drake et al. | Sep 2009 | B2 |
7589686 | Balzovsky et al. | Sep 2009 | B2 |
7590404 | Johnson | Sep 2009 | B1 |
7591020 | Kammer et al. | Sep 2009 | B2 |
7591792 | Bouton et al. | Sep 2009 | B2 |
7593067 | Taguchi et al. | Sep 2009 | B2 |
7596222 | Jonas et al. | Sep 2009 | B2 |
7598844 | Corcoran et al. | Oct 2009 | B2 |
7602333 | Hiramatsu et al. | Oct 2009 | B2 |
7602815 | Houghton et al. | Oct 2009 | B2 |
7605768 | Ebling et al. | Oct 2009 | B2 |
7620370 | Barak et al. | Nov 2009 | B2 |
7625131 | Zienkewicz et al. | Dec 2009 | B2 |
7626489 | Berkman et al. | Dec 2009 | B2 |
7626542 | Kober et al. | Dec 2009 | B2 |
7627300 | Abramov et al. | Dec 2009 | B2 |
7633442 | Lynch et al. | Dec 2009 | B2 |
7634250 | Prasad et al. | Dec 2009 | B1 |
7639201 | Marklein et al. | Dec 2009 | B2 |
7640562 | Bouilloux-Lafont et al. | Dec 2009 | B2 |
7640581 | Brenton et al. | Dec 2009 | B1 |
7653363 | Karr et al. | Jan 2010 | B2 |
RE41147 | Pang et al. | Feb 2010 | E |
7656167 | McLean et al. | Feb 2010 | B1 |
7656358 | Haziza et al. | Feb 2010 | B2 |
7660244 | Kadaba et al. | Feb 2010 | B2 |
7660252 | Huang et al. | Feb 2010 | B1 |
7660328 | Oz et al. | Feb 2010 | B1 |
7664117 | Lou et al. | Feb 2010 | B2 |
7669049 | Wang et al. | Feb 2010 | B2 |
7671701 | Radtke | Mar 2010 | B2 |
7671820 | Tokoro et al. | Mar 2010 | B2 |
7672271 | Lee et al. | Mar 2010 | B2 |
7676679 | Weis et al. | Mar 2010 | B2 |
7680478 | Willars et al. | Mar 2010 | B2 |
7680516 | Lovberg et al. | Mar 2010 | B2 |
7680561 | Rodgers et al. | Mar 2010 | B2 |
7683848 | Musch et al. | Mar 2010 | B2 |
7684383 | Thompson et al. | Mar 2010 | B1 |
7693079 | Cerami et al. | Apr 2010 | B2 |
7693162 | McKenna et al. | Apr 2010 | B2 |
7693939 | Wu et al. | Apr 2010 | B2 |
7697417 | Chen | Apr 2010 | B2 |
7701931 | Kajiwara | Apr 2010 | B2 |
7705747 | Twitchell, Jr. | Apr 2010 | B2 |
7710346 | Bloss et al. | May 2010 | B2 |
7714536 | Silberg et al. | May 2010 | B1 |
7714709 | Daniel et al. | May 2010 | B1 |
7714725 | Medve et al. | May 2010 | B2 |
7715672 | Dong et al. | May 2010 | B2 |
7716660 | Mackay et al. | May 2010 | B2 |
7724782 | Wang et al. | May 2010 | B2 |
7728772 | Mortazawi et al. | Jun 2010 | B2 |
7729285 | Yoon et al. | Jun 2010 | B2 |
7733094 | Bright et al. | Jun 2010 | B2 |
7734717 | Saarimäki et al. | Jun 2010 | B2 |
7737903 | Rao et al. | Jun 2010 | B1 |
7739402 | Graham et al. | Jun 2010 | B2 |
7743403 | McCarty et al. | Jun 2010 | B2 |
7747356 | Andarawis et al. | Jun 2010 | B2 |
7747774 | Aaron et al. | Jun 2010 | B2 |
7750244 | Melding et al. | Jul 2010 | B1 |
7750763 | Praβmayer et al. | Jul 2010 | B2 |
7751054 | Backes et al. | Jul 2010 | B2 |
7760978 | Fishteyn et al. | Jul 2010 | B2 |
7761079 | Mollenkopf et al. | Jul 2010 | B2 |
7764943 | Radtke et al. | Jul 2010 | B2 |
7773664 | Myers et al. | Aug 2010 | B2 |
7782156 | Woods et al. | Aug 2010 | B2 |
7783195 | Riggsby | Aug 2010 | B2 |
7786894 | Polk et al. | Aug 2010 | B2 |
7786945 | Baldauf et al. | Aug 2010 | B2 |
7786946 | Diaz et al. | Aug 2010 | B2 |
7791549 | Clymer et al. | Sep 2010 | B2 |
7792016 | Arai | Sep 2010 | B2 |
7795877 | Radtke et al. | Sep 2010 | B2 |
7795994 | Radtke et al. | Sep 2010 | B2 |
7796025 | Berkman et al. | Sep 2010 | B2 |
7796122 | Shih et al. | Sep 2010 | B2 |
7796890 | Johnson | Sep 2010 | B1 |
7797367 | Girod et al. | Sep 2010 | B1 |
7805029 | Bayindir et al. | Sep 2010 | B2 |
7808441 | Parsche et al. | Oct 2010 | B2 |
7809223 | Miyabe et al. | Oct 2010 | B2 |
7812686 | Woods et al. | Oct 2010 | B2 |
7812778 | Hasegawa et al. | Oct 2010 | B2 |
7813344 | Cheswick | Oct 2010 | B2 |
7817063 | Hawkins et al. | Oct 2010 | B2 |
7825793 | Spillman et al. | Nov 2010 | B1 |
7825867 | Tuttle et al. | Nov 2010 | B2 |
7826602 | Hunyady et al. | Nov 2010 | B1 |
7827610 | Wang et al. | Nov 2010 | B2 |
7830228 | Evans et al. | Nov 2010 | B2 |
7835128 | Divan et al. | Nov 2010 | B2 |
7835600 | Yap et al. | Nov 2010 | B1 |
7843375 | Rennie et al. | Nov 2010 | B1 |
7844081 | McMakin et al. | Nov 2010 | B2 |
7848517 | Britz et al. | Dec 2010 | B2 |
7852752 | Kano | Dec 2010 | B2 |
7852837 | Au et al. | Dec 2010 | B1 |
7853267 | Jensen et al. | Dec 2010 | B2 |
7855612 | Zienkewicz et al. | Dec 2010 | B2 |
7856007 | Corcoran et al. | Dec 2010 | B2 |
7869391 | Lee et al. | Jan 2011 | B2 |
7872610 | Motzer et al. | Jan 2011 | B2 |
7873249 | Kachmar et al. | Jan 2011 | B2 |
7876174 | Radtke et al. | Jan 2011 | B2 |
7884285 | Spencer | Feb 2011 | B2 |
7884648 | Broyde et al. | Feb 2011 | B2 |
7885542 | Riggsby et al. | Feb 2011 | B2 |
7889129 | Fox et al. | Feb 2011 | B2 |
7889148 | Diaz et al. | Feb 2011 | B2 |
7889149 | Peebles et al. | Feb 2011 | B2 |
7890053 | Washiro | Feb 2011 | B2 |
7893789 | Paynter et al. | Feb 2011 | B2 |
7894770 | Washiro et al. | Feb 2011 | B2 |
7898480 | Rebeiz et al. | Mar 2011 | B2 |
7899403 | Aaron | Mar 2011 | B2 |
7903918 | Bickham et al. | Mar 2011 | B1 |
7903972 | Riggsby et al. | Mar 2011 | B2 |
7906973 | Orr et al. | Mar 2011 | B1 |
7907097 | Syed et al. | Mar 2011 | B2 |
7915980 | Hardacker et al. | Mar 2011 | B2 |
7916081 | Lakkis et al. | Mar 2011 | B2 |
7928750 | Miller et al. | Apr 2011 | B2 |
7929940 | Dianda et al. | Apr 2011 | B1 |
7930750 | Gauvin et al. | Apr 2011 | B1 |
7937699 | Schneider | May 2011 | B2 |
7940207 | Kienzle et al. | May 2011 | B1 |
7940731 | Gao et al. | May 2011 | B2 |
7956818 | Hsu et al. | Jun 2011 | B1 |
7958120 | Muntz et al. | Jun 2011 | B2 |
7961710 | Lee et al. | Jun 2011 | B2 |
7962957 | Keohane et al. | Jun 2011 | B2 |
7965842 | Whelan et al. | Jun 2011 | B2 |
7970365 | Martin et al. | Jun 2011 | B2 |
7970937 | Shuster et al. | Jun 2011 | B2 |
7971053 | Gibson et al. | Jun 2011 | B2 |
7973296 | Quick et al. | Jul 2011 | B2 |
7974387 | Lutz et al. | Jul 2011 | B2 |
7983740 | Culver et al. | Jul 2011 | B2 |
7986711 | Horvath et al. | Jul 2011 | B2 |
7990146 | Lazar et al. | Aug 2011 | B2 |
7990329 | Deng et al. | Aug 2011 | B2 |
7991877 | Keohane et al. | Aug 2011 | B2 |
7992014 | Langgood et al. | Aug 2011 | B2 |
7994996 | Rebeiz et al. | Aug 2011 | B2 |
7994999 | Maeda et al. | Aug 2011 | B2 |
7997546 | Andersen et al. | Aug 2011 | B1 |
8010116 | Scheinert | Aug 2011 | B2 |
8013694 | Sagala et al. | Sep 2011 | B2 |
8019288 | Yu et al. | Sep 2011 | B2 |
8022885 | Smoyer et al. | Sep 2011 | B2 |
8022887 | Zarnaghi et al. | Sep 2011 | B1 |
8023410 | O'Neill et al. | Sep 2011 | B2 |
8027391 | Matsubara et al. | Sep 2011 | B2 |
8036207 | Chen et al. | Oct 2011 | B2 |
8049576 | Broyde et al. | Nov 2011 | B2 |
8054199 | Addy et al. | Nov 2011 | B2 |
8059576 | Vavik et al. | Nov 2011 | B2 |
8059593 | Shih et al. | Nov 2011 | B2 |
8060308 | Breed et al. | Nov 2011 | B2 |
8063832 | Weller et al. | Nov 2011 | B1 |
8064744 | Atkins et al. | Nov 2011 | B2 |
8064944 | Yun et al. | Nov 2011 | B2 |
8065099 | Gibala et al. | Nov 2011 | B2 |
8069483 | Matlock et al. | Nov 2011 | B1 |
8072323 | Kodama et al. | Dec 2011 | B2 |
8072386 | Lier et al. | Dec 2011 | B2 |
8073810 | Maes | Dec 2011 | B2 |
8077049 | Yaney et al. | Dec 2011 | B2 |
8077113 | Renilson et al. | Dec 2011 | B2 |
8081854 | Yoon et al. | Dec 2011 | B2 |
8089356 | Moore et al. | Jan 2012 | B2 |
8089404 | Nichols et al. | Jan 2012 | B2 |
8089952 | Spade et al. | Jan 2012 | B2 |
8090258 | DeLew et al. | Jan 2012 | B2 |
8090379 | Lambert et al. | Jan 2012 | B2 |
8094081 | Boone et al. | Jan 2012 | B1 |
8094985 | Imamura et al. | Jan 2012 | B2 |
8095093 | Takinami et al. | Jan 2012 | B2 |
8098198 | Thiesen et al. | Jan 2012 | B2 |
8102324 | Tuau et al. | Jan 2012 | B2 |
8102779 | Kim | Jan 2012 | B2 |
8106749 | Ina et al. | Jan 2012 | B2 |
8106849 | Suddath et al. | Jan 2012 | B2 |
RE43163 | Anderson | Feb 2012 | E |
8111148 | Parker et al. | Feb 2012 | B2 |
8112649 | Potkonjak et al. | Feb 2012 | B2 |
8120488 | Bloy et al. | Feb 2012 | B2 |
8121624 | Cai et al. | Feb 2012 | B2 |
8125282 | Bao et al. | Feb 2012 | B2 |
8125399 | McKinzie et al. | Feb 2012 | B2 |
8126393 | Wu et al. | Feb 2012 | B2 |
8129817 | Jou et al. | Mar 2012 | B2 |
8131125 | Molin et al. | Mar 2012 | B2 |
8131266 | Cai et al. | Mar 2012 | B2 |
8132239 | Wahl | Mar 2012 | B2 |
8134424 | Kato et al. | Mar 2012 | B2 |
8134458 | Lund | Mar 2012 | B2 |
8135050 | Stadler et al. | Mar 2012 | B1 |
8140113 | Rofougaran et al. | Mar 2012 | B2 |
8150311 | Hart et al. | Apr 2012 | B2 |
8151306 | Rakib | Apr 2012 | B2 |
8156520 | Casagrande et al. | Apr 2012 | B2 |
8159316 | Miyazato et al. | Apr 2012 | B2 |
8159342 | Medina, III et al. | Apr 2012 | B1 |
8159385 | Farneth | Apr 2012 | B2 |
8159394 | Hayes et al. | Apr 2012 | B2 |
8159742 | Mckay et al. | Apr 2012 | B2 |
8159933 | Henry | Apr 2012 | B2 |
8159955 | Larsson et al. | Apr 2012 | B2 |
8160064 | Kokernak et al. | Apr 2012 | B2 |
8160530 | Corman et al. | Apr 2012 | B2 |
8160825 | Roe, Jr. et al. | Apr 2012 | B1 |
8164531 | Lier et al. | Apr 2012 | B2 |
8171146 | Chen et al. | May 2012 | B2 |
8172173 | Carlson et al. | May 2012 | B2 |
8173943 | Vilo et al. | May 2012 | B2 |
8175535 | Mu et al. | May 2012 | B2 |
8175649 | Harel et al. | May 2012 | B2 |
8179787 | Knapp et al. | May 2012 | B2 |
8180917 | Yan et al. | May 2012 | B1 |
8184015 | Lilien et al. | May 2012 | B2 |
8184059 | Bunch et al. | May 2012 | B2 |
8184311 | Sakai et al. | May 2012 | B2 |
8185062 | Rofougaran et al. | May 2012 | B2 |
8188855 | Sharma et al. | May 2012 | B2 |
8199762 | Michelson et al. | Jun 2012 | B2 |
8203501 | Kim et al. | Jun 2012 | B2 |
8212635 | Miller, II et al. | Jul 2012 | B2 |
8212722 | Ngo et al. | Jul 2012 | B2 |
8213758 | Dong et al. | Jul 2012 | B2 |
8218929 | Bickham et al. | Jul 2012 | B2 |
8222919 | Broyde et al. | Jul 2012 | B2 |
8222977 | Oyama et al. | Jul 2012 | B2 |
8225379 | van et al. | Jul 2012 | B2 |
8233905 | Vaswani et al. | Jul 2012 | B2 |
8237617 | Johnson | Aug 2012 | B1 |
8238824 | Washiro | Aug 2012 | B2 |
8238840 | Iio et al. | Aug 2012 | B2 |
8242358 | Park et al. | Aug 2012 | B2 |
8243603 | Gossain et al. | Aug 2012 | B2 |
8249028 | Porras et al. | Aug 2012 | B2 |
8251307 | Goossen et al. | Aug 2012 | B2 |
8253516 | Miller, II et al. | Aug 2012 | B2 |
8255952 | Boylan, III et al. | Aug 2012 | B2 |
8258743 | Tyler et al. | Sep 2012 | B2 |
8259028 | Hills et al. | Sep 2012 | B2 |
8264417 | Snow et al. | Sep 2012 | B2 |
8269583 | Miller, II et al. | Sep 2012 | B2 |
8284102 | Hayes et al. | Oct 2012 | B2 |
8287323 | Kiesow et al. | Oct 2012 | B2 |
8295301 | Yonge, III et al. | Oct 2012 | B2 |
8300538 | Kim et al. | Oct 2012 | B2 |
8300640 | Al-Banna et al. | Oct 2012 | B2 |
8316228 | Winslow et al. | Nov 2012 | B2 |
8316364 | Stein et al. | Nov 2012 | B2 |
8324990 | Vouloumanos | Dec 2012 | B2 |
8325034 | Moore et al. | Dec 2012 | B2 |
8325636 | Binder | Dec 2012 | B2 |
8325693 | Binder et al. | Dec 2012 | B2 |
8330259 | Soler et al. | Dec 2012 | B2 |
8335596 | Raman et al. | Dec 2012 | B2 |
8343145 | Brannan et al. | Jan 2013 | B2 |
8344829 | Miller, II et al. | Jan 2013 | B2 |
8354970 | Armbrecht et al. | Jan 2013 | B2 |
8359124 | Zhou et al. | Jan 2013 | B2 |
8362775 | Speckner et al. | Jan 2013 | B2 |
8363313 | Nakaguma et al. | Jan 2013 | B2 |
8369667 | Rose et al. | Feb 2013 | B2 |
8373095 | Huynh et al. | Feb 2013 | B2 |
8373597 | Schadler et al. | Feb 2013 | B2 |
8374821 | Rousselle et al. | Feb 2013 | B2 |
8384542 | Merrill | Feb 2013 | B1 |
8384600 | Huang et al. | Feb 2013 | B2 |
8385978 | Leung et al. | Feb 2013 | B2 |
8386198 | Lancaster | Feb 2013 | B2 |
8390307 | Slupsky et al. | Mar 2013 | B2 |
8390402 | Kunes et al. | Mar 2013 | B2 |
8405567 | Park et al. | Mar 2013 | B2 |
8406239 | Hurwitz et al. | Mar 2013 | B2 |
8406593 | Molin et al. | Mar 2013 | B2 |
8407687 | Moshir et al. | Mar 2013 | B2 |
8412130 | Suematsu et al. | Apr 2013 | B2 |
8414326 | Bowman | Apr 2013 | B2 |
8415884 | Chen et al. | Apr 2013 | B2 |
8428033 | Hettstedt et al. | Apr 2013 | B2 |
8433168 | Filippov et al. | Apr 2013 | B2 |
8434103 | Tsuchida et al. | Apr 2013 | B2 |
8437383 | Wiwel et al. | May 2013 | B2 |
8452555 | Hayward et al. | May 2013 | B2 |
8457027 | Dougherty et al. | Jun 2013 | B2 |
8458453 | Mahalingaiah | Jun 2013 | B1 |
8462063 | Gummalla et al. | Jun 2013 | B2 |
8467363 | Lea et al. | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8471513 | Han | Jun 2013 | B2 |
8472327 | DelRegno et al. | Jun 2013 | B2 |
8484137 | Johnson et al. | Jul 2013 | B2 |
8484511 | Tidwell et al. | Jul 2013 | B2 |
8489154 | Bishop | Jul 2013 | B2 |
8495718 | Han et al. | Jul 2013 | B2 |
8497749 | Elmore | Jul 2013 | B2 |
8503845 | Winzer et al. | Aug 2013 | B2 |
8504135 | Bourqui et al. | Aug 2013 | B2 |
8505057 | Rogers | Aug 2013 | B2 |
8509114 | Szajdecki | Aug 2013 | B1 |
8514980 | Kuhtz | Aug 2013 | B2 |
8515383 | Prince et al. | Aug 2013 | B2 |
8516129 | Skene et al. | Aug 2013 | B1 |
8516470 | Joshi et al. | Aug 2013 | B1 |
8516474 | Lamba et al. | Aug 2013 | B2 |
8519892 | Ding et al. | Aug 2013 | B2 |
8520578 | Rayment et al. | Aug 2013 | B2 |
8520636 | Xu | Aug 2013 | B2 |
8528059 | Saluzzo et al. | Sep 2013 | B1 |
8532023 | Buddhikot et al. | Sep 2013 | B2 |
8532046 | Hu et al. | Sep 2013 | B2 |
8532492 | Sadowski et al. | Sep 2013 | B2 |
8536857 | Nero, Jr. et al. | Sep 2013 | B2 |
8537068 | Call et al. | Sep 2013 | B2 |
8537705 | Afkhamie et al. | Sep 2013 | B2 |
8538428 | Bartlett et al. | Sep 2013 | B2 |
8539540 | Zenoni | Sep 2013 | B2 |
8539569 | Mansour | Sep 2013 | B2 |
8542968 | Dong et al. | Sep 2013 | B2 |
8545322 | George et al. | Oct 2013 | B2 |
8548294 | Toge et al. | Oct 2013 | B2 |
8553646 | Kumar | Oct 2013 | B2 |
8561104 | Dow et al. | Oct 2013 | B1 |
8561181 | Sobel et al. | Oct 2013 | B1 |
8565568 | Bigot-Astruc et al. | Oct 2013 | B2 |
8566058 | Pupalaikis et al. | Oct 2013 | B2 |
8572247 | Larson et al. | Oct 2013 | B2 |
8572639 | Ficco | Oct 2013 | B2 |
8572661 | Strong et al. | Oct 2013 | B2 |
8578076 | van der Linden et al. | Nov 2013 | B2 |
8578486 | Lifliand et al. | Nov 2013 | B2 |
8582502 | Conte et al. | Nov 2013 | B2 |
8584195 | Sherlock et al. | Nov 2013 | B2 |
8587490 | Niver et al. | Nov 2013 | B2 |
8587492 | Runyon et al. | Nov 2013 | B2 |
8588567 | Kamps et al. | Nov 2013 | B2 |
8588840 | Truong et al. | Nov 2013 | B2 |
8588991 | Forbes, Jr. | Nov 2013 | B1 |
8593238 | Miller, II et al. | Nov 2013 | B2 |
8594956 | McBee et al. | Nov 2013 | B2 |
8595141 | Hao et al. | Nov 2013 | B2 |
8599150 | Philipp | Dec 2013 | B2 |
8600602 | Watson et al. | Dec 2013 | B1 |
8604982 | Gummalla et al. | Dec 2013 | B2 |
8604999 | Abumrad et al. | Dec 2013 | B2 |
8605361 | Batchko et al. | Dec 2013 | B2 |
8605579 | Abraham et al. | Dec 2013 | B2 |
8612550 | Yoo et al. | Dec 2013 | B2 |
8613020 | Knudson et al. | Dec 2013 | B2 |
8615190 | Lu | Dec 2013 | B2 |
8625547 | Miller et al. | Jan 2014 | B1 |
8629811 | Gaynor et al. | Jan 2014 | B2 |
8639260 | Fox et al. | Jan 2014 | B2 |
8639390 | Tamarkin et al. | Jan 2014 | B2 |
8639934 | Kruglick | Jan 2014 | B2 |
8644219 | Nishizaka et al. | Feb 2014 | B2 |
8653906 | Mahon et al. | Feb 2014 | B2 |
8655396 | Malladi et al. | Feb 2014 | B2 |
8656458 | Heffez et al. | Feb 2014 | B2 |
8660526 | Heiderscheit et al. | Feb 2014 | B1 |
8660698 | Phillips et al. | Feb 2014 | B2 |
8665102 | Salewske | Mar 2014 | B2 |
8666553 | Phillips et al. | Mar 2014 | B2 |
8670946 | Salazar et al. | Mar 2014 | B2 |
8674630 | Cornelius et al. | Mar 2014 | B1 |
8676186 | Niu | Mar 2014 | B2 |
8680450 | Pritchard et al. | Mar 2014 | B2 |
8680706 | Zyren et al. | Mar 2014 | B2 |
8681463 | Franks et al. | Mar 2014 | B2 |
8686911 | Kim et al. | Apr 2014 | B2 |
8687650 | King | Apr 2014 | B2 |
8688153 | Komori et al. | Apr 2014 | B2 |
8699454 | Hapsari et al. | Apr 2014 | B2 |
8699461 | Qian et al. | Apr 2014 | B2 |
8705925 | Terada et al. | Apr 2014 | B2 |
8706026 | Truong et al. | Apr 2014 | B2 |
8707432 | Rathi et al. | Apr 2014 | B1 |
8711538 | Woodworth et al. | Apr 2014 | B2 |
8711732 | Johnson et al. | Apr 2014 | B2 |
8711806 | Lim et al. | Apr 2014 | B2 |
8711857 | Jackson et al. | Apr 2014 | B2 |
8712200 | Abernathy et al. | Apr 2014 | B1 |
8719938 | Chasko et al. | May 2014 | B2 |
8723730 | Lu et al. | May 2014 | B2 |
8724102 | Urban | May 2014 | B2 |
8729857 | Stählin et al. | May 2014 | B2 |
8731358 | Pare et al. | May 2014 | B2 |
8732476 | Van et al. | May 2014 | B1 |
8736502 | Mehr et al. | May 2014 | B1 |
8737793 | Imamura et al. | May 2014 | B2 |
8738318 | Spillane | May 2014 | B2 |
8742997 | McPeak et al. | Jun 2014 | B2 |
8743004 | Haziza | Jun 2014 | B2 |
8749449 | Caldwell et al. | Jun 2014 | B2 |
8750097 | Maenpaa et al. | Jun 2014 | B2 |
8750664 | Huang et al. | Jun 2014 | B2 |
8754852 | Lee et al. | Jun 2014 | B2 |
8755659 | Imamura et al. | Jun 2014 | B2 |
8760354 | Flannery et al. | Jun 2014 | B2 |
8761792 | Sennett et al. | Jun 2014 | B2 |
8763097 | Bhatnagar et al. | Jun 2014 | B2 |
8766657 | DeJean et al. | Jul 2014 | B2 |
8767071 | Marshall | Jul 2014 | B1 |
8769622 | Chang et al. | Jul 2014 | B2 |
8773312 | Diaz et al. | Jul 2014 | B1 |
8780012 | Llombart Juan et al. | Jul 2014 | B2 |
8782195 | Foti | Jul 2014 | B2 |
8786284 | Sirigiri et al. | Jul 2014 | B2 |
8786514 | Dickie et al. | Jul 2014 | B2 |
8789091 | Eldering et al. | Jul 2014 | B2 |
8792760 | Choi et al. | Jul 2014 | B2 |
8792933 | Chen et al. | Jul 2014 | B2 |
8793363 | Sater et al. | Jul 2014 | B2 |
8793742 | Macrae et al. | Jul 2014 | B2 |
8797207 | Kienzle et al. | Aug 2014 | B2 |
8804667 | Wang | Aug 2014 | B2 |
8806202 | Shoemake et al. | Aug 2014 | B2 |
8810404 | Bertoncini et al. | Aug 2014 | B2 |
8810421 | Deaver, Sr. et al. | Aug 2014 | B2 |
8810468 | Cannon et al. | Aug 2014 | B2 |
8811278 | Hori et al. | Aug 2014 | B2 |
8811912 | Austin et al. | Aug 2014 | B2 |
8812050 | Bencheikh et al. | Aug 2014 | B1 |
8812154 | Vian et al. | Aug 2014 | B2 |
8817741 | Shaheen | Aug 2014 | B2 |
8824380 | Jetcheva et al. | Sep 2014 | B2 |
8825239 | Cooper et al. | Sep 2014 | B2 |
8829934 | Sellathamby et al. | Sep 2014 | B2 |
8830112 | Buehler et al. | Sep 2014 | B1 |
8831506 | Claret et al. | Sep 2014 | B2 |
8836503 | Girod et al. | Sep 2014 | B2 |
8836607 | Cook et al. | Sep 2014 | B2 |
8839350 | Shapcott et al. | Sep 2014 | B1 |
8847840 | Diaz et al. | Sep 2014 | B1 |
8847846 | Diaz et al. | Sep 2014 | B1 |
8856239 | Oliver et al. | Oct 2014 | B1 |
8856530 | Lamberg et al. | Oct 2014 | B2 |
8863245 | Abhyanker | Oct 2014 | B1 |
8866691 | Montgomery et al. | Oct 2014 | B2 |
8866695 | Jefferson et al. | Oct 2014 | B2 |
8867226 | Colomb et al. | Oct 2014 | B2 |
8872032 | Su et al. | Oct 2014 | B2 |
8875224 | Gross et al. | Oct 2014 | B2 |
8878740 | Coupland et al. | Nov 2014 | B2 |
8880765 | Seal et al. | Nov 2014 | B2 |
8881588 | Baer et al. | Nov 2014 | B2 |
8885689 | Blasco et al. | Nov 2014 | B2 |
8886229 | Agrawal et al. | Nov 2014 | B2 |
8887212 | Dua | Nov 2014 | B2 |
8890759 | Pantea et al. | Nov 2014 | B2 |
8893246 | El-Moussa et al. | Nov 2014 | B2 |
8897215 | Hazani et al. | Nov 2014 | B2 |
8897499 | Rekimoto | Nov 2014 | B2 |
8897697 | Willis, III et al. | Nov 2014 | B1 |
8901916 | Rodriguez et al. | Dec 2014 | B2 |
8903214 | Alkeskjold | Dec 2014 | B2 |
8907222 | Stranskky | Dec 2014 | B2 |
8907845 | Jones | Dec 2014 | B2 |
8908502 | Hayashitani | Dec 2014 | B2 |
8908573 | Wang et al. | Dec 2014 | B1 |
8913862 | Emmerich et al. | Dec 2014 | B1 |
8917210 | Shamim et al. | Dec 2014 | B2 |
8917215 | Pohl | Dec 2014 | B2 |
8917964 | Blew et al. | Dec 2014 | B2 |
8918108 | Van et al. | Dec 2014 | B2 |
