The disclosure relates generally to distributed antenna systems (DASs) and more particularly to monitoring non-supported wireless spectrum, which may be used in connection with coverage areas of DASs.
DASs can be used for providing, extending and enhancing wireless communications and other services within a building or other installation. One approach to deploying a DAS involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” The antenna coverage areas are provided by remote units in the DAS. Remote units can provide antenna coverage areas having radii in the range from a few meters up to twenty (20) meters. If the antenna coverage areas provided each cover a small area, there are typically only a few users (clients) per antenna coverage area. This minimizes the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide indoor DAS access to clients within the facility. An optical fiber-based DAS can be used to distribute RF communications signals via Radio-over-Fiber (RoF) distribution.
Remote units in a DAS can be configured to distribute RF communications signals in multiple radio bands (i.e., frequencies or ranges of frequencies), as opposed to a single radio band. Distributing RF communications signals in multiple radio bands in an antenna coverage area increases flexibility of the DAS. In this scenario, client devices configured to communicate in different radio bands are supported in a given antenna coverage area provided by the remote unit.
The wireless spectrum within the antenna coverage areas often contain wireless signals from other sources and ambient electromagnetic (EM) signals, and in radio bands not supported by the DAS. These EM signals sometimes include supported frequencies used by DAS clients, as well as non-supported wireless frequencies. It may be desirable to detect and monitor non-supported environmental frequencies in the remote locations associated with the DAS remote units. In addition, some add-on equipment, such as a small-cell module physically located away from the remote unit, receives environmental frequency information as part of its initialization and configuration process, for example, to avoid interference with downlink or other channels of the small cell from environmental and other sources. Thus, it may also be desirable to detect and monitor non-supported wireless frequencies when adding or configuring additional equipment connected to the DAS.
No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.
Embodiments of the disclosure relate to monitoring non-supported wireless spectrum within coverage areas of a distributed antenna system (DAS). Related devices and methods are also disclosed. Non-supported wireless spectrum refers to wireless frequencies that do not correspond to the one or more wireless services of the DAS, and may also be referred to as out-of-band spectrum. In one embodiment, a listening module connected to a remote unit of the DAS is configured to receive electromagnetic signals via an antenna. The listening module is configured to pass received non-supported wireless frequencies different from supported frequencies of the DAS to an output of the listening module. In some examples, one or more filters are configured to also pass the non-supported frequencies, and may be configured to pass one or more supported frequencies to the output as well. In other examples, the antenna is a broadband antenna configured to pass all frequencies to the output. In other examples, the filter(s) are configured to prevent some or all supported frequencies, i.e., frequencies corresponding to the one or more wireless services of the DAS, from being passed to the output.
In this manner, a monitoring module, such as a module connected to head-end equipment (HEE) of the DAS, can use an existing DAS infrastructure to monitor portions of the wireless spectrum outside the supported radio bands of the DAS at one or more remote locations, such as at one or more remote units of the DAS. In addition to avoiding the need to run parallel infrastructure to remotely monitor wireless spectrum throughout an installation, embodiments described herein are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired. The embodiments disclosed herein can provide increased network visibility, network intelligence, and cost savings when integrated into and existing DAS infrastructure.
One embodiment of the disclosure relates to an apparatus connected to one or more of a plurality of remote units of a DAS for monitoring non-supported wireless spectrum within a coverage area of the DAS. The apparatus includes at least one antenna configured to receive one or more electromagnetic (EM) signals and a listening module connected to the at least one antenna. The listening module comprises at least one input configured to receive the electromagnetic signals from the antenna and at least one output configured to transmit the EM signals over at least one uplink path of the DAS to head-end equipment (HEE). The listening module further includes at least one listening path disposed between the at least one input and the at least one output and configured to pass at least one non-supported radio band different than the at least one supported radio band of the DAS to the at least one output.
An additional embodiment of the disclosure relates to a system for monitoring non-supported wireless spectrum within a coverage area of a DAS having HEE and a plurality of remote units. The system comprises a plurality of antennas configured to receive one or more electromagnetic signals, a listening module connected to at least one of the remote units connected to at least one of the antennas, and a monitoring module connected to the HEE. The listening module includes at least one input configured to receive the electromagnetic signals from the antenna and at least one output configured to transmit the electromagnetic signals over at least one uplink path of the DAS. The listening module further includes at least one listening path disposed between the at least one input and the at least one output and configured to pass a non-supported radio band different than a supported radio band of the DAS to the at least one output. The monitoring module includes at least one input configured to receive the non-supported radio band passed by the filter of the listening module.
