The present invention relates to providing presence information, and in particular to automatically monitoring natural interaction for presence detection.
Presence detection is a technology used to convey information about the availability of individuals. Individuals are often interested in the availability of others and, because they are often not co-located, they require mechanisms for conveying availability or status information. The devices that people interact with know bits and pieces about how available they are for communications or other forms of interaction with others at any instant. People who are on the phone are less available to most others for the duration of the call, but may want to be interrupted by selected callers.
The location of a person on a mobile phone is information that may be relevant for determining whether that person is available for a certain type of event. For example, someone traveling far away from home may not be available for physical interaction with their neighbors, but may be available to take a call. Similarly, someone near a particular restaurant at lunchtime is a potential consumer.
Presence related information is routinely generated in many devices connected to various networks. For example, a person using a Personal Computer (PC) attached to a network may generate various presence state information. An “On-line” state indicates a user has logged onto a network, such as the Internet or a corporate intranet, while an “Off-line” state indicates no connection is currently active between the user and the presence engine. “Idle” status implies the user's system, although logged on, has not been active recently. Similarly, a person who acknowledges a calendar event in a PC or personal digital assistant (PDA) essentially signals their limited availability to most others for some duration while at the same time indicates that the person is active on that device. This level of presence indication is useful, but it is sufficiently coarse to limit its utility.
Most presence systems rely on users to select presence indications through a menu on a computer or PDA or a button on a specific device. Keeping any presence indicator accurate to the actual availability status of the user potentially requires very frequent interaction by the user to supply status information. Such tedious human interaction potentially negates the effectiveness of presence based communications systems. Some systems sense user interaction with a single device like a PC, which lessens the direct human input while decreasing overall accuracy, since using a mouse or keyboard certainly indicates the presence of the user at the device, however it simultaneously indicates they are engaged in an activity with the device, the importance of which is unknown. The result is a convoluted view of availability. The user is certainly present to some degree, but may be busy and may not want to be disturbed. In these kinds of systems, the user still has to provide manual input to prevent being inappropriately represented and interrupted.
The reliability and usefulness of presence information depends on the type of information provided and the device from which the information is gathered. A person actively interacting with a computer indicates to some degree that she is available, but probably only to those on the same network. A PC or other network device inside a corporate network will have visibility. Independently or through a corporate presence server, to many presence inputs related to many PCs or other devices on that network. Typically, however, a device inside a corporate firewall will be isolated from having access to presence data related to devices like mobile phones, that by their very nature interconnect through commercial service provider networks.
There is a need, therefore, for improving both the number and quality of inputs into a presence management system in order to more efficiently and effectively deliver presence information to users of the information. There is a further need to automate gathering of availability information in a manner that does not rely upon active intervention and updating by participating users.
The present invention provides a presence system capable of monitoring state information derived from a plurality of sources over any number of disparate networks. The sources of state information are devices, which are frequently used by a user throughout a normal day and configured to provide state information to the presence system. The sources monitor normal user interactions and automatically provide corresponding state information to the presence system without requiring the user to enter or otherwise provide information bearing on their status or availability. Based on a profile provided by the user, the presence system evaluates the state information from one or more sources to create presence information to deliver to subscribers. The state information bears on the presence or availability of the user and may take many forms. The presence information may range from complex analysis of state information from many devices to simply the states of selected devices.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawings figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
The present invention provides a presence system capable of monitoring state information derived from a plurality of sources over any number of disparate networks. Preferably, the sources of state information are devices, which are frequently used by a user throughout a normal day and configured to provide state information to the presence system. The sources monitor normal user interactions and automatically provide corresponding state information to the presence system without requiring the user to enter or otherwise provide information bearing on their status or availability. The presence system will evaluate the state information from one or more sources to create presence information to deliver to subscribers. The state information bears on the presence or availability of the user and may take many forms. The presence information may range from complex analysis of state information from many devices to simply the states of selected devices. The following outlines numerous sources of state information along with the provisioning and operation of a presence system.