8918135 | Kang et al. | Dec 2014 | B2 |
8922447 | Gao et al. | Dec 2014 | B2 |
8925079 | Miyake et al. | Dec 2014 | B2 |
8929841 | Rofougaran et al. | Jan 2015 | B2 |
8934747 | Smith et al. | Jan 2015 | B2 |
8937577 | Gerini et al. | Jan 2015 | B2 |
8938144 | Hennink et al. | Jan 2015 | B2 |
8938255 | Dalla et al. | Jan 2015 | B2 |
8941912 | Ichii et al. | Jan 2015 | B2 |
8947258 | Reid et al. | Feb 2015 | B2 |
8948235 | Proctor, Jr. et al. | Feb 2015 | B2 |
8948690 | Duerksen et al. | Feb 2015 | B2 |
8952678 | Giboney et al. | Feb 2015 | B2 |
8955051 | Marzii | Feb 2015 | B2 |
8955075 | Smith et al. | Feb 2015 | B2 |
8957818 | Chen et al. | Feb 2015 | B2 |
8957821 | Matyas et al. | Feb 2015 | B1 |
8958356 | Lu et al. | Feb 2015 | B2 |
8958665 | Ziari et al. | Feb 2015 | B2 |
8958812 | Weiguo | Feb 2015 | B2 |
8963790 | Brown et al. | Feb 2015 | B2 |
8964433 | Hai-Maharsi | Feb 2015 | B2 |
8966609 | Lee et al. | Feb 2015 | B2 |
8968287 | Shroff et al. | Mar 2015 | B2 |
8970438 | Hager et al. | Mar 2015 | B2 |
8984113 | Li et al. | Mar 2015 | B2 |
8989788 | Kim et al. | Mar 2015 | B2 |
8994473 | Levi et al. | Mar 2015 | B2 |
8994474 | Mahon et al. | Mar 2015 | B2 |
8996188 | Frader-Thompson et al. | Mar 2015 | B2 |
8996728 | Cochinwala et al. | Mar 2015 | B2 |
9000353 | Seo et al. | Apr 2015 | B2 |
9001689 | Ponnampalam et al. | Apr 2015 | B1 |
9001717 | Chun et al. | Apr 2015 | B2 |
9003492 | Katar | Apr 2015 | B2 |
9008208 | Khandani | Apr 2015 | B2 |
9008513 | Kim et al. | Apr 2015 | B2 |
9009460 | Chen | Apr 2015 | B2 |
9013361 | Lam et al. | Apr 2015 | B1 |
9014621 | Mohebbi | Apr 2015 | B2 |
9015467 | Buer | Apr 2015 | B2 |
9019164 | Syed et al. | Apr 2015 | B2 |
9019595 | Jain et al. | Apr 2015 | B2 |
9019846 | Shetty et al. | Apr 2015 | B2 |
9019892 | Zhou et al. | Apr 2015 | B2 |
9020555 | Sheikh et al. | Apr 2015 | B2 |
9021251 | Chawla | Apr 2015 | B2 |
9021575 | Martini | Apr 2015 | B2 |
RE45514 | Brown | May 2015 | E |
9024831 | Wang et al. | May 2015 | B2 |
9031725 | Diesposti et al. | May 2015 | B1 |
9037516 | Abhyanker | May 2015 | B2 |
9042245 | Tzannes et al. | May 2015 | B2 |
9042812 | Bennett et al. | May 2015 | B1 |
9065172 | Lewry et al. | Jun 2015 | B2 |
9065177 | Alexopoulos | Jun 2015 | B2 |
9066224 | Schwengler | Jun 2015 | B2 |
9070962 | Kobayashi | Jun 2015 | B2 |
9070964 | Schuss et al. | Jun 2015 | B1 |
9079349 | Slafer | Jul 2015 | B2 |
9082307 | Sharawi | Jul 2015 | B2 |
9083083 | Hills et al. | Jul 2015 | B2 |
9083425 | Moussouris et al. | Jul 2015 | B1 |
9083581 | Addepalli et al. | Jul 2015 | B1 |
9084124 | Nickel et al. | Jul 2015 | B2 |
9092962 | Merrill et al. | Jul 2015 | B1 |
9092963 | Fetzer et al. | Jul 2015 | B2 |
9094407 | Matthieu | Jul 2015 | B1 |
9094840 | Liu et al. | Jul 2015 | B2 |
9098325 | Reddin | Aug 2015 | B2 |
9099787 | Blech | Aug 2015 | B2 |
9103864 | Ali | Aug 2015 | B2 |
9105981 | Syed | Aug 2015 | B2 |
9106617 | Kshirsagar et al. | Aug 2015 | B2 |
9112281 | Bresciani et al. | Aug 2015 | B2 |
9113347 | Henry | Aug 2015 | B2 |
9119127 | Henry | Aug 2015 | B1 |
9119179 | Firoiu et al. | Aug 2015 | B1 |
9128941 | Shulman | Sep 2015 | B2 |
9130641 | Mohebbi | Sep 2015 | B2 |
9134945 | Husain | Sep 2015 | B2 |
9137485 | Bar-Niv et al. | Sep 2015 | B2 |
9142334 | Muto et al. | Sep 2015 | B2 |
9143084 | Perez et al. | Sep 2015 | B2 |
9143196 | Schwengler | Sep 2015 | B2 |
9154641 | Shaw | Oct 2015 | B2 |
9157954 | Nickel | Oct 2015 | B2 |
9158418 | Oda et al. | Oct 2015 | B2 |
9158427 | Wang | Oct 2015 | B1 |
9167535 | Christoffersson et al. | Oct 2015 | B2 |
9171458 | Salter | Oct 2015 | B2 |
9173217 | Teng et al. | Oct 2015 | B2 |
9178282 | Mittleman et al. | Nov 2015 | B2 |
9194930 | Pupalaikis | Nov 2015 | B2 |
9219594 | Khlat | Nov 2015 | B2 |
9201556 | Free et al. | Dec 2015 | B2 |
9202371 | Jain | Dec 2015 | B2 |
9203149 | Henderson et al. | Dec 2015 | B2 |
9204418 | Siomina et al. | Dec 2015 | B2 |
9207168 | Lovely et al. | Dec 2015 | B2 |
9209902 | Willis, III et al. | Dec 2015 | B2 |
9210192 | Pathuri et al. | Dec 2015 | B1 |
9210586 | Catovic et al. | Dec 2015 | B2 |
9219307 | Takahashi et al. | Dec 2015 | B2 |
9225396 | Maltsev et al. | Dec 2015 | B2 |
9240835 | Cune et al. | Jan 2016 | B2 |
9244117 | Khan et al. | Jan 2016 | B2 |
9246231 | Ju | Jan 2016 | B2 |
9246334 | Lo et al. | Jan 2016 | B2 |
9253588 | Schmidt et al. | Feb 2016 | B2 |
9260244 | Cohn | Feb 2016 | B1 |
9264204 | Seo et al. | Feb 2016 | B2 |
9265078 | Lim et al. | Feb 2016 | B2 |
9270013 | Ley | Feb 2016 | B2 |
9271185 | Abdelmonem et al. | Feb 2016 | B2 |
9276303 | Chang et al. | Mar 2016 | B2 |
9276304 | Behan | Mar 2016 | B2 |
9277331 | Chao et al. | Mar 2016 | B2 |
9281564 | Vincent | Mar 2016 | B2 |
9282144 | Tebay et al. | Mar 2016 | B2 |
9285461 | Townley et al. | Mar 2016 | B2 |
9287605 | Daughenbaugh et al. | Mar 2016 | B2 |
9288844 | Akhavan-saraf et al. | Mar 2016 | B1 |
9289177 | Samsudin et al. | Mar 2016 | B2 |
9293798 | Ye | Mar 2016 | B2 |
9293801 | Courtney et al. | Mar 2016 | B2 |
9293920 | McMullin | Mar 2016 | B2 |
9302770 | Cohen et al. | Apr 2016 | B2 |
9306682 | Singh | Apr 2016 | B2 |
9312929 | Forenza et al. | Apr 2016 | B2 |
9315663 | Appleby | Apr 2016 | B2 |
9319311 | Wang et al. | Apr 2016 | B2 |
9324020 | Nazarov | Apr 2016 | B2 |
9325067 | Ali et al. | Apr 2016 | B2 |
9325516 | Frei et al. | Apr 2016 | B2 |
9326316 | Yonge et al. | Apr 2016 | B2 |
9334052 | Ubhi et al. | May 2016 | B2 |
9338823 | Saban et al. | May 2016 | B2 |
9346560 | Wang | May 2016 | B2 |
9350063 | Herbsommer et al. | May 2016 | B2 |
9351182 | Elliott et al. | May 2016 | B2 |
9356358 | Hu et al. | May 2016 | B2 |
9362629 | Miller et al. | Jun 2016 | B2 |
9363333 | Basso et al. | Jun 2016 | B2 |
9363690 | Suthar et al. | Jun 2016 | B1 |
9363761 | Venkatraman | Jun 2016 | B2 |
9366743 | Doshi et al. | Jun 2016 | B2 |
9368275 | McBee et al. | Jun 2016 | B2 |
9369177 | Hui et al. | Jun 2016 | B2 |
9372228 | Gavin et al. | Jun 2016 | B2 |
9379527 | Jean et al. | Jun 2016 | B2 |
9379556 | Haensgen et al. | Jul 2016 | B2 |
9380857 | Davis et al. | Jul 2016 | B2 |
9391874 | Corti | Jul 2016 | B2 |
9393683 | Kimberlin et al. | Jul 2016 | B2 |
9394716 | Butler et al. | Jul 2016 | B2 |
9397380 | Kudela et al. | Jul 2016 | B2 |
9401863 | Hui et al. | Jul 2016 | B2 |
9404750 | Rios et al. | Aug 2016 | B2 |
9413519 | Khoshnood et al. | Aug 2016 | B2 |
9414126 | Zinevich | Aug 2016 | B1 |
9417731 | Premont et al. | Aug 2016 | B2 |
9419712 | Heidler et al. | Aug 2016 | B2 |
9421869 | Ananthanarayanan et al. | Aug 2016 | B1 |
9422139 | Bialkowski et al. | Aug 2016 | B1 |
9432478 | Gibbon et al. | Aug 2016 | B2 |
9432865 | Jadunandan et al. | Aug 2016 | B1 |
9439092 | Chukka et al. | Sep 2016 | B1 |
9443417 | Wang | Sep 2016 | B2 |
9458974 | Townsend, Jr. et al. | Oct 2016 | B2 |
9459746 | Zarraga et al. | Oct 2016 | B2 |
9461706 | Bennett et al. | Oct 2016 | B1 |
9465397 | Forbes, Jr. et al. | Oct 2016 | B2 |
9467219 | Vilhar | Oct 2016 | B2 |
9467870 | Bennett | Oct 2016 | B2 |
9476932 | Furse et al. | Oct 2016 | B2 |
9478865 | Willis et al. | Oct 2016 | B1 |
9479241 | Pabla | Oct 2016 | B2 |
9479266 | Henry et al. | Oct 2016 | B2 |
9479299 | Kim et al. | Oct 2016 | B2 |
9479392 | Anderson et al. | Oct 2016 | B2 |
9479535 | Cohen et al. | Oct 2016 | B2 |
9490869 | Henry | Nov 2016 | B1 |
9490913 | Berlin | Nov 2016 | B2 |
9495037 | King-Smith | Nov 2016 | B2 |
9496921 | Corum | Nov 2016 | B1 |
9497572 | Britt et al. | Nov 2016 | B2 |
9503170 | Vu | Nov 2016 | B2 |
9503189 | Henry et al. | Nov 2016 | B2 |
9509415 | Henry et al. | Nov 2016 | B1 |
9510203 | Jactat et al. | Nov 2016 | B2 |
9515367 | Herbsommer et al. | Dec 2016 | B2 |
20010030789 | Jiang et al. | Oct 2001 | A1 |
20020002040 | Kline et al. | Jan 2002 | A1 |
20020008672 | Gothard et al. | Jan 2002 | A1 |
20020011960 | Yuanzhu et al. | Jan 2002 | A1 |
20020021716 | Terk et al. | Feb 2002 | A1 |
20020024424 | Burns et al. | Feb 2002 | A1 |
20020027481 | Fiedziuszko et al. | Mar 2002 | A1 |
20020040439 | Kellum et al. | Apr 2002 | A1 |
20020057223 | Hook | May 2002 | A1 |
20020061217 | Hillman et al. | May 2002 | A1 |
20020069417 | Kliger et al. | Jun 2002 | A1 |
20020083194 | Bak et al. | Jun 2002 | A1 |
20020091807 | Goodman et al. | Jul 2002 | A1 |
20020099949 | Fries et al. | Jul 2002 | A1 |
20020101852 | Say et al. | Aug 2002 | A1 |
20020111997 | Herlihy et al. | Aug 2002 | A1 |
20020156917 | Nye | Oct 2002 | A1 |
20020186694 | Mahajan et al. | Dec 2002 | A1 |
20020197979 | Vanderveen et al. | Dec 2002 | A1 |
20030002125 | Fuse et al. | Jan 2003 | A1 |
20030002476 | Chung et al. | Jan 2003 | A1 |
20030010528 | Niles | Jan 2003 | A1 |
20030022694 | Olsen et al. | Jan 2003 | A1 |
20030038753 | Mahon et al. | Feb 2003 | A1 |
20030049003 | Ahmad et al. | Mar 2003 | A1 |
20030054793 | Manis et al. | Mar 2003 | A1 |
20030054811 | Han et al. | Mar 2003 | A1 |
20030061346 | Pekary et al. | Mar 2003 | A1 |
20030094976 | Miyashita et al. | May 2003 | A1 |
20030095208 | Chouraqui et al. | May 2003 | A1 |
20030137464 | Foti et al. | Jul 2003 | A1 |
20030152331 | Dair et al. | Aug 2003 | A1 |
20030164794 | Haynes et al. | Sep 2003 | A1 |
20030188308 | Kizuka | Oct 2003 | A1 |
20030190110 | Kline et al. | Oct 2003 | A1 |
20030202756 | Hurley et al. | Oct 2003 | A1 |
20030210197 | Cencich et al. | Nov 2003 | A1 |
20030224784 | Hunt et al. | Dec 2003 | A1 |
20040015725 | Boneh et al. | Jan 2004 | A1 |
20040023640 | Ballai et al. | Feb 2004 | A1 |
20040024913 | Ikeda et al. | Feb 2004 | A1 |
20040048596 | Wyrzykowska et al. | Mar 2004 | A1 |
20040054425 | Elmore | Mar 2004 | A1 |
20040084582 | Kralic et al. | May 2004 | A1 |
20040085153 | Fukunaga et al. | May 2004 | A1 |
20040090312 | Manis et al. | May 2004 | A1 |
20040091032 | Duchi et al. | May 2004 | A1 |
20040100343 | Tsu et al. | May 2004 | A1 |
20040104410 | Gilbert et al. | Jun 2004 | A1 |
20040113756 | Mollenkopf et al. | Jun 2004 | A1 |
20040113757 | White, II et al. | Jun 2004 | A1 |
20040119564 | Itoh et al. | Jun 2004 | A1 |
20040131310 | Walker et al. | Jul 2004 | A1 |
20040135676 | Berkman | Jul 2004 | A1 |
20040163135 | Giaccherini et al. | Aug 2004 | A1 |
20040165669 | Otsuka et al. | Aug 2004 | A1 |
20040169572 | Elmore et al. | Sep 2004 | A1 |
20040196784 | Larsson et al. | Oct 2004 | A1 |
20040198228 | Raghothaman et al. | Oct 2004 | A1 |
20040212481 | Abraham et al. | Oct 2004 | A1 |
20040213147 | Wiese et al. | Oct 2004 | A1 |
20040213189 | Alspaugh et al. | Oct 2004 | A1 |
20040213294 | Hughes et al. | Oct 2004 | A1 |
20040242185 | Lee et al. | Dec 2004 | A1 |
20040250069 | Kosamo et al. | Dec 2004 | A1 |
20050002408 | Lee et al. | Jan 2005 | A1 |
20050005854 | Suzuki et al. | Jan 2005 | A1 |
20050017825 | Hansen | Jan 2005 | A1 |
20050031267 | Sumimoto et al. | Feb 2005 | A1 |
20050063422 | Lazar et al. | Mar 2005 | A1 |
20050068223 | Vavik et al. | Mar 2005 | A1 |
20050069321 | Sullivan et al. | Mar 2005 | A1 |
20050074208 | Badcock et al. | Apr 2005 | A1 |
20050097396 | Wood | May 2005 | A1 |
20050102185 | Barker et al. | May 2005 | A1 |
20050111533 | Berkman | May 2005 | A1 |
20050141808 | Cheben et al. | Jun 2005 | A1 |
20050143868 | Whelan et al. | Jun 2005 | A1 |
20050151659 | Donovan et al. | Jul 2005 | A1 |
20050159187 | Mendolia et al. | Jul 2005 | A1 |
20050164666 | Lang et al. | Jul 2005 | A1 |
20050168326 | White et al. | Aug 2005 | A1 |
20050169056 | Berkman et al. | Aug 2005 | A1 |
20050169401 | Abraham et al. | Aug 2005 | A1 |
20050177463 | Crutchfield et al. | Aug 2005 | A1 |
20050190101 | Hiramatsu et al. | Sep 2005 | A1 |
20050208949 | Chiueh et al. | Sep 2005 | A1 |
20050212626 | Takamatsu et al. | Sep 2005 | A1 |
20050219126 | Rebeiz et al. | Oct 2005 | A1 |
20050219135 | Lee et al. | Oct 2005 | A1 |
20050220180 | Barlev | Oct 2005 | A1 |
20050226353 | Gebara et al. | Oct 2005 | A1 |
20050249245 | Hazani et al. | Nov 2005 | A1 |
20050258920 | Elmore | Nov 2005 | A1 |
20060034724 | Hamano et al. | Feb 2006 | A1 |
20060038660 | Doumuki et al. | Feb 2006 | A1 |
20060053486 | Wesinger et al. | Mar 2006 | A1 |
20060077906 | Maegawa et al. | Apr 2006 | A1 |
20060082516 | Strickland | Apr 2006 | A1 |
20060085813 | Giraldin et al. | Apr 2006 | A1 |
20060094439 | Christian et al. | May 2006 | A1 |
20060106741 | Janarthanan et al. | May 2006 | A1 |
20060111047 | Louberg et al. | May 2006 | A1 |
20060113425 | Rader et al. | Jun 2006 | A1 |
20060114925 | Gerszberg et al. | Jun 2006 | A1 |
20060119528 | Bhattacharyya et al. | Jun 2006 | A1 |
20060120399 | Claret et al. | Jun 2006 | A1 |
20060128322 | Igarashi et al. | Jun 2006 | A1 |
20060132380 | Imai et al. | Jun 2006 | A1 |
20060145833 | Brandt | Jul 2006 | A1 |
20060153878 | Savarino et al. | Jul 2006 | A1 |
20060172781 | Mohebbi et al. | Aug 2006 | A1 |
20060176124 | Mansour et al. | Aug 2006 | A1 |
20060181394 | Clarke et al. | Aug 2006 | A1 |
20060187023 | Iwamura et al. | Aug 2006 | A1 |
20060192672 | Gidge et al. | Aug 2006 | A1 |
20060220833 | Berkman et al. | Oct 2006 | A1 |
20060221995 | Berkman et al. | Oct 2006 | A1 |
20060232493 | Huang et al. | Oct 2006 | A1 |
20060238347 | Parkinson et al. | Oct 2006 | A1 |
20060239501 | Petrovic et al. | Oct 2006 | A1 |
20060244672 | Avakian et al. | Nov 2006 | A1 |
20060249622 | Steele et al. | Nov 2006 | A1 |
20060255930 | Berkman et al. | Nov 2006 | A1 |
20060286927 | Berkman et al. | Dec 2006 | A1 |
20070002771 | Berkman et al. | Jan 2007 | A1 |
20070022475 | Rossi et al. | Jan 2007 | A1 |
20070025265 | Marcotullio et al. | Feb 2007 | A1 |
20070025386 | Riedel et al. | Feb 2007 | A1 |
20070040628 | Kanno et al. | Feb 2007 | A1 |
20070041464 | Kim et al. | Feb 2007 | A1 |
20070041554 | Newman | Feb 2007 | A1 |
20070054622 | Berkman | Mar 2007 | A1 |
20070063914 | Becker | Mar 2007 | A1 |
20070090185 | Lewkowitz et al. | Apr 2007 | A1 |
20070105508 | Tong et al. | May 2007 | A1 |
20070135044 | Rhodes et al. | Jun 2007 | A1 |
20070144779 | Vicente et al. | Jun 2007 | A1 |
20070164908 | Turchinetz et al. | Jul 2007 | A1 |
20070189182 | Berkman et al. | Aug 2007 | A1 |
20070201540 | Berkman et al. | Aug 2007 | A1 |
20070202913 | Ban et al. | Aug 2007 | A1 |
20070211689 | Campero et al. | Sep 2007 | A1 |
20070211786 | Shattil et al. | Sep 2007 | A1 |
20070216596 | Lewis et al. | Sep 2007 | A1 |
20070223381 | Radtke et al. | Sep 2007 | A1 |
20070226779 | Yokomitsu et al. | Sep 2007 | A1 |
20070229184 | Liu et al. | Oct 2007 | A1 |
20070229231 | Hurwitz et al. | Oct 2007 | A1 |
20070252998 | Berthold et al. | Nov 2007 | A1 |
20070257858 | Liu et al. | Nov 2007 | A1 |
20070258484 | Tolaio et al. | Nov 2007 | A1 |
20070268124 | Berkman | Nov 2007 | A1 |
20070268846 | Proctor et al. | Nov 2007 | A1 |
20070300280 | Turner et al. | Dec 2007 | A1 |
20080002652 | Gupta et al. | Jan 2008 | A1 |
20080003872 | Chen et al. | Jan 2008 | A1 |
20080007416 | Cern et al. | Jan 2008 | A1 |
20080008116 | Buga et al. | Jan 2008 | A1 |
20080043655 | Lee et al. | Feb 2008 | A1 |
20080055149 | Rees et al. | Mar 2008 | A1 |
20080060832 | Razavi et al. | Mar 2008 | A1 |
20080064331 | Washiro et al. | Mar 2008 | A1 |
20080077336 | Fernandes et al. | Mar 2008 | A1 |
20080080389 | Hart et al. | Apr 2008 | A1 |
20080084937 | Barthold et al. | Apr 2008 | A1 |
20080094298 | Kralovec et al. | Apr 2008 | A1 |
20080120667 | Zaltsman | May 2008 | A1 |
20080122723 | Rofougaran et al. | May 2008 | A1 |
20080130639 | Costa-Requena et al. | Jun 2008 | A1 |
20080143491 | Deaver et al. | Jun 2008 | A1 |
20080150790 | Voigtlaender et al. | Jun 2008 | A1 |
20080153416 | Washiro et al. | Jun 2008 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080191851 | Koga et al. | Aug 2008 | A1 |
20080211727 | Elmore | Sep 2008 | A1 |
20080247716 | Thomas et al. | Oct 2008 | A1 |
20080252522 | Asbridge et al. | Oct 2008 | A1 |
20080253723 | Stokes et al. | Oct 2008 | A1 |
20080255782 | Bilac et al. | Oct 2008 | A1 |
20080258993 | Gummalla et al. | Oct 2008 | A1 |
20080266060 | Takei et al. | Oct 2008 | A1 |
20080267076 | Laperi et al. | Oct 2008 | A1 |
20080279199 | Park et al. | Nov 2008 | A1 |
20080280574 | Rofougaran et al. | Nov 2008 | A1 |
20080313691 | Cholas | Dec 2008 | A1 |
20090002137 | Radtke et al. | Jan 2009 | A1 |
20090007189 | Gutknecht | Jan 2009 | A1 |
20090007190 | Weber et al. | Jan 2009 | A1 |
20090007194 | Brady, Jr. et al. | Jan 2009 | A1 |
20090009408 | Rofougaran et al. | Jan 2009 | A1 |
20090015239 | Georgiou et al. | Jan 2009 | A1 |
20090054056 | Gil et al. | Feb 2009 | A1 |
20090054737 | Magar et al. | Feb 2009 | A1 |
20090061940 | Scheinert et al. | Mar 2009 | A1 |
20090067441 | Ansari et al. | Mar 2009 | A1 |
20090079660 | Elmore | Mar 2009 | A1 |
20090085726 | Radtke et al. | Apr 2009 | A1 |
20090088907 | Lewis et al. | Apr 2009 | A1 |
20090093267 | Ariyur et al. | Apr 2009 | A1 |
20090109981 | Keselman | Apr 2009 | A1 |
20090125351 | Davis, Jr. et al. | May 2009 | A1 |
20090129301 | Belimpasakis et al. | May 2009 | A1 |
20090135848 | Chan et al. | May 2009 | A1 |
20090138931 | Lin et al. | May 2009 | A1 |
20090140852 | Stolarczyk et al. | Jun 2009 | A1 |
20090144417 | Kisel et al. | Jun 2009 | A1 |
20090171780 | Aldrey et al. | Jul 2009 | A1 |
20090175195 | Macauley | Jul 2009 | A1 |
20090181664 | Kuruvilla et al. | Jul 2009 | A1 |
20090201133 | Bruns et al. | Aug 2009 | A1 |
20090202020 | Hafeez et al. | Aug 2009 | A1 |
20090210901 | Hawkins et al. | Aug 2009 | A1 |
20090212938 | Swaim et al. | Aug 2009 | A1 |
20090250449 | Petrenko et al. | Oct 2009 | A1 |
20090254971 | Herz et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090284435 | Elmore et al. | Nov 2009 | A1 |
20090286482 | Gorokhov et al. | Nov 2009 | A1 |
20090311960 | Farahani et al. | Dec 2009 | A1 |
20090315668 | Leete, III et al. | Dec 2009 | A1 |
20090320058 | Wehmeyer et al. | Dec 2009 | A1 |
20090325479 | Chakrabarti et al. | Dec 2009 | A1 |
20090325628 | Becker et al. | Dec 2009 | A1 |
20100002618 | Eichinger et al. | Jan 2010 | A1 |
20100002731 | Kimura et al. | Jan 2010 | A1 |
20100013696 | Schmitt et al. | Jan 2010 | A1 |
20100026607 | Imai et al. | Feb 2010 | A1 |
20100039339 | Kuroda et al. | Feb 2010 | A1 |
20100045447 | Mollenkopf et al. | Feb 2010 | A1 |
20100052799 | Watanabe et al. | Mar 2010 | A1 |
20100053019 | Ikawa et al. | Mar 2010 | A1 |
20100057894 | Glasser | Mar 2010 | A1 |
20100080203 | Reynolds et al. | Apr 2010 | A1 |
20100085036 | Banting et al. | Apr 2010 | A1 |
20100090887 | Cooper et al. | Apr 2010 | A1 |
20100091712 | Lu et al. | Apr 2010 | A1 |
20100100918 | Egan, Jr. et al. | Apr 2010 | A1 |
20100111521 | Kim et al. | May 2010 | A1 |
20100119234 | Suematsu et al. | May 2010 | A1 |
20100121945 | Gerber et al. | May 2010 | A1 |
20100127848 | Mustapha et al. | May 2010 | A1 |
20100142435 | Kim et al. | Jun 2010 | A1 |
20100150215 | Black | Jun 2010 | A1 |
20100153990 | Ress et al. | Jun 2010 | A1 |
20100169937 | Atwal et al. | Jul 2010 | A1 |
20100171483 | Frost | Jul 2010 | A1 |
20100175080 | Yuen et al. | Jul 2010 | A1 |
20100176894 | Tahara et al. | Jul 2010 | A1 |
20100177894 | Yasuma et al. | Jul 2010 | A1 |
20100185614 | O'Brien et al. | Jul 2010 | A1 |
20100201313 | Vorenkamp et al. | Aug 2010 | A1 |
20100214183 | Stoneback et al. | Aug 2010 | A1 |
20100214185 | Sammoura et al. | Aug 2010 | A1 |
20100220024 | Snow et al. | Sep 2010 | A1 |
20100224732 | Olson et al. | Sep 2010 | A1 |
20100225426 | Unger et al. | Sep 2010 | A1 |
20100232539 | Han et al. | Sep 2010 | A1 |