An additional embodiment of the disclosure relates to a method of monitoring non-supported wireless spectrum within a coverage area of a DAS. The method comprises receiving, at a plurality of antennas, one or more EM signals and receiving, at a listening module connected to at least one of a plurality of remote units of the DAS, the one or more EM signals from at least one of the antennas. The method further comprises passing the one or more electromagnetic signals in a non-supported radio band different than a supported radio band of the DAS to an output of the listening module.
Additional features and advantages will be set forth in the detailed description which follows. It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.
The drawings are incorporated into and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
Embodiments of the disclosure relate to monitoring non-supported wireless spectrum within coverage areas of a distributed antenna system (DAS). In one embodiment, a listening module connected to a remote unit of the DAS is configured to pass received non-supported wireless frequencies different from supported frequencies of the DAS to an output of the listening module. In the manner, a centrally located monitoring module can use an existing DAS infrastructure to monitor portions of the wireless spectrum outside the supported radio bands of the DAS at one or more remote locations. Various embodiments will be further clarified by the following examples.
Before discussing monitoring non-supported wireless spectrum in connection with coverage areas of DASs starting at
The DAS 10 has an antenna coverage area 20 that can be substantially centered about the remote unit 14. The remote unit 14 is configured to receive downlink optical RF communications signals 22D from the HEU 12 and transmit the content downlink optical RF communications signals 22D wirelessly within the coverage area 20. The HEU 12 is adapted to perform or to facilitate any one of a number of wireless applications, including but not limited to Radio-over-Fiber (RoF), radio frequency identification (RFID), wireless local-area network (WLAN) communication, public safety, cellular, telemetry, and other mobile or fixed services. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communication signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF communications signals. In a particular exemplary embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF communications signal frequencies are possible.
With continuing reference to
Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF communications signals representing the wireless RF communications to an E/O converter 34 in the remote unit 14. The E/O converter 34 converts the electrical RF communications signals into uplink optical RF communications signals 22U to be communicated over the uplink optical fiber 16U. The E/O converter 34 and the O/E converter 30 constitute a “converter pair,” as illustrated in
An O/E converter 36 provided in the HEU 12 converts the uplink optical RF communications signals 22U into uplink electrical RF communications signals, which can then be communicated as uplink electrical RF communications signals 18U back to a network or other source. In an exemplary embodiment, the O/E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 28 and the O/E converter 36 also constitute a “converter pair,” as illustrated in
However, the DAS 10 of
With continuing reference to
The main cable 50 enables the multiple optical fiber cables 56 to be distributed throughout the building infrastructure 38 (e.g., fixed to the ceilings or other support surfaces of each floor 40, 42, 44) to provide the antenna coverage areas 48 for the first, second and third floors 40, 42 and 44. In an exemplary embodiment, the HEU 12 is located within the building infrastructure 38 (e.g., in a closet or control room), while in another exemplary embodiment, the HEU 12 may be located outside of the building infrastructure 38 at a remote location. A base transceiver station (BTS) 60, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. Alternatively, radio input could be provided by a repeater or picocell as other examples.
The optical fiber-based DAS 10 in
It may be desirable to provide an optical fiber-based DAS that can support a wide variety of radio sources. For example, it may be desired to provide an optical fiber-based DAS that can support various radio types and sources, including but not limited to Long Term Evolution (LTE), US Cellular (CELL), Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Advanced Wireless Services (AWS), iDEN (e.g., 800 MegaHertz (MHz), 900 MHz, and 1.5 GHz), etc. These radios sources can range from 400 MHz to 2700 MHz as an example. To support a radio source, the HEU must contain lasers that are capable of modulating the radio signal into optical RF communications signals at the frequency of the radio signal for transmission over optical fiber. Likewise, lasers must be provided to convert the optical RF communications signals back into electrical RF communications signals at the frequencies of the radio band supported. It is costly to provide different conversion lasers for all possible radio sources that may be desired to be supported by an optical fiber-based DAS.
As noted above, the DAS 10 of
The DAS 64 will now be described in detail to illustrate how the monitoring unit 86 and listening unit(s) 74 are able to use the infrastructure of the DAS 64 to monitor non-supported wireless frequencies. In this embodiment, the DAS 64 is an optical fiber-based DAS comprised of three main components. One or more radio interfaces provided in the form of radio interface modules (RIMs) 66(1)-66(M) in this embodiment are provided in HEU 12 to receive and process downlink electrical RF communications signals 18D(1)-18D(R) prior to optical conversion into downlink optical RF communications signals 22D(1)-22D(R). The processing of the downlink electrical RF communications signals 18D(1)-18D(R) can include any of the processes previously described above in the HEU 12 in FIG. 2. The notations “1-R” and “1-M” indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided. As will be described in more detail below, the HEU 12 in this embodiment is configured to accept a plurality of RIMs 66(1)-66(M) as modular components that can be easily installed and removed or replaced in the HEU 12. In one embodiment, the HEU 12 is configured to support up to four (4) RIMs 66(1)-66(M).
