Fluid balance is a crucial aspect of human physiology. The body automatically makes adjustments to maintain the body's fluid levels under a variety of conditions. Certain medical conditions such as heart failure, kidney disease, and others exceed the body's regulatory mechanisms resulting in excess fluid retention or fluid loading which presents as peripheral edema or limb swelling.
Fluid retention and edema, or limb swelling, can be associated with and is predictive of an impending decompensation event. Unfortunately, patients do not have good tools for recognizing markers of deteriorating condition. This often forces the patient to the hospital for intervention. This is frightening and expensive.
Measuring and managing fluid balance is associated with many aspects of human health such as heart health, and any number of disease states and medication intervention trials could benefit from an improved wearable device that can detect early warning signs of a new or worsening medical condition in fields that may include, without limitation, nephrology, cardiology, sports medicine, prenatal care, migraines, drug trials, and the like.
The detailed description is described with reference to the accompanying figures that illustrate aspects of one or more embodiments described herein, in which the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
Interstitial fluid volume is a key medical concern in patients with conditions such as heart failure decompensation, reduced kidney function, and similar physiological conditions. In an example of particular concern, increases in interstitial fluid volume are associated with heart failure decompensation. Taking singular measurements from time to time, perhaps at doctor's appointments, can yield dramatically different and contradictory results from measurement to measurement, depending on the random time of day of the appointment and other factors. Absent presumably more sophisticated measurements, doctors often resort to gross approximation of the presence or absence of swelling, such as pressing their finger into one's ankle, as equivalent in efficacy. Moreover, lacking practical and rigorous medical measurement has constrained the usefulness of this physiological parameter.
Previous approaches to circumference monitoring of limbs have focused on measuring the circumference at a known position on the limb. The device and techniques described herein are not dependent on a known position on the limb but rather take measurements at the minimum circumference regardless of where it occurs as indicating a measure of interstitial fluid volume. The device is constructed to impart only a light tension of the strap around the limb, achievable by design including one or more of lightweight components, the material characteristics of the strap, and the width of the strap. These parameters, as well as the activity of the limb, may all combine to allow the device to come to rest at the minimum circumference of the limb such that the device is continuously sensing the minimum circumference of the limb without unnecessary pressure around the limb at the point of measurement.
The device, in addition to moving along the axis of the limb, can rotate about the axis of the limb. The limb is not circular in cross section. As it clocks about this circumference the area of the winder cassette (600) that bears against the limb has been minimized and the strap (450) can fit more closely to the actual shape of the limb. Thus, the device may allow for consistent measurements regardless of the clocking orientation of the device about the axis of the limb.
A device is described herein that is configured to measure limb circumference and acceleration on an intermittent, periodic, and/or continuous basis, and to analyze the circumference measurements, device and/or subject orientation, and activity data, including comparing the current state or trends with the patient's baseline, normal, or desired state. Differences between measured states and desired states may be used as input to guide decisions about the subject's diet, activity, and treatment, including medication in some implementations, to advance the subject toward the desired state and avoid potentially life-threatening events such as breathless hospitalizations for heart failure patients, in addition to other events such as those described herein.
When the device is used to measure the wrist or ankle volume, it settles at or near the minimum circumference of the limb such that measurements may be compared over time. It may also settle to a repeatable home location because of the construction details. Movement of the limb (for example, the flexing of the Achilles tendon) helps facilitate device mobility on the limb.
One aspect of the device may comprise a low force tensioning element and may be configured to include a large area of distributed load using, e.g., a lightweight strap (in one example, less than ½ ounce, inclusive of the device), and articulated or flexible coupling to allow even force distribution. Gravity acting on the mass of the device may contribute force. An additional force is contributed by the mechanism that holds the position device in intimate contact to the limb. For example, tension against the subject's skin exerted by the device, and particularly by the strap under tension, may be less than or substantially equal to (there may be some light compression of the skin) the interstitial fluid pressure at the site and distributed across the surface of the strap such that friction against the skin balances against the force of gravity on the weight of the device. These in conjunction represent the combined forces exerted over a prescribed area. One embodiment of the device may provide a broad surface of approximately 25 millimeters in width disposed around the limb to distribute approximately 11 grams gravitational load applied along the axis of the limb and the constant spring force load of approximately 10-40 grams snugging the strap to the limb.