With reference to
The switch 14 is defined as being either an integrated device or multi-component system facilitating circuit-switched communication and including call server or call control functionality, which is traditionally provided in intelligent networks (IN), such as those implementing SS7 and the like. Typically, the switches 14 cooperate with a provisioning database 18, which provides information allowing a switch 14 to properly identify, locate, and provision the various telephony devices 16 in the circuit-switched network 10.
As noted, the present invention is particularly beneficial for automatically delivering state information, which is derived from natural user interaction with any number of sources, to a presence system 20 located on the packet-switched network 12. For example, the switch 14 may be configured to provide the state of the telephony device 16, its location, or a combination thereof, directly or indirectly to the presence system 20.
The presence system 20 may be configured by a user device, such as a PC 22, and operates to collect state information for various devices of various users, process the state information to derive presence information, and provide the presence information to presence applications 24, automatically or in response to a request. Each presence application 24 is associated with a user device (not shown), and provides alerts to the associated user based on presence information associated with other users and derived from the presence system 20. Preferably, the presence application 24 subscribes to the presence system 20 and identifies the users whose presence information is desired. The presence system 20 will accept these subscriptions as well as register participating users and their associated devices. The presence system 20 may also implement various presence delivery rules to allow users to control the dissemination of their presence information to other users. Notably, various profiles may be established to allow select groups of users to obtain more presence information than another groups. Accordingly, each registered user may implement filters or rules to control dissemination of their information to other users. In the converse, users subscribing to receive presence information of others may also establish profiles identifying the users whose presence information is desired and the types of presence information they wish to receive.
A registrar 26 may be provided on the packet-switched network 12 to maintain a relationship between the logical and the physical addresses of devices that directly or indirectly communicate with the presence system 20. Such registration is typically required only when there is a change between the logical or user addresses and the physical addresses of a given device.
In one embodiment, the switch 14 is configured to provide state information corresponding to the status, mode, state, location, or a combination thereof associated with a telephony device 16 to the presence system 20. In this embodiment, it is preferable to provide a proxy server 28 to act as a liaison between the switch 14 and the presence system 20. As such, the switch 14 will provide presence information to the proxy server 28, which will represent the switch 14 to the presence system 20 in traditional proxy fashion. Those skilled in the art will recognize that the proxy server 28 is optional and may prove beneficial with certain communication protocols.
The presence information provided to the presence system 20 from the switch 14 will depend on the application and the type of communication environment. For example, the traditional landline telephone 16A will not change location, and will typically provide location information only as a part of registration, and dynamically provide a mechanism to determine state information relating to its operation. For example, the switch 14 that serves the telephone 16A can determine whether the phone is on-hook or off-hook, and thus determine whether the user is engaged in a telephone call. More sophisticated systems may be able to determine whether the party is on a conference call, on hold, and whether any settings on the phone indicate that the user is in or out of the office. Accordingly, the state information gathered by the switch 14 in association with the operation of telephone 16A is used to create presence information to send to the presence system 20 via the proxy server 28.
For mobile terminals, such as the mobile telephone 16B, the servicing mobility switching center (SMSC), which is represented by switch 14, may gather all of the state information described above, as well as provide dynamic location information derived directly from the mobile terminal 16B or from the circuit-switched network 10. Accordingly, the state information for mobile devices may be supplemented with location information, which provides the presence system 20 the opportunity to distribute presence information to the various presence applications 24 based on dynamic location, if so desired. The location information may be provided by the mobile terminal 16B, if equipped with location detection technology, such as that provided by the Global Positioning System (GPS), wherein the mobile terminal 16B receives the GPS coordinates and may provide either the coordinates to the switch 14, which will determine the mobile terminal's location, or may process the GPS information to determine a location, which is then sent to the switch 14. Alternatively, triangulation techniques may be used to determine the mobile terminal's location, which may be stored in a location database 30 or like device. The location database 30 may be accessed via the switch 14 to obtain location information, or the location database 30 may be configured such that the presence system 20 or an associated device may directly access it via the packet-switched network 12.