20100243633 | Huynh et al. | Sep 2010 | A1 |
20100253450 | Kim et al. | Oct 2010 | A1 |
20100256955 | Pupalaikis et al. | Oct 2010 | A1 |
20100265877 | Foxworthy et al. | Oct 2010 | A1 |
20100266063 | Harel et al. | Oct 2010 | A1 |
20100280872 | Scholte-Wassink | Nov 2010 | A1 |
20100283693 | Xie et al. | Nov 2010 | A1 |
20100284446 | Mu et al. | Nov 2010 | A1 |
20100319068 | Abbadessa et al. | Dec 2010 | A1 |
20100327880 | Stein et al. | Dec 2010 | A1 |
20110018704 | Burrows et al. | Jan 2011 | A1 |
20110029148 | Yang | Feb 2011 | A1 |
20110040861 | Van Der Merwe et al. | Feb 2011 | A1 |
20110042120 | Otsuka et al. | Feb 2011 | A1 |
20110043051 | Meskens | Feb 2011 | A1 |
20110053498 | Nogueira-Nine | Mar 2011 | A1 |
20110058614 | Au | Mar 2011 | A1 |
20110068893 | Lahiri et al. | Mar 2011 | A1 |
20110068988 | Monte et al. | Mar 2011 | A1 |
20110080301 | Chang et al. | Apr 2011 | A1 |
20110083399 | Lettkeman et al. | Apr 2011 | A1 |
20110103274 | Vavik et al. | May 2011 | A1 |
20110107364 | Lajoie et al. | May 2011 | A1 |
20110109936 | Coffee et al. | May 2011 | A1 |
20110110404 | Washiro | May 2011 | A1 |
20110115579 | Rofougaran | May 2011 | A1 |
20110118888 | White et al. | May 2011 | A1 |
20110132658 | Miller, II et al. | Jun 2011 | A1 |
20110133865 | Miller, II et al. | Jun 2011 | A1 |
20110133867 | Miller, II et al. | Jun 2011 | A1 |
20110136432 | Miller, II et al. | Jun 2011 | A1 |
20110140911 | Pant | Jun 2011 | A1 |
20110141555 | Fermann et al. | Jun 2011 | A1 |
20110143673 | Landesman et al. | Jun 2011 | A1 |
20110148578 | Aloi et al. | Jun 2011 | A1 |
20110148687 | Wright et al. | Jun 2011 | A1 |
20110149721 | Yang | Jun 2011 | A1 |
20110164514 | Afkhamie et al. | Jul 2011 | A1 |
20110165847 | Kawasaki et al. | Jul 2011 | A1 |
20110169336 | Yerazunis et al. | Jul 2011 | A1 |
20110172000 | Quigley et al. | Jul 2011 | A1 |
20110173447 | Zhang et al. | Jul 2011 | A1 |
20110187578 | Farneth | Aug 2011 | A1 |
20110199265 | Lin et al. | Aug 2011 | A1 |
20110208450 | Salka et al. | Aug 2011 | A1 |
20110214176 | Burch et al. | Sep 2011 | A1 |
20110219402 | Candelore et al. | Sep 2011 | A1 |
20110220394 | Szylakowski et al. | Sep 2011 | A1 |
20110225046 | Eldering et al. | Sep 2011 | A1 |
20110228814 | Washiro et al. | Sep 2011 | A1 |
20110235536 | Nishizaka et al. | Sep 2011 | A1 |
20110268085 | Barany et al. | Nov 2011 | A1 |
20110274396 | Nakajima et al. | Nov 2011 | A1 |
20110286506 | Libby et al. | Nov 2011 | A1 |
20110291878 | McLaughlin et al. | Dec 2011 | A1 |
20110294509 | Kim et al. | Dec 2011 | A1 |
20110311231 | Ridgway et al. | Dec 2011 | A1 |
20110316645 | Takeuchi et al. | Dec 2011 | A1 |
20120002973 | Bruzzi et al. | Jan 2012 | A1 |
20120015382 | Weitz et al. | Jan 2012 | A1 |
20120015654 | Palanki et al. | Jan 2012 | A1 |
20120019420 | Caimi et al. | Jan 2012 | A1 |
20120019427 | Ishikawa et al. | Jan 2012 | A1 |
20120038520 | Cornwell et al. | Feb 2012 | A1 |
20120039366 | Wood et al. | Feb 2012 | A1 |
20120046891 | Yaney et al. | Feb 2012 | A1 |
20120054571 | Howard et al. | Mar 2012 | A1 |
20120068903 | Thevenard et al. | Mar 2012 | A1 |
20120077485 | Shin et al. | Mar 2012 | A1 |
20120078452 | Daum et al. | Mar 2012 | A1 |
20120084807 | Thompson et al. | Apr 2012 | A1 |
20120091820 | Campanella et al. | Apr 2012 | A1 |
20120092161 | West et al. | Apr 2012 | A1 |
20120093078 | Perlman et al. | Apr 2012 | A1 |
20120102568 | Tarbotton et al. | Apr 2012 | A1 |
20120105246 | Sexton et al. | May 2012 | A1 |
20120105637 | Yousefi et al. | May 2012 | A1 |
20120109545 | Meynardi et al. | May 2012 | A1 |
20120109566 | Adamian et al. | May 2012 | A1 |
20120117584 | Gordon | May 2012 | A1 |
20120129566 | Lee et al. | May 2012 | A1 |
20120133373 | Ali | May 2012 | A1 |
20120137332 | Kumar et al. | May 2012 | A1 |
20120144420 | Del Sordo et al. | Jun 2012 | A1 |
20120146861 | Armbrecht et al. | Jun 2012 | A1 |
20120153087 | Collette et al. | Jun 2012 | A1 |
20120154239 | Bar-Sade et al. | Jun 2012 | A1 |
20120161543 | Reuven et al. | Jun 2012 | A1 |
20120176906 | Hartenstein et al. | Jul 2012 | A1 |
20120179301 | Aivaliotis | Jul 2012 | A1 |
20120181258 | Shan et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120197558 | Henig et al. | Aug 2012 | A1 |
20120201145 | Ree et al. | Aug 2012 | A1 |
20120214538 | Kim et al. | Aug 2012 | A1 |
20120224807 | Winzer et al. | Sep 2012 | A1 |
20120226394 | Marcus et al. | Sep 2012 | A1 |
20120235864 | Lu et al. | Sep 2012 | A1 |
20120235881 | Pan et al. | Sep 2012 | A1 |
20120250534 | Langer et al. | Oct 2012 | A1 |
20120250752 | McHann et al. | Oct 2012 | A1 |
20120259475 | Scharnick | Oct 2012 | A1 |
20120263152 | Fischer et al. | Oct 2012 | A1 |
20120267863 | Kiest et al. | Oct 2012 | A1 |
20120268340 | Capozzoli et al. | Oct 2012 | A1 |
20120270507 | Qin et al. | Oct 2012 | A1 |
20120272741 | Xiao et al. | Nov 2012 | A1 |
20120274528 | McMahon et al. | Nov 2012 | A1 |
20120287922 | Heck et al. | Nov 2012 | A1 |
20120299671 | Ikeda | Nov 2012 | A1 |
20120304294 | Fujiwara et al. | Nov 2012 | A1 |
20120306587 | Strid et al. | Dec 2012 | A1 |
20120306708 | Henderson et al. | Dec 2012 | A1 |
20120313895 | Haroun et al. | Dec 2012 | A1 |
20120319903 | Huseth et al. | Dec 2012 | A1 |
20120322380 | Nannarone et al. | Dec 2012 | A1 |
20120322492 | Koo et al. | Dec 2012 | A1 |
20120324018 | Metcalf et al. | Dec 2012 | A1 |
20120327908 | Gupta et al. | Dec 2012 | A1 |
20120329523 | Stewart et al. | Dec 2012 | A1 |
20120330756 | Morris et al. | Dec 2012 | A1 |
20130002409 | Molina et al. | Jan 2013 | A1 |
20130003876 | Bennett | Jan 2013 | A1 |
20130010679 | Ma et al. | Jan 2013 | A1 |
20130015922 | Liu et al. | Jan 2013 | A1 |
20130016022 | Heiks et al. | Jan 2013 | A1 |
20130023302 | Vasudevan et al. | Jan 2013 | A1 |
20130039624 | Scherer et al. | Feb 2013 | A1 |
20130064178 | Cs et al. | Mar 2013 | A1 |
20130064311 | Turner | Mar 2013 | A1 |
20130070621 | Marzetta et al. | Mar 2013 | A1 |
20130077612 | Khorami et al. | Mar 2013 | A1 |
20130077664 | Lee et al. | Mar 2013 | A1 |
20130080290 | Kamm | Mar 2013 | A1 |
20130086639 | Sondhi et al. | Apr 2013 | A1 |
20130093638 | Shoemaker et al. | Apr 2013 | A1 |
20130095875 | Reuven et al. | Apr 2013 | A1 |
20130108206 | Sasaoka et al. | May 2013 | A1 |
20130109317 | Kikuchi et al. | May 2013 | A1 |
20130117852 | Stute et al. | May 2013 | A1 |
20130122828 | Choi et al. | May 2013 | A1 |
20130124365 | Pradeep | May 2013 | A1 |
20130127678 | Chandler et al. | May 2013 | A1 |
20130136410 | Sasaoka et al. | May 2013 | A1 |
20130144750 | Brown | Jun 2013 | A1 |
20130148194 | Altug et al. | Jun 2013 | A1 |
20130159153 | Lau et al. | Jun 2013 | A1 |
20130159856 | Ferren | Jun 2013 | A1 |
20130160122 | Choi et al. | Jun 2013 | A1 |
20130162490 | Blech et al. | Jun 2013 | A1 |
20130166690 | Shatzkamer et al. | Jun 2013 | A1 |
20130169499 | Lin et al. | Jul 2013 | A1 |
20130173807 | De et al. | Jul 2013 | A1 |
20130178998 | Gadiraju et al. | Jul 2013 | A1 |
20130182804 | Yutaka et al. | Jul 2013 | A1 |
20130185552 | Steer et al. | Jul 2013 | A1 |
20130187636 | Kast et al. | Jul 2013 | A1 |
20130191052 | Fernandez et al. | Jul 2013 | A1 |
20130201006 | Kummetz et al. | Aug 2013 | A1 |
20130201904 | Toskala et al. | Aug 2013 | A1 |
20130207681 | Slupsky et al. | Aug 2013 | A1 |
20130207859 | Legay et al. | Aug 2013 | A1 |
20130219308 | Britton et al. | Aug 2013 | A1 |
20130234904 | Blech et al. | Sep 2013 | A1 |
20130234961 | Garfinkel et al. | Sep 2013 | A1 |
20130235845 | Kovvali et al. | Sep 2013 | A1 |
20130235871 | Brzozowski et al. | Sep 2013 | A1 |
20130262656 | Cao et al. | Oct 2013 | A1 |
20130262857 | Neuman et al. | Oct 2013 | A1 |
20130263263 | Narkolayev et al. | Oct 2013 | A1 |
20130265732 | Herbsommer et al. | Oct 2013 | A1 |
20130268414 | Lehtiniemi et al. | Oct 2013 | A1 |
20130271349 | Wright et al. | Oct 2013 | A1 |
20130274941 | Khozikov | Oct 2013 | A1 |
20130278464 | Xia et al. | Oct 2013 | A1 |
20130279523 | Denney et al. | Oct 2013 | A1 |
20130279561 | Jin et al. | Oct 2013 | A1 |
20130279868 | Zhang et al. | Oct 2013 | A1 |
20130285864 | Clymer et al. | Oct 2013 | A1 |
20130303089 | Wang et al. | Nov 2013 | A1 |
20130305369 | Karta et al. | Nov 2013 | A1 |
20130306351 | Lambert et al. | Nov 2013 | A1 |
20130307645 | Mita et al. | Nov 2013 | A1 |
20130311661 | McPhee | Nov 2013 | A1 |
20130314182 | Takeda et al. | Nov 2013 | A1 |
20130321225 | Pettus et al. | Dec 2013 | A1 |
20130326063 | Burch et al. | Dec 2013 | A1 |
20130326494 | Nunez et al. | Dec 2013 | A1 |
20130330050 | Yang et al. | Dec 2013 | A1 |
20130335165 | Arnold et al. | Dec 2013 | A1 |
20130336418 | Tomeba et al. | Dec 2013 | A1 |
20130341094 | Taherian et al. | Dec 2013 | A1 |
20130342287 | Randall et al. | Dec 2013 | A1 |
20130343213 | Reynolds et al. | Dec 2013 | A1 |
20130343351 | Sambhwani et al. | Dec 2013 | A1 |
20140003394 | Rubin et al. | Jan 2014 | A1 |
20140003775 | Ko et al. | Jan 2014 | A1 |
20140007076 | Kim et al. | Jan 2014 | A1 |
20140009270 | Yamazaki et al. | Jan 2014 | A1 |
20140009822 | Dong et al. | Jan 2014 | A1 |
20140015705 | Ebihara et al. | Jan 2014 | A1 |
20140019576 | Lobo et al. | Jan 2014 | A1 |
20140026170 | Francisco | Jan 2014 | A1 |
20140028184 | Voronin et al. | Jan 2014 | A1 |
20140028190 | Voronin et al. | Jan 2014 | A1 |
20140028532 | Ehrenberg et al. | Jan 2014 | A1 |
20140032005 | Iwamura | Jan 2014 | A1 |
20140036694 | Courtice et al. | Feb 2014 | A1 |
20140041925 | Siripurapu et al. | Feb 2014 | A1 |
20140043189 | Lee et al. | Feb 2014 | A1 |
20140043977 | Wiley et al. | Feb 2014 | A1 |
20140044139 | Dong et al. | Feb 2014 | A1 |
20140052810 | Osorio et al. | Feb 2014 | A1 |
20140057576 | Liu et al. | Feb 2014 | A1 |
20140071818 | Wang et al. | Mar 2014 | A1 |
20140072299 | Stapleton et al. | Mar 2014 | A1 |
20140077995 | Artemenko et al. | Mar 2014 | A1 |
20140086080 | Hui et al. | Mar 2014 | A1 |
20140086152 | Bontu et al. | Mar 2014 | A1 |
20140112184 | Chai | Apr 2014 | A1 |
20140124236 | Vu et al. | May 2014 | A1 |
20140126914 | Berlin et al. | May 2014 | A1 |
20140130111 | Nulty et al. | May 2014 | A1 |
20140132728 | Verano et al. | May 2014 | A1 |
20140139375 | Faragher et al. | May 2014 | A1 |
20140143055 | Johnson | May 2014 | A1 |
20140146902 | Liu et al. | May 2014 | A1 |
20140148107 | Maltsev et al. | May 2014 | A1 |
20140155054 | Henry | Jun 2014 | A1 |
20140165145 | Baentsch et al. | Jun 2014 | A1 |
20140169186 | Zhu et al. | Jun 2014 | A1 |
20140177692 | Yu et al. | Jun 2014 | A1 |
20140179302 | Polehn et al. | Jun 2014 | A1 |
20140189677 | Curzi et al. | Jul 2014 | A1 |
20140189732 | Shkedi et al. | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140204000 | Sato et al. | Jul 2014 | A1 |
20140204754 | Jeong et al. | Jul 2014 | A1 |
20140207844 | Mayo et al. | Jul 2014 | A1 |
20140208272 | Vats et al. | Jul 2014 | A1 |
20140222997 | Mermoud et al. | Aug 2014 | A1 |
20140223527 | Bortz et al. | Aug 2014 | A1 |
20140225129 | Inoue et al. | Aug 2014 | A1 |
20140227905 | Knott et al. | Aug 2014 | A1 |
20140227966 | Artemenko et al. | Aug 2014 | A1 |
20140233900 | Hugonnot et al. | Aug 2014 | A1 |
20140241718 | Jiang et al. | Aug 2014 | A1 |
20140254516 | Lee et al. | Sep 2014 | A1 |
20140254896 | Zhou et al. | Sep 2014 | A1 |
20140254979 | Zhang et al. | Sep 2014 | A1 |
20140266946 | Stevenson et al. | Sep 2014 | A1 |
20140266953 | Yen et al. | Sep 2014 | A1 |
20140269260 | Xue et al. | Sep 2014 | A1 |
20140269691 | Xue et al. | Sep 2014 | A1 |
20140269972 | Rada et al. | Sep 2014 | A1 |
20140273873 | Huynh et al. | Sep 2014 | A1 |
20140285277 | Herbsommer et al. | Sep 2014 | A1 |
20140285293 | Schuppener et al. | Sep 2014 | A1 |
20140285373 | Kuwahara et al. | Sep 2014 | A1 |
20140285389 | Fakharzadeh et al. | Sep 2014 | A1 |
20140286189 | Kang et al. | Sep 2014 | A1 |
20140286235 | Chang et al. | Sep 2014 | A1 |
20140287702 | Schuppener et al. | Sep 2014 | A1 |
20140299349 | Yamaguchi et al. | Oct 2014 | A1 |
20140304498 | Gonuguntla et al. | Oct 2014 | A1 |
20140317229 | Hughes et al. | Oct 2014 | A1 |
20140320364 | Gu et al. | Oct 2014 | A1 |
20140321273 | Morrill et al. | Oct 2014 | A1 |
20140334773 | Mathai et al. | Nov 2014 | A1 |
20140334789 | Matsuo et al. | Nov 2014 | A1 |
20140340271 | Petkov et al. | Nov 2014 | A1 |
20140343883 | Libby et al. | Nov 2014 | A1 |
20140349696 | Hyde et al. | Nov 2014 | A1 |
20140351571 | Jacobs | Nov 2014 | A1 |
20140355525 | Willis, III et al. | Dec 2014 | A1 |
20140355989 | Finkelstein | Dec 2014 | A1 |
20140357269 | Zhou et al. | Dec 2014 | A1 |
20140359275 | Murugesan et al. | Dec 2014 | A1 |
20140362374 | Santori | Dec 2014 | A1 |
20140362694 | Rodriques | Dec 2014 | A1 |
20140368301 | Herbsommer et al. | Dec 2014 | A1 |
20140369430 | Parnell et al. | Dec 2014 | A1 |
20140372068 | Seto et al. | Dec 2014 | A1 |
20140373053 | Leley et al. | Dec 2014 | A1 |
20140376655 | Ruan et al. | Dec 2014 | A1 |
20150008996 | Jessup et al. | Jan 2015 | A1 |
20150009089 | Pesa | Jan 2015 | A1 |
20150016260 | Chow | Jan 2015 | A1 |
20150017473 | Verhoeven et al. | Jan 2015 | A1 |
20150022399 | Flannery et al. | Jan 2015 | A1 |
20150026460 | Walton | Jan 2015 | A1 |
20150029065 | Cheng | Jan 2015 | A1 |
20150036610 | Kim et al. | Feb 2015 | A1 |
20150042526 | Zeine | Feb 2015 | A1 |
20150048238 | Kawai | Feb 2015 | A1 |
20150049998 | Dumais | Feb 2015 | A1 |
20150061859 | Matsuoka et al. | Mar 2015 | A1 |
20150065166 | Ward et al. | Mar 2015 | A1 |
20150070231 | Park et al. | Mar 2015 | A1 |
20150071594 | Register | Mar 2015 | A1 |
20150073594 | Trujillo et al. | Mar 2015 | A1 |
20150077740 | Fuse | Mar 2015 | A1 |
20150078756 | Soto | Mar 2015 | A1 |
20150084660 | Knierim et al. | Mar 2015 | A1 |
20150084703 | Sanduleanu | Mar 2015 | A1 |
20150084814 | Rojanski et al. | Mar 2015 | A1 |
20150091650 | Nobbe | Apr 2015 | A1 |
20150094104 | Wilmhoff et al. | Apr 2015 | A1 |
20150098387 | Garg et al. | Apr 2015 | A1 |
20150099555 | Krishnaswamy et al. | Apr 2015 | A1 |
20150102972 | Scire-Scappuzzo et al. | Apr 2015 | A1 |
20150103685 | Butchko et al. | Apr 2015 | A1 |
20150104005 | Holman | Apr 2015 | A1 |
20150109178 | Hyde et al. | Apr 2015 | A1 |
20150116154 | Artemenko | Apr 2015 | A1 |
20150122886 | Michael | May 2015 | A1 |
20150126107 | Willis, III et al. | May 2015 | A1 |
20150130675 | Parsche | May 2015 | A1 |
20150138022 | Takahashi | May 2015 | A1 |
20150138144 | Tanabe | May 2015 | A1 |
20150153248 | Hayward et al. | Jun 2015 | A1 |
20150156266 | Gupta | Jun 2015 | A1 |
20150162988 | Willis, III et al. | Jun 2015 | A1 |
20150171522 | Liu et al. | Jun 2015 | A1 |
20150172036 | Katar et al. | Jun 2015 | A1 |
20150181449 | Didenko et al. | Jun 2015 | A1 |
20150195349 | Cardamore | Jul 2015 | A1 |
20150195719 | Rahman | Jul 2015 | A1 |
20150201228 | Hasek | Jul 2015 | A1 |
20150207527 | Eliaz et al. | Jul 2015 | A1 |
20150214615 | Patel et al. | Jul 2015 | A1 |
20150215268 | Dinha | Jul 2015 | A1 |
20150223078 | Bennett et al. | Aug 2015 | A1 |
20150223113 | Matsunaga | Aug 2015 | A1 |
20150223160 | Ho | Aug 2015 | A1 |
20150230109 | Turner et al. | Aug 2015 | A1 |
20150236778 | Jalali | Aug 2015 | A1 |
20150236779 | Jalali | Aug 2015 | A1 |
20150237519 | Ghai | Aug 2015 | A1 |
20150249965 | Dussmann et al. | Sep 2015 | A1 |
20150263424 | Sanford | Sep 2015 | A1 |
20150271830 | Shin et al. | Sep 2015 | A1 |
20150276577 | Ruege et al. | Oct 2015 | A1 |
20150277569 | Sprenger | Oct 2015 | A1 |
20150280328 | Sanford et al. | Oct 2015 | A1 |
20150284079 | Matsuda | Oct 2015 | A1 |
20150288532 | Veyseh et al. | Oct 2015 | A1 |
20150289247 | Liu et al. | Oct 2015 | A1 |
20150303892 | Desclos | Oct 2015 | A1 |
20150304045 | Henry et al. | Oct 2015 | A1 |
20150304869 | Johnson et al. | Oct 2015 | A1 |
20150311951 | Hariz | Oct 2015 | A1 |
20150312774 | Lau | Oct 2015 | A1 |
20150318610 | Lee et al. | Nov 2015 | A1 |
20150323948 | Jeong | Nov 2015 | A1 |
20150325913 | Vagman | Nov 2015 | A1 |
20150326274 | Flood | Nov 2015 | A1 |
20150333386 | Kaneda et al. | Nov 2015 | A1 |
20150333804 | Yang et al. | Nov 2015 | A1 |
20150334769 | Kim et al. | Nov 2015 | A1 |
20150339912 | Farrand et al. | Nov 2015 | A1 |
20150344136 | Dahlstrom | Dec 2015 | A1 |
20150349415 | Iwanaka | Dec 2015 | A1 |
20150356482 | Whipple et al. | Dec 2015 | A1 |
20150356848 | Hatch | Dec 2015 | A1 |
20150369660 | Yu | Dec 2015 | A1 |
20150370251 | Siegel et al. | Dec 2015 | A1 |
20150373557 | Bennett et al. | Dec 2015 | A1 |
20150380814 | Boutayeb et al. | Dec 2015 | A1 |
20150382208 | Elliott et al. | Dec 2015 | A1 |
20160006129 | Haziza | Jan 2016 | A1 |
20160012460 | Kruglick | Jan 2016 | A1 |
20160014749 | Kang et al. | Jan 2016 | A1 |
20160021545 | Shaw | Jan 2016 | A1 |
20160026301 | Zhou et al. | Jan 2016 | A1 |
20160029009 | Lu et al. | Jan 2016 | A1 |
20160038074 | Brown et al. | Feb 2016 | A1 |
20160043478 | Hartenstein | Feb 2016 | A1 |
20160044705 | Gao | Feb 2016 | A1 |
20160050028 | Henry et al. | Feb 2016 | A1 |
20160056543 | Kwiatkowski | Feb 2016 | A1 |
20160063642 | Luciani et al. | Mar 2016 | A1 |
20160064794 | Henry et al. | Mar 2016 | A1 |
20160065252 | Preschutti | Mar 2016 | A1 |
20160065335 | Koo et al. | Mar 2016 | A1 |
20160066191 | Li | Mar 2016 | A1 |
20160068265 | Hoareau et al. | Mar 2016 | A1 |
20160068277 | Manitta | Mar 2016 | A1 |
20160069934 | Saxby et al. | Mar 2016 | A1 |
20160070265 | Liu et al. | Mar 2016 | A1 |
20160072173 | Herbsommer et al. | Mar 2016 | A1 |
20160072191 | Iwai | Mar 2016 | A1 |
20160072287 | Jia | Mar 2016 | A1 |
20160079769 | Corum et al. | Mar 2016 | A1 |
20160079771 | Corum | Mar 2016 | A1 |
20160079809 | Corum et al. | Mar 2016 | A1 |
20160080035 | Fuchs et al. | Mar 2016 | A1 |
20160080839 | Fuchs et al. | Mar 2016 | A1 |
20160082460 | McMaster et al. | Mar 2016 | A1 |
20160087344 | Artemenko et al. | Mar 2016 | A1 |
20160088498 | Sharawi | Mar 2016 | A1 |
20160094420 | Clemm et al. | Mar 2016 | A1 |
20160094879 | Gerszberg et al. | Mar 2016 | A1 |
20160069935 | Kreikebaum et al. | Apr 2016 | A1 |
20160099749 | Bennett et al. | Apr 2016 | A1 |
20160100324 | Henry et al. | Apr 2016 | A1 |
20160103199 | Rappaport | Apr 2016 | A1 |
20160105218 | Henry et al. | Apr 2016 | A1 |
20160105233 | Jalali | Apr 2016 | A1 |
20160105239 | Henry et al. | Apr 2016 | A1 |
20160105255 | Henry et al. | Apr 2016 | A1 |
20160111890 | Corum et al. | Apr 2016 | A1 |
20160112092 | Henry et al. | Apr 2016 | A1 |
20160112093 | Henry et al. | Apr 2016 | A1 |
20160112094 | Stuckman et al. | Apr 2016 | A1 |
20160112115 | Henry et al. | Apr 2016 | A1 |
20160112132 | Henry et al. | Apr 2016 | A1 |
20160112133 | Henry et al. | Apr 2016 | A1 |
20160112135 | Henry et al. | Apr 2016 | A1 |
20160112263 | Henry et al. | Apr 2016 | A1 |
20160116914 | Mucci | Apr 2016 | A1 |
20160118717 | Britz et al. | Apr 2016 | A1 |
20160124071 | Baxley et al. | May 2016 | A1 |
20160127931 | Baxley et al. | May 2016 | A1 |
20160131347 | Hill et al. | May 2016 | A1 |
20160134006 | Ness et al. | May 2016 | A1 |
20160135132 | Donepudi et al. | May 2016 | A1 |
20160137311 | Peverill et al. | May 2016 | A1 |
20160139731 | Kim | May 2016 | A1 |
20160149312 | Henry et al. | May 2016 | A1 |
20160149614 | Barzegar | May 2016 | A1 |
20160149636 | Gerszberg et al. | May 2016 | A1 |
20160149665 | Henry et al. | May 2016 | A1 |
20160149731 | Henry et al. | May 2016 | A1 |
20160149753 | Gerszberg et al. | May 2016 | A1 |
20160150427 | Ramanath | May 2016 | A1 |
20160153938 | Balasubramaniam et al. | Jun 2016 | A1 |