The disclosed device measures circumference by means of an optoelectronic circuit and a strap encircling the limb. On a portion of the strap is a printed gradient. An optical emitter and detector pair (optical sensor) is situated opposite the gradient. As the limb changes size, the strap expands and contracts via a strap housing and tensioning mechanism which allow the optical sensor to move back and forth across the gradient and detect the amount of reflection associated with a position on the strap which corresponds with a circumference of the limb.
For example, when a person is lying down, interstitial fluid in the body distributes itself somewhat evenly about the length of the body. But when a person is standing or sitting in a relatively vertical position, fluid is redistributed to the limbs due to gravity. This effect is more pronounced in the lower extremities.
In one embodiment of the invention, the device may be worn near continuously and circumference and orientation data are collected at a specified interval and processed to determine a Daily Swelling Pattern and Average Daily Swelling for each individual. The intra day circumference changes related to the redistribution of interstitial fluid from lying to standing is greater than the change in circumference associated with fluid retention of interest associated with health or medical conditions that require attention. Therefore, a plurality of measurements of circumference over circadian cycles are used to detect longitudinal fluid retention.
Careful quantification and tracking over time show that even changes averaging only a few millimeters in fluid volume, which are pertinent physiological information, can present as a significant sign of disease progression but be invisible at a single inspection, or sometimes even daily inspection, and indicate more precise measurement than is possible by visual inspection alone. Capturing a plurality of measurements of minimum limb circumference typical of a narrowing of the limb at an ankle or wrist can be beneficial, as limb circumference can be a close proxy of interstitial fluid volume.
The measurement assembly 105 may house an electronics subassembly 225 to obtain data and communicate the data or information based on the data. The electronics subassembly may comprise sensors and associated electronics that, in some embodiments, may perform analysis of sensor data and output results of the analysis and/or recommendations or instructions based on those results. In some embodiments, the electronics subassembly may include a sensor portion comprising a set of optical sensors situated to be opposite a corresponding set of reversed optical gradients on the strap 115, the optical sensors including one or more light emitters and one or more light detectors.
The winder cassette 110 cooperates with the strap 115 generally to enable a loose-tensioned but snug fit to the limb. The device 100 does not ordinarily fit tight to the limb, even in the presence of severe swelling. Indeed, the strap 115 and winder cassette 110 are constructed so that the strap 115 may extend and retract as the limb swells and contracts, enabling an essentially constant force to be applied to the limb.
In some embodiments, the strap 115 is generally flexible and inelastic, and may be made of a biocompatible, porous material for patient comfort. As one example, the material can be 0.008″ Teslin (PPG, Barberton, Ohio) or Tyvek (Wilmington, Del.). It may be brought close to the limb by, e.g., a constant force spring. In one embodiment, the spring may be a 5″ long by ⅝″ width by 0.001″ half hard stainless steel shim stock (Precision Brands, Downers Grove, Ill.).
The battery 215 may be a so-called coin battery of any sort that meets the power and size requirements of the device 200, and in particular the power suppled to components on the electronics subassembly 225 and other components, and of a size that fits within the battery drawer 240. In some embodiments, another portable power source may used, such as a fuel cell, storage capacitor, energy harvested from the patient, energy harvested from the environment, and the like.
The insulator 220 may be an electrical insulator, and so can be positioned to insulate the battery 215 from the electronics subassembly 225 so that the battery 215 can be changed without contacting any components or wiring on the electronics subassembly 225, or the electronics board substrate. In some embodiments, the insulator 220 may be stamped or printed with configuration information, such as version, for the device 200 or any component thereof.