Packet-based telephony devices, such as the packet telephone system 32, essentially emulate the operation of circuit-switched telephony devices 16 entirely over the packet-switched network 12. Thus, state information associated with a fixed or mobile packet telephone system 32 may be configured to automatically provide state information, and perhaps location information, to the presence system 20 directly or indirectly via a proxy server 28. The packet telephone system 32 will include a user interface 34 and a control system 36. As those skilled in the art will recognize, the packet telephone system 32 may be integrated into a single device, or may be implemented in multiple devices in a client-server configuration. For the latter case, the proxy server 28 may be further configured to support various operational features of the packet telephone system 32.
The user interface 34 may include a microphone and speaker to facilitate voice communications, as well as various keypads and displays to allow user interaction in traditional fashion. The control system 36 will operate to support the user interface 34 and provide the requisite functionality to enable the packet telephone system 32 to facilitate communications with other devices on the packet-switched network 12 directly or indirectly via the proxy server 28. For the purposes of description, assume that the control system 36 is capable of gathering and providing state information for the packet telephone system 32. In wireless environments, a wireless packet-switched network (not shown) is necessary to facilitate communications with the packet-switched network 12.
In addition to the telephony-based updates, an unlimited number of devices or systems with which users directly or indirectly interact may be modified to automatically provide state information. The devices and systems may include cable or satellite television systems 38, internet appliances 40, wireless telemetry devices 42, PCs 44, biometric devices 46, physical presence detections systems 48, entertainment systems 50, and the like. For example, set-top boxes or receivers of cable or satellite systems may be configured to provide state updates to a central location, which forwards the updates to the presence service 20 in association with the user. These devices are normally on disparate networks and configured to communicate various types of information, such as billing information, to a central location. Preferably, a server at the central location will facilitate delivery of state information to the presence system 20. The server may be configured to monitor the respective devices to determine state changes, or may simply receive state changes generated by the devices. With the proliferation of broadband internet connectivity, particularly in cable networks, devices of this type could also be directly attached to the packet switched network 12 and provide state updates directly to the presence system 20. Similarly, internet appliances 40, such as refrigerators, dishwashers, alarm systems and the like, can readily be configured to send state information relating to user interaction directly or indirectly to the presence system 20.
Wireless telemetry devices 42 may monitor a user's interaction or location associated with a person or vehicle and provide state information to the presence system 20. Similarly, biometric devices 46, which monitor or check biometric data of the user, and physical presence detection systems 48, which monitor physical presence, may provide state information to the presence system 20. Entertainment systems 50, such as home theater systems, gaming consoles, televisions, and the like can sense user activity and provide state updates to the presence system 20. Any of the devices and systems may be connected directly or indirectly, via a gateway or the like, to the Internet.
The presence system 20 may be implemented in one or more systems. With reference to
Accordingly, the presence applications 24 will subscribe to the presence service 20 to receive status updates for one or more users via the subscriber management logic 56. Based on the subscription, the presence service 20 will receive state information from the various devices, evaluate the state information to generate presence information using rules in the rules management logic 58, and deliver the presence information to the subscribing presence application 24. The device management logic 60 will control interaction with the various devices providing state information. Such control may include configuring the device to provide the state information in a specified manner and format. The provisioning logic 54 facilitates provisioning of the subscriber management logic 56, rules management logic 58, and device management logic 60. Provisioning may include establishing a profile for the user providing presence information. The profile will typically identify devices and their respective states to monitor, provide rules for evaluating the state information to generate the presence information, and identify individuals, systems, or applications authorized to receive the information. The control system 52 is also associated with a network interface 62 for facilitating communications over the packet-switched network 12.
An exemplary process for initializing the presence system 20 to disseminate user information is outlined in
The rules typically define how to evaluate the state information and deliver the resultant presence information. A user may use the profile to establish rules to control how they should be contacted based on the state of one or more associated devices. For example, the following hierarchy may be implemented:
Alternatively, the presence information may simply estimate the user's availability and potentially location rather than providing the level of granularity illustrated above and allow the subscriber to choose how to process the information and contact the user, if desired.
Those skilled in the art will recognize limitless variations in profile and rule constructions for evaluating state information and generating presence information to send to subscribing presence applications. Further, any combination of current and past device state information may be used to determine the presence information. Preferably, the presence information is automatically updated, if necessary, when state changes are detected. Depending on the presence rules, a state change from a given device may or may not impact the presence information. If the presence information does not change, then there may not be a need to update the subscribing presence applications 24.
