A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates generally to a monitoring device and system. More particularly, the present disclosure relates to a sensor pad and transmitter for tracking patient incontinence.
Incontinence in patient care environment is a growing problem in patient care and home care of elderly patients. Urinary incontinence is the involuntary leakage of urine. Many patients have the inability to hold urine in their bladder because voluntary control over the urinary sphincter is either lost or weakened. Urinary incontinence is a much more common problem than most people realize.
It is common for nursing homes and hospitals to lack the staff and financial resources to provide residents with sufficiently frequent toileting assistance (including prompted voiding). Use of special undergarments and absorbent pads or catheterization is the usual practice.
Urinary incontinence (UI) and fecal incontinence (FI) are commonly encountered in nursing home residents and are associated with significant morbidity and utilization of health care resources. Urinary incontinence has been estimated to affect between 50% and 65% of nursing home residents, and a majority of these residents also have FI. UI is also prevalent in the at-home aging population and is a leading factor in senior isolation and eventual institutionalization in a care facility.
There are several key activities of daily living (ADL) that are indicative of quality of life and safety in an aging population including: toileting, sleep, medication, and nutrition. Incontinence is a critical ADL deficit that negatively impacts all aspects of autonomy, health, and overall well-being. It is a leading cause of seniors' loss of independence and requiring professional care. The demand for improved incontinence solutions exist, in ever increasing levels of severity, at every stage in elder care from family caregiving through to acute care hospitalization, with the highest utilization rates occurring in long-term living facilities. Sleep quality is another key indicator that augments and inter-relates with incontinence.
Elderly people constitute a large and growing portion of the world's population. Many of them are physically and mentally vulnerable and need continuous support for their health and well-being. There is a growing trend that these elderly people are placed in an ambient assisted living environment (AAL) with an aim to receive better care and support. However, much less attention has been directed toward understanding incontinence needs of elderly people, which is an important factor relevant to their physical and mental health and joyful living.
One in three adult women live with some level of urinary incontinence. Nearly 40% (19 million) of all seniors and over 60% (15 million) of female seniors live with incontinence, with increasing prevalence and severity as age increases. Suboptimal incontinence care leads to degenerative skin health, an increased risk of falls as patients unsuccessfully attempt to self-toilet, and critical declines in mental health. As a result, it is the leading cause of senior isolation and institutionalization. Clinical nurses and the research community agree that there is clear correlation between incontinence and pressure ulcers and urinary tract infections (UTIs). UTIs and pressure wounds are directly linked to increased negative outcomes.
The cost to treat pressure ulcers can be very expensive and is estimated between $9.1-11.6 billion per year, affecting over 2.5 million patients. Approximately 60,000 people die each year as a direct result of a pressure ulcer. Keeping the skin free from exposure to urine and stool is very important in treating pressure ulcers and bedsores. Similarly, UTIs are rampant as well, as a result of over-catheterization, totaling over $340 million per year and with at least 13,000 deaths a year are associated with UTIs. Increased costs and negative outcomes with UTIs are likely as the patient population grows older. The known solutions that demonstrate improvement in these costs and outcomes are needed.
For enterprise businesses, incontinence is a significant issue. For caregivers, such as acute care hospitals, incontinence is a contributor to revenue loss and a key source of family dissatisfaction with institutional providers. Nearly $4 billion is spent on adult non-woven absorbency products in the US ($9 billion globally), and the segment is growing as the Baby Boomers continue to age and live longer than their predecessors.
It is known that the complications of urinary incontinence are increasingly and rapidly expanding as the world's population is aging longer with each New Year. Many elderly people encounter skin problems, but an elderly person with urinary incontinence is even more likely to have skin sores, rashes, and infections because the skin is wet or damp. This is bad for wound healing and also promotes fungal infections. Urinary tract infections are a significant risk, and long-term use of urinary catheters also significantly increases the risk of infection.
The problem has been addressed in part by providing pads that are manually replaced when the nurse is visiting a room. The amount of times a product needs changed depends in part on how absorbent the pad, diaper, or pull-up is and the severity of the incontinence. Generally, it is best to change a product as soon as soiling occurs. This will reduce the risk of skin breakdown and infections caused by a lack of air flow, moist conditions, and long exposure to urine and fecal matter.
With each change, it is important to thoroughly clean the diaper area to reduce infections. After changing, it is important to properly dispose of soiled incontinence products.
Disposable briefs are more commonly known as adult diapers. Adult diapers are often used for heavy incontinence, nighttime wetting, and those who need help getting to the bathroom.