The electronics subassembly 225 may be a printed circuit board and include electronic components that control and carry out one or more of sensing of limb circumference, running an algorithm on data from the sensed limb circumference, outputting messages, and generating graphic results showing measurements over time that can be interpreted by a medical professional (for example) to give insight into the current condition of a patient wearing the device 200. In some embodiments, the electronic components may include one or more of optoelectronic sensors (including one or more light emitters and light detectors), one or more processors, memory, and an accelerometer. The memory may store instructions that, when executed by the one or more processors, cause the one or more processors to carry out various operations described herein. In at least some embodiments, the accelerometer may detect patient motion and output data that may be used by an on-board control system or transmitted to a remote computing device to determine a level of activity of the patient. For example, the device, by information received from the accelerometer, may detect, accumulate, store, and/or transmit accelerometer measurements at a sufficiently high frequency and associate the information with circumference readings to provide an adequate representation of gravity effects and activity on the limb during the time between circumference measurements. An example of relevant activity is walking. Walking flexes the Achilles tendon and may change the circumferential measurement. If the accelerometer recognizes walking activity, the circumference measurement may be rescheduled or removed from the data set.
The radio module 230 may transmit a digital or analog signal (e.g., containing patient motion information) to an external device. For example, the signal may be transmitted to a nearby computer, smartphone, tablet, or the like which has processing power to receive the signal, analyze the data provided by the signal, and output an instruction or command, relay the signal to a remote computing device such as a server, computer, or database (at a doctor's office or data center, for example).
The gasket 235 is configured and positioned to seal the enclosure 205 and prevent dust or water intrusion that might harm sensitive components inside. The gasket 235 comprises, without limitation, an insulative material suitable for its purpose.
The spring 245 may provide a constant spring force load (for example, approximately 10-40 grams) sufficient to snug the strap 260 to the limb without unnecessary, uncomfortable pressure. The spring 245 may be attached to the strap 260 by an adhesive, for example.
The spindle 250 may be configured to receive the spring 245 at least partially, and provide a place for anchoring and wrapping the spring 245.
The clasp 255 may be configured with cleats so that the strap may be attached by inserting the cleats into corresponding holes in one end of the strap 260. This is similar to holes on a person's belt, as noted above, and allows the device 200 to accommodate a broad range of application from a small wrist to a substantially swollen leg, for example. The sizing of the device may be defined by fixing the length of the strap 200. The holes may be labeled and positioned at a known distance from a known reference point on the gradient at the other end of the strap 260. This sizing data may be collected, stored, and updated as necessary if the “size” is readjusted or calibrated.
The measurement assembly 105 may be constructed such that the insulator 220, electronics subassembly 225 which includes radio module 230, and battery 215, are joined together on the battery drawer 240 with the gasket 235 positioned where the battery drawer 240 meets the enclosure 205 by a snap fit, to facilitate easy removal of the battery drawer assembly for battery 215 replacement. In this configuration, the battery drawer 240 may snap into the enclosure 205, compressing the gasket 235 which seals the interior of the enclosure 205 from dust or water intrusion. Then, the winder cassette 110 may be fitted to the measurement assembly 105, for example by fitting projections on the spindle 250 to corresponding holes or recesses in wings extending from the enclosure 205, bringing together the measurement assembly 105 and the winder cassette 110, including the spring 245, spindle 250, and clasp 255.
In some embodiments, the enclosure 205, spindle 250, and/or clasp 255 may be 3D printed in nylon 12 by a Hewlett Packard multi jet fusion method. These parts may be finished by vapor honing to seal the surface. The battery drawer 240 may have a transparent part facing the optical sensors, and the transparent part may be 3D printed by the Carbon 3D (Redwood City, Calif.) digital light synthesis process using a Loctite 405 material (Henkel, Germany). The clear part can be sprayed with a Rust-Oleum clear gloss finish (Vernon Hills, Ill.) to lessen surface diffusion. The gasket 235 may comprise Poron (polyurethane foam).