Accordingly, the present invention automatically receives state information from natural interactions with devices and evaluates the state information by a rules based presence system that takes into account relatively static preferences supplied directly by the user wishing to project an indication of presence along with optional positional data associated with the devices. Those skilled in the art will recognize that manually provided state information may be used by the rules logic management 58 in combination with those initiated from naturally occurring interactions.
Although many communication protocols may be used to facilitate communications, including delivery of state and presence information between the various devices, the Session Initiation Protocol (SIP) or the SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) protocol is implemented in one embodiment of the present invention. The specification for SIP is provided in the Internet Engineering Task Force's RFC 2543; Session Initiation Protocol Internet Draft, which is incorporated herein by reference in its entirety.
In general, a SIP proxy, such as may be provided by the proxy server 28, may facilitate media sessions between any number of endpoints, which represent the devices communicating with each other. These endpoints may support any one or combination of data, audio, and voice media sessions, depending on the configuration of the respective endpoints. In addition to traditional SIP endpoints, endpoints for the present invention may take the form of the switch 14, the registrar 26, the presence system 20, the device running the presence application 24, and the like.
A SIP endpoint is generally capable of running an application, which is generally referred to as a user agent (UA), and is capable of facilitating media sessions using SIP. User agents register their ability to establish sessions with a SIP proxy, such as proxy server 28, by sending “REGISTER” messages to the SIP proxy. The REGISTER message informs the SIP proxy of the SIP universal resource locator (URL) that identifies the user agent to the SIP network. The REGISTER message also contains information about how to reach specific user agents over the SIP network, by providing the Internet Protocol (IP) address and port that the user agent will use for SIP sessions.
A “SUBSCRIBE” message may be used to subscribe to an application or service provided by a SIP endpoint. Further, “NOTIFY” messages may be used to provide information between SIP endpoints in response to various actions or messages, including REGISTER and SUBSCRIBE messages.
When a user agent wants to establish a session with another user agent, the user agent initiating the session will send an INVITE message to the SIP proxy and specify the targeted user agent in the TO header of the INVITE message. Identification of the user agent takes the form of a SIP URL. In its simplest form, the URL is represented by a number or “<username>@<domain>,” such as “janedoe@nortelnetworks.com.” The SIP proxy will use the SIP URL in the TO header of the message to determine if the targeted user agent is registered with the SIP proxy. Generally, the user name is unique within the name space of the specified domain.
If the targeted user agent has registered with the SIP proxy, the SIP proxy will forward the INVITE message directly to the targeted user agent. The targeted user agent will respond with a 200 OK message, and a session between the respective user agents will be established as per the message exchange required in the SIP specification. Media capabilities are passed between the two user agents of the respective endpoints as parameters embedded within the session setup messages, such as the INVITE, 200 OK, and acknowledgement (ACK) messages. The media capabilities are typically described using the Session Description Protocol (SDP). Once respective endpoints are in an active session with each other and have determined each other's capabilities, the specified media content may be exchanged during an appropriate media session.
The following example illustrates detailed message flows related to telephony devices, which are in one particular class of devices that can provide state information. Other classes of devices, including but not limited to those previously discussed, may have their own unique message flows to achieve similar results. Those skilled in the art will recognize there are many implementation methods possible for associating devices with the presence system 20. The SIP based example provides a relatively simple to describe explanation of relevant message flows.
An exemplary message flow for providing state information relating to a telephony device 16 on the circuit-switched network 10 is illustrated in
The flow begins when a user initially requests activation of the telephony device 16 through a local exchange carrier or like entity, which controls access and communications for the telephony device 16. Typically, the telephony device 16 is provisioned by providing provisioning information from the provisioning database 18 to the switch 14 (step 400). The traditional provisioning information is supplemented with information indicating whether the user of telephony device 16 wishes to subscribe to the presence service provided by the presence system 20. Accordingly, the switch 14 will receive the provisioning information from the provisioning database 18 and provision the telephony device 16, as well as store information that correlates the relationship between the telephony device 16 and a presence ID, which is used by the presence system 20 for determining the state of the telephony device 16. The telephony device 16 is typically identified on the circuit-switched network 10 using a directory number, caller identification, or similar designation. Alternatively, a user may be able to dynamically provision a device from the device, without requiring the network operator to take action.