Each RIM 66(1)-66(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the HEU 12 and optical fiber-based DAS 64 to support the desired radio sources. For example, one RIM 66 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 66 may be configured to support the Long Term Evolution (LTE) 700 MHz radio band. In this example, by inclusion of these RIMs 66, the HEU 12 would be configured to support and distribute RF communications signals on both PCS and LTE 700 MHz radio bands. RIMs 66 may be provided in the HEU 12 that support any other radio bands and technologies desired, including but not limited to PCS, LTE, CELL, GSM, CDMA, CDMA2000, TDMA, AWS, iDEN (e.g., 800 MHz, 900 MHz, and 1.5 GHz), Enhanced Data GSM Environment, (EDGE), Evolution-Data Optimized (EV-DO), 1×RTT (i.e., CDMA2000 (IS-2000)), High Speed Packet Access (HSPA), 3GGP1, 3GGP2, and Cellular Digital Packet Data (CDPD). More specific examples include, but are not limited to, radio bands between 400-2700 MHz including but not limited to 700 MHz (LTE), 698-716 MHz, 728-757 MHz, 776-787 MHz, 806-824 MHz, 824-849 MHz (US Cellular), 851-869 MHz, 869-894 MHz (US Cellular), 880-915 MHz (EU R), 925-960 MHz (TTE), 1930-1990 MHz (US PCS), 2110-2155 MHz (US AWS), 925-960 MHz (GSM 900), 1710-1755 MHz, 1850-1915 MHz, 1805-1880 MHz (GSM 1800), 1920-1995 MHz, and 2110-2170 MHz (GSM 2100).
The downlink electrical RF communications signals 18D(1)-18D(R) are provided to an optical interface unit (OIU) 68 having a plurality of optical interfaces provided in the form of optical interface modules (OIMs) 70(1)-70(N) in this embodiment to convert the downlink electrical RF communications signals 18D(1)-18D(N) into downlink optical RF communications signals 22D(1)-22D(R). The notation “1-N” indicates that any number of the referenced component 1-N may be provided. One downlink optical fiber 16D and one uplink optical fiber 16U could be provided to support multiple channels each using WDM or FDM.
In this embodiment, the OIMs 70(1)-70(N) are provided in a common housing provided for the HEU 12 with the RIMs 66(1)-66(M). Alternatively, the OIMs 70(1)-70(N) could be located in separately from the RIMs 66(1)-66(M). The OIMs 70 may be configured to provide one or more optical interface components (OICs) that contain O/E and E/O converters, as will be described in more detail below. The OIMs 70 support the radio bands that can be provided by the RIMs 66, including the examples previously described above. Thus, in this embodiment, the OIMs 70 may support a radio band range from 400 MHz to 2700 MHz, as an example, so providing different types or models of OIMs 70 for narrower radio bands to support possibilities for different radio band supported RIMs 66 provided in the HEU 12 is not required. Further, as an example, the OIMs 70 may be optimized for sub-bands within the 400 MHz to 2700 MHz frequency range, such as 400-700 MHz, 700 MHz-1 GHz, 1 GHz-1.6 GHz, and 1.6 GHz-2.7 GHz, as examples.
The OIMs 70(1)-70(N) each include E/O converters to convert the downlink electrical RF communications signals 18D(1)-18D(R) to downlink optical RF communications signals 22D(1)-22D(R). The downlink optical RF communications signals 22D(1)-22D(R) are communicated over downlink optical fiber(s) 16D to a plurality of remote units 14(1)-14(P). The notation “1-P” indicates that any number of the referenced component 1-P may be provided. O-E converters provided in the remote units 14(1)-14(P) convert the downlink optical RF communications signals 22D(1)-22D(R) back into downlink electrical RF communications signals 18D(1)-18D(R), which are provided over links 72(1)-72(P) coupled to antennas 32(1)-32(P) in the remote units 14(1)-14(P) to client devices in the reception range of the antennas 32(1)-32(P).