In
The spindle 440 may be snap-fit into pivot features in the enclosure 405, such as the extensions mentioned above and illustrated in
In general, the amount of light reflected back toward the optical sensor parts 455 is proportional to the position of the detectors relative to the respective gradient portions. The light sensed by the detectors may be correlated to the position of the device 400 on the limb. This limits tolerance accumulations on parts such as those having an extremely shallow depth of field.
The action of moving the gradient on the strap 615 past the optical sensor(s) as the limb expands and contracts may be accomplished with a tensioning mechanism comprising the spindle 610 and spring 620 within the spindle assembly that may house a portion of the length of the strap 615 that is rolled and attached to the spring 620. In some embodiments, the spring 620 may be a constant tension spring. As the limb expands, the strap 615 unrolls, increasing the length of the strap 615 to accommodate the increased circumference of the limb while maintaining a constant tension of the strap 615 around the limb by a constant force applied by the spring 620. The tension of the strap 615 may be matched to the interstitial fluid pressure and elasticity of the skin such that the device expands and contracts without creating an indentation in the limb. In this regard, and in conjunction with the other embodiments described herein, it is understood that constancy of the force and tension need not be exact, but are within a reasonable tolerance that enables the device to perform its function of measuring limb circumference, and particularly differences thereof relative to a baseline or other reference, in accordance with the principles outlined in this disclosure.
Limb circumference measurements and limb orientation data are taken continuously at a regular interval and processed to produce a personal Daily Swelling Pattern for the subject wearing the device. The Daily Swelling Pattern is characterized by a minimum limb circumference that occurs when the subject is lying down and at a maximum circumference after the subject has been in a vertical position such as standing or sitting for a period of time specific to that individual.
Trends in the fluid gain or loss are computed for specified time periods such as days, weeks, or months.
Fluid gain/loss and fluid gain/loss trends can be compared to threshold values to identify conditions of interest. The system takes actions specific to the condition of interest including sending messages and alerts to the user as well as support personnel such as family caregivers, chronic care management, and/or clinical personnel.
The rate at which fluid redistributes itself in the body on rising to a vertical orientation may be indicative of the viscosity of the interstitial fluid; changes in viscosity are known to be related to heart failure decompensation due to changes in protein levels in the interstitial fluid. This is typically evaluated by a physician pushing a finger firmly against the ankle of the patient and seeing if the “dent” produced rebounds quickly. If the dent is slow to rebound, the condition is described as pitting edema. This is a significant medical sign and useful diagnostic method in characterizing the condition of the patient.
The disclosed techniques can characterize the rate of change of the redistribution of interstitial fluid. By taking a plurality of measurements when the patient moves from a supine to upright orientation, typically in the morning, it is possible to track the time it takes for the redistribution of interstitial fluid associated with the change in direction of the gravitational force. This rate of change measurement is directly related to the viscosity of the interstitial fluid. Being able to recognize interstitial fluid viscosity and changes associated with it can further inform the medical practitioner or computed algorithm about changes in the disease state of the patient, as fluid viscosity offers insight to the underlying cause of fluid loading (e.g., change in protein levels in the interstitial fluid).
The measurement device accommodates variability of limb size in two ways. As the limb changes in size, the strap 260 may move past the optoelectronic sensors on the electronics subassembly 225. At the other end of the strap 260, the clasp 255 may be joined by cleats to the strap 260 at one of a plurality of hole features that define the gross overall size of limb the assembly can accommodate.