Once the provisioning of telephony device 16 is complete, the switch 14 will send a REGISTER message to the proxy server 28 (step 402). Preferably, the switch 14 registers as a user agent, and the proxy server 28 acts as a SIP proxy server. The REGISTER message effectively registers the ability of the switch 14 to provide presence information with the SIP proxy 28. In particular, the REGISTER message informs the proxy server 28 of the SIP URL that identifies the user agent of the switch 14 to the (SIP) packet-switched network 12. The REGISTER message may also contain information about how to reach the user agent over the packet-switched network 12, typically by proving the Internet Protocol (IP) address and port that the user agent will use for SIP sessions. Preferably, the REGISTER message will also include an initial state of the telephony device 16 and identification indicia for the telephony device 16. The identification indicia in a SIP environment is preferably a SIP ID, which is the logical address associated with the telephony device 16 as represented on the packet-switched network 12.
In response to this initial REGISTER message, the proxy server 28 will send a like REGISTER message to the registrar 26 to register the telephony device 16 with the registrar 26 (step 404). Further, the proxy server 28 may also forward the REGISTER message to the presence system 20 (step 406). At this point, the presence system 20 has registered the telephony device 16 and has associated an initial state for the telephony device 16. All other devices used to determine presence information of the user will register in the same or similar fashion.
The presence system 20 consolidates and/or transforms device data into the state associated with a logical or user identification and provides relevant state information to the presence application 24. Subsequently, the presence application 24 will subscribe to the presence service provided by the presence system 20 to receive presence state information based on state changes associated the various devices of the user. Accordingly, the presence application 24 will send a SUBSCRIBE message, which includes identification information (SIP ID) of the user or telephony device 16, to the proxy server 28 (step 408), which will forward the SUBSCRIBE message to the presence system 20 (step 410). In response, the presence system 20 will use the SIP ID provided in the SUBSCRIBE message to identify the user or devices for which presence information is requested. Once the presence system 20 has evaluated the state of the telephony device 16, a NOTIFY message, including presence information for the user of the telephony device 16, is sent to the proxy server 28 (step 412), which forwards the NOTIFY message to the presence application 24 (step 414). At this point, the presence application 24 has subscribed to the presence service 20 for the user and has received the initial presence information for the user, and perhaps the state of the telephony device 16 and other devices, if so provisioned. Thus, the presence application 24 may react as necessary in response to receiving the presence information for the user and awaits state change notification for the user.
Assume that the telephony device 16 changes state, such as being place on-hook, going off-hook, initiating a hold function, going out of service, initiating a service activation, changing modes, or the like. In essence, any change of state caused by a naturally occurring transition will trigger an event, which is sent to the switch 14 in traditional fashion (step 416). In addition to normal processing of the event, the switch 14 will recognize that the telephony device 16 has been provisioned to alert the presence service of state changes, and will send a REGISTER message identifying the telephony device 16 (preferably using the SIP ID) and including the current state to the proxy server 28 (step 418), which represents the presence system 20 to the switch 14. Proxy server 28 will then send a REGISTER message to register the new state in association with the identified telephony device 16 with the presence system 20 (step 420). The presence system 20 will then process the state information to create the presence information for the user and send a NOTIFY message, if necessary, to the proxy server 28 to provide the updated presence information (step 422). The proxy server 28 will forward the NOTIFY message, which includes the presence information, to the presence application 24 (step 424), which can then take appropriate action based on the state information (step 426). As noted above, the state information may be associated with location information in an appropriately configured wireless communication system.
Those skilled in the art will recognize that the use of REGISTER messages is only one implementation. In general, the switch 14 or some other device that provides autonomous state change information can use a REGISTER message or some other undefined message to notify the presence service. If the presence system 20 subscribes to the information on the switch 14, which changes the role of the switch 14 to that of a presence user agent, it would allow the use of NOTIFY message to communicate the presence data to the presence system 20.