Therefore, there is a need to provide methods an apparatus for improved incontinence sensing. Thus, there remains a considerable need for pads with improved incontinence sensing and systems that can quickly and accurately address a patient with a wet pad.
There currently exists a need for sensor pad systems for managing incontinence adapted to new patient care facilities. Systems for coupling complex sensor pads with software tracking systems and monitoring systems are also needed. In care facilities today, only manual systems exist for the management and maintenance of patient bedding. Many care facilities have no way to determine, monitor, and schedule service and visits based on the real time needs of the patient. Often patients are left in their own urine and feces for extended periods of time, causing many health problems. This leads to increased demands for alternative, pad based incontinence solutions.
There currently exists a need for incontinence protection having improved in the effectiveness at drawing moisture away from the body and keeping odors at bay. In addition, a need exists for maintaining skin health by keeping the perineal area dry and making sure the smell of urine or feces doesn't become noticeable to others are essential to maintaining quality of life —both physical and emotional.
Specifics for incontinence are usually measured by total exposure time (per void and cumulative), and the number of long-term acute care (long-term acute care) people that have used pads over the last ten years. There is a huge growth in catheterization, which in turn has led to a huge rise in catheter related urinary tract infections. Prior to our solution, nobody has actually been able to determine this metric. So currently there is lots of agreement that a correlation between exposure time and negative outcomes exists, but nobody knows what the actual relationship is and where the tipping point into a risk factor is.
In accordance with an embodiment of the present disclosure, a monitoring device includes a sensor configured to determine moisture data associated with moisture in a pad; and a transmitter configured to connect to the sensor and transmit the moisture data to a computer system comprising one or more processors.
In one configuration, the moisture data is associated with at least one of the following: a moisture level in the pad, a moisture location in the pad, a moisture type in the pad, or any combination thereof. In another configuration, the sensor is attached to an interior of a garment. In yet another configuration, the sensor and the transmitter are removably connectable. In one configuration, the monitoring device includes a sensor pad having a top layer formed of a flexible material; an integrated sensor layer including the sensor; and an absorption layer disposed between the top layer and the integrated sensor layer. In another configuration, the top layer wicks a fluid across an area of the top layer. In yet another configuration, the absorption layer absorbs and stores a fluid. In one configuration, the monitoring device includes a powder disposed within the absorption layer, wherein the powder forms into a gel as the absorption layer absorbs a fluid. In another configuration, the integrated sensor layer includes a first sensor arranged in an interior central detection zone; and a second sensor arranged in a perimeter detection zone. In yet another configuration, the integrated sensor layer includes a first sensor arranged in a first spiral configuration; a second sensor arranged in a second spiral configuration; and a third sensor arranged in a rectangular configuration outside the first spiral configuration and the second spiral configuration. In one configuration, the integrated sensor layer is waterproof. In another configuration, a portion of the integrated sensor layer includes a perforation. In yet another configuration, the transmitter includes a top portion; a bottom portion; and a connection portion that movably connects the top portion and the bottom portion between an open position and a closed position. In one configuration, with the connection portion in the closed position, a cavity is formed between the top portion and the bottom portion. In another configuration, the transmitter includes an electrical connector. In yet another configuration, with the connection portion in the closed position, a portion of the sensor is received through the cavity of the transmitter and contacts the electrical connector to connect the transmitter and the sensor. In one configuration, the sensor is energized with a ground signal, and wherein, with moisture on the integrated sensor layer, a circuit is formed with the transmitter. In another configuration, the transmitter includes at least one processor programmed or configured to recognize and transmit characteristics of electric signals in the circuit. In yet another configuration, the transmitter includes at least one processor programmed or configured to monitor, with the computer system, the moisture information and send an alert to a user based on the moisture information. In one configuration, the processor is programmed or configured to recognize and transmit a capacitance of the sensor. In another configuration, the processor is programmed or configured to recognize and transmit an inductance of the sensor. In yet another configuration, the processor is programmed or configured to recognize and transmit a temperature of the sensor. In one configuration, the processor is programmed or configured to recognize and transmit an impedance of the sensor. In another configuration, the processor is programmed or configured to recognize and transmit characteristics of the moisture information. In yet another configuration, the transmitter is re-usable and the sensor is disposable.