The spring 670 may be attached to the capture feature 630 by, e.g., inserting one end of the spring 670 into a gap between the first and second pin portions and wrapping or coiling the spring 670 around the first and second pin portions as a set. To aid with fixing the spring 670 to the spindle 625, the end of the spring 670 that is inserted into the gap may be wrapped or bent to wrap at least partially around one of the pin portions. Bends 635 in the spring 670 may engage the spindle capture feature 630. as shown in
The clasp 615 can be joined to the spindle 625 by flexible latch features 620 that are integral to the spindle 625. These latch features engage geometry 610 in the clasp 615 to join the ends of the winder cassette 600 in order to encircle the limb. The distal end 660 of the strap 605 is threaded through the body of the clasp 615 and secured by one or more cleats 665 to one of a plurality of receiving features 750 in the strap 700 as shown in
In one example, the strap 700 may be positioned such that two of the optical devices 520 shown in
The gradients 720, 730 may range from dark to light, and be arranged 180 degrees to each other as in the example shown. Further, at the end of each gradient 720 and 730 may be an “end zone” area 715 and 735, respectively, of the darkest part of the gradient, which ensures signal continuity under large excursions. Correspondingly, there may be an optical “home zone” area 740 beyond the ends of both gradients 720, 730 where both optical devices 520 may be exposed to white, or to an unprinted area or area that is at least substantially lighter than the end zone of the gradient 730. Similarly, bands of known reflectance may be positioned adjacent to at least one of the gradients to enable the optical sensor(s) and downstream signal and data processing to recognize operational events (e.g., out of bounds, fully retracted, fully expanded, resizing, and/or the like).
For example, the end zones may be solid or nearly solid black. The end zones thus represent an out-of-range condition; e.g., when the optical sensors 520 sense the end zone or a difference between relatively very dark to relatively very light, for example by the difference in determined light amplitudes exceeding a certain threshold. In some embodiments, the sensed regions are represented by a preset light amplitude detectable by the optical detectors 520, respectively. In this condition, one of the optical devices 520 is exposed to black (or a portion identifiable as the end zone) and the other white (or a portion identifiable as the opposing relatively light zone). This allows for messaging in response to the detection to refit the clasp 255 (generally manually) to a smaller or larger cleat position.
As indicated, in some examples, two optical sensors 520 may be situated opposite the reversed gradients 720, 730. This configuration generates a complementary set of data such that signals can be combined (added) in a manner that errors related to the nonlinearity of the transducers are offset and thereby produce a more accurate result of position. In particular, the amplitudes of light reflected from corresponding locations of one gradient that gets darker in one direction and the other gradient that gets lighter in the same direction will have detectable equal-and-opposite nonlinearities that will cancel and extend the linear operating range. Similarly, any error that affects both channels in a common way such as ambient light, temperature, or voltage may be reduced analogously to common mode rejection techniques in electronic circuits. Alternatively, two optical sensors positioned over a single gradient can be combined to achieve the same effect by subtracting their signals. An additional or alternate construction is to design a gradient that compensates for the nonlinearity of the optical sensors.
An additional or alternate construction is to situate the optical sensors 520 opposite the same gradient. In such embodiments, knowing the gradation of reflectivity (light-to-dark and vice versa) over specific measuring points enables interpolation between sensor outputs to determine expansion and contraction of the strap 700 due to limb swelling.
The sensitivity for the optical sensors 520 may vary, which may result in a variable reflectance operating range for each optical sensor 520 when used as a position sensor. A gradient operating range may be calibrated based at least on the specific sensitivity of each optical sensor 520. For example, in at least one embodiment, a digital pot can be added to the emitter and detector circuit such that the circuit is modified as part of the optical sensor calibration to achieve multiple operational benefits including obtaining a full operating range of reflectance, improved linearity of the optical sensor, and use of a common gradient for all sensors.
Using an optical sensor 520 as a position sensor may include maintaining a fixed distance between the optical sensor 520 and the reflective surface of its associated gradient. This can be accomplished by stabilizing the height of the optical sensor 520 within the case body using the transparent battery drawer containing the battery (and electronics subassembly in some embodiments). Consider, for example, the arrangement shown in
In some embodiments, when the device is not being worn, the spring 245 may retract the strap 700 to the home zone or beyond, which can be read by the software that is executed to interpret the signals representing the detect light amplitudes, with an indicator or message output informing the same via a display on the enclosure. In some embodiments, the output may be a signal transmitted to another device to provide the information to the receiving device. The detection of these conditions can also be used to indicate whether a strap needs to be resized larger or smaller.