The switch 14 may be configured to provide a table, which correlates the identification of the telephony device 16 on the circuit-switched network 10 with a presence identity, which is preferably a SIP address or URL. Using this table, the switch 14 can identify state changes for the telephony device 16, process the changes based on the rules management logic 58, and send updated state information indirectly or directly to the presence system 20. For example, assume that a user has subscribed to an automatic presence service from a cellular communication operator. Part of the service subscription process will provision a presence address and correlate it with a registered mobile telephone 16B, based either upon the mobile identification number, a SIM card identification, the telephone number, or like designation.
Whenever the user's mobile telephone 16B is on and in reach of the mobile network, the home location register (HLR) is made aware of this fact as part of the normal course of cellular telephone operation. The HLR can register on-line status on behalf of the user's presence identification based on this information. As noted, the state information may include location identification in addition to traditional state information. Those skilled in the art will recognize the application of the present invention to both traditional time division multiplexing (TDM) switching systems and more recent innovations, such as IP public branch exchanges, or telephony clients, such as SIP user agents, H.323 endpoints, Microsoft NetMeeting, or real-time communication clients. Network resources, such as SIP proxies or H.323 gatekeepers, may also apply this technology if they retain call status information on the endpoints or user agents they manage.
Turning now to
In operation, the software 68 of the computing module 66 is modified to recognize state changes associated with supported telephony devices 16 and to provide the state information via the packet interface 76 either directly or indirectly to the presence system 20 on the packet-switched network 12. As noted, the messages sent to the presence system 20 will include identification of the associated telephony device 16, relative state information, and perhaps location information derived from a mobile telephone 16B or from elsewhere in the system. Preferably, the computing module 66 will cooperate with the provisioning database 18 to store information indicating that the particular telephony device 16 is subscribing to the presence service and providing an address for sending state change messages directly or indirectly to the presence system 20. The other devices providing state information are similarly configured to trigger delivery of state information upon recognizing the occurrence of an event caused by the natural interaction with the device.
Current presence technology standards and systems are provided for in references from the Internet Engineering Task Force (IETF). Presence technology protocol-related publications hereby incorporated by reference include: Day, M., Aggarwall, S. and Vincent, J., “Instant Messaging/Presence Protocol Requirements,” Request for Comment (RFC) 2779, February 2000; Day, M., Rosenberg, J. and Sugano, H., “A Model for Presence and Instant Messaging,” RFC 2778, February 2000; Rosenberg, J. and Schulzrinne, H., “SIP caller preferences and callee capabilities,” (work in progress), November 2000; Crocker, D. et al., “A Common Profile for Instant Messaging (CPIM),” (work in progress), February 2001.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4932050 | Davidson et al. | Jun 1990 | A |