In this embodiment, the listening unit 74 includes a listening module 76 having a link 78 to a dedicated antenna 80. The listening unit 74 in this example is part of a remote expansion unit (RXU) 81 that is a separate unit from the remote unit 14. In other embodiments, the listening unit 74 may be a separate unit from both the remote unit 14 and RXU 81. In another example, the listening module 76 may be an integrated component or a plug-in component of the remote unit 14. The antenna 80 may be a broadband or a narrowband antenna and is capable of receiving one or more non-supported wireless frequencies. The listening unit 74 is connected to the remote unit(s) 14 by a link 82 that transmits a monitor signal 84 containing the non-supported wireless frequencies to the remote unit(s) 14 where they can be combined with one or more of the uplink optical RF communications signals 22U for transmission back to the HEU 12. The monitoring module 88 of the monitoring unit 86 can then receive the monitor signal 84 from a link 90 from the RIM(s) 66 and/or a link 92 from the OIU 68. The monitoring unit 86 in this example is a separate unit from the HEU 12, and may be part of another device or component connected to the HEU 12. In another example, the monitoring module 88 may be an integrated component or a plug-in component of the HEU 12. In this embodiment, the link 90 to the RIM(s) 66 is configured to transmit narrowband signals corresponding to wireless frequencies near the supported radio band of the RIM(s) 66. Conversely, the link 92 to the OIU 68 in this embodiment is configured to transmit broadband signals corresponding to a large range of non-supported wireless frequencies and can also be used for narrow band monitoring, similar to link 90, as well. It should be understood that alternative methods of routing, such employing an RF matrix for routing signals between multiple links to a single monitoring unit, are contemplated as well.
In this embodiment, the listening module 76 can also be connected via a link 94 to one or more of the antennas 32(1)-32(P) connected to the remote units 14(1)-14(P). As will be discussed in detail below with respect to
In some embodiments, the above described components may have a wide range of capabilities. For example, the listening module 76 may be capable of providing spectrum monitoring over a wide range of RF frequencies, e.g., 10 MHz-6 GHz. In another example, the listening module 76 and/or monitoring module 88 may be self-optimized and/or self-configurable, thereby permitting advanced integration and interoperability with small cells and other radio sources that may be connected to a DAS.
To illustrate the functionality and operation of the listening module 76, the internal components of the listening unit 74 and an exemplary remote unit 14 will be described. In this regard,
Meanwhile, the listening module 76 of the listening unit 74 forms a spectrum monitoring path for monitoring non-supported wireless frequencies. As discussed above, the listening module 76 receives EM radiation via the antenna 80 (or, alternatively, via a broadband antenna 32) and outputs the monitor signal 84 into an E/O converter 34(2), which converts the monitor signal 84 into an optical signal. The outputs of both E/O converters 34(1) and 34(2) are received by a wave division multiplexer 102, and are multiplexed into one or more uplink optical RF communications signals 22U.
In this manner, the monitor signal 84 may be carried over the existing infrastructure of a DAS, such as DAS 64, and delivered to a centrally located monitoring module, such as monitoring module 88. One advantage of this arrangement is that a number of third party and other non-supported wireless components, such as small-cell or femtocell components (not shown), can be installed in a central location, such as in proximity to HEU 12. Some of these components employ a listening mode to gather information about the transmission environment as part of their initialization and configuration process. Therefore, this arrangement permits these components to receive accurate information about the transmission environment, i.e., the remote unit 14 locations, while remaining physically located proximate to the HEU 12. As discussed above, in addition to avoiding the need to run parallel infrastructure to remotely monitor wireless spectrum throughout an installation, embodiments described herein are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
The internal components of the uplink frequency band paths 99(1) and 99(2) of the remote unit 14 and the spectrum monitoring path of the listening module 76 are analogous to each other in many respects. In this example, each uplink frequency band path 99 includes a limiter/detector 104 that receives a signal output from multiplexer 98. A parallel low noise amplifier 106 and filter 108 next pass the signal through a variable gain amplifier 110 and into filter 112. Each filter 112 is tuned to pass a specific supported frequency band through the variable attenuator 118 to gain amplifier 120 and outputs the signal to frequency mux/combiner 100, thereby preventing non-supported frequencies from being passed to the output of the uplink frequency band path 99.