20160164571 | Bennett et al. | Jun 2016 | A1 |
20160164573 | Birk et al. | Jun 2016 | A1 |
20160165472 | Gopalakrishnan et al. | Jun 2016 | A1 |
20160165478 | Yao et al. | Jun 2016 | A1 |
20160174040 | Roberts et al. | Jun 2016 | A1 |
20160179134 | Ryu | Jun 2016 | A1 |
20160181701 | Sangaran et al. | Jun 2016 | A1 |
20160182161 | Barzegar | Jun 2016 | A1 |
20160182981 | Minarik et al. | Jun 2016 | A1 |
20160188291 | Vilermo et al. | Jun 2016 | A1 |
20160189101 | Kantor et al. | Jun 2016 | A1 |
20160197392 | Henry et al. | Jul 2016 | A1 |
20160197409 | Henry et al. | Jul 2016 | A1 |
20160197630 | Kawasaki | Jul 2016 | A1 |
20160197642 | Henry et al. | Jul 2016 | A1 |
20160207627 | Hoareau et al. | Jul 2016 | A1 |
20160212065 | To et al. | Jul 2016 | A1 |
20160212641 | Kong et al. | Jul 2016 | A1 |
20160214717 | De Silva | Jul 2016 | A1 |
20160218407 | Henry et al. | Jul 2016 | A1 |
20160218437 | Guntupalli | Jul 2016 | A1 |
20160221039 | Fuchs et al. | Aug 2016 | A1 |
20160224235 | Forsstrom | Aug 2016 | A1 |
20160226681 | Henry et al. | Aug 2016 | A1 |
20160244165 | Patrick et al. | Aug 2016 | A1 |
20160248149 | Kim et al. | Aug 2016 | A1 |
20160248165 | Henry | Aug 2016 | A1 |
20160248509 | Henry | Aug 2016 | A1 |
20160249233 | Murray | Aug 2016 | A1 |
20160252970 | Dahl | Sep 2016 | A1 |
20160261309 | Henry | Sep 2016 | A1 |
20160261310 | Fuchs et al. | Sep 2016 | A1 |
20160261312 | Fuchs et al. | Sep 2016 | A1 |
20160269156 | Barzegar et al. | Sep 2016 | A1 |
20160276725 | Barnickel et al. | Sep 2016 | A1 |
20160277939 | Olcott et al. | Sep 2016 | A1 |
20160285508 | Bennett et al. | Sep 2016 | A1 |
20160285512 | Henry et al. | Sep 2016 | A1 |
20160294444 | Gerszberg et al. | Oct 2016 | A1 |
20160294517 | Barzegar et al. | Oct 2016 | A1 |
20160295431 | Henry et al. | Oct 2016 | A1 |
20160315659 | Henry | Oct 2016 | A1 |
20160315660 | Henry | Oct 2016 | A1 |
20160315661 | Henry | Oct 2016 | A1 |
20160315662 | Henry | Oct 2016 | A1 |
20160322691 | Bennett et al. | Nov 2016 | A1 |
20160336091 | Henry et al. | Nov 2016 | A1 |
20160336092 | Henry et al. | Nov 2016 | A1 |
20160336636 | Henry et al. | Nov 2016 | A1 |
20160336996 | Henry | Nov 2016 | A1 |
20160336997 | Henry | Nov 2016 | A1 |
20160351987 | Henry | Dec 2016 | A1 |
20160359523 | Bennett | Dec 2016 | A1 |
20160359524 | Bennett et al. | Dec 2016 | A1 |
20160359529 | Bennett et al. | Dec 2016 | A1 |
20160359530 | Bennett | Dec 2016 | A1 |
20160359541 | Bennett | Dec 2016 | A1 |
20160359542 | Bennett | Dec 2016 | A1 |
20160359543 | Bennett et al. | Dec 2016 | A1 |
20160359544 | Bennett | Dec 2016 | A1 |
20160359546 | Bennett | Dec 2016 | A1 |
20160359547 | Bennett et al. | Dec 2016 | A1 |
20160359649 | Bennett et al. | Dec 2016 | A1 |
20160360511 | Barzegar | Dec 2016 | A1 |
20160360533 | Bennett et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
565039 | Sep 1987 | AU |
582630 | Apr 1989 | AU |
606303 | Jan 1991 | AU |
7261000 | Apr 2001 | AU |
760272 | May 2003 | AU |
2005227368 | Feb 2009 | AU |
2010101079 | Nov 2010 | AU |
2007215252 | Jan 2011 | AU |
201400748 | Mar 2014 | AU |
2014200748 | Mar 2014 | AU |
1136267 | Nov 1982 | CA |
1211813 | Sep 1986 | CA |
1328009 | Mar 1994 | CA |
2260380 | Dec 2000 | CA |
2449596 | Jun 2005 | CA |
2515560 | Feb 2007 | CA |
2664573 | Apr 2008 | CA |
2467988 | Nov 2010 | CA |
2777147 | Apr 2011 | CA |
2814529 | Apr 2012 | CA |
2787580 | Feb 2013 | CA |
2927054 | May 2015 | CA |
2940976 | Sep 2015 | CA |
2116969 | Sep 1992 | CN |
1155354 | Jul 1997 | CN |
1411563 | Apr 2003 | CN |
1126425 | Oct 2003 | CN |
2730033 | Sep 2005 | CN |
1833397 | Sep 2006 | CN |
1885736 | Dec 2006 | CN |
201048157 | Apr 2008 | CN |
201146495 | Nov 2008 | CN |
201207179 | Mar 2009 | CN |
100502181 | Jun 2009 | CN |
201282193 | Jul 2009 | CN |
101834011 | Apr 2010 | CN |
1823275 | May 2010 | CN |
101785201 | Jul 2010 | CN |
1820482 | Dec 2010 | CN |
101075702 | Feb 2011 | CN |
101978613 | Feb 2011 | CN |
102130698 | Jul 2011 | CN |
102136634 | Jul 2011 | CN |
201985870 | Sep 2011 | CN |
102208716 | Oct 2011 | CN |
102280704 | Dec 2011 | CN |
102280709 | Dec 2011 | CN |
202093126 | Dec 2011 | CN |
102351415 | Feb 2012 | CN |
102396111 | Mar 2012 | CN |
202253536 | May 2012 | CN |
102544736 | Jul 2012 | CN |
102590893 | Jul 2012 | CN |
102694351 | Sep 2012 | CN |
202424729 | Sep 2012 | CN |
101662076 | Nov 2012 | CN |
102017692 | Apr 2013 | CN |
103078673 | May 2013 | CN |
103117118 | May 2013 | CN |
103163881 | Jun 2013 | CN |
203204743 | Sep 2013 | CN |
1863244 | Oct 2013 | CN |
101958461 | Nov 2013 | CN |
103700442 | Apr 2014 | CN |
103943925 | Jul 2014 | CN |
104052742 | Sep 2014 | CN |
104064844 | Sep 2014 | CN |
203813973 | Sep 2014 | CN |
104091987 | Oct 2014 | CN |
104092028 | Oct 2014 | CN |
203931626 | Nov 2014 | CN |
203950607 | Nov 2014 | CN |
104181552 | Dec 2014 | CN |
204538183 | Aug 2015 | CN |
102412442 | Oct 2015 | CN |
204760545 | Nov 2015 | CN |
105262551 | Jan 2016 | CN |
205265924 | Jan 2016 | CN |
105359572 | Feb 2016 | CN |
105453340 | Mar 2016 | CN |
105594138 | May 2016 | CN |
104162995 | Jun 2016 | CN |
105813193 | Jul 2016 | CN |
3504546 | Aug 1986 | DE |
3533204 | Mar 1987 | DE |
3533211 | Mar 1987 | DE |
3827956 | Mar 1989 | DE |
4027367 | Jul 1991 | DE |
4225595 | Sep 1993 | DE |
19501448 | Jul 1996 | DE |
19939832 | Feb 2001 | DE |
10043761 | Nov 2002 | DE |
102004025356 | Sep 2005 | DE |
69732676 | Apr 2006 | DE |
4337835 | May 2008 | DE |
102007049914 | Apr 2009 | DE |
102012004998 | Jul 2013 | DE |
102012203816 | Sep 2013 | DE |
0102846 | Mar 1984 | EP |
0110478 | Jun 1984 | EP |
0136818 | Apr 1985 | EP |
0280379 | Aug 1988 | EP |
0330303 | Aug 1989 | EP |
0331248 | Sep 1989 | EP |
0342149 | Nov 1989 | EP |
0391719 | Apr 1990 | EP |
425979 | May 1991 | EP |
0485467 | May 1992 | EP |
272785 | Feb 1994 | EP |
0651487 | Oct 1994 | EP |
0371660 | Apr 1996 | EP |
0756392 | Jan 1997 | EP |
834722 | Apr 1998 | EP |
0840464 | May 1998 | EP |
0871241 | Oct 1998 | EP |
0890132 | Jan 1999 | EP |
755092 | Apr 1999 | EP |
0896380 | Oct 1999 | EP |
676648 | May 2000 | EP |
1085599 | Mar 2001 | EP |
0907983 | Jun 2001 | EP |
0756786 | Aug 2001 | EP |
1127283 | Aug 2001 | EP |
1129550 | Sep 2001 | EP |
1184930 | Mar 2002 | EP |
1195847 | Apr 2002 | EP |
1237303 | Sep 2002 | EP |
1296146 | Mar 2003 | EP |
0772061 | Jul 2003 | EP |
1346431 | Sep 2003 | EP |
1249056 | Jan 2004 | EP |
1376755 | Jan 2004 | EP |
1401048 | Mar 2004 | EP |
1454422 | Sep 2004 | EP |
1488397 | Dec 2004 | EP |
1509970 | Mar 2005 | EP |
1371108 | Jun 2005 | EP |
1550327 | Jul 2005 | EP |
1341255 | Aug 2005 | EP |
1577687 | Sep 2005 | EP |
1312135 | Nov 2005 | EP |
1608110 | Dec 2005 | EP |
1624685 | Feb 2006 | EP |
1642468 | Apr 2006 | EP |
1647072 | Apr 2006 | EP |
1608110 | Oct 2006 | EP |
1793508 | Jun 2007 | EP |
1842265 | Oct 2007 | EP |
1898532 | Mar 2008 | EP |
1930982 | Jun 2008 | EP |
1953940 | Aug 2008 | EP |
1696509 | Oct 2009 | EP |
2159749 | Mar 2010 | EP |
2165550 | Mar 2010 | EP |
1166599 | May 2010 | EP |
1807950 | Jan 2011 | EP |
2404347 | Jan 2012 | EP |
2472671 | Jul 2012 | EP |
1817855 | Jan 2013 | EP |
2568528 | Mar 2013 | EP |
2302735 | Sep 2013 | EP |
2472737 | Sep 2013 | EP |
2640115 | Sep 2013 | EP |
2016643 | Jul 2014 | EP |
2760081 | Jul 2014 | EP |
2804259 | Nov 2014 | EP |
2507939 | Dec 2014 | EP |
2680452 | Jan 2015 | EP |
2838155 | Feb 2015 | EP |
2846480 | Mar 2015 | EP |
2849524 | Mar 2015 | EP |
2850695 | Mar 2015 | EP |
2853902 | Apr 2015 | EP |
2854361 | Apr 2015 | EP |
2870802 | May 2015 | EP |
2710400 | Jun 2015 | EP |
3076482 | Oct 2016 | EP |
2119804 | Aug 1972 | FR |
2214161 | Aug 1974 | FR |
2416562 | Aug 1979 | FR |
2583226 | Dec 1986 | FR |
2691602 | Nov 1993 | FR |
2849728 | Jul 2004 | FR |
2841387 | Apr 2006 | FR |
2893717 | May 2007 | FR |
2946466 | Mar 2012 | FR |
2986376 | Oct 2014 | FR |
3034203 | Sep 2016 | FR |
175489 | Feb 1922 | GB |
462804 | Mar 1937 | GB |
529290 | Nov 1940 | GB |
603119 | Oct 1945 | GB |
589603 | Jun 1947 | GB |
640181 | Jul 1950 | GB |
663166 | Dec 1951 | GB |
667290 | Feb 1952 | GB |
668827 | Mar 1952 | GB |
682115 | Nov 1952 | GB |
682817 | Nov 1952 | GB |
731473 | Jun 1955 | GB |
746111 | Mar 1956 | GB |
751153 | Jun 1956 | GB |
767506 | Feb 1957 | GB |
835976 | Jun 1960 | GB |
845492 | Aug 1960 | GB |
859951 | Jan 1961 | GB |
889856 | Feb 1962 | GB |
905417 | Sep 1962 | GB |
993561 | May 1965 | GB |
1004318 | Sep 1965 | GB |
1076772 | Jul 1967 | GB |
1141390 | Jan 1969 | GB |
1298387 | Nov 1972 | GB |
1383549 | Feb 1974 | GB |
1370669 | Oct 1974 | GB |
1422956 | Jan 1976 | GB |
1424351 | Feb 1976 | GB |
1468310 | Mar 1977 | GB |
1469840 | Apr 1977 | GB |
1527228 | Oct 1978 | GB |
2010528 | Jun 1979 | GB |
2045055 | Oct 1980 | GB |
1580627 | Dec 1980 | GB |
1584193 | Feb 1981 | GB |
2227369 | Jul 1990 | GB |
2247990 | Mar 1992 | GB |
2368468 | May 2002 | GB |
2362472 | Oct 2003 | GB |
2393370 | Mar 2004 | GB |
2394364 | Jun 2005 | GB |
2414862 | Dec 2005 | GB |
2411554 | Jan 2006 | GB |
705192 | Apr 2007 | GB |
714974 | Sep 2007 | GB |
718597 | Oct 2007 | GB |
2474037 | Apr 2011 | GB |
2476787 | Jul 2011 | GB |
2474605 | Sep 2011 | GB |
2485355 | May 2012 | GB |
2481715 | Jan 2014 | GB |
2507269 | Apr 2014 | GB |
2476149 | Jul 2014 | GB |
2532207 | May 2016 | GB |
261253 | Jun 2014 | IN |
7352CHENP2015 | Jul 2016 | IN |
201647015348 | Aug 2016 | IN |
S50109642 | Sep 1975 | JP |
55124303 | Sep 1980 | JP |
55138902 | Oct 1980 | JP |
574601 | Jan 1982 | JP |
61178682 | Nov 1986 | JP |
61260702 | Nov 1986 | JP |
62110303 | Jul 1987 | JP |
62190903 | Aug 1987 | JP |
02214307 | Aug 1990 | JP |
03167906 | Jul 1991 | JP |
0653894 | Aug 1991 | JP |
04369905 | Dec 1992 | JP |
3001844 | Sep 1994 | JP |
077769 | Jan 1995 | JP |
7212126 | Nov 1995 | JP |
0829545 | Feb 1996 | JP |
08167810 | Jun 1996 | JP |
08196022 | Jul 1996 | JP |
08316918 | Nov 1996 | JP |
2595339 | Apr 1997 | JP |
2639531 | Aug 1997 | JP |
10206183 | Aug 1998 | JP |
10271071 | Oct 1998 | JP |
116928 | Jan 1999 | JP |
1114749 | Jan 1999 | JP |
11239085 | Aug 1999 | JP |
11313022 | Nov 1999 | JP |
2000077889 | Mar 2000 | JP |
2000216623 | Aug 2000 | JP |
2000244238 | Sep 2000 | JP |
2001217634 | Aug 2001 | JP |
2002029247 | Jan 2002 | JP |
2002236174 | Aug 2002 | JP |
200328219 | Jan 2003 | JP |
2003008336 | Jan 2003 | JP |
2003057464 | Feb 2003 | JP |
2003511677 | Mar 2003 | JP |
3411428 | Jun 2003 | JP |
2003324309 | Nov 2003 | JP |
3480153 | Dec 2003 | JP |
2003344883 | Dec 2003 | JP |
2004521379 | Jul 2004 | JP |
2004253853 | Sep 2004 | JP |
2004274656 | Sep 2004 | JP |
2004297107 | Oct 2004 | JP |
2004304659 | Oct 2004 | JP |
2005110231 | Apr 2005 | JP |
2005182469 | Jul 2005 | JP |
3734975 | Jan 2006 | JP |
2006153878 | Jun 2006 | JP |
2006163886 | Jun 2006 | JP |
2006166399 | Jun 2006 | JP |
2007042009 | Feb 2007 | JP |
2007072945 | Mar 2007 | JP |
3938315 | Jun 2007 | JP |
2007174017 | Jul 2007 | JP |
2007259001 | Oct 2007 | JP |
4025674 | Dec 2007 | JP |
2008017263 | Jan 2008 | JP |
2008021483 | Jan 2008 | JP |
4072280 | Apr 2008 | JP |
4142062 | Aug 2008 | JP |
2008209965 | Sep 2008 | JP |
2008218362 | Sep 2008 | JP |
2009004986 | Jan 2009 | JP |
4252573 | Apr 2009 | JP |
4259760 | Apr 2009 | JP |
2009124229 | Jun 2009 | JP |
2010045471 | Feb 2010 | JP |
2010192992 | Sep 2010 | JP |
2010541468 | Dec 2010 | JP |
2011160446 | Aug 2011 | JP |
2012058162 | Mar 2012 | JP |
2012090242 | May 2012 | JP |
2012175680 | Sep 2012 | JP |
2012205104 | Oct 2012 | JP |
2012248035 | Dec 2012 | JP |
2013046412 | Mar 2013 | JP |
2013110503 | Jun 2013 | JP |
5230779 | Jul 2013 | JP |
2014045237 | Mar 2014 | JP |
5475475 | Apr 2014 | JP |
5497348 | May 2014 | JP |
5618072 | Nov 2014 | JP |
2015095520 | May 2015 | JP |
2015188174 | Oct 2015 | JP |
20000074034 | Dec 2000 | KR |
20020091917 | Dec 2002 | KR |
100624049 | Sep 2006 | KR |
200425873 | Sep 2006 | KR |
100636388 | Oct 2006 | KR |
100725002 | Jun 2007 | KR |
100849702 | Jul 2008 | KR |
100916077 | Aug 2009 | KR |
100952976 | Apr 2010 | KR |
100989064 | Oct 2010 | KR |
101060584 | Aug 2011 | KR |
101070364 | Sep 2011 | KR |
101212354 | Dec 2012 | KR |
101259715 | Apr 2013 | KR |
101288770 | Jul 2013 | KR |
20140104097 | Aug 2014 | KR |
101435538 | Sep 2014 | KR |
101447809 | Oct 2014 | KR |
20150087455 | Jul 2015 | KR |
101549622 | Sep 2015 | KR |
200479199 | Dec 2015 | KR |
101586236 | Jan 2016 | KR |
101606803 | Jan 2016 | KR |
101607420 | Mar 2016 | KR |
69072 | Jan 1945 | NL |
2129746 | Apr 1999 | RU |
2432647 | Oct 2011 | RU |
201537432 | Oct 2015 | TW |
8301711 | May 1983 | WO |
9116770 | Oct 1991 | WO |
9210014 | Jun 1992 | WO |
9323928 | Nov 1993 | WO |
9424467 | Oct 1994 | WO |
9523440 | Aug 1995 | WO |
9529537 | Nov 1995 | WO |
199529537 | Nov 1995 | WO |
9603801 | Feb 1996 | WO |
199619089 | Jun 1996 | WO |
9639729 | Dec 1996 | WO |
WO 9641157 | Dec 1996 | WO |
9735387 | Sep 1997 | WO |
9737445 | Oct 1997 | WO |
9829853 | Jul 1998 | WO |
9859254 | Dec 1998 | WO |
WO 9857207 | Dec 1998 | WO |
9923848 | May 1999 | WO |
9948230 | Sep 1999 | WO |
199945310 | Sep 1999 | WO |
9967903 | Dec 1999 | WO |
0070891 | Nov 2000 | WO |
200074428 | Dec 2000 | WO |
2001014985 | Mar 2001 | WO |
0128159 | Apr 2001 | WO |
0131746 | May 2001 | WO |
0145206 | Jun 2001 | WO |
0192910 | Dec 2001 | WO |
02061467 | Aug 2002 | WO |
02061971 | Aug 2002 | WO |
03005629 | Jan 2003 | WO |
2003009083 | Jan 2003 | WO |
03012614 | Feb 2003 | WO |
200326166 | Mar 2003 | WO |
03026462 | Apr 2003 | WO |
03044981 | May 2003 | WO |
2003088418 | Oct 2003 | WO |
03099740 | Dec 2003 | WO |
2004011995 | Feb 2004 | WO |
2004038891 | May 2004 | WO |
2004051804 | Jun 2004 | WO |
2004051804 | Jun 2004 | WO |
2004054159 | Jun 2004 | WO |
2004077746 | Sep 2004 | WO |
2005015686 | Feb 2005 | WO |
2005072469 | Aug 2005 | WO |
2006012610 | Feb 2006 | WO |
2006061865 | Jun 2006 | WO |
2006085804 | Aug 2006 | WO |
2006102419 | Sep 2006 | WO |
2006111809 | Oct 2006 | WO |
2006116396 | Nov 2006 | WO |
2006122041 | Nov 2006 | WO |
2006125279 | Nov 2006 | WO |
2007000777 | Feb 2007 | WO |
2006050331 | Mar 2007 | WO |
2007031435 | Mar 2007 | WO |
2007071797 | Jun 2007 | WO |
2007148097 | Dec 2007 | WO |
2008003939 | Jan 2008 | WO |
2007094944 | Mar 2008 | WO |
2007149746 | Apr 2008 | WO |
2008044062 | Apr 2008 | WO |
2008055084 | May 2008 | WO |
2008061107 | May 2008 | WO |
2008069358 | Jun 2008 | WO |
2008070957 | Jun 2008 | WO |
2008102987 | Aug 2008 | WO |
2008117973 | Oct 2008 | WO |
2008155769 | Dec 2008 | WO |
2009014704 | Jan 2009 | WO |
2007098061 | Feb 2009 | WO |
2009031794 | Mar 2009 | WO |
2009035285 | Mar 2009 | WO |
2009090602 | Jul 2009 | WO |
2009123404 | Oct 2009 | WO |
2009131316 | Oct 2009 | WO |
2010017549 | Feb 2010 | WO |
2010050892 | May 2010 | WO |
2010147806 | Dec 2010 | WO |
2011006210 | Jan 2011 | WO |
2011032605 | Mar 2011 | WO |
2011085650 | Jul 2011 | WO |
2011137793 | Nov 2011 | WO |
2012007831 | Jan 2012 | WO |
2012038816 | Mar 2012 | WO |
2012050069 | Apr 2012 | WO |
2012064333 | May 2012 | WO |
2012113219 | Aug 2012 | WO |
2012171205 | Dec 2012 | WO |
2012172565 | Dec 2012 | WO |
2013013162 | Jan 2013 | WO |
2013013465 | Jan 2013 | WO |
2013017822 | Feb 2013 | WO |
2013023226 | Feb 2013 | WO |
2013028197 | Feb 2013 | WO |
2013035110 | Mar 2013 | WO |
2013073548 | May 2013 | WO |
2013073548 | May 2013 | WO |
2013100912 | Jul 2013 | WO |
2013112353 | Aug 2013 | WO |
2013115802 | Aug 2013 | WO |
2013121682 | Aug 2013 | WO |
2013123445 | Aug 2013 | WO |
2013138627 | Sep 2013 | WO |
2014045236 | Sep 2013 | WO |
2013136213 | Sep 2013 | WO |
2013138627 | Sep 2013 | WO |
2013157978 | Oct 2013 | WO |
2013172502 | Nov 2013 | WO |
2014018434 | Jan 2014 | WO |
2014011438 | Jan 2014 | WO |
2014018434 | Jan 2014 | WO |
2014065952 | May 2014 | WO |
2014069941 | May 2014 | WO |
2014083500 | Jun 2014 | WO |
2014092644 | Jun 2014 | WO |
2014094559 | Jun 2014 | WO |
2014096868 | Jun 2014 | WO |
2014099340 | Jun 2014 | WO |
2013076499 | Jul 2014 | WO |
2014112994 | Jul 2014 | WO |
2014128253 | Aug 2014 | WO |
2014137546 | Sep 2014 | WO |
2014145862 | Sep 2014 | WO |
2014147002 | Sep 2014 | WO |
2014197926 | Dec 2014 | WO |
2015002658 | Jan 2015 | WO |
2015006636 | Jan 2015 | WO |
2015008442 | Jan 2015 | WO |
2015024006 | Feb 2015 | WO |
2015027033 | Feb 2015 | WO |
2015035463 | Mar 2015 | WO |
2015055230 | Apr 2015 | WO |
2015052478 | Apr 2015 | WO |
2015052480 | Apr 2015 | WO |
2015069090 | May 2015 | WO |
2015069431 | May 2015 | WO |
2015077644 | May 2015 | WO |
2015088650 | Jun 2015 | WO |
2015120626 | Aug 2015 | WO |
2015123623 | Aug 2015 | WO |
2015132618 | Sep 2015 | WO |
2015167566 | Nov 2015 | WO |
2015175054 | Nov 2015 | WO |
2015197580 | Dec 2015 | WO |
2016003291 | Jan 2016 | WO |
2016004003 | Jan 2016 | WO |
2016009402 | Jan 2016 | WO |
2016012889 | Jan 2016 | WO |
2016027007 | Feb 2016 | WO |
2016028767 | Feb 2016 | WO |
2016043949 | Mar 2016 | WO |
2016032592 | Mar 2016 | WO |
2016036951 | Mar 2016 | WO |
2016043949 | Mar 2016 | WO |
2016048214 | Mar 2016 | WO |
2016048257 | Mar 2016 | WO |
2016064502 | Apr 2016 | WO |
2016053572 | Apr 2016 | WO |
2016053573 | Apr 2016 | WO |
2016060761 | Apr 2016 | WO |
2016060762 | Apr 2016 | WO |
2016061021 | Apr 2016 | WO |
2016064505 | Apr 2016 | WO |
2016064516 | Apr 2016 | WO |
2016064700 | Apr 2016 | WO |
2016073072 | May 2016 | WO |
2016081125 | May 2016 | WO |
2016081128 | May 2016 | WO |
2016081129 | May 2016 | WO |
2016081134 | May 2016 | WO |
2016081136 | May 2016 | WO |
2015090382 | Jun 2016 | WO |
2016086306 | Jun 2016 | WO |
2016089491 | Jun 2016 | WO |
2016089492 | Jun 2016 | WO |
2016096029 | Jun 2016 | WO |
2016125161 | Aug 2016 | WO |
2016133509 | Aug 2016 | WO |
2016122409 | Aug 2016 | WO |
2016137982 | Sep 2016 | WO |
2016145411 | Sep 2016 | WO |
2016161637 | Oct 2016 | WO |
2016169058 | Oct 2016 | WO |
2016171907 | Oct 2016 | WO |
2016176030 | Nov 2016 | WO |
2016200492 | Dec 2016 | WO |
2016200579 | Dec 2016 | WO |
Entry |
---|
Sommerfeld, A., “On the propagation of electrodynamic waves along a wire”, Annals of Physics and Chemistry New Edition, vol. 67, No. 2, 1899, 72 pages. |
“An Improved Solid Dielectric Lens Impulse Radiating Antenna,” SBIR/STTR, DoD, sbir.gov, 2004. |
“Cband & L/Sband Telemetry Horn Antennas,” mWAVE, mwavellc.com, Jul. 6, 2012, http://www.mwavellc.com/custom -Band-LS--BandTelemetryHornAntennas.php. |
“Dielectric Antenna,” Microwave Technologies, Ind., microwavetechnologiesinc.co.in http://www.microwavetechnologiesinc.co.in/microwavecommunicationlabproducts. html#dielectricantenna, May 21, 2015. |
“Horn Antennas,” Steatite QPar Antennas, steatiteqparantennas.co.uk, http://www.steatitegparantennas.co.uk/products hornantennas.html? http://www.steatiteqparantennas.co.uk/consultancy/customhornantennas/, May 21, 2015 |
“How is ELine Different?,” ELine Corridor Systems, corridor.biz http://www.corridor.biz/ELine_is_different.html, Apr. 23, 2015. |
“Power Communication,” Communication Power Solutions, Inc., cpspower.biz, http://www.cpspower.biz/services/powercommunications/, Oct. 2013. |
“Power Line Communications,” Atmel®, atmel.com http://www.atmel.com/products/smartenergy/powerlinecommunications/default.aspx, 2015. |
“Power line communications: An overview Part I.” King Fahd University of Petroleum and Minerals, Dhahran, KSA, 2008. |
“Powerline Communication,” Cypress Perform, cypress.com http://www.cypress.com/?id=2330, Apr. 23, 2015. |