In accordance with another embodiment of the present disclosure, a monitoring system includes a sensor configured to determine moisture data associated with moisture in a pad; a transmitter configured to connect to the sensor and transmit the moisture data to a computer system comprising one or more processors; and the computer system configured to receive the moisture data from the transmitter to determine when a patient needs attention and send an alert to a user based on the moisture data. For example, a monitoring system includes determining, with a sensor, moisture data associated with moisture in a pad; and transmitting, with a transmitter connected to the sensor, the moisture data to a computer system comprising one or more processors.
In accordance with another embodiment of the present disclosure, a computer system includes one or more processors programmed or configured to: receive moisture data associated with moisture in a pad; determine based on the moisture data when a patient needs attention; and sending an alert to a user based on the moisture data.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the disclosure itself will be better understood by reference to the following descriptions of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the disclosure, and such exemplifications are not to be construed as limiting the scope of the disclosure in any manner.
The following description is provided to enable those skilled in the art to make and use the described embodiments contemplated for carrying out the invention. Various modifications, equivalents, variations, and alternatives, however, will remain readily apparent to those skilled in the art. Any and all such modifications, variations, equivalents, and alternatives are intended to fall within the spirit and scope of the present invention.
For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations, except where expressly specified to the contrary. It is also to be understood that the specific devices illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimensions and other physical characteristics related to the embodiments disclosed herein are not to be considered as limiting.
The present disclosure provides a Patient Incontinence Monitoring System for electronically detecting the presence of moisture in a patient care or home care environment. It can send a detection of moisture across a network to a third-party device 25 (e.g., a computer, a remote pad, a smartphone, a cloud) for enabling the remote collection and analysis of incontinence data. This detection can also be used by a third-party device 25, such as a monitoring system, to determine patterns and/or alert a caregiver associated with an incontinence event.
With reference to
The tail 15 is integrated with the pad itself. In a preferred embodiment, the tail 15 is formed as part of the sensor pad 10, created within the manufacturing process of the pad 10. The sensors of the pad are printed onto a flexible material and then joined with the other layers of the sensor pad 10. In an alternate embodiment, not shown, the sensors can be attached using an adhesive or some other material or compound to fasten the sensor. In a preferred embodiment, a unitary sensor is used to form the pad 10 and the tail 15. The tail forms an extension of the sensor from the body of the pad sensor and providing length and flexibility to reach and connect to the transmitter 20. The transmitter/tail interface provides a soft point of failure for the transmitter and pad combination to ‘fail’ in the instance of a fall or tripping hazard situation. In contrast to a hard flex circuit or some sort of materially strong connection between the pad and the transmitter that creates a fall hazard, the tail 15 is defined to easily and quickly tear or pull from the transmitter to avoid accidents such as falling. The flexible tail 15 is formed by perforating a part of the material that divides the tail portion from the body portion of the sensor pad. For example, a line forming a path between the sensors of the tail and the sensors of the body. When the perforation is detached a flexible tail is formed, extending from the sensor pad and manipulatably flexible for connecting to a transmitter 20. The tail can also be easily removed after the pad 10 has been consumed. The tail 15 easily torn from the pad body while the tail 15 is still connected to the transmitter 20. The pad body can be easily disposed of, leaving the transmitter which can be removed after the old tail is removed and disposed.
With reference to
In one embodiment, the transmitter is side hinged, and instead of the tail running through the middle of the transmitter and out the back under the hinge, the hinge is to one side of the tail and the transmitter clamps across it from the side.
With reference to
As shown in
There is an LED indicator by the logo that flashes green when a pad is connected to indicate that the contacts have made contact with the pad. The LED will then flash red when moisture is detected on the pad providing a visual local indicator, and also when the transmitter has not been properly connected to a new pad (i.e., it will not ‘go green’ until it connects to a new dry pad).
Referring again to
With reference to
The transmitter 20 of
Referring now to
Bus 362 may include a component that permits communication among the components of device 360. In some non-limiting embodiments, processor 364 may be implemented in hardware, firmware, or a combination of hardware and software. For example, processor 364 may include a processor (e.g., a central processing unit (CPU), a graphics processing unit (GPU), an accelerated processing unit (APU), etc.), a microprocessor, a digital signal processor (DSP), and/or any processing component (e.g., a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), etc.) that can be programmed to perform a function. Memory 366 may include a random access memory (RAM), a read only memory (ROM), and/or another type of dynamic or static storage device (e.g., flash memory, magnetic memory, optical memory, etc.) that stores information and/or instructions for use by processor 364.
Storage component 368 may store information and/or software related to the operation and use of device 360. For example, storage component 368 may include a hard disk (e.g., a magnetic disk, an optical disk, a magneto-optic disk, a solid state disk, etc.), a compact disc (CD), a digital versatile disc (DVD), a floppy disk, a cartridge, a magnetic tape, and/or another type of computer-readable medium, along with a corresponding drive.