In a similar arrangement, the spectrum monitoring path, also referred to as a listening path, of the listening module 76 includes a limiter/detector 122 that receives a signal from one of antenna 80 or antenna 32. In this example, a selectable low noise amplifier 124 and optional attenuator 126 next pass the signal through a variable gain amplifier 128 and into a selectable filter 130 and/or mixer 132. The mixer 132 permits selective tuning of the passed frequencies, while the filter 130 permits passing a fixed frequency or frequencies. The filter 130 and mixer 132 can also be bypassed entirely, thereby passing the entire range of frequencies received by antenna 80 and/or antenna 32. The passed wireless frequencies are next passed through the variable attenuator 134 to gain amplifier 136 and analog/digital converter 138, finally outputting the signal to E/O converter 34(2), likewise preventing non-tuned wireless frequencies, which may include both supported and non-supported radio bands, from being passed to the output of the uplink frequency band path. In an alternative embodiment, the mixer 132 and other components permitting selectable tuning can be omitted, such that the spectrum monitoring path is tuned to a fixed frequency band. It should also be understood that the wave division multiplexer 102 and analog/digital converter 138 are also optional and are not required for a DAS that does not include digital signal distribution. In an alternative, analog-only embodiment, for example, the output signal from gain amplifier 136 can be combined directly with the output of mux/combiner 100 and output to a single E/O converter 34(1).
In this example, the listening module has a number of different antenna modes. In a disabled mode, an antenna switch 144 is set to fifty ohm (50Ω) termination (or terminated) mode 146, thereby turning off the listening module 76. In first broadband listening mode, the switch 144 connects the listening module 76 to antenna 80, thereby permitting reception of all frequencies capable of being received by antenna 80. In a second listening mode, the switch 144 connects the listening module 76 to one or more of the broadband antennas 32 of the remote unit(s) 14, thereby permitting reception of all frequencies capable of being received by broadband antenna(s) 32, for example, by bypassing the filter 130 and/or mixer 132, or by omitting the filter 130 and mixer 132 entirely.
These components allow for configurable spectrum bandwidth support and signal level sensitivity. For example, the listening module 76 of
An exemplary method of operation of the listening module 76 of
In this manner, the above described methods can monitor non-supported wireless spectrum throughout an installation, such as the building infrastructure 38 of
As discussed above, the embodiments of
The HEU 12 is configured to receive the downlink electrical RF communications signals 18D through downlink interfaces 170 from one or more base stations 172(1)-172(N), wherein N can be any number. The HEU 12 can be configured receive RF communications services from multiple base stations 172(1)-172(N) to support multiple RF radio bands in the DAS 166. The HEU 12 is also configured to provide the downlink optical RF communication signals 22D to the remote units 14(1)-14(N) and receive the uplink optical RF communications signals 22U from remote units 14(1)-14(N) over a communications medium. M number of remote units 14 signifies that any number, M number, of remote units 14 could be communicatively coupled to the HEU 12, as desired. Similar to the embodiments of
With continuing reference to
The digital data switch 174 may be coupled to a network 178, such as the Internet. Downlink digital data signals 180D from the network 178 can be provided to the digital data switch 174. The downlink digital data signals 180D can then be provided to the remote units 176(1)-176(P) through slave central units 182(1)-182(Q), wherein Q can be any number desired. The digital data switch 174 can also receive uplink digital data signals 180U from the remote units 176(1)-176(P) to be provided back to the network 178. The slave central units 182(1)-182(Q) also receive the downlink optical RF communications signals 22D and provide uplink optical RF communications signals 22U from the remote units 176(1)-176(P) to the HEU 12 in this embodiment. In this regard, the remote units 176(1)-176(P), by being communicatively coupled to a slave central unit 182(1) that supports both the RF communications services and the digital data services, is included in both the distributed antenna system 64′ and the WLAN system 168 to support RF communication services and digital data services, respectively, with client devices 184(1)-184(P). For example, such remote unit 176 may be configured to communicate wirelessly with the WLAN user equipment (e.g., a laptop) and Wide Area Wireless service user equipment (e.g., a cellular phone).
A number of different digital data devices may also be included, such as WLAN access points, femtocells, gateways, baseband units (BBU), remote radio heads (RRH), and wired and wireless servers. Digital data services may also be provided via connected desktop computers, hubs, switches, and other devices. Any of these digital data devices may include hardware and/or software for remotely monitoring non-supported spectrum via the DAS.
In addition, any of the DASs and other components disclosed herein, including the monitoring unit 86, monitoring module 88, listening unit 74, and/or listening module 76 of
The processing device 188 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 188 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 188 is configured to execute processing logic in instructions 196 (located in the processing device 188 and/or the main memory 190) for performing the operations and steps discussed herein.
The computer system 186 may further include a network interface device 198. The computer system 186 also may or may not include an input 200 to receive input and selections to be communicated to the computer system 186 when executing instructions. The computer system 186 also may or may not include an output 202, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).