“Product Abstract—Program on Technology Innovation: Study on the Integration of High Temperature Superconducting DC Cables Within the Eastern and West urn North American Power Grids.” EPRI—Electronic Power Research Institute, epri.com, Product ID:10203, Nov. 25, 2009. |
“Products: GSM Mircro Repeater.” L-Tel: Quanzhou L-Tel Communication Equipment Co., Ltd., l-tel.com, Apr. 24, 2015. |
“About Firelight Media Group”, http://www. insu ra ncetechnologies.com/Products/Prod ucts_firelight_overview .shtml, Firelight®. Insurance Technologies, LLC,, Apr. 19, 2015. |
“Asahi Multi-Core Fiber Cable”, Industrial Fiber optics, i-fiberoptics.com http://i-fiberoptics.com/m u lti-core-fi ber-ca ble. ph p, Apr. 26, 2015. |
“Denso”, Winn & Coales (Denso) Ltd. UK, denso.net, http://www.denso.net/voidfiller/voidpump.htm, 2015, 1 page. |
“Electronic Business Fulfillment FireLight®”, Firelight Media Group LLC, firelightmedia.net http://www .firelightmedia .net/fmg/index.php/home, Apr. 19, 2015, 2 pages. |
“Elliptical Polarization”, “Elliptical Polarization” Wikipedia, <http://en.wikipedia.org/wiki/Elliptical_polarization>, Apr. 21, 2015, 3 pgs. |
“How to Use STUF”, STUF Page Link Info, crossdevices.com, http://www.crossdevices.com/cross_devices_010.htm, 2015, 1 page. |
“Network technology”, nbnTM, nbnco.com.au, Jun. 27, 2014. |
“Powerline—Juice Up Your Network With Powerline”, Netgear®, netgear.com http://www.netgear.com/home/products/networking/powerline/, Apr. 21, 2015, 3 pages. |
“Resilience to Smart Meter Disconnect Attacks”, ADSC Illinois at Singapore PTE, Ltd., publish.illinois.edu http://publish.illinois.edu/integrativesecurityassessment/resiliencetosmartmeterdisconnectattacks/, 2015. |
“Tapered waveguide”, Lumerical Solutions, Inc., docs.lumerical.com, 2010. |
“Tapered Waveguides Improve Fiber Light Coupling Efficiency”, Tech Briefs, techbriefs.com, Jan. 1, 2006, Molex Inc., Downers Grove, Illinois and KiloLambda Technologies Ltd., Tel Aviv, Israel. |
Akiba, Shigeyuki et al., “Photonic Architecture for Beam Forming of RF Phased Array Antenna”, Optical Fiber Communication Conference. Optical Society of America, 2014. |
Alam, M.N. et al., “Novel surface wave exciters for power line fault detection and communications.” Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on. IEEE, 2011. |
Ali, Muhammad Q. et al., “Randomizing AMI configuration for proactive defense in smart grid”, Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference on. IEEE, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6688027, 2013. |
Angove, Alex , “Direct Bury Duct Assemblies, MPB 302 3+- Ribbonet Microducts”, Ericsson, archive.ericsson.net, Jul. 30, 2014. |
Angove, Alex , “How the NBN Differs from ADSL2+, Cable and Wireless”, Whistle Out, whistleout.com.au, Jul. 30, 2014. |
Arage, Alebel et al., “Measurement of wet antenna effects on millimetre wave propagation”, Radar, 2006 IEEE Conference on IEEE, 2006. |
Asadallahi, Sina et al., “Performance comparison of CSMA/CA Advanced Infrared (Alr) and a new pointtomultipoint optical MAC protocol.” Wireless Communications and Mobile Computing Conference (IWCMC), 2012 8th International. IEEE, 2012. |
Atwater, Harry A. , “The promise of plasmonics.” Scientific American 296.4 (2007): 56-62. |
Barron, Ashleigh L. , “Integrated Multicore Fibre Devices for Optical Trapping”, Diss. Heriot-Watt University, 2014, 11-15. |
Beal, J.C. et al., “Coaxial-slot surface-wave launcher”, Electronics Letters 4.25 (1968): 557559. |
Bing, Benny , “Ubiquitous Broadband Access Networks with Peer-to-Peer Application Support”, Evolving the Access Network, 2006, 27-36. |
Bock, James et al., “Optical coupling.” Journal of Physics: Conference Series. vol. 155. No. 1. IOP Publishing, 2009. |
Bowen, Leland H. et al., “A Solid Dielectric Lens Impulse Radiating Antenna with High Dielectric Constant Surrounded by a Cylindrical Shroud,” Sensor and Simulation Note 498, Apr. 2005. |
Bridges, Greg E. et al., “Plane wave coupling to multiple conductor transmission lines above a lossy earth”, Compatibility, IEEE Transactions on 31.1, 1989, 21-33. |
Brooke, Gary H. , Properties of surface waveguides with discontinuities and perturbations in cross-section. Diss. University of British Columbia, 1977. |
Brown, J. et al., “The launching of radial cylindrical surface waves by a circumferential slot”, Proceedings of the IEE Part B: Radio and Electronic Engineering 106.26 (1959): 123128. |
Crane, Robert K. , “Analysis of the effects of water on the ACTS propagation terminal antenna”, Antennas and Propagation, IEEE Transactions on 50.7 (2002): 954965. |
De Sabata, Aldo et al., “Universitatea Politehnica”, din Timişoara Facultatea de Electronic{hacek over (a)} şi Telecomunicaţii, 2012. |
Doane, J.L. et al., “Oversized rectangular waveguides with modefree bends and twists for broadband applications”, Microwave Journal 32(3), 1989, 153-160. |
Dostert, Klaus, “Frequency-hopping spread-spectrum modulation for digital communications over electrical power lines.” Selected Areas in Communications, IEEE Journal on 8.4 (1990): 700-710. |
Dragoo, R.E. et al., “Fiber Optic Data Bus for the AN/GYQ21(V).” Harris Corp, U.S. Communications Syst. Div. Chart, Microcopy Resolution Test, 1980. |
Dutton, Harry Jr. , “Understanding Optical Communications”, International Technical Support Organization, SG24-5230-00, Sep. 1998. |
Erickson, Katherine, “Conductive cylindrical surface waveguides”, 2012. |
Eskelinen, P. , “A low-cost microwave rotary joint,” International Radar Conference, Oct. 13-17, 2014, p. 1-4. |
Feng, Taiming et al., “Design of a survivable hybrid wireless-optical broadband-access network”, Journal of Optical Communications and Networking 3.5, 2011, 458-464. |
Freyer, Dan , “Combating the Challenges of Ka-Band Signal Degradation”, SatMagazine, satmagzine.com, Sep. 2014. |
Fromm, W. et al., “A new microwave rotary joint,” 1958 IRE International Convention Record, Mar. 21-25, 1966, 6:78-82. |
Ghazisaidi, Navid et al., “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks”, Reliability, IEEE Transactions on 60.2, 2011, 479-492. |
Gomes, Nathan J. et al., “Radio-over-fiber transport for the support of wireless broadband services”, Journal of Optical Networking 8.2 (2009): 156-178. |
Gonthier, François et al., “Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method simulations”, JOSA B 8.2 (1991): 416421. |
Haroun, Ibrahim et al., “WLANs meet fiber optics—Evaluating 802.11 a WLANs over fiber optics links”, RF Des. Mag (2003): 36-39. |
Hassan, Karim , “Fabrication and characterization of thermo-plasmonic routers for telecom applications”, Diss. Univ. de Bourgogne, 2014. |
Hoss, R.J. et al., “Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable”, No. ITT-80-03-078. ITT Electrooptical Products Div Roanoke VA, 1980. |
Ippolito, Louis J. , “Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design”, 1989. |
Jackson, Mark , “Timico CTO Hit by Slow FTTC Broadband Speeds After Copper Corrosion”, ISP review, ispreview.co.uk, Mar. 5, 2013. |
Jaeger, Raymond et al., “Radiation Performance of Germanium Phosphosilicate Optical Fibers.” RADC-TR-81-69: Final Technical Report, Galileo Electro-Optical Corp, (May 1981). |
James, J.R. et al., “Investigations and Comparisons of New Types of Millimetre-Wave Planar Arrays Using Microstrip and Dielectric Structures”, Royal Military Coll of Science Shrivenham (England), 1985. |
Kang, , “Chapter 6: Array Antennas,” IHS Engineering360, globalspec.com, http://www.globalspec.com/reference/75109/203279/chapter-6-array-antennas, Apr. 22, 2015. |
Kikuchi, H. et al., “Hybrid transmission mode of Goubau lines”,J.Inst.Electr.Comm.Engrs., Japan,vol. 43, pp. 39-45,1960. |
Kirkham, H. et al., “Power system applications of fiber optics (Jet Propulsion Lab.” JPL Publication 84-28, Electric Energy Systems Division, U.S. DoE, p. 180, (1984). |
Koshiba, Masanori et al., “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers”, Photonics Journal, IEEE 4.5, 2012, 1987-1995. |
Kroon, Barnard et al., “Steady state RF fingerprinting for identity verification: one class classifier versus customized ensemble.” Artificial Intelligence and Cognitive Science. Springer Berlin Heidelberg, 2010. 198206. |
Kroyer, Thomas , “A Waveguide High Order Mode Reflectometer for the Large Hadron Collider Beam-pipe”, Diss. TU Wien, 2003. |
Lappgroupusa, “Selection of Number of Cable Cores With Emphasis on Sizing Parameters”, Industrial Cable & Connector Technology News, lappconnect.blogspot.com, http://lappconnect.blogspot.com/2014_10_01_archive.html, Oct. 30, 2014. |
Leech, Jamie et al., “Experimental investigation of a low-cost, high performance focal-plane horn array.” Terahertz Science and Technology, IEEE Transactions on 2.1 (2012): 61-70. |
Li, Xiaowei et al., “Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmonpolariton waveguide”, Optics express 19.7 (2011): 65416548. |
Lier, E. et al., “Simple hybrid mode horn feed loaded with a dielectric cone,” Electronics Letters 21.13 (1985): 563564. |
Lim, Christina et al., “Fiber-wireless networks and subsystem technologies”, Lightwave Technology, Journal of 28.4 (2010): 390-405. |
Luo, Qi et al., “Circularly polarized antennas”, John Wiley & Sons, 2013. |
Mahato, Suvranshu Sekhar , Studies on an Infrared Sensor Based Wireless Mesh Network. Diss. 2010. |
Maier, Martin et al., “The audacity of fiberwireless (FiWi) networks”, AccessNets. Springer Berlin Heidelberg, 2009. 16-35. |
Marcatili, E.A. et al., “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers”, Bell System Technical Journal 43(4), 1964, 1783-1809. |
McAllister, M.W. et al., “Resonant hemispherical dielectric antenna,” Electronics Letters 20.16 (1984): 657659. |
Meng, H. et al., “A transmission line model for high-frequency power line communication channel”, Power System Technology, PowerCon 2002. International Conference on. vol. 2. IEEE, 2002. http:/ /infocom. uniroma 1.it/ ″″enzobac/MengChen02. pdf, 2002. |
Menon, S.S. et al., “Propagation characteristics of guided modes in a solid dielectric pyramidal horn,” Proceedings of the 2012 International Conference on Communication Systems and Network Technologies. IEEE Computer Society, 2012. |
Mitchell, John E. , “Integrated Wireless Backhaul Over Optical Access Networks”, Journal of Lightwave Technology 32.20, 2014, 3373-3382. |
Miyagi, M. , “Bending losses in hollow and dielectric tube leaky waveguides”, Applied Optics 20(7), 1981, 1221-1229. |
Moisan, M. et al., “Plasma sources based on the propagation of electromagnetic surface waves”, Journal of Physics D: Applied Physics 24.7 (1991): 1025. |
Morse, T.F. , “Research Support for the Laboratory for Lightwave Technology.” Brown Univ Providence RI Div of Engineering, 1992. |
Mruk, Joseph Rene , “Wideband monolithically integrated frontend subsystems and components”, Diss. University of Colorado, 2011. |
Nachiketh, P. et al., “Optimizing public-key encryption for wireless clients”, Proceedings of the IEEE International Conference on Communications (ICC 2002). No. 1. 2002. |
Narayanan, Arvind , “Fingerprinting of RFID Tags and HighTech Stalking.” 33 Bits of Entropy, 33bits.org, Oct. 4, 2011. |
Nibarger, John P. , “An 84 pixel all-silicon corrugated feedhorn for CMB measurements.” Journal of Low Temperature Physics 167.3-4 (2012): 522-527. |
Nuvotronics, “PolyStrata—Phased Arrays & Antennas”, Nuvotronics, nuvotronics.com http://www.nuvotronics.com/antennas. php, Apr. 26, 2015. |
Olver, A.D. et al., “Dielectric cone loaded horn antennas,” Microwaves, Antennas and Propagation, IEE Proceedings H. vol. 135. No. 3. IET, 1988. |
Perkons, Alfred R. et al., “TM surface-wave power combining by a planar active-lens amplifier”, Microwave Theory and Techniques, IEEE Transactions on 46.6 (1998): 775783. |
Pham, Tien-Thang et al., “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation”, Photonics Journal, IEEE 3.1, 2011, 13-19. |
Rahim, S. K. A. et al., “Measurement of wet antenna losses on 26 GHz terrestrial microwave link in Malaysia”, Wireless Personal Communications 64.2 (2012): 225231. |
Rambabu, K. et al., “Compact single-channel rotary joint using ridged waveguide sections for phase adjustment,” IEEE Transactions on Microwave Theory and Techniques (Aug. 2003) 51(8):1982-1986. |
Raychem, , “Wire and Cable”, Dimensions 2 (1996): 1. |
Reynet, Olivier et al., “Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites.” Physical Review B66.9 (2002): 094412. |
Rouse, Margaret , “Transport Layer Security (TLS)”, TechTarget, searchsecurity.techtarget.com, Jul. 2006. |
Sagues, Mikel et al., “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.” Optics express 16.1 (2008): 295-303. |
Salema, Carlos et al., “Solid dielectric horn antennas,” Artech House Publishers, 1998, Amazon. |
Sarafi, A. et al., “Hybrid wireless-broadband over power lines: A promising broadband solution in rural areas.” Communications Magazine, IEEE 47.11 (2009): 140-147. |
Shafi, Mansoor et al., “Advances in Propagation Modeling for Wireless Systems”, EURASIP Journal on Wireless Communications and Networking. Hindawi Publishing Corp, 2009, p. 5. |
Shindo, Shuichi et al., “Attenuation measurement of cylindrical dielectric-rod waveguide.” Electronics Letters 12.5 (1976): 117-118. |
Shumate, Paul W. et al., “Evolution of fiber in the residential loop plant.” IEEE Communications Magazine 29.3 (1991): 68-74. |
Strieby, M.E. et al., “Television transmission over wire lines.” American Institute of Electrical Engineers, Transactions of the 60.12 (1941): 1090-1096. |
Taboada, John M. et al., “Thermo-optically tuned cascaded polymer waveguide taps.” Applied physics letters 75.2 (1999): 163-165. |
Valladares, Cindy , “20 Critical Security Controls: Control 7—Wireless Device Control”, Tripwire —The State of Security, tripwire.com, Mar. 21, 2013. |
Vogelgesang, Ralf et al., “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM)”, physica status solidi (b) 245.10 (2008): 22552260. |
Wagter, Herman , “Fiber-to-the-X: the economics of last-mile fiber”, ARS Technica, arstechnica.com,, Mar. 31, 2010. |
Wake, David et al., “Radio over fiber link design for next generation wireless systems”, Lightwave Technology, Journal of28.16 (2010): 2456-2464. |
Wang, Jing et al., “The influence of optical fiber bundle parameters on the transmission of laser speckle patterns”, Optics express 22.8, 2014, 8908-8918. |
Wilkins, George A. , “Fiber Optic Telemetry in Ocean Cable Systems”, Chapter in new edition of Handbook of Oceanographic Winch, Wire and Cable Technology, Alan H. Driscoll, Ed.,(to be published by University of Rhode Island) (1986). |
Xia, Cen et al., “Supermodes for optical transmission”, Optics express 19.17, 2011, 16653-16664. |
Yu, Shui et al., “Predicted packet padding for anonymous web browsing against traffic analysis attacks”, Information Forensics and Security, IEEE Transactions on 7.4, http://nsp.org.au/syu/papers/tifs12.pdf, 2012, 1381-1393. |
Zelby, Leon W. , “Propagation Modes on a Dielectric Coated Wire”, J. The Franklin Institute, vol. 274(2), pp. 85-97, Aug. 1962. |
Zheng, Zhu et al., “Efficient coupling of propagating broadband terahertz radial beams to metal wires”, Optics express 21.9 (2013):1064210650. |
“A New Approach to Outdoor DAS Network Physical Layer Using E-Line Technology”, Corridor Systems, Mar. 2011, 5 pages. |
“Cisco IP VSAT Satellite WAN Network Module for Cisco Integrated Services Routers”, http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/ip-vsatsatellite-wan-module/product_data_sheet0900aecd804bbf6f.html, Jul. 23, 2014. |
“Exacter Outage-Avoidance System”, http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001020393, Nov. 30, 2009. |
“Ipitek All-Optical Sensors”, http://www.ipitek.com/solutions-by-industry/all-optical-sensors; Jun. 2, 2014. |
“RF Sensor Node Development Platform for 6LoWPAN and 2.4 GHz Applications”, http://www.ti.com/tool/TIDM-RF-SENSORNODE, Jun. 2, 2014. |
“Wireless powerline sensor”, wikipedia.org, http://en.wikipedia.org/wiki/Wireless_powerline_sensor, 2014, 3 pages. |
Bach, Christian, “Current Sensor—Power Line Monitoring for Energy Demand Control”, Application Note 308, http://www.enocean.com/fileadmin/redaktion/pdf/app_notes/AN308_CURRENT_SENSOR_Jan09.pdf, Jan. 2009, 4 pages. |
Chiba, Jiro, “Experimental Studies of the Losses and Radiations Due to Bends in the Goubau Line”, IEEE Transactions on Microwave Theory and Techniques, Feb. 1977, 94-100. |
Chiba, Jiro , “On the Equivalent Circuit for the G-Line Above Ground”, International Wroclaw Symposium on Electromagnetic Compatibility, 1998, 78-82. |
Elmore, Glenn , “Introduction to the Propagating Wave on a Single Conductor”, www.corridor.biz, Jul. 27, 2009, 30 pages. |
Friedman, M. et al., “Low-Loss RF Transport Over Long Distances”, IEEE Transactions on Microwave Theory an Techniques, vol. 49, No. 2, Feb. 2001, 341-348. |
Izumiyama, Hidetaka et al., “Multicast over satellite”, Applications and the Internet, 2002.(SAINT 2002). Proceedings. 2002 Symposium on. IEEE, 2002. |
Jawhar, Imad et al., “A hierarchical and topological classification of linear sensor networks”, Wireless Telecommunications Symposium, WTS, IEEE, http://faculty.uaeu.ac.ae/Nader_M/papers/WTS2009.pdf, 2009, 8 pages. |
Jee, George et al., “Demonstration of the Technical Viability of PLC Systems on Medium- and Low-Voltage Lines in the United States”, Broadband is Power: Internet Access Via Power Line Networks, IEEE Communication Magazine, May 2003, 5 pages. |
Kuhn, Marc et al., “Power Line Enhanced Cooperative Wireless Communications”, IEEE Journal on Selected Areas in Communications, vol. 24, No. 7, Jul. 2006, 10 pages. |
Patel, Shwetak N. et al., “The Design and Evaluation of an End-User-Deployable, Whole House, Contactless Power Consumption Sensor”, CHI 2010: Domestic Life, Apr. 2010, 10 pages. |
Rappaport, Theodore S. et al., “Mobile's Millimeter-Wave Makeover”, Spectrum.IEEE.Org; Sep. 2014. |
Sagar, Nishant , “Powerline Communications Systems: Overview and Analysis”, Thesis, May 2011, 80 pages. |
Sarafi, Angeliki M. et al., “Hybrid Wireless-Broadband over Power Lines: A Promising Broadband Solution in Rural Areas”, IEEE Communications Magazine, Nov. 2009, 8 pages. |
Sommerfeld, A. , “Concerning the propagation of electrodynamic waves along a wire”, Annalen der Physik Und Chemie, 1899, 59 pages. |
Yang, , “Power Line Sensor Networks for Enhancing Power Line Reliability and Utilization”, Georgia Institute of Technology, https://smartech.gatech.edu/bitstream/handle/1853/41087/Yang_Yi_2011_08_phd.pdf, Apr. 26, 2011, 264 pages. |
Yang, et al., “Power line sensornet—a new concept for power grid monitoring”, IEEE Power Engineering Society General Meeting, 2006, pp. 8. |
Zhao, et al., “Energy harvesting for a wireless-monitoring system of overhead high-voltage power lines”, IET Generation, Transmission & Distribution 7, IEEE Xplore Abstract, 2013, 2 pages. |
“24 Volt D.C Flashing Light With Built-in Antenna 433Mhz, DEA+ Product Guide” Meteor electrical, meteorelectrical.com, Code: LUMY/24A, Jul. 28, 2010. |
“Boost: The world's first WI-FI extending led bulb,” Sengled, sengled.com, Dec. 2014 http://www.sengled.com/sites/default/files/field/product/downloads/manual/a01-a60_na_user_manual_20141223.pdf. |
“Examples of Cell Antennas,” RF Check®, rfcheck.com, Feb. 1, 2010 https://web.archive.org/web/20100201214318/http://www.rfcheck.com/Examplesof-Cell-Antennas.php. |
“Flashing Light : IR.Lamp,” Beninca®, beninca.com, Feb. 23, 2015. http://www.beninca.com/en/news/2015/02/23/lampeggiante-irlamp.html. |