At the distal end 760 of the strap 700 are a series of cut features 750, 755 that engage the clasp cleats of the clasp 255 to set the usable circumference of the assembly. As indicated elsewhere, the cut features 750, 755 may be considered to be analogous to holes in a belt. There is a number 745 associated with each of the cut features 750, 755 that represents, for example, the number of centimeters from the nominal middle of the gradients 720, 730, respectively. Straps 700 of various lengths are possible for small and large limbs but all use the same or similar principles of construction and may be trimmed of objectionable overage.
A swelling pattern can be represented by an “average” circumference considering the minimum and maximum circumferences associated with the swelling pattern.
The Baseline Swelling Pattern or the Baseline Average Swelling is identified as the Daily Swelling Pattern or Average Daily Swelling detected when the subject is in a normal state of health usually referred to as a “dry” state for heart failure patients. The systems can compute or adjust the normal baseline over a period of use. The system maintains the normal baseline for comparisons to compute fluid gain/loss.
In
The plot 1000 of
This persistent trending can be compared with the individual patient's history as well as patients who might have similar characteristics such as, but not limited to, age, height, weight, left ventricle ejection fraction, comorbidities, and/or similar measures. Additionally, other physiological measures such as, but not limited to, heart rate, SpO2, NIBP, and/or heart rate variability may also be considered in conjunction with these measurements. Processing this information, using appropriate correlative algorithms, may enable a real-time, consistent, continuous, and/or instant acute evaluation of the trending event severity and predict the likelihood of an impending decompensation event. In some embodiments, trained machine learning models or rules application algorithms may be utilized and updated in accordance with feedback (human or machine) from the patient's experience and/or from a population of patients to constantly improve the accuracy of these predictions; the more measurements taken; the more accurate the predictions, especially in order to minimize interpolation errors and determine an accurate model of changes of daily swelling of a limb. When a substantial swelling event exceeding a predetermined threshold stored on the device or remotely is detected, a patient or their caregiver may be notified to take actions to change overall patient activity, contact their medical provider, change the amount of a treatment such as a diuretic, add or subtract other medications, or implement other methods that may alter the course of the disease. In some examples, the responsive actions are urgently provided; in others, such as diet change, the responsive actions may be suggestions or instructions. Changes in medication dosage would normally follow a predefined treatment plan from the patient's physician, where an additional diuretic might be indicated when the patient has a substantial swelling event, for example.
Given the small size of the arithmetically processed signal of interest compared to the range of circumference measurements over a day, it is desirable to minimize sampling rate induced distortions of the underlying, continuous changing, physiology. Linear interpolations that truncate the actual limb swelling excursion values can materially change the value of the calculated signal of interest. In the simplest of examples, a plot of circumference measurement at a random time during a week could yield substantially different results that might substantively contradict a more densely sampled identical patient and condition. This is particularly true when evaluating the rate of change of circumference associated with changes in gravitational orientation of the patient.
In the nonlimiting examples shown in
These individual measurements may be mathematically aggregated over a period of time, such as a day, 48 hours, or any time suited to the monitoring and analysis. In this example it is by means of a rolling average; an exponential moving average is also contemplated. A series of these aggregated measurements are then compared for evidence of deviation or divergence. In the example of
Measurements for this individual ranged 10 millimeters for the same position on the same ankle depending on the day and time. But the aggregate daily oscillation in measurements is in fact quite stable. The range for this individual was about a millimeter as can be seen in the average daily circumference trend line (815).