The computer system 186 may or may not include a data storage device 204 that includes instructions 206 stored in a computer-readable medium 208. The instructions 206 may also reside, completely or at least partially, within the main memory 190 and/or within the processing device 188 during execution thereof by the computer system 186, the main memory 190 and the processing device 188 also constituting the computer-readable medium 208. The instructions 196, 206 may further be transmitted or received over a network 178 via the network interface device 198.
While the computer-readable medium 208 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic medium, and carrier wave signals.
The embodiments disclosed herein include various steps that may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.
The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage medium, optical storage medium, flash memory devices, etc.).
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.
This is a continuation of U.S. application Ser. No. 14/972,149, filed Dec. 17, 2015, which is a continuation of U.S. patent application Ser. No. 13/948,536, filed on Jul. 23, 2013, now U.S. Pat. No. 9,247,543, the contents of which are relied upon and incorporated herein by reference in their entireties, and the benefit of priority under 35 U.S.C. §120 is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
3663762 | Joel, Jr. | May 1972 | A |
4365865 | Stiles | Dec 1982 | A |
4449246 | Seiler et al. | May 1984 | A |
4573212 | Lipsky | Feb 1986 | A |
4665560 | Lange | May 1987 | A |
4812851 | Giubardo | Mar 1989 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4889977 | Haydon | Dec 1989 | A |
4896939 | O'Brien | Jan 1990 | A |
4916460 | Powell | Apr 1990 | A |
4939852 | Brenner | Jul 1990 | A |
4972346 | Kawano et al. | Nov 1990 | A |
5039195 | Jenkins et al. | Aug 1991 | A |
5042086 | Cole et al. | Aug 1991 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5059927 | Cohen | Oct 1991 | A |
5125060 | Edmundson | Jun 1992 | A |
5187803 | Sohner et al. | Feb 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5189719 | Coleman et al. | Feb 1993 | A |
5206655 | Caille et al. | Apr 1993 | A |
5208812 | Dudek et al. | May 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5260957 | Hakimi | Nov 1993 | A |
5263108 | Kurokawa et al. | Nov 1993 | A |
5267122 | Glover et al. | Nov 1993 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5278690 | Vella-Coleiro | Jan 1994 | A |
5278989 | Burke et al. | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5299947 | Barnard | Apr 1994 | A |
5301056 | O'Neill | Apr 1994 | A |
5325223 | Bears | Jun 1994 | A |
5339058 | Lique | Aug 1994 | A |
5339184 | Tang | Aug 1994 | A |
5343320 | Anderson | Aug 1994 | A |
5377035 | Wang et al. | Dec 1994 | A |
5379455 | Koschek | Jan 1995 | A |
5381459 | Lappington | Jan 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5420863 | Taketsugu et al. | May 1995 | A |
5424864 | Emura | Jun 1995 | A |
5444564 | Newberg | Aug 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5519830 | Opoczynski | May 1996 | A |
5543000 | Lique | Aug 1996 | A |
5546443 | Raith | Aug 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5574815 | Kneeland | Nov 1996 | A |
5598288 | Collar | Jan 1997 | A |
5606725 | Hart | Feb 1997 | A |
5615034 | Hod | Mar 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5640678 | Ishikawa et al. | Jun 1997 | A |
5642405 | Fischer et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5648961 | Ebihara | Jul 1997 | A |
5651081 | Blew et al. | Jul 1997 | A |
5657374 | Russell et al. | Aug 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5694232 | Parsay et al. | Dec 1997 | A |
5703602 | Casebolt | Dec 1997 | A |
5708681 | Malkemes et al. | Jan 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5790606 | Dent | Aug 1998 | A |
5793772 | Burke et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5802473 | Rutledge et al. | Sep 1998 | A |
5805975 | Green, Sr. et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5812296 | Tarusawa et al. | Sep 1998 | A |