“Identity Management,” Tuomas Aura CSE-C3400 Information Security, Aalto University, Autumn 2014, 33 pgs. |
“Integrated Radio Masts Fully camouflaged Outdoor-Wi-Fi APs in GRP-lamp poles,” Brown-iposs, brown-iposs.com, Mar. 21, 2014. |
“New Wi-Fi antenna enhances wireless coverage,” ScienceDaily®, sciencedaily.com, May 29, 2015. |
“Waveguide-fed Conical Horn,” Antenna Magus, antennamagus.com, © 2015, accessed: Aug. 2015. |
“A Dielectric Lens Antenna with Enhanced Aperture Efficiency for Industrial Radar Applications”, Computer Simulation Technology, cst.com, May 10, 2011. |
“Cloud Management”, Cisco Meraki, cisco.com, Sep. 11, 2015. |
“Decryption: Identify & Control Encrypted Traffic”, Palo Alto Networks, paloaltonetworks.com, Mar. 7, 2011. |
“Detecting and Preventing MAC Spoofing”, Detecting and Preventing MAC Spoofing | Network Access Control Solutions, infoexpress, 2014. |
“HiveManager Network Management System”, Aerohive® Networks, aerohive.com, accessed: Sep. 2015. |
“Home”, Darktrace, darktrace.com, Jul. 10, 2014. |
“mmWave Axial Choke Horn Antenna with Lens”, Feko, Sep. 24, 2013. |
“Norse Appliance™: Block attacks before they target your network, and dramatically improve the ROI on your entire security infrastructure”, norsecorp.com, 2015. |
“Out-of-Band Mgmt”, Cradle Point, cradlepoint.com, accessed: Sep. 2015. |
“Out-of-Band Security Solution”, Gigamon®, gigamon.com, Aug. 3, 2014. |
“PRO 600 Sirius XM Radio Amplified Outdoor Antenna”, Pixel Technologies, Oct. 3, 2014. |
“Product Overview: Introducing SilentDefense”, Security Matters, secmatters.com, Nov. 9, 2013. |
“Quickly identify malicious traffics: Detect”, Lancope®, lancope.com, Mar. 15, 2015. |
“Smart Out-of-Band Management”, Open Gear, opengear.com, accessed: Sep. 2015. |
Arthur, Joseph Kweku, “Improving QoS in UMTS Network in Accra Business District Using Tower-Less Towers”, IPASJ International Journal of Electrical Engineering (IIJEE), vol. 2, Issue 11, Nov. 2014. |
Bhushan, Naga, “Network densification: the dominant theme for wireless evolution into 5G”, Communications Magazine, IEEE 52.2 (2014): 82-89. |
Bruno, Joseph, “Interference Reduction in Wireless Networks”, Computing Research Topics, Computing Sciences Department, Villanova University, Nov. 14, 2007, 8 pages. |
Burkhart, Martin et al., “Does Topology Control Reduce Interference?”, Department of Computer Science, ETH Zurich, Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing, ACM, 2004, 11 pages. |
Callis, et al., “An In-Line Power Monitor for HE11 Low Loss Transmission Lines”, Proceedings of the 29th International Conference on Infrared and Millimeter Waves (IRMMW), Karlsruhe, Germany, 2004. |
Carroll, John M. et al., “Developing the Blacksburg electronic village”, Communications of the ACM 39.12 (1996): 69-74. |
Chen, Dong et al., “A trust management model based on fuzzy reputation for internet of things”, Computer Science and Information Systems 8.4 (2011): 12071228. |
Chen, Yingying , “Detecting and Localizing Wireless Spoofing Attacks”, Sensor, Mesh and Ad Hoc Communications and Networks, 2007, SECON'07. 4th Annual IEEE Communications Society Conference on IEEE, 2007, 10 pages. |
Cimini, Carlos Alberto et al., “Temperature profile of progressive damaged overhead electrical conductors”, Journal of Electrical Power & Energy Systems 49 (2013): 280-286. |
Covington, Michael J. et al., “Threat implications of the internet of things”, Cyber Conflict (CyCon), 2013 5th International Conference on. IEEE, 2013. |
Dini, Gianluca et al., “MADAM: A Multilevel Anomaly Detector for Android Malware”, MMMACNS. vol. 12, 2012. |
Dooley, Kevin , “Out-of-Band Management”, auvik, auvik.com, May 12, 2014. |
Erickson, Katherine, “Conductive cylindrical surface waveguides.” (2012). https://www.ideals.illinois.edu/bitstream/handle/2142/30914/Erickson_Katherine.pdf?sequence=1. |
Eskelinen, Harri, “DFM (A)-aspects for a horn antenna design,” Lappeenranta University of Technology, 2004. |
Fenye, Bao et al., “Dynamic trust management for internet of things applications”, Proceedings of the 2012 international workshop on Selfaware internet of things. ACM, 2012. |
Garcia-Etxarri, Aitzol et al., “A combination of concave/convex surfaces for fieldenhancement optimization: the indented nanocone”, Optics express 20.23, 2012, 2520125212. |
Han, Chong et al., “crosslayer communication module for the Internet of Things”, Computer Networks 57.3 (2013): 622633. |
Hassan, Maaly A. , “Interference reduction in mobile ad hoc and sensor networks”, Journal of Engineering and Computer Innovations vol. 2(7), Sep. 2011, 138-154. |
Hassani, Alireza et al., “Porous polymer fibers for low-loss Terahertz guiding.” Optics express 16.9 (2008): 6340-6351. |
Jang, Hung-Chin , “Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network”, Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (JGRAPH-HOC) vol. 2, No. 1, Mar. 2010. |
Jeong, et al., “Study of elliptical polarization requirement of KSTAR 84-GHz ECH system”, Journal-Korean Physical Society 49, 2006. |
Jin, “Quasi-optical mode converter for a coaxial cavity gyrotron”, Forschungszentrum, 2007. |
Khan, “Dual polarized dielectric resonator antennas”, Chalmers University of Technology, 2010. |
Kumar, Sailesh, “Survey of Current Network Intrusion Detection Techniques”, Washington Univ. in St. Louis, Dec. 2007. |
Li, Xiang-Yang et al., “Interference-Aware Topology Control for Wireless Sensor Networks”, SECON. vol. 5, 2005. |
Li, Xu et al., “Smart community: an internet of things application”, Communications Magazine, IEEE 49.11 (2011): 68-75. |
Lou, Tiancheng, “Minimizing Average Interference through Topology Control”, Algorithms for Sensor Systems, Springer Berlin Heidelberg, 2012, 115-129. |
Moaveni-Nejad, Kousha et al., “Low-Interference Topology Control for Wireless Ad Hoc Networks”, Department of Computer Science, Illinois Institute of Technology, Ad Hoc & Sensor Wireless Networks 1.1-2, 2005, 41-64. |
Nassa, Vinay Kumar, “Wireless Communications: Past, Present and Future”, Dronacharya Research Journal: 50. vol. III, Issue-II, Jul.-Dec. 2011. |
Olver, A. D., “Microwave horns and feeds,” vol. 39. IET, 1994. |
Pahlavan, Kaveh et al., “Wireless data communications”, Proceedings of the IEEE 82.9 (1994): 1398-1430. |
Péter, Zsolt et al., “Assessment of the current intensity for preventing ice accretion on overhead conductors”, Power Delivery, IEEE Transactions on 22.1 (2007): 565-574. |
Petrovsky, Oleg, “The Internet of Things: A Security Overview”, w.druva.com, Mar. 31, 2015. |
Piksa, Petr et al., “Elliptic and hyperbolic dielectric lens antennas in mmwaves”, Radioengineering 20.1, 2011, 271. |
Plagemann, Thomas et al., “Infrastructures for community networks”, Content Delivery Networks. Springer Berlin Heidelberg, 2008. 367-388. |
Pohl, “A dielectric lens-based antenna concept for high-precision industrial radar measurements at 24GHz,” Radar Conference (EuRAD), 2012 9th European, IEEE, 2012. |
Prashant, R.R. et al., “Detecting and Identifying the Location of Multiple Spoofing Adversaries in Wireless Network”, International Journal of Computer Science and Mobile Applications, vol. 2 Issue. 5, May 2014, 1-6. |
Raychaudhuri, Dipankar et al., “Emerging Wireless Technologies and the Future Mobile Internet”, Cambridge University Press, Mar. 2011. |
Roze, Mathieu et al., “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.” Optics express 19.10 (2011): 9127-9138. |
Saied, Yosra Ben et al., “Trust management system design for the internet of things: a contextaware and multiservice approach”, Computers & Security 39 (2013): 351365. |
Sarnecki, Joseph et al., “Microcell design principles”, Communications Magazine, IEEE 31.4 (1993): 76-82. |
Saruhan, Ibrahim Halil, “Detecting and Preventing Rogue Devices on the Network”, SANS Institute InfoSec Reading Room, sans.org, Aug. 8, 2007. |
Scarfone, Karen et al., “Technical Guide to Information Security Testing and Assessment”, National Institute of Standards and Technology, csrc.nist.gov, Special Publication, Sep. 2008, 800-115. |
Shafai, Lotfollah , “Dielectric Loaded Antennas”, John Wiley & Sons, Inc., http://www.researchgate.net/publication/227998803_Dielectric_Loaded_Antennas, Apr. 15, 2005. |
Shimabukuko, F.I. et al., “Attenuation measurement of very low-loss dielectric waveguides by the cavity resonator method in the millimeter/submillimeter wavelength range.” No. TR-0086A (2925-06)-1. Aerospace Corp El Segundo CA Electronics Research Lab, 1989. |
Strahler, Olivier , “Network Based VPNs”, SANS Institute InfoSec Reading Room, sans.org, Aug. 2002. |
Szabó, Csaba A., “European Broadband Initiatives with Public Participation”, Broadband Services (2005): 255. |
Templeton, Steven J. et al., “Detecting Spoofed Packets”, DARPA Information Survivability Conference and Exposition, vol. 1, IEEE, 2003. |
Theoleyr, Fabrice , “Internet of Things and M2M Communications”, books.google.com, ISBN13: 9788792982483, Apr. 17, 2013. |
Thornton, John et al., “Modern lens antennas for communications engineering”, vol. 39, 2013. |
Volat, C. et al., “De-icing/anti-icing techniques for power lines: current methods and future direction”, Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, Montreal, Canada. 2005. |
Wu, Xidong et al., “Design and characterization of singleand multiplebeam mmwave circularly polarized substrate lens antennas for wireless communications”, Microwave Theory and Techniques, IEEE Transactions on 49.3, 2001, 431-441. |
Xi, Liu Xiao , “Security services in SoftLayer”, Sep. 21, 2015. |
Yeh, C. et al., “Ceramic Waveguides.” Interplanetary Network Progress Report141.26 (2000): 1. |
Zucker, “Surface-wave antennas”, Antenna engineering handbook 4, 2007. |
Alam, M N et al., “Novel surface wave exciters for power line fault detection and communications”, Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on, IEEE, Jul. 3, 2011 (Jul. 3, 2011). pp. 1139-1142. |
Doelitzscher, et al., “ViteraaS: Virtual cluster as a service.” Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on. IEEE, 2011. |
Golrezaei, Negin et al., “FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers”, INFOCOM, 2012 Proceedings IEEE. |
Gritzalis, Dimitris et al., “The Sphinx enigma in critical VoIP infrastructures: Human or botnet?.” Information, Intelligence, Systems and Applications (IISA), 2013 Fourth International Conference, IEEE, 2013. |
Hautakorpi, Jani et al., “Requirements from Session Initiation Protocol (SIP) Session Border Control (SBC) Deployments.” RFC5853, IETF (2010). |
Hawrylyshen, A. et al., “Sipping Working Group J. Hautakorpi, Ed. Internet-Draft G. Camarillo Intended status: Informational Ericsson Expires: Dec. 18, 2008 R. Penfield Acme Packet.” (2008). |
Jin, Yu et al., “Nevermind, the Problem Is Already Fixed: Proactively Detecting and Troubleshooting Customer DSL Problems”, ACM CoNEXT, Philadelphia, USA, Nov.-Dec. 2010, 12 pages. |
Kamilaris, et al., “Exploring the Use of DNS as a Search Engine for the Web of Things.” Internet of Things (WF-loT), 2014 IEEE World Forum on. IEEE, 2014. |
Mokhtarian, Kianoosh et al., “Caching in Video CDNs: Building Strong Lines of Defense”, EuroSys 2014, Apr. 13-16, 2014, Amsterdam, Netherlands. |
Paul, Sanjoy et al., “The Cache-and-Forward Network Architecture for Efficient Mobile Content Delivery Services in the Future Internet”, Innovations in NGN: Future Network and Services, 2008. K-INGN 2008. First ITU-T Kaleidoscope Academic Conference. |
International Search Report and Written Opinion in PCT/US2016/028417, dated Jul. 5, 2016, 13 pages, Authorized officer Brigitte Bettiol. |
PCT/US16/028395 International Search Report and Written Opinion dated Jun. 29, 2016. |
PCT/US16/032441 International Search Report and Written Opinion dated Jul. 29, 2016. |
“Alternative Local Loop Technologies: A Review”, Organisation for Economic Co-Operation and Development, Paris, OCDE/GD(96)181, https://www.oecd.org/sti/2090965.pdf, 1996. |
“Broadband: Bringing Home the Bits: Chapter 4 Technology Options and Economic Factors”, The National Academies Press, nap.edu, 2002. |
“Delivering broadband over existing wiring”, Cabling Installation & Maintenance, cablinginstall.com, May 1, 2002. |
“International Search Report & Written Opinion”, PCT/US2016/028412, dated Jun. 27, 2016. |
“International Search Report & Written Opinion”, PCT/US2016/028206, dated Jun. 29, 2016. |
“International Search Report & Written Opinion”, PCT/US16/033182, dated Jul. 12, 2016. |
“International Search Report and Written Opinion”, PCT/US2016/028197, dated Jun. 24, 2016. |
“Invitation to Pay Additional Fees & Partial Search Report”, PCT/US2016/028205, dated Jun. 22, 2016. |
“Invitation to Pay Additional Fees & Partial Search Report”, PCT/US2016/032430, dated Jun. 22, 2016. |
“Troubleshooting Problems Affecting Radio Frequency Communication”, cisco.com, Oct. 19, 2009. |
Chandra, Shekar , “Transmission Line Fault Detection & Indication through GSM”, IRD India, ISSN (Online): 2347-2812, vol. 2, Iss. 5, 2014. |
Chu, Eunmi et al., Self-organizing and self-healing mechanisms in cooperative small cell networks. PIMRC. 2013. |
Doshi, D.A. et al., “Real Time Fault Failure Detection in Power Distribution Line using Power Line Communication”, International Journal of Engineering Science 4834, 2016. |
Feng, Wei et al., Downlink power allocation for distributed antenna systems in a multi-cell environment. 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2009. |
Ford, Steven , AT&T's new antenna system will boost cellular coverage at Walt Disney World. Orlando Sentinel, orlandosentinel.com, Mar. 9, 2014. |
Friedman, M et al., “Low-Loss RF Transport Over Long Distances”, IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 2, Feb. 2001, 8 pages. |
Haider, Muhammad Kumail et al., Mobility resilience and overhead constrained adaptation in directional 60 GHz WLANs: protocol design and system implementation. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2016., 2016. |
Li, Xi et al., A FCM-Based peer grouping scheme for node failure recovery in wireless P2P file sharing. 2009 IEEE International Conference on Communications. IEEE, 2009. |
Liu, et al., A 25 Gb/s (/km 2) urban wireless network beyond IMTadvanced. IEEE Communications Magazine 49.2 (2011): 122-129. |
Matsukawa, et al., A dynamic channel assignment scheme for distributed antenna networks. Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th. IEEE, 2012. |
Pato, et al., On building a distributed antenna system with joint signal processing for next generation wireless access networks: The FUTON approach. 7th Conference on Telecommunications, Portugal. 2008. |
Shankland, Steven , “Lowly DSL poised for gigabit speed boost”, C|Net, cnet.com, Oct. 21, 2014. |
Silver, Ralph U. , “Local Loop Overview”, National Communications System (NCS), BellSouth Network Training, newnetworks.com, Aug. 2016. |
Talbot, David , “Adapting Old-Style Phone Wires for Superfast Internet”, Adapting Old-Style Phone Wires for Superfast Internet, Jul. 30, 2013. |
Yilmaz, et al., Self-optimization of coverage and capacity in LTE using adaptive antenna systems. Diss. Aalto University, 2010. |
PCT/US16/027397 International Search Report & Written Opinion dated Jun. 24, 2016. |
PCT/US16/027398 International Search Report and Written Opinion dated Jun. 24, 2016. |
PCT/US16/027403 Internatioanl Search Report & Written Opinion dated Jun. 22, 2016. |
International Search Report & Written Opinion, PCT/US16/28207, 2016. |
“Bi-Axial PA Horn with Gimbal Mount”, Atlas Sound, MCM Electronics, mcmelectronics.com, MCM Part #555-13580., 2011. |
“Broadband Negligible Loss Metamaterials”, Computer Electmagnetics and Antennas Research Laboratory, cearl.ee.psu.edu., May 15, 2012. |
“GM-12 Gimbal Mount”, Newmark System, Inc, newmarksystems.com., 2015. |
“IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements”, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), in IEEE Std 802.15.4, (Revision of IEEE Std 802.15.4-2003), Sep. 7, 2006, 1-320. |
“Installing Satellite Accessories”, ACE®, acehardware.com., May 8, 2006. |
“International Preliminary Report on Patentability”, PCT/US2014/039746, dated Dec. 10, 2015. |
“International Preliminary Report on Patentability”, PCT/US2014/060841, dated May 19, 2016, 8 pages. |
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2014/061445, dated Jun. 23, 2016, 9 pages. |
“International Search Report & Written Opinion”, PCT/US2015/034827, dated Sep. 30, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/056316, dated Jan. 21, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056320, dated Jan. 29, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056365, dated Jan. 22, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056368, dated Jan. 25, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056598, dated Jan. 28, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056615, dated Jan. 21, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056626, dated Jan. 21, 2016. |
“International Search Report & Written Opinion”, PCT/US2015/056632, dated Jan. 26, 2016. |
“International Search Report & Written Opinion”, PCT/US2016/013988, dated Apr. 8, 2016. |
“International Search Report & Written Opinion”, PCT/US2016/020001, dated May 23, 2016. |
“International Search Report & Written Opinion”, PCT/US2016/026860, dated Jun. 1, 2016. |
“International Search Report & Written Opinion”, PCT/US2016/026318, dated Jun. 15, 2016. |
“International Search Report & Written Opinion”, PCT/US2014/039746, dated Jan. 12, 2015. |
“International Search Report & Written Opinion”, PCT/US2014/060841, dated Jan. 7, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/039848, dated Oct. 20, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/047315, dated Oct. 30, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/048454, dated Nov. 11, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/049928, dated Nov. 16, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/049932, dated Nov. 16, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/049927, dated Nov. 24, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051193, dated Nov. 27, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051146, dated Dec. 15, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051183, dated Dec. 15, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051194, dated Dec. 15, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051578, dated Dec. 17, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051583, dated Dec. 21, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/048458, dated Dec. 23, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051213, dated Dec. 4, 2015. |
“International Search Report & Written Opinion”, PCT/US2015/051163, dated Dec. 7, 2015. |
“International Search Report & Written Opinion”, PCT/US2014/061445, dated Feb. 10, 2015. |
“International Search Report & Written Opinion”, PCT/US2016/015501, dated Apr. 29, 2016, 11 pages. |
“International Search Report & Written Opinion”, PCT/US2015/047225, dated Nov. 6, 2015, Nov. 6, 2015. |
“PCT International Search Report & Written Opinion”, PCT/US2016/026193, dated Jun. 1, 2016. |
“Radar at st Andrews”, mmwaves.epr, st-andrews.ac.uk., Feb. 4, 2011. |
“Transducer”, IEEE Std 100-2000, Sep. 21, 2015, 1154. |
Alam, MD N. et al., “Design and Application of Surface Wave Sensors for nonintrusive Power Line Fault Detection,” IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 13, No. 1, pp. 339-347, Jan. 1, 2013. |