5185782 | Srinivasan | Feb 1993 | A |
5243645 | Bissell et al. | Sep 1993 | A |
5315636 | Patel | May 1994 | A |
5414759 | Ishikuri et al. | May 1995 | A |
5450613 | Takahara et al. | Sep 1995 | A |
5550907 | Carlsen | Aug 1996 | A |
5555376 | Theimer et al. | Sep 1996 | A |
5596633 | Meier et al. | Jan 1997 | A |
5633921 | Soderberg | May 1997 | A |
5633924 | Kaish et al. | May 1997 | A |
5742905 | Pepe et al. | Apr 1998 | A |
5757901 | Hiroshige | May 1998 | A |
5771280 | Johnson | Jun 1998 | A |
5790649 | Hiroshige | Aug 1998 | A |
5812865 | Theimer et al. | Sep 1998 | A |
5815554 | Burgess et al. | Sep 1998 | A |
5825864 | McGraw et al. | Oct 1998 | A |
5930702 | Goldman et al. | Jul 1999 | A |
5960173 | Tang et al. | Sep 1999 | A |
6058415 | Polcyn | May 2000 | A |
6067357 | Kishinsky et al. | May 2000 | A |
6104913 | McAllister | Aug 2000 | A |
6125176 | Foladare et al. | Sep 2000 | A |
6134314 | Dougherty et al. | Oct 2000 | A |
6141356 | Gorman | Oct 2000 | A |
6144644 | Bajzath et al. | Nov 2000 | A |
6148328 | Cuomo et al. | Nov 2000 | A |
6175616 | Light et al. | Jan 2001 | B1 |
6185292 | Miloslavsky | Feb 2001 | B1 |
6223165 | Lauffer | Apr 2001 | B1 |
6243398 | Kahane et al. | Jun 2001 | B1 |
6253230 | Couland et al. | Jun 2001 | B1 |
6260148 | Aggarwal et al. | Jul 2001 | B1 |
6295348 | Bleile et al. | Sep 2001 | B1 |
6301609 | Aravamudan et al. | Oct 2001 | B1 |
6330322 | Foladare et al. | Dec 2001 | B1 |
6377944 | Busey et al. | Apr 2002 | B1 |
6389127 | Vardi et al. | May 2002 | B1 |
6418198 | Brablec et al. | Jul 2002 | B2 |
6430289 | Liffick | Aug 2002 | B1 |
6445912 | Cole et al. | Sep 2002 | B1 |
6449344 | Goldfinger et al. | Sep 2002 | B1 |
6463142 | Kilp | Oct 2002 | B1 |
6463471 | Dreke et al. | Oct 2002 | B1 |
6480593 | Munday et al. | Nov 2002 | B1 |
6483900 | Light et al. | Nov 2002 | B1 |
6519639 | Glasser et al. | Feb 2003 | B1 |
6546096 | Meiden et al. | Apr 2003 | B1 |
6560648 | Dunn et al. | May 2003 | B1 |
6564261 | Gudjonsson et al. | May 2003 | B1 |
6584494 | Manabe et al. | Jun 2003 | B1 |
6617969 | Tu et al. | Sep 2003 | B2 |
6618710 | Zondervan et al. | Sep 2003 | B1 |
6640241 | Ozzie et al. | Oct 2003 | B1 |
6658095 | Yoakum et al. | Dec 2003 | B1 |
6665395 | Busey et al. | Dec 2003 | B1 |
6678719 | Stimmel | Jan 2004 | B1 |
6697840 | Godefroid et al. | Feb 2004 | B1 |
6700966 | Takagi et al. | Mar 2004 | B2 |
6728754 | Lipton | Apr 2004 | B1 |
6735701 | Jacobson | May 2004 | B1 |
6738461 | Trandal et al. | May 2004 | B2 |
6799209 | Hayton | Sep 2004 | B1 |
6807423 | Armstrong et al. | Oct 2004 | B1 |
6810411 | Coughlin et al. | Oct 2004 | B1 |
6920498 | Gourlay et al. | Jul 2005 | B1 |
7103651 | Bohannon et al. | Sep 2006 | B2 |
20010005412 | Light et al. | Jun 2001 | A1 |
20010039585 | Primak et al. | Nov 2001 | A1 |
20010044299 | Sandegren | Nov 2001 | A1 |
20010053213 | Truong et al. | Dec 2001 | A1 |
20010053214 | Kleinoder et al. | Dec 2001 | A1 |
20020006803 | Mendiola et al. | Jan 2002 | A1 |
20020024947 | Luzzatti et al. | Feb 2002 | A1 |
20020035605 | McDowell et al. | Mar 2002 | A1 |