5818619 | Medved et al. | Oct 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5825651 | Gupta et al. | Oct 1998 | A |
5838474 | Stilling | Nov 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5854986 | Dorren et al. | Dec 1998 | A |
5859719 | Dentai et al. | Jan 1999 | A |
5862460 | Rich | Jan 1999 | A |
5867485 | Chambers et al. | Feb 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5881200 | Burt | Mar 1999 | A |
5883882 | Schwartz | Mar 1999 | A |
5896568 | Tseng et al. | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5917636 | Wake et al. | Jun 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5936754 | Ariyavisitakul et al. | Aug 1999 | A |
5943372 | Gans et al. | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949564 | Wake | Sep 1999 | A |
5953670 | Newson | Sep 1999 | A |
5959531 | Gallagher, III et al. | Sep 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
5987303 | Dutta et al. | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006069 | Langston et al. | Dec 1999 | A |
6006105 | Rostoker et al. | Dec 1999 | A |
6011980 | Nagano et al. | Jan 2000 | A |
6014546 | Georges et al. | Jan 2000 | A |
6016426 | Bodell | Jan 2000 | A |
6023625 | Myers, Jr. | Feb 2000 | A |
6037898 | Parish et al. | Mar 2000 | A |
6061161 | Yang et al. | May 2000 | A |
6069721 | Oh et al. | May 2000 | A |
6088381 | Myers, Jr. | Jul 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128470 | Naidu et al. | Oct 2000 | A |
6128477 | Freed | Oct 2000 | A |
6148041 | Dent | Nov 2000 | A |
6150921 | Werb et al. | Nov 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6212397 | Langston et al. | Apr 2001 | B1 |
6222503 | Gietema | Apr 2001 | B1 |
6223201 | Reznak | Apr 2001 | B1 |
6232870 | Garber et al. | May 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6236863 | Waldroup et al. | May 2001 | B1 |
6240274 | Izadpanah | May 2001 | B1 |
6246500 | Ackerman | Jun 2001 | B1 |
6268946 | Larkin et al. | Jul 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6279158 | Geile et al. | Aug 2001 | B1 |
6286163 | Trimble | Sep 2001 | B1 |
6292673 | Maeda et al. | Sep 2001 | B1 |
6295451 | Mimura | Sep 2001 | B1 |
6301240 | Slabinski et al. | Oct 2001 | B1 |
6307869 | Pawelski | Oct 2001 | B1 |
6314163 | Acampora | Nov 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323980 | Bloom | Nov 2001 | B1 |
6324391 | Bodell | Nov 2001 | B1 |
6330241 | Fort | Dec 2001 | B1 |
6330244 | Swartz et al. | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6336021 | Nukada | Jan 2002 | B1 |
6336042 | Dawson et al. | Jan 2002 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6353406 | Lanzl et al. | Mar 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6359714 | Imajo | Mar 2002 | B1 |
6370203 | Boesch et al. | Apr 2002 | B1 |
6374078 | Williams et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6389010 | Kubler et al. | May 2002 | B1 |
6400318 | Kasami et al. | Jun 2002 | B1 |
6400418 | Wakabayashi | Jun 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6405058 | Bobier | Jun 2002 | B2 |
6405308 | Gupta et al. | Jun 2002 | B1 |
6414624 | Endo et al. | Jul 2002 | B2 |
6415132 | Sabat, Jr. | Jul 2002 | B1 |
6421327 | Lundby et al. | Jul 2002 | B1 |
6438301 | Johnson et al. | Aug 2002 | B1 |
6438371 | Fujise et al. | Aug 2002 | B1 |
6448558 | Greene | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6459519 | Sasai et al. | Oct 2002 | B1 |
6459989 | Kirkpatrick et al. | Oct 2002 | B1 |
6472952 | Sakai et al. | Oct 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6501965 | Lucidarme | Dec 2002 | B1 |
6504636 | Seto et al. | Jan 2003 | B1 |
6504831 | Greenwood et al. | Jan 2003 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6519395 | Bevan et al. | Feb 2003 | B1 |
6519449 | Zhang et al. | Feb 2003 | B1 |
6525855 | Westbrook et al. | Feb 2003 | B1 |
6535330 | Lelic et al. | Mar 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6556551 | Schwartz | Apr 2003 | B1 |
6570913 | Chen | May 2003 | B1 |
6577794 | Currie et al. | Jun 2003 | B1 |
6577801 | Broderick et al. | Jun 2003 | B2 |
6580402 | Navarro et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6580918 | Leickel et al. | Jun 2003 | B1 |