Bing, Benny , “Ubiquitous Broadband Access Networks with Peer-to-Peer Application Support”, Evolving the Access Network: 27-36, 2006. |
Costantine, Joseph et al., “The analysis of a reconfigurable antenna with a rotating feed using graph models”, Antennas and Wireless Propagation Letters 8: 943-946, 2009. |
Ehyaie, Danial , “Novel Approaches to the Design of Phased Array Antennas,” Diss. The University of Michigan., 2011. |
Friedman, M et al., “Low-loss RF transport over long distances,” IEEE Transactions on Microwave Theory and Techniques, Jan. 1, 2001, pp. 341-348. |
Goldsmith, P.F. , “Quasi-optical techniques”, Proceedings of the IEEE., vol . 80, No. 11, Nov. 1, 1992. |
Katkovnik, Vladimir et al., “High-resolution signal processing for a switch antenna array FMCW radar with a single channel receiver”, Sensor Array and Multichannel Signal Processing Workshop Proceedings, IEEE., 2002. |
Laforte, J.L. et al., “State-of-the-art on power line de-icing”, Atmospheric Research 46, 143-158, 1998. |
Lucyszyn, S. et al., “Novel RF MEMS Switches”, Microwave Conference, APMC, Asia-Pacific. IEEE, 2007. |
Lucyszyn, Stepan et al., “RF MEMS for antenna applications”, Antennas and Propagation (EuCAP), 7th European Conference on. IEEE, 2013. |
Nicholson, Basil J. , “Microwave Rotary Joints for X-, C-, and S-band”, Battelle Memorial Inst Columbus OH, 1965. |
Orfanidis, Sophocles J. , “Electromagnetic waves and antennas,” Rutgers University., 2002. |
Ponchak, George E. et al., “A New Model for Broadband Waveguide to Microstrip Transition Design”, NASA TM-88905, Dec. 1, 1986, 18 pgs. |
Pranonsatit, S. et al., “Sectorised horn antenna array using an RF MEMS rotary switch”, Asia-Pacific Microwave Conf., APMC., 2010. |
Pranonsatit, Suneat et al., “Single-pole eight-throw RF MEMS rotary switch”, Microelectromechanical Systems, Journal of 15.6: 1735-1744, 2006. |
Salema, Carlos et al., “Solid dielectric horn antennas,” Artech House Publishers, 1998. |
Sievenpiper, D.F. et al., “Two-dimensional beam steering using an electrically tunable impedance surface,” in Antennas and Propagation, IEEE Transactions on , vol. 51, No. 10, pp. 2713-2722., Oct. 2003. |
Wolff, Christian, “Phased Array Antenna” Radar Tutorial, web.archive.org, radartutorial.eu, Oct. 21, 2014. |
International Search Report & Written Opinion PCT/US16/050488 dated Nov. 11, 2016. |
International Search Report PCT/US2016/036292 dated Sep. 13, 2016. |
PCT/US16/036284 International Search Report & Written Opinion dated Sep. 8, 2016. |
PCT/US16/036388 International Search Report and Written Opinion dated Aug. 30, 2016. |
PCT/US2016/036285 International Search Report and Written Opinion dated Aug. 23, 2016. |
PCT/US2016/036288 International Search Report & Written Opinion dated Sep. 1, 2016. |
PCT/US2016/036290 International Search Report & Written Opinion dated Aug. 11, 2016. |
PCT/US2016/036293 International Search Report & Written Opinion dated Sep. 15, 2016. |
PCT/US2016/046315 International Search Report and Written Opinion, dated Nov. 3, 2016. |
PCT/US2016/050039, International search report and written opinion dated Nov. 14, 2016. |
PCT/US2016/051217, International Search Report and Written opinion, dated Nov. 29, 2016. |
International Search Report & Written Opinion for PCT/US16/50345 dated Nov. 15, 2016. |
International Search report for PCT/US2016/050347 dated Nov. 15, 2016. |
International Search Report & Written Opinion dated Nov. 17, 2016. |
“AirCheck G2 Wireless Tester”, NetScout®, enterprise.netscout.com. |
“Brackets, Conduit Standoff”, Hubbell Power Systems, Inc., hubbellpowersystems.com, Dec. 2, 2010, 2 pages. |
“Broadband Over Power Lines (BPL): Developments and Policy Issues”, Organisation for Economic Co-operation and Development, Directorate for Science, Technology and Industry, Committee for Information, Computer and Communications Policy, Jun. 2, 2009, 35 pages. |
“Cisco Aironet 1500 Series Access Point Large Pole Mounting Kit Instructions”, www.cisco.com/c/en/us/td/docs/wireless/antenna/installation/guide/18098.html, 2008, 9 pages. |
“Doubly-fed Cage-cone Combined Broadband Antennas for Marine Applications”, http://www.edatop.com/down/paper/antenna/%E5%A4%A9%E7%BA%BF%E8%AE%BE%E8%AE%1A-890w5nebp5ilpq.pdf, 2007, 7 pages. |
“Dual Band Switched-Parasitic Wire Antennas for Communications and Direction Finding”, https://www.researchgate.net/profile/David_Thiel2/publication/3898574_Dual_band_switched-parasitic_wire_antennas_for_communications_and_direction_finding/links/0fcfd5091b4273ce54000000.pdf, 2000. |
“Electronic Countermeasure (ECM) Antennas”, vol. 8, No. 2, Apr. 2000, 2 pages. |
“Energy-Harvesting Power Supply”, http://sdpm.arizona.edu/projects/project-publi/upid/38a8cf3b42f35576de25de1f6dcc20f3, Discloses a project to harvest energy from a power line and that a device was built that clamps onto a power line., 2016 1 page. |
“Harvest energy from powerline”, www.physicsforums.com/threads/harvest-energy-from-powerline.685148/, Discussion thread about harvesting power from powerlines that includes the suggestion of clamping a device to the power line., 2013, 8 pages. |
“International Search Report & Written Opinion” PCT/US2016/035384, dated Oct. 31, 2016. |
“International Search Report & Written Opinion” PCT/US2016/036551, dated Aug. 11, 2016. |
“International Search Report & Written Opinion” PCT/US2016/036798, dated Aug. 11, 2016. |
“International Search Report & Written Opinion” PCT/US2016/028205, dated Aug. 16, 2016. |
“International Search Report & Written Opinion” PCT/US2016/032460, dated Aug. 17, 2016. |
“International Search Report & Written Opinion” PCT/US2016/036303, dated Aug. 24, 2016. |
“International Search Report & Written Opinion” PCT/2016/035383, dated Sep. 2, 2016. |
“International Search Report & Written Opinion” PCT/US2016/036286, dated Sep. 13, 2016. |
“International Search Report & Written Opinion” PCT/US2016/050860, dated Nov. 17, 2016 11 pages. |
“International Search Report & Written Opinion” PCT/US2016/050344, dated Nov. 25, 2016 16 pages. |
“International Search Report and Written Opinion” PCT/US2016/036289, dated Aug. 11, 2016. |
“International Search Report and Written Opinion” PCT/US2016/036295, dated Aug. 30, 2016. |
“International Search Report and Written Opinion” PCT/US2016/030964, dated Aug. 4, 2016. |
“International Search Report and Written Opinion” PCT/US2016/036553, dated Aug. 30, 2016, 1-14. |
“International Search Report and Written opinion” PCT/US2016/036556, dated Sep. 22, 2016. |
“International Searching Authority”, International Search Report and Written Opinion, dated Sep. 28, 2016 1-12. |
“Invitation to Pay Additional Fees and, Where Applicable, Protest Fee” PCT/US2016/035384, dated Aug. 31, 2016 7 pages. |
“Micromem Demonstrates UAV Installation of Power Line Monitoring Mounting System”, MicroMem, micromem.com, Mar. 4, 2015 1-3. |
“Newsletter 4.4—Antenna Magus version 4.4 released!”, antennamagus.com, Aug. 10, 2013, 8 pages. |
“PCT International Search Report”, dated Oct. 24, 2016 1-13. |
“PCT International Search Report and Written Opinion”, dated Oct. 10, 2016 1-15. |
“PCT Search Report and Written opinion” PCT/US2016/036297, dated Sep. 5, 2016. |
“PCT/US2016/040992 International Search Report & Written Opinion dated Oct. 17, 2016”. |
“Remote Sensors”, EarthData, NASA, earthdata.nasa.gov, Oct. 17, 2016. |
“Technology Brief 13: Touchscreens and Active Digitizers”, https://web.archive.org/web/20100701004625/http://web.engr.oregonstate.edu/˜moon/engr203/read/read4.pdf, 2010, 289-311. |
“TEMS Pocket—a Complete Measurement Smartphone System in your Hand”, http://www.ascom.us/us-en/tems_pocket_14.0_feature_specific_datasheet.pdf, 2014. |
“The world's first achievement of microwave electric-field measurement utilizing an optical electric-field sensor mounted on an optical fiber, within a microwave discharge ion engine boarded on asteroid explorers etc.”, Investigation of internal phenomena and performance improvement in microwave discharge ion engines, Japan Aerospace Exploration Agency (JAXA), Nippon Telegraph and Telephone Corporation, Aug. 7, 2013, 4 pages. |
“Weather Instruments and Equipment Explained”, NWClimate, nwclimate.org, May 7, 2015. |
Adabo, Geraldo J. , “Long Range Unmanned Aircraft System for Power Line Inspection of Brazilian Electrical System”, Journal of Energy and Power Engineering 8 (2014), Feb. 28, 2014, 394-398. |
Al-Ali, A.R. et al., “Mobile RFID Tracking System”, Information and Communication Technologies: From Theory to Applications, ICTTA 2008, 3rd International Conference on IEEE, 2008, 4 pages. |
Alam, M. N. et al., “Novel Surface Wave Exciters for Power Line Fault Detection and Communications”, Department of Electrical Engineering, University of South Carolina, Antennas and Propagation (APSURSI), 2011 IEEE International Symposium, IEEE, 2011, 1-4. |
Alaridhee, T. et al., “Transmission properties of slanted annular aperture arrays. Giant energy deviation over sub-wavelength distance”, Optics express 23.9, 2015 11687-11701. |
Ali, Tariq et al., “Diagonal and Vertical Routing Protocol for Underwater Wireless Sensor Network”, Procedia-Social and Behavioral Sciences 129, 2014, 372-379. |
Allen, Jeffrey et al., “New Concepts in Electromagnetic Materials and Antennas”, Air Force Research Laboratory, Jan. 2015 80 pages. |
Amirshahi, P. et al., “Transmission channel model and capacity of overhead multiconductor mediumvoltage powerlines for broadband communications”, Consumer Communications and Networking Conference, 2005. |
Amt, John H. et al., “Flight Testing of a Pseudolite Navigation System on a UAV”, Air Force Institute of Technology: ION Conference, Jan. 2007. |
Antennamagus, , “Parabolic focus pattern fed reflector with shroud”, antennamagus.com, Jul. 4, 2014, 2 pages. |
Ares-Pena, Francisco J. et al., “A simple alternative for beam reconfiguration of array antennas”, Progress in Electromagnetics Research 88, 2008, 227-240. |
A-Tech Fabrication, , “Dual Antenna Boom Assembly”, http://web.archive.org/web/20090126192215/http://atechfabrication.com/products/dual_antenna_boom.htm, 2009, 2 pages. |
Baanto, , “Surface Acoustive Wave (SAW) Touch Screen”, http://baanto.com/surface-acoustic-wave-saw-touch-screen, 2016, 4 pages. |
Babakhani, Aydin , “Direct antenna modulation (DAM) for on-chip mm-wave transceivers”, Diss. California Institute of Technology, 2008, 2 pages. |
Barlow, H. M. et al., “Surface Waves”, 621.396.11 : 538.566, Paper No. 1482 Radio Section, 1953, pp. 329-341. |
Barnes, Heidi et al., “DeMystifying the 28 Gb/s PCB Channel: Design to Measurement”, Design Con. 2014, Feb. 28, 2014, 54 pages. |
Benevent, Evangéline , “Transmission lines in MMIC technology”, Universitá Mediterranea di Reggio Calabria, Jan. 28, 2010, 63 pages. |
Benkhelifa, Elhadj , “User Profiling for Energy Optimisation in Mobile Cloud Computing”, 2015. |
Berweger, Samuel et al., “Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale”, The Journal of Physical Chemistry Letters; pubs.acs.org/JPCL, 2012, 945-952. |
Blanco-Redondo, Andrea et al., “Coupling midinfrared light from a photonic crystal waveguide to metallic transmission lines”, Applied Physics Letters 104.1, 2014, 6 pages. |
Blattenberger, Kirt , “DroneBased Field Measurement System (dBFMS)”, RF Cafe, rfcafe.com, Jul. 29, 2014, 3 pages. |
Brambilla, Gilberto et al., “Ultra-low-loss optical fiber nanotapers”, Optoelectronics Research Centre, University of Southampton; http://www.orc.soton.ac.uk, vol. 12, No. 10, May 7, 2004, 2258-2263. |
Briso-Rodriguez, , “Measurements and Modeling of Distributed Antenna Systems in Railway Tunnels”, IEEE Transactions on Vehicular Technology, vol. 56, No. 5, Sep. 2007, 2870-2879. |
Budde, Matthias , “Using a 2DST Waveguide for Usable, Physically Constrained Out-of-Band Wi-Fi Authentication”, https://pdfs.semanticscholar.org/282e/826938ab7170c198057f9236799e92e21219.pdf, 2013. |
Campista, Miguel E. et al.“Improving the Data Transmission Throughput Over the Home Electrical Wiring”, The IEEE Conference on Local Computer Networks 30th Anniversary, 2005, 1-8. |
Capece, P. et al., “FDTD Analysis of a Circular Coaxial Feeder for Reflector Antenna”, Antennas and Propagation Society International Symposium, IEEE Digest, vol. 3, 1997, pp. 1570-1573. |
Chaimae, Elmakfalji et al., “New Way of Passive RFID Deployment for Smart Grid”, Journal of Theoretical and Applied Information Technology 82.1, Dec. 10, 2015, 81-84. |
Chen, KE et al., “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusionlike scattering”, Scientific Reports 6, 2016. |
Choudhury, Romit R. , “Utilizing Beamforming Antennas for Wireless Mult-hop Networks”, www.slideserve.com, Sep. 20, 2012, 4 pages. |
Cliff, Oliver M. et al., “Online localization of radio-tagged wildlife with an autonomous aerial robot system”, Proceedings of Robotics Science and Systems XI, 2015, 1317. |
Collins, D.D. et al., “Final Report on Advanced Antenna Design Techniques”, GER 11246, Report No. 4, Sep. 6, 1963, 1-70. |
Comsol, , “Fast Numerical Modeling of a Conical Horns Lens Antenna”, comsol.com, Application ID: 18695, Sep. 16, 2016, 3 pages. |
Crisp, , “Uplink and Downlink Coverage Improvements of 802.11g Signals Using a Distributed Antenna Network”, Journal of Lightwave Technology ( vol. 25, Issue: 11), Dec. 6, 2007, 1-4. |
Crosswell, , “Aperture excited dielectric antennas”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740017567.pdf, 1974, 128 pages. |
Curry, James M. , , “A Web of Drones: A 2040 Strategy to Reduce the United States Dependance on Space Based Capabilities”, Air War Coll Maxwell AFB AL, Feb. 17, 2015. |
Daniel, Kai et al., “Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations”, Homeland Security Affairs, Supplement 3, Mar. 2011, 11 pages. |
De Freitas, Carvalho et al., “Unmanned Air Vehicle Based Localization and Range Estimation of WiFi Nodes”, 2014, 109 pages. |
Debord, Benoit et al., “Generation and confinement of microwave gas-plasma in photonic dielectric microstructure”, Optics express 21.21, 2013, 25509-25516. |
Deilmann, Michael , “Silicon oxide permeation barrier coating and sterilization of PET bottles by pulsed low-pressure microwave plasmas”, Dissertation, 2008, 142 pages. |
Deng, Chuang et al., “Unmanned Aerial Vehicles for Power Line Inspection: A Cooperative Way in Platforms and Communications”, Journal of Communicatinos vol. No. 9, No. 9, Sep. 2014, 687-692. |
Dyson, John D. , “The Equiangular Spiral Antenna”, IRE Transactions on Antennas and Propagation, 1959, 181-187. |
Eizo, , “How can a screen sense touch? A basic understanding of touch panels”, www.eizo.com/library/basics/basic_understanding_of_touch_panel, Sep. 27, 2010, 8 pages. |
Ekstrom, , “Slot-line end-fire antennas for THz frequencies”, Third International Symposium on Space Terahertz Technology, 280-290. |
Elmore, Glenn et al., “A Surface Wave Transmission Line”, QEX, May/Jun. 2012, pp. 3-9. |
Emerson, , “About Rosemount 5300 Level Transmitter”, www.emerson.com, Nov. 2016. |
Eom, Seung-Hyun et al., “Pattern switchable antenna system using inkjet-printed directional bow-tie for bi-direction sensing applications”, Sensors 15.12, 2015, 31171-31179. |
Faggiani, Adriano , “Smartphone-based crowdsourcing for network monitoring: opportunities, challenges, and a case study”, http://vecchio.iet.unipi.it/vecchio/files/2010/02/article.pdf, 2014. |
Farzaneh, Masoud et al., “Systems for Prediction and Monitoring of Ice Shedding, Anti-Cicing and De-Icing for Power Line Conductors and Ground Wires”, Dec. 1, 2010, 1-100. |
Fattah, E. Abdel et al., “Numerical 3D simulation of surface wave excitation in planar-type plasma processing device with a corrugated dielectric plate”, Elsevier, Vacuum 86, 2011, 330-334. |
Feko, , “Lens Antennas”, Altair, feko.info, Jun. 30, 2014, 2 pages. |
Fenn, Alan J. et al., “A Terrestrial Air Link for Evaluating Dual-Polarization Techniques in Satellite Communications”, vol. 9, No. 1, The Lincoln Laboratory Journal, 1996, 3-18. |
Fiorelli, Riccardo et al., “ST7580 power line communication systemonchip design guide”, Doc ID 022923 Rev 2, Jul. 2012, 63 pages. |
Fitzgerald, William D. , “A 35-GHz Beam Waveguide System for the Millimeter-Wave Radar”, The Lincoln Laboratory Journal, vol. 5, No. 2, 1992, 245-272. |
Galli “For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid”, Proceedings of the IEEE 99.6, Jun. 2011, 1-26. |
Gerini, Giampiero , “Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface”, http://alexandria.tue.nl/openaccess/Metis248614.pdf, 2005, 2020-2030. |
Geterud, Erik G. , “Design and Optimization of Wideband Hat-Fed Reflector Antenna with Radome for Satellite Earth Station”, http://publications.lib.chalmers.se/records/fulltext/163718.pdf, Discloses Frequency Selective Surfaces for antenna coverings for weather protection (table of materials on p. 29-30; pp. 37-46), 2012, 70 pages. |
Gilbert, Barrie et al., “The Gears of Genius”, IEEE SolidState Circuits Newsletter 4.12, 2007, 10-28. |
Glockler, Roman , “Phased Array for Millimeter Wave Frequencies”, International Journal of Infrared and Millimeter Waves, Springer, vol. 11, No. 2, Feb. 1, 1990, 10 pages. |
Godara, “Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility, and System Considerations”, Proceedings of the IEEE, vol. 85, No. 7, Jul. 1997, 1031-1060. |
Greco, R. , “Soil water content inverse profiling from single TDR waveforms”, Journal of hydrology 317.3, 2006, 325-339. |
Gunduz, Deniz et al., “The multiway relay channel”, IEEE Transactions on Information Theory 59.1, 2013, 5163. |
Guo, Shuo et al., “Detecting Faulty Nodes with Data Errors for Wireless Sensor Networks”, 2014, 25 pages. |
Hadi, Ghozali S. et al., “Autonomous UAV System Development for Payload Dropping Mission”, The Journal of Instrumentation, Automation and Systems, vol. 1, No. 2, 2014, pp. 72-22. |
Hafeez, , “Smart Home Area Networks Protocols within the Smart Grid Context”, Journal of Communications vol. 9, No. 9, Sep. 2014, 665-671. |
Halder, Achintya et al., “Low-cost alternate EVM test for wireless receiver systems”, 23rd IEEE VLSI Test Symposium (VTS'05). IEEE, 2005. |
Hale, Paul et al., “A statistical study of deembedding applied to eye diagram analysis”, IEEE Transactions on Instrumentation and Measurement 61.2, 2012, 475-488. |
Halligan, Matthew S. , “Maximum crosstalk estimation and modeling of electromagnetic radiation from PCB/highdensity connector interfaces”, http://scholarsmine.mst.edu/cgi/viewcontent.cgiarticle=3326&context=doctoral_dissertations, 2014, 251 pages. |
Hanashi, Abdalla M. et al., “Effect of the Dish Angle on the Wet Antenna Attenuation”, IEEE, 2014, 1-4. |
Hays, Phillip , “SPG-49 Tracking Radar”, www.okieboat.com/SPG-49%20description.html, 2015, 15 pages. |
Heo, Joon et al. “Identity-Based Mutual Device Authentication Schemes for PLC Systems”, IEEE International Symposium on Power Line Communications and Its Applications, 2008, pp. 47-51. |
Howard, Courtney , “UAV command, control & communications”, Military & Aerospace Electronics, militaryaerospace.com, Jul. 11, 2013, 15 pages. |
Hussain, Mohamed T. et al., “Closely Packed Millimeter-Wave MIMO Antenna Arrays with Dielectric Resonator Elements”, Antennas and Propagation (EuCAP) 2016 10th European Conference, Apr. 2016, 1-5. |
Huth, G. K. “Integrated source and channel encoded digital communication system design study”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750003064.pdf, 1974, 65 pages. |