Input component 370 may include a component that permits device 360 to receive information, such as via user input (e.g., a touch screen display, a keyboard, a keypad, a mouse, a button, a switch, a microphone, etc.). Additionally, or alternatively, input component 370 may include a sensor for sensing information (e.g., a global positioning system (GPS) component, an accelerometer, a gyroscope, an actuator, etc.). Output component 372 may include a component that provides output information from device 360 (e.g., a display, a speaker, one or more light-emitting diodes (LEDs), etc.).
Communication interface 374 may include a transceiver-like component (e.g., a transceiver, a separate receiver and transmitter, etc.) that enables device 360 to communicate with other devices, such as via a wired connection, a wireless connection, or a combination of wired and wireless connections. Communication interface 374 may permit device 360 to receive information from another device and/or provide information to another device. For example, communication interface 374 may include an Ethernet interface, an optical interface, a coaxial interface, an infrared interface, a radio frequency (RF) interface, a universal serial bus (USB) interface, a Wi-Fi interface, a cellular network interface, and/or the like.
Device 360 may perform one or more processes described herein. Device 360 may perform these processes based on processor 364 executing software instructions stored by a computer-readable medium, such as memory 366 and/or storage component 368. A computer-readable medium (e.g., a non-transitory computer-readable medium) is defined herein as a non-transitory memory device. A memory device includes memory space located inside of a single physical storage device or memory space spread across multiple physical storage devices.
Software instructions may be read into memory 366 and/or storage component 368 from another computer-readable medium or from another device via communication interface 374. When executed, software instructions stored in memory 366 and/or storage component 368 may cause processor 364 to perform one or more processes described herein. Additionally, or alternatively, hardwired circuitry may be used in place of or in combination with software instructions to perform one or more processes described herein. Thus, embodiments described herein are not limited to any specific combination of hardware circuitry and software.
The number and arrangement of components shown in
With reference to
Top layer 305 can act as a distribution layer that wicks fluid across a wider area to spread it out. Adjacent is an absorption layer 310 that ensures complete absorption and is also made of a flexible material. This absorbent core is where the fluid is ultimately stored. This layer may include a powder held between layers of absorbent fiber, and this powder forms into a gel as it absorbs fluid. The gel will not release the fluid under pressure, keeping the patient more dry.
The integrated sensor layer 315 has one or more multiple integrated sensors, 30, 35, 40 that form a circuit and are connected to the tail. Layer 315 is a waterproof layer. In one embodiment, it is formed of polypropylene onto which sensor ink is printed. Each of sensors 30, 35, 40 forms a separate circuit. The transmitter is operative to send electricity through the sensors. The one or more multiple integrated sensors 30, 35, 40 are positioned on the integrated sensor layer 310 at a specific location. The last layer is a strengthening layer, providing a final layer applied that dramatically increases the tensile strength of the pad, especially once the other layers are wet. It also has a finish that increases the friction against a bed sheet, helping to stay flat on the bed and resist wrinkling/wadding up.
With reference to
The beginning of the sensors 30, 35, 40 shown in
With continuing reference to
In an exemplary embodiment, each of the layers of the multi-layer location-based sensor pad may be made of an absorbent material. The sensor pad may be placed on a flat surface (e.g., a patient bed, a patient chair) and may also be placed on surfaces not flat, where the pad can take the shape of the surface. The pad can also be wrapped around a patient's body or configured to provide sufficient coverage for incontinence detection. The sensor pad may be placed inside a wearable unit and may take the shape of the wearable unit. In one exemplary embodiment, a sensor and/or sensor pad may be attached to an interior of a garment. For example, a sensor may be attached to an interior of a garment such as, for example, briefs, diapers, pull-ups, or other wearable garments. In such embodiments, a sensor may be printed directly into a wearable garment with a tail coming out of a portion of the garment to facilitate the attachment with a transmitter.
As shown in
In one non-limiting embodiment, the multi-layer location-based sensor can be used to detect the presence of moisture according to the transmitter detection of a change in physical property from the presence of moisture and the completion of the circuit on the sensor. The moisture is detected when it absorbs down through each of the layers of the pad onto the sensor. As an example, if moisture is applied to the top right portion of the top layer 300, it may be absorbed through the top layer 300 and down into the top right portion of the absorption layer 305. The moisture may then be absorbed through the top right portion of the absorption layer 305 and into the top right portion of the integrated sensor layer 310 (e.g., onto the sensors in the top right portion 35, 40). The sensors 35, 40 in the top right portion will indicate moisture on the integrated sensor layer 310, which may then correspond to the tail end. The smart transmitter may determine from the tail end the presence of moisture related to the sensors in the top right portion (e.g., 35, 40).