This paper describes a method of capturing a plurality of measurements of minimum limb circumference typical of a narrowing of the limb at an ankle or wrist, for example; it should be noted that the teachings herein are applicable whether the minimum limb circumference is at a narrow or narrowing point or at a location on a constant circumference, such as a constant cylinder. And limb circumference is a close proximate of interstitial fluid volume. And interstitial fluid volume is a key medical concern in patients with conditions such as heart failure decompensation, kidney function and similar physiological conditions. Increases in interstitial fluid volume are associated with heart failure decompensation. It should be clear from
It should be noted that a single measurement at a fixed time of day would not yield accurate results. As can be seen in
The health care entity 1106 may include, without limitation, a medical facility, caregiver, and/or other personnel associated with patient care. A caregiver or other personnel may operate one or more computing devices as part of their care function.
The personal contact 1108 may include support personnel operating one or more computing devices connected to a database server 1114 via a wired or wireless communication link (e.g., the Internet or other wireless and/or wired connection) using SMS messages, WIFI protocols, Bluetooth protocols, and the like. The personal contact 1108 may also include a personal representative for the patient, family member, or other individual set up to receive information derived from the device 100.
A control system may include a database server 1112 connected to a database 1114. The database 120 may store pertinent data about the patient 102 (such as patient history, a patient record, and the like), trigger event levels, and addresses to which messages (e.g., notifications, alerts, and the like) are to be sent.
Information from the device 1104 can travel several alternate paths depending upon the implementation details. For example, the information may be input into a computing device (e.g., a patient desktop computer, a patient cellular telephone, a patient portable computer, and the like) connected to the database server 1112 (or a web server) via the Internet or other network. The computing device may transfer the feedback information to the database server 1112 directly or via the access point 1110. The device 1104 may communicate the device messages to the computing device for transmission thereby to the database server 1112.
The device 100 may continuously measure and store position measurements on the device itself or remotely, e.g., at the database 1114, at a predefined frequency. The positions may be interpreted as a relative circumference measurement when compared to an arbitrary reference or an absolute circumference measurement when combined with the size information which establishes a relationship between a position on the gradient and a known circumference.
As illustrated in
The communication interface 1202 may include wireless and/or wired communication components that enable the measurement assembly 1205 to transmit data to and receive data from other networked devices via a communication network such as that described with respect to
The user interface 1204 may enable a user to provide input and receive output from the measurement assembly 1205, including for example providing one or more input to initiate device activation and/or set metadata, tags, communication parameters, monitoring parameters, etc. The user interface 1204 may include a data output device (e.g., visual display, audio speakers), and one or more data input devices. The data input devices may include, but are not limited to, combinations of one or more of touch screens, physical buttons, cameras, fingerprint readers, keypads, keyboards, mouse devices, microphones, speech recognition packages, and any other suitable devices or other electronic/software selection methods.
The processor(s) 1206 and the memory 1210 may implement an operating system. The operating system may include components that enable the measurement assembly 1205 to receive and transmit data via various interfaces (e.g., the user interface 1204, the communication interface 1202, and/or memory input/output devices), as well as process data using the processor(s) 1206 to generate output. The operating system may include a display component that presents output (e.g., displays data on an electronic display, store the data in memory, transmit the data to another electronic device, etc.). Additionally, the operating system may include other components that perform various additional functions generally associated with an operating system.
The optical sensors 1208 may be configured by light-emitting and/or -detecting devices (for example, optical emitter/detector pairs) sized to fit within the enclosure of a wearable device of the type described herein, working in conjunction with optoelectronic circuitry to detect the amount of reflection associated with a position on the strap which corresponds with a circumference of the limb.
The memory 1210 may be implemented using computer-readable media, such as computer storage media. Computer-readable media includes, at least, two types of computer-readable media, namely computer storage media and communications media. Computer storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, Random-Access Memory (RAM), Dynamic Random-Access Memory (DRAM), Read-Only Memory (ROM), Electrically Erasable Programable Read-Only Memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device. Computer readable storage media do not consist of, and are not formed exclusively by, modulated data signals, such as a carrier wave. In contrast, communication media may embody computer-readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transmission mechanism.