Ikrath, K. et al., “Antenna Innovation Glass-Fiber Tube Focuses Microwave Beam”, Electronics, vol. 35, No. 38, Sep. 21, 1962, 44-47. |
Illinois Historic Archive, , “Antennas on the Web”, Photo Archive of Antennas, ece.illinois.ed, 1-18, Dec. 2016. |
Islam, M. T. , “Coplanar Waveguide Fed Microstrip Patch Antenna”, Information Technology Journal 9.2 (2010): 367-370., 2010, 367-370. |
James, Graeme L. et al., “Diplexing Feed Assemblies for Application to Dual-Reflector Antennas”, IEEE Transactions on Antennas and Propagation, vol. 51, No. 5, May 2003, 1024-1029. |
James, J. R. et al.“Investigations and Comparisons of New Types of Millimetre-Wave Planar Arrays Using Microstrip and Dielectric Structures”, Royal Military College of Science, Apr. 1985, 122 pages. |
Jensen, Michael , “Data-Dependent Fingerprints for Wireless Device Authentication”, http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA626320, 2014. |
Jiang, Peng , “A New Method for Node Fault Detection in Wireless Sensor Networks”, 2009, 1282-1294. |
Jiang, Y.S. et al., “Electromagnetic orbital angular momentum in remote sensing”, PIERS Proceedings, Moscow, Russia, Aug. 18-21, 2009, 1330-1337. |
Jones, Jr., Howard S. , “Conformal and Small Antenna Designs”, U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories, Apr. 1981, 32 pages. |
Kado, Yuichi et al., “Exploring SubTHz Waves for Communications, Imaging, and Gas Sensing”, Fog 2: O2, PIERS Proceedings, Beijing, China, Mar. 23-27, 2009, 42-47. |
Karbowiak, A. E. et al., “Characteristics of Waveguides for Long-Distance Transmission”, Journal of Research of the National Bureau of Standards, vol. 65D, No. 1, Jan.-Feb. 1961, May 23, 1960, 75-88. |
Katrasnik, Jaka , “New Robot for Power Line Inspection”, 2008 IEEE Conference on Robotics, Automation and Mechatronics, 2008, 1-6. |
Kedar, , “Wide Beam Tapered Slot Antenna for Wide Angle Scanning Phased Array Antenna”, Progress in Electromagnetics Research B, vol. 27, 2011, 235-251. |
Khan, Kaleemullah , “Authentication in Multi-Hop Wireless Mesh Networks”, http://www.waset.org/publications/4142, 2006. |
Khan, Mohammed R. , “A beam steering technique using dielectric wedges”, Diss. University of London, Dec. 1985, 3 pages. |
Kim, Jong-Hyuk et al., “Real-time Navigation, Guidance, and Control of a UAV using Low-cost Sensors”, Australian Centre for Field Robotics, Mar. 5, 2011. |
Kim, Myungsik et al., “Automated RFID-based identification system for steel coils”, Progress in Electromagnetics Research 131, 2012, 1-17. |
Kima, Yi-Gon et al., “Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils”, Chonnam National University, Republic of Korea, Elsevier Ltd,, 2010, 145-151. |
Kleinrock, Leonard et al., “On measured behavior of the ARPA network”, National Computer Conference, 1974, 767-780. |
Kliros, George S. , “Dielectric-EBG covered conical antenna for UWB applications”, www.researchgate.net/profile/George_Kliros/publication/235322849_Dielectric-EBG_covered_conical_antenna_for_UWB_applications/links/54329e410cf225bddcc7c037.pdf, 2010, 10 pages. |
Koga, Hisao et al., “High-Speed Power Line Communication System Based on Wavelet OFDM”, 7th International Symposium on Power-Line Communications and Its Applications, Mar. 26-28, 2003, 226-231. |
Kolpakov, Stanislav A. et al., “Toward a new generation of photonic humidity sensors”, Sensors 14.3, 2014, 3986-4013. |
Kuehn, E , “Self-configuration and self-optimization of 4G Radio Access Networks”, http://wirelessman.org/tgm/contrib/580216m-07_169.pdf, 2007. |
Kune, Denis F. et al., “Ghost Talk: Mitigating EMI Signal Injection Attacks against Analog Sensors”, IEEE Symposium on Security and Privacy, 2013, 145-159. |
Lairdtech, “Allpurpose Mount Kit”, www.lairdtech.com, Mar. 29, 2015, 2 pages. |
Lazaropoulos, Athanasios , “TowardsModal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape:Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics”, International Scholarly Research Network, ISRN Signal Processing, vol. 2012, Article ID 121628, 17 pages, Mar. 26, 2012, 18 pages. |
Lazaropoulos, Athanasios G. , “Wireless sensor network design for transmission line monitoring, metering, and controlling: introducing broadband over power lines-enhanced network model (BPLeNM)”, ISRN Power Engineering, 2014, 23 pages. |
Lee, Joseph C. , “A Compact Q-/K-Band Dual Frequency Feed Horn”, No. TR-645, Massachusetts Institute of Technology, Lincoln Laboratory, May 3, 1983, 40 pages. |
Lee, Sung-Woo , “Mutual Coupling Considerations in the Development of Multi-feed Antenna Systems”, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750003064.pdf, 2008, 127 pages. |
Li, Mo et al., “Underground structure monitoring with wireless sensor networks”, Proceedings of the 6th international conference on Information processing in sensor networks, ACM, 2007, 69-78. |
Liang, Bin , “Cylindrical Slot FSS Configuration for Beam-Switching Applications”, IEEE Transactions on Antennas and Propagation, vol. 63, No. 1, Jan. 2015, 166-173. |
Lier, Erik , “A Dielectric Hybrid Mode Antenna Feed: A Simple Alternative to the Corrugated Horn”, IEEE Transactions on Antennas and Propagation, vol. AP-34, No. 1, Jan. 1986, 21-30. |
Lumerical Solutions, Inc., “Waveguide Bragg Microcavity”, www.lumerical.com, Sep. 2016, 6 pages. |
Luo, Hailu et al., “Reversed propagation dynamics of Laguerre-Gaussian beams in left-handed materials”, Physical Review A 77.2, 023812., Feb. 20, 2008, 1-7. |
Makwana, G. D. et al., “Wideband Stacked Rectangular Dielectric Resonator Antenna at 5.2 GHz”, International Journal of Electromagnetics and Applications 2012, 2(3), 2012, 41-45. |
Marin, Leandro , “Optimized ECC Implementation for Secure Communication between Heterogeneous loT Devices”, http://www.mdpi.com/1424-8220/15/9/21478/pdf, 2015. |
Marrucci, Lorenzo , “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation”, Applied Physics Letters 88.22, 221102, 2007. |
Marrucci, Lorenzo , “Rotating light with light: Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals”, International Congress on Optics and Optoelectronics. International Society for Optics and Photonics, 2007. |
Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”, IEEE Transactions on Wireless Communications, vol. 9, No. 11, Nov. 2010, 3590-3600. |
Meessen, A. , “Production of EM Surface Waves by Superconducting Spheres: A New Type of Harmonic Oscillators”, Progress in Electromagnetics Research Symposium Proceedings, Moscow, Russia, Aug. 19-23, 2012, pp. 529-533. |
Mehta, “Advance Featuring Smart Energy Meter With Bi-Directional Communication”, Electronics & Communication MEFGI, Feb. 9, 2014, 169-174. |
Mena, F.P. et al., “Design and Performance of a 600720GHz SidebandSeparating Receiver Using and AIN SIS Junctions”, IEEE Transactions on Microwave Theory and Techniques 59.1, 2011, 166-177. |
Miller, Ashley et al., “Pathway to Ubiquitous Broadband: Environments, Policies, and Technologies to Implementation”, Oct. 2016 20 pages. |
Miller, David A. , “Establishing Optimal Wave Communication Channels Automatically”, Journal of Lightwave Technology, vol. 31, No. 24, Dec. 15, 2013, 3987-3994. |
Mishra, Sumita et al., “Load Balancing Optimization in LTE/LTEA Cellular Networks: A Review”, arXiv preprint arXiv:1412.7273 (2014), 2014, 1-7. |
Mori, A. et al., “The Power Line Transmission Characteristics for an OFDM Signal”, Progress in Electromagnetics Research, PIER 61, Musashi Institute of Technology, 2006, 279-290. |
Mueller, G.E. et al., “Polyrod Antennas”, Bell System Technical Journal, vol. 26., No. 4, Oct. 29, 1947, 837-851. |
Mushref, Muhammad , “Matrix solution to electromagnetic scattering by a conducting cylinder with an eccentric metamaterial coating”, www.sciencedirect.com/science/article/pii/S0022247X06011450/pdf?md5=4823be0348a3771b5cec9ffb7f326c2c&pid=1-s2.0-S0022247X06011450-main.pdf, Discloses controlling antenna radiation pattern with coatings, 2007, 356-366. |
Nakano, Hisamatsu, “A Low-Profile Conical Beam Loop Antenna with an Electromagnetically Coupled Feed System”, http://repo.lib.hosei.ac.jp/bitstream/10114/3835/1/31_TAP(Low-Profile).pdf, Dec. 2000, 1864-1866. |
Nakano, Hisamatsu et al., “A Spiral Antenna Backed by a Conducting Plane Reflector”, IEEE Transactions on Antennas and Propagation, vol. AP-34 No. 6, Jun. 1986, 791-796. |
Nandi, Somen et al., “Computing for rural empowerment: enabled by last-mile telecommunications”, IEEE Communications Magazine 54.6, 2016 102-109. |
Nassar, , “Local Utility Powerline Communications in the 3-500 kHz Band: Channel Impairments, Noise, and Standards”, IEEE Signal Processing Magazine, 2012, 1-22. |
Niedermayer, Uwe et al., “Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 776, 2015, 129-143. |
Nikitin, A. Y. et al., “Efficient Coupling of Light to Graphene Plasmons by Compressing Surface Polaritons with Tapered Bulk Materials”, NanoLetters; pubs.acs.org/NanoLett, Apr. 28, 2014, 2896-2901. |
Nikitin, Pavel V. et al., “Propagation Model for the HVAC Duct as a Communication Channel”, IEEE Transactions on Antennas and Propagation 51.5, 2003, 7 pages. |
Ohliger, Michael , “An introduction to coil array design for parallel MRI”, http://mriquestions.com/uploads/3/4/5/7/34572113/intro_to_coil_design_parallel_.pdf, 2006, 16 pages. |
Patel, Pinak S. et al., “Sensor Fault Detection in Wireless Sensor Networks and Avoiding the Path Failure Nodes”, International Journal of Industrial Electronics and Electrical Engineering, vol. 2, Issue—3, Mar. 2014, 2347-6982. |
PCT, “International Search Report”, dated Oct. 25, 2016, 1-12. |
Pike, Kevin J. et al., “A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission”, Journal of Magnetic Resonance, 2012, 9 pages. |
Qi, Xue et al., “Ad hoc QoS ondemand routing (AQOR) in mobile ad hoc networks”, Journal of parallel and distributed computing 63.2, 2003, 154-165. |
Qiu, Lili et al., “Fault Detection, Isolation, and Diagnosis in Multihop Wireless Networks”, Dec. 2003, 16 pages. |
Quan, Xulin , “Analysis and Design of a Compact Dual-Band Directional Antenna”, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.421.5697&rep=rep1&type=pdf, 2012. |
Quinstar Technology, Inc., , “Prime Focus Antenna (QRP series)”, quinstar.com, Aug. 19, 2016, 2 pages. |
Ranga, Yogesh et al., “An ultra-wideband quasi-planar antenna with enhanced gain”, Progress in Electromagnetics Research C 49, 2014, 59-65. |
Rangan, Sundeep et al., “Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges”, Proceedings of the IEEE, vol. 102, No. 3, Mar. 2014, 366-385. |
Rangel, Rodrigo K. et al., “Sistema de Inspecao de Linhas de Transmissao de Energia Electrica Utilizando Veiculos Aereos Nao-Tripulados”, Sep. 14-16, 2009, 1-9. |
Rekimoto, Jun , “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces”, https://vs.inf.ethz.ch/edu/SS2005/DS/papers/surfaces/rekimoto-smartskin.pdf, 2002, 8 pages. |
Ren-Bin, Zhong et al., “Surface plasmon wave propagation along single metal wire”, Chin. Phys. B, vol. 21, No. 11, May 2, 2012, 9 pages. |
Ricardi, L. J. , “Some Characteristics of a Communication Satellite Multiple-Beam Antenna”, Massachusetts Institute of Technology, Lincoln Laboratory, Technical Note 1975-3, Jan. 28, 1975, 62 pages. |
Rieke, M. et al., “High-Precision Positioning and Real-Time Data Processing of UAV Systems”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, 2011. |
Robinson, D.A. et al., “Advancing processbased watershed hydrological research using nearsurface geophysics: A vision for, and review of, electrical and magnetic geophysical methods”, Hydrological Processes 22.18, Mar. 11, 2008, 3604-3635. |
Robles, Rosslin John et al., “A Review on Security in Smart Home Development”, International Journal of Advanced Science and Technology 15 Feb. 2010, 13-22. |
Rosenberg, Uwe et al., “A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology”, IEEE Microwave and Wireless Components Letters, vol. 23, No. 8, Aug. 2013, 406-408. |
Rousstia, M. W. , “Switched-beam antenna array design for millimeter-wave applications”, https://pure.tue.nl/ws/files/4418145/599448877400424.pdf, Jan. 1, 2011, 148 pages. |
Sahoo, Srikanta , “Faulty Node Detection in Wireless Sensor Networks Using Cluster”, Apr. 2013, 212-223. |
Scerri, Paul et al., “Geolocation of RF emitters by many UAVs”, AIAA Infotech, Aerospace 2007 Conference and Exhibit, 2007, 1-13. |
Schoning, Johannes et al., “Multi-Touch Surfaces: A Technical Guide”, Johannes Schöning, Institute for Geoinformatics University of Münster, Technical Report TUM-I0833, 2008, 19 pages. |
Sembiring, Krisantus , “Dynamic Resource Allocation for Cloud-based Media Processing”, http://www.chinacloud.cn/upload/2013-04/13042109511919.pdf, 2013. |
Sharma, Archana et al., “Dielectric Resonator Antenna for X band Microwave Application”, Research & Reviews, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Oct. 2016, 9 pages. |
Shila, Devu M. , “Load-Aware Traffic Engineering for Mesh Networks”, Computer Communications 31.7, 2008, 1460-1469. |
Silvonen, Kimmo , “Calibration and DeEmbedding of Microwave Measurements Using Any Combination of Oneor TwoPort Standards”, Publication of the Circuit Theory Laboratory, CT4, 1987, 1-28. |
Simionovici, Ana-Maria et al., “Predictive Modeling in a VoIP System”, 2013. |
Simons, Rainee N. , “Coplanar Waveguide Feeds for Phased Array Antennas”, Solid State Technology Branch of NASA Lewis Research Center Fourth Annual Digest, Conference on Advanced Space Exploration Initiative Technologies cosponsored by AIAA, NASA and OAI, 1992, 1-9. |
Singh, Seema M. et al., “Broadband Over Power Lines A White Paper”, State of New Jersey, Division of the Ratepayer Advocate, NJ, Oct. 2016, 67 pages. |
Song, Kaijun et al., “Broadband radial waveguide power amplifier using a spatial power combining technique”, www.mtech.edu/academics/mines/geophysical/xzhou/publications/songfanzhou_2009b_impa.pdf, 2009, 7 pages. |
Sospedra, Joaquim et al., “Badalona Oil PierBased Met-Ocean Monitoring Station”, Campbell® Scientific, www.campbellsci.com, Nov. 2016. |
Souryal, Michael R. et al., “Rapidly Deployable Mesh Network Testbed”, https://pdfs.semanticscholar.org/f914/1ce6999c4095eab3bdea645745761ebe5141.pdf, 2009, 6 pages. |
Spencer, D G. , “Novel Millimeter ACC Antenna Feed”, IEEE Colloquium on Antennas for Automotives, Mar. 10, 2000, 10 pages. |
Stancil, Daniel D. et al., “High-speed internet access via HVAC ducts: a new approach”, Global Telecommunications Conference, IEEE vol. 6, 2001, 4 pages. |
Sun, Zhi et al., “Magnetic Induction Communications for Wireless Underground Sensor Networks”, IEEE Transactions on Antennas and Propagation, vol. 58, No. 7, Jul. 2010, 2426-2435. |
Sundqvist, Lassi , “Cellular Controlled Drone Experiment: Evaluation of Network Requirements”, 2015, 71 pages. |
Szczys, Mike , “Cameras Perch on Power Lines, Steal Electricity”, http://hackaday.com/2010/06/28/cameras-perch-on-power-lines-steal-electricity/, Discloses cameras that clamp on to power lines and use induction as a power source., 2010, 1 page. |
Tantawi, Sami G. et al., “High-power multimode X-band rf pulse compression system for future linear colliders”, Physical Review Special Topics-Accelerators and Beams, 1098-4402/05/8(4)/042002, 2005, 19 pages. |
Teng, Ervin et al., “Aerial Sensing and Characterization of ThreeDimensional RF Fields”, Univ. at Buffalo, cse.buffalo.edu, Sep. 2016 6 pages. |
Tesoriero, Ricardo et al., “Tracking autonomous entities using RFID technology”, IEEE Transactions on Consumer Electronics 55.2, 2009, 650-655. |
Thota, Saigopal et al., “Computing for Rural Empowerment: Enabled by Last-Mile Telecommunications (Extended Version)”, Technical Report, 2013, 14 pages. |
Thottapan, M. , “Design and simulation of metal PBG waveguide mode launcher”, www.researchgate.net/profile/Dr_M_Thottappan/publication/262415753_Design_and_Simulation_of_Metal_PBG_Waveguide_Mode_Launcher/links/0f317537ad93a5e2a4000000.pdf, 2014, 383-387. |
Tillack, M. S. et al., “Configuration and engineering design of the ARIES-RS tokamak power plant”, https://www.researchgate.net/publication/222496003_Configuration_and_engineering_design_of_the_ARIES-RS_tokamak_power_plant, 1997, 87-113. |
UK Essays, , “Beam Adaptive Algorithms for Smart Antennas Computer Science Essay”, www.ukessays.com, Mar. 23, 2015, 21 pages. |
Van Atta, L.C. , “Contributions to the antenna field during World War II”, www.nonstopsystems.com/radio/pdf-hell/article-IRE-5-1962.pdf, 1962, 692-697. |
Wade, Paul , “Multiple Reflector Dish Antennas”, www.w1ghz.org/antbook/conf/Multiple_reflector_antennas.pdf, 2004, 45 pages. |
Wang, Hao et al., “Dielectric Loaded Substrate Integrated Waveguide (SIW)—Plan Horn Antennas”, IEEE Transactions on Antennas and Propagation, IEEE Service Center, Piscataway, NJ, US, vol. 56, No. 3, Mar. 1, 2010, 640-647. |
Wang, Wei , “Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines”, https://pdfs.semanticscholar.org/3941/601af7a21d55e8b57ab0c50d5f1d9f9f6868.pdf, Discloses an induction based energy harvesting device that takes energy from overhead powerlines (Figure 4)., 2016 16 pages. |
Wang, Xingfu et al., “Zigzag coverage scheme algorithm & analysis for wireless sensor networks”, Network Protocols and Algorithms 5.4, 2013, 19-38. |
Washiro, Takanori , “Applications of RFID over power line for Smart Grid”, Power Line Communications and Its Applications (ISPLC), 2012 16th IEEE International Symposium on. IEEE, 2012, 83-87. |
Wenger, N. , “The launching of surface waves on an axial-cylindrical reactive surface”, IEEE Transactions on Antennas and Propagation 13.1, 1965, 126-134. |
Werner, Louis B. et al., “Operation Greenhouse”, Scientific Director's Report of Atomic Weapon Tests at Eniwetok, Annex 6.7 Contimation-Decontamination Studies Naval Radiological Defense Lab, 1951, 209 pages. |
Wikipedia, , “Angular Momentum of Light”, https://en.wikipedia.org/wiki/Angular_momentum_of_light, Nov. 10, 2016, 1-7. |
Wilkes, Gilbert , “Wave Length Lenses”, Dec. 5, 1946, 49 pages. |
Wolfe, Victor et al., “Feasibility Study of Utilizing 4G LTE Signals in Combination With Unmanned Aerial Vehicles for the Purpose of Search and Rescue of Avalanche Victims (Increment 1)”, University of Colorado at Boulder, Research Report, 2014, 26 pages. |
Won Jung, Chang et al., “Reconfigurable Scan-Beam Single-Arm Spiral Antenna Integrated With RF-MEMS Switches”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 2, Feb. 2006, 455-463. |
Woodford, Chris , “How do touchscreens work?”, www.explainthatstuff.com/touchscreens.html, Aug. 23, 2016, 8 pages. |
Xiao, Shiyi et al., “Spin-dependent optics with metasurfaces”, Nanophotonics 6.1, 215-234., 2016 215-234. |
Yeh, C. et al., “Thin-Ribbon Tapered Coupler for Dielectric Waveguides”, 5/151994, 42-48. |
Zhang, , “Modified Tapered Slot-line Antennas for Special Applications”, REV Journal on Electronics and Communications, vol. 2, Jul.-Dec. 2012, 106-112. |
Zhang, Ming et al., “PlanetSeer: Internet Path Failure Monitoring and Characterization in Wide Area Services”, OSDI, vol. 4, 2004, 33 pages. |
“International Preliminary Report on Patentability & Written Opinion”, PCT/US2015/047315, dated Mar. 30, 2017, 8 pages. |
Akalin, Tahsin et al., “Single-Wire Transmission Lines at Terahertz Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. 54, No. 6, 2006, 2762-2767. |
Wang, Kanglin, “Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range”, Physical Review Letters, PRL 96, 157401, 2006, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160080839 A1 | Mar 2016 | US |