With continuing reference to
With reference to
The microprocessor 102 controls the current and/or voltage to a sensor. The microprocessor 102 provides voltage across the sensors to determine if a circuit is present as a result of the presence of moisture. The initial physical property of the sensors is determined and stored and then when moisture is present, the physical property will change and alert the microprocessor 102, which will gather the sensor information. For example, the resting sensors have a certain physical property or capacitance. Thus, when moisture is present, the circuit is completed and the capacitance changes, which the transmitter 20 will detect and record.
The microprocessor 102 processes instructions on the memory, including an algorithm, for determining the original physical property of a sensor and storing the physical properties in memory. The microprocessor 102 is always on but could be programmed to use a clock cycle, for example, a clock placed on the board and coupled to the microprocessor, configured to wake up in response to receiving a notification from the sensor layout that moisture is present. The transmitter receives the moisture information and can process received information to manipulate and modify it (e.g., analyze, categorize, calculate, convert). The microprocessor 102 may store the moisture information and modify it over time. The microprocessor 102 can be connected to a radio in the smart transmitter 20 such that the transceiver 106 receives the modified information from the microprocessor 102 and may send the information to a processing device 25. The messages can be sent wirelessly.
The transceiver 106 sends signals or messages to a network, a computer, other transmitters, or any other device configured to receive and operate on the transmitted signals. The signals are sent in messages and can communicate information about the pad and patient using the pad. Zigbee, Bluetooth, or proprietary formulation may be used for communication. The transmitter sends data when the status of the pad changes (dry to wet, disconnected, etc.) as well as a ‘heartbeat’ so that we know it's still on the network. The information can include that the pad 10 is wet, where on the pad is wet, or the saturation level, and information about the location, and the name of the patient associated with a particular pad. The network can modify the information. The third-party device 25 can use the signals or messages and can display them so that a user can react to them. Continence data includes information about the patient's toileting, consisting of urine levels, fluid and diet nutrition levels during time periods, time that the resident passes urine, type and volume of drinks, degree of wetness, number of pad changes, length of time exposed to soiled environment, number of clothing and/or bedding changes, medical circumstances, type of bowel movement, time of bowel movement, day of bowel movement, Bristol stool scale classification, constipation data, whether a catheter is in place, and risk of fall while attempting to toilet.
As an example, a care facility employee will place pad 10 on top of a bed with the tail end hanging off. The care facility employee will then take a transmitter 20 and attach it to the tail end, such that it is securely fastened to the tail end and electrically coupled to the sensors on the tail. The transmitter 20 will be turned on such that the middle sensor will be on and supplying the pad 10 with power. Once the pad 10 is saturated, the transmitter will read the pad 10, send the signals to the network which will send the signals to a third-party device 25, alerting a care facility employee to come and change the sheet. The transmitter 20 and the connected tail end can be ripped off of the pad 10 by using the perforation such that the transmitter 20 and tail end are preserved. Further, the sheet and pad can easily be cleaned up.
With reference to
With reference to
Referring to
Referring to
Referring to
Referring to
Referring to
In some non-limiting embodiments, at step 4, the monitoring method 100 includes, receiving and/or transmitting moisture data associated with moisture in the pad. For example, moisture data may be transmitted or received from a transmitter, from a sensor pad, from a device coupled to the transmitter, or from a central computer system associated with the monitoring method such as patient monitoring system or other third party patient care systems.
In some non-limiting embodiments, at step 6, the monitoring method 100 includes determining when a patient needs attention. For example, monitoring system includes determining when a sensor pad associated with a patient has moisture. In some aspects, the monitoring method determines when a sensor pad associated with a patient meets a threshold of moisture in the pad.
In some non-limiting embodiments, at step 8, the monitoring method 100 includes transmitting an alert based on the moisture data. For example, an alert may be transmitted to a patient care system, for automatically updating a patient care worker that a patient needs a bed change. In some non-limiting embodiments, an alert may be based at least partially on data from patient care system. In some non-limiting embodiments, the data from a patient care system may include historic data associated with a patient sensor pad.
While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/425,890, filed Nov. 23, 2016, the entire disclosure of which is hereby expressly incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/063042 | 11/22/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62425890 | Nov 2016 | US |