20020038360 | Andrews et al. | Mar 2002 | A1 |
20020049842 | Huetsch et al. | Apr 2002 | A1 |
20020055975 | Petrovykh | May 2002 | A1 |
20020059622 | Grove et al. | May 2002 | A1 |
20020060988 | Shtivelman | May 2002 | A1 |
20020065894 | Dalal et al. | May 2002 | A1 |
20020076010 | Sahai | Jun 2002 | A1 |
20020078188 | Anand et al. | Jun 2002 | A1 |
20020101993 | Eskin | Aug 2002 | A1 |
20020114432 | Shaffer et al. | Aug 2002 | A1 |
20020116336 | Diacakis et al. | Aug 2002 | A1 |
20020116461 | Diacakis et al. | Aug 2002 | A1 |
20020120687 | Diacakis et al. | Aug 2002 | A1 |
20020126701 | Requena | Sep 2002 | A1 |
20020131395 | Wang | Sep 2002 | A1 |
20020143876 | Boyer et al. | Oct 2002 | A1 |
20020143877 | Hackbarth et al. | Oct 2002 | A1 |
20020147008 | Kallio | Oct 2002 | A1 |
20020147777 | Hackbrath et al. | Oct 2002 | A1 |
20020147814 | Kimichi et al. | Oct 2002 | A1 |
20020163572 | Center, Jr. et al. | Nov 2002 | A1 |
20020165000 | Fok | Nov 2002 | A1 |
20020181693 | Ribera | Dec 2002 | A1 |
20020194335 | Maynard | Dec 2002 | A1 |
20020196770 | Lin | Dec 2002 | A1 |
20030004762 | Banerjee et al. | Jan 2003 | A1 |
20030018704 | Polychronidis et al. | Jan 2003 | A1 |
20030023623 | Horvitz et al. | Jan 2003 | A1 |
20030023681 | Brown et al. | Jan 2003 | A1 |
20030026289 | Mukherjee et al. | Feb 2003 | A1 |
20030028621 | Furlong et al. | Feb 2003 | A1 |
20030035529 | Baker | Feb 2003 | A1 |
20030037103 | Salmi | Feb 2003 | A1 |
20030037113 | Petrovykh | Feb 2003 | A1 |
20030041101 | Hansche et al. | Feb 2003 | A1 |
20030048195 | Trossen | Mar 2003 | A1 |
20030052915 | Brown et al. | Mar 2003 | A1 |
20030055897 | Brown et al. | Mar 2003 | A1 |
20030059029 | Mengshoel et al. | Mar 2003 | A1 |
20030065721 | Roskind | Apr 2003 | A1 |
20030065788 | Salomaki | Apr 2003 | A1 |
20030069934 | Garcia-Martin et al. | Apr 2003 | A1 |
20030073440 | Mukherjee et al. | Apr 2003 | A1 |
20030078979 | Sagi | Apr 2003 | A1 |
20030093482 | Watanabe et al. | May 2003 | A1 |
20030101278 | Garcia-Luna-Aceves et al. | May 2003 | A1 |
20030105820 | Haims et al. | Jun 2003 | A1 |
20030129972 | Tosaki et al. | Jul 2003 | A1 |
20030135624 | McKinnon et al. | Jul 2003 | A1 |
20030154293 | Zmolek | Aug 2003 | A1 |
20030174814 | Diacakis | Sep 2003 | A1 |
20030206619 | Curbow et al. | Nov 2003 | A1 |
20030217099 | Bobde et al. | Nov 2003 | A1 |
20030217142 | Bobde et al. | Nov 2003 | A1 |
20030225848 | Heikes et al. | Dec 2003 | A1 |
20030235287 | Margolis | Dec 2003 | A1 |
20040037271 | Liscano et al. | Feb 2004 | A1 |
20040044647 | Salmenkaita | Mar 2004 | A1 |
20040059781 | Yoakum et al. | Mar 2004 | A1 |
20040073614 | Blohm | Apr 2004 | A1 |
20040122810 | Mayer | Jun 2004 | A1 |
20040122901 | Sylvain | Jun 2004 | A1 |
20040125941 | Yoakum | Jul 2004 | A1 |
20040153506 | Ito et al. | Aug 2004 | A1 |
20040172528 | Tenereillo | Sep 2004 | A1 |
20040174966 | Koch | Sep 2004 | A1 |
20040203746 | Knauerhase et al. | Oct 2004 | A1 |
20040249776 | Horvitz et al. | Dec 2004 | A1 |
20050044144 | Malik et al. | Feb 2005 | A1 |
20050074101 | Moore et al. | Apr 2005 | A1 |
20050117570 | Cetusic et al. | Jun 2005 | A1 |
20050172011 | Gourlay et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
1071295 | Jan 2001 | EP |
1 148 688 | Oct 2001 | EP |
1 225 752 | Jul 2002 | EP |
1 329 810 | Jul 2003 | EP |
9917194 | Apr 1999 | WO |
WO 9934628 | Jul 1999 | WO |