The memory 1210 may include the operating system, device software 1214, and one or more applications 1216, as well as data gathered by the optical sensors or input by a user or received from a remote source. The application(s) 1216 may include any application software executable by the one or more processors 1206, including but not limited to applications that facilitate the functions of the wearable device 1205 for detecting extension and retraction of the strap by detecting and processing reflected light and data derived therefrom; manipulation, formatting, addition, deletion, or modification of metadata; and image or data processing, for example.
The device software 1216 may include software components that enable the measurement assembly 1205 to perform functions. For example, the device software 1216 may include a basic input/output system (BIOS), Boot ROM, or bootloader that boots up the measurement assembly 1205 and executes the operating system following power up of the measurement assembly.
The device hardware 1212 may include additional hardware that facilitates performance of the user interface 1204, data display, data communication, data storage, and/or other device functions.
The processor(s) 1304 and the memory 1306 may implement an operating system. The operating system may include components that enable the database server 1112 to receive and transmit data via various interfaces (e.g., the communication interface 1302 and/or memory input/output devices), as well as process data using the processor(s) 1304 to generate output. The operating system may include a display component that presents output (e.g., displays data on an electronic display, store the data in memory, transmit the data to another electronic device, etc.). Additionally, the operating system may include other components that perform various additional functions generally associated with an operating system.
The memory 1306 may include the operating system, device software, and one or more applications, as well as data gathered by the optical sensors or input by a user or received from a remote source. The applications may include any application software executable by the one or more processors 1304, including but not limited to applications that train and/or execute rules or machine learning models and algorithms 1310 to process data received from the measurement assembly 1205, including generating waveforms of circumference changes, interpreting data, applying activity information, subject medical history, and other data, generating predictive output for analysis and/or feeding back to update or retrain models, and the like.
The hardware 1308 may include additional hardware that facilitates performance of data display, data communication, data storage, and/or other device functions.
At block 1402, the measuring device 100 may measure a circumference of the limb at a repeatable home location over a period of time as an indicator of interstitial fluid volume in the limb. In some embodiments, the measuring device may be applied to a limb of a human subject and allowed to move to settle at the repeatable home location on the limb. In one or more embodiments, the repeatable home location may be the minimum circumference of the limb, where the strap tension balances the interstitial fluid pressure to enable the device to perform the measurements described above.
At block 1404, the measuring device 100 may generate a waveform showing current circumference data derived from the measured circumference over time. in some embodiments, the circumference measurements may be taken periodically (e.g., once per day), intermittently (e.g., initiated manually), or continuously. In some embodiments, some or all of the data processing and waveform generation may be performed off-device, such as by a remote computing device.
At block 1406, the measuring device may compare the waveform with a waveform of baseline circumference data for the subject at the repeatable home location. The difference in waveforms may be interpreted by the measuring device 105, transmitted to an off-device or remote location, such as a doctor's office, mobile device, portable computer, and/or the like, or interpreted by a human.
At block 1408, the measuring device 105 may output a result of the comparing with an indication exposed by the comparing. For example, if the waveform of current circumference measurements shows an increase over the subject's baseline waveform, an alert may be displayed on the measurement assembly, transmitted to a mobile device or more remote endpoint. Additionally, or in the alternative, an instruction may be output to, e.g., advise the subject of changes to be made in diet or exercise, to revisit or make specific adjustments to treatment (including medicine dosage adjustments), and/or the like.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as an example forms of impending the claims.
This application claims the benefit of U.S. Provisional Patent Application No. 63/169,557, filed on Apr. 1, 2021, entitled “MONITORING CHANGES IN VOLUME AND PROPERTIES OF HUMAN INTERSTITIAL FLUID USING LIMB CIRCUMFERENCE AND ACCELERATION”, which is hereby incorporated by reference in its entirety. This application is also related to U.S. Pat. Nos. 8,827,930; 8,915,869; and 10,993,658, the contents of all of which are also incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
63169557 | Apr 2021 | US |