6583763 | Judd | Jun 2003 | B2 |
6587514 | Wright et al. | Jul 2003 | B1 |
6594496 | Schwartz | Jul 2003 | B2 |
6597325 | Judd et al. | Jul 2003 | B2 |
6598009 | Yang | Jul 2003 | B2 |
6606430 | Bartur et al. | Aug 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6628732 | Takaki | Sep 2003 | B1 |
6634811 | Gertel et al. | Oct 2003 | B1 |
6636747 | Harada et al. | Oct 2003 | B2 |
6640103 | Inman et al. | Oct 2003 | B1 |
6643437 | Park | Nov 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654616 | Pope, Jr. et al. | Nov 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6658269 | Golemon et al. | Dec 2003 | B1 |
6665308 | Rakib et al. | Dec 2003 | B1 |
6670930 | Navarro | Dec 2003 | B2 |
6674966 | Koonen | Jan 2004 | B1 |
6675294 | Gupta et al. | Jan 2004 | B1 |
6678509 | Skarman et al. | Jan 2004 | B2 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6690328 | Judd | Feb 2004 | B2 |
6701137 | Judd et al. | Mar 2004 | B1 |
6704298 | Matsumiya et al. | Mar 2004 | B1 |
6704545 | Wala | Mar 2004 | B1 |
6710366 | Lee et al. | Mar 2004 | B1 |
6714800 | Johnson et al. | Mar 2004 | B2 |
6731880 | Westbrook et al. | May 2004 | B2 |
6745013 | Porter et al. | Jun 2004 | B1 |
6758913 | Tunney et al. | Jul 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6771862 | Kamik et al. | Aug 2004 | B2 |
6771933 | Eng et al. | Aug 2004 | B1 |
6784802 | Stanescu | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6788666 | Linebarger et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6812905 | Thomas et al. | Nov 2004 | B2 |
6823174 | Masenten et al. | Nov 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6826164 | Mani et al. | Nov 2004 | B2 |
6826337 | Linnell | Nov 2004 | B2 |
6836660 | Wala | Dec 2004 | B1 |
6836673 | Troll | Dec 2004 | B1 |
6842433 | West et al. | Jan 2005 | B2 |
6847856 | Bohannon | Jan 2005 | B1 |
6850510 | Kubler | Feb 2005 | B2 |
6865390 | Goss et al. | Mar 2005 | B2 |
6873823 | Hasarchi | Mar 2005 | B2 |
6876056 | Tilmans et al. | Apr 2005 | B2 |
6879290 | Toutain et al. | Apr 2005 | B1 |
6882311 | Walker et al. | Apr 2005 | B2 |
6883710 | Chung | Apr 2005 | B2 |
6885344 | Mohamadi | Apr 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6889060 | Fernando et al. | May 2005 | B2 |
6909399 | Zegelin et al. | Jun 2005 | B1 |
6915058 | Pons | Jul 2005 | B2 |
6915529 | Suematsu et al. | Jul 2005 | B1 |
6919858 | Rofougaran | Jul 2005 | B2 |
6920330 | Caronni et al. | Jul 2005 | B2 |
6924997 | Chen et al. | Aug 2005 | B2 |
6930987 | Fukuda et al. | Aug 2005 | B1 |
6931183 | Panak et al. | Aug 2005 | B2 |
6931659 | Kinemura | Aug 2005 | B1 |
6933849 | Sawyer | Aug 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934541 | Miyatani | Aug 2005 | B2 |
6941112 | Hasegawa | Sep 2005 | B2 |
6946989 | Vavik | Sep 2005 | B2 |
6961312 | Kubler et al. | Nov 2005 | B2 |
6963289 | Aljadeff et al. | Nov 2005 | B2 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
6967347 | Estes et al. | Nov 2005 | B2 |
6968107 | Belardi et al. | Nov 2005 | B2 |
6970652 | Zhang et al. | Nov 2005 | B2 |
6973243 | Koyasu et al. | Dec 2005 | B2 |
6974262 | Rickenbach | Dec 2005 | B1 |
6977502 | Hertz | Dec 2005 | B1 |
7002511 | Ammar et al. | Feb 2006 | B1 |
7006465 | Toshimitsu et al. | Feb 2006 | B2 |
7013087 | Suzuki et al. | Mar 2006 | B2 |
7015826 | Chan et al. | Mar 2006 | B1 |
7020473 | Splett | Mar 2006 | B2 |
7020488 | Bleile et al. | Mar 2006 | B1 |
7024166 | Wallace | Apr 2006 | B2 |
7035512 | Van Bijsterveld | Apr 2006 | B2 |
7035671 | Solum | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7043271 | Seto et al. | May 2006 | B1 |
7047028 | Cagenius et al. | May 2006 | B2 |
7050017 | King et al. | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7054513 | Herz et al. | May 2006 | B2 |
7069577 | Geile et al. | Jun 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7082320 | Kattukaran et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7093985 | Lord et al. | Aug 2006 | B2 |
7103119 | Matsuoka et al. | Sep 2006 | B2 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7106252 | Smith et al. | Sep 2006 | B2 |
7106931 | Sutehall et al. | Sep 2006 | B2 |
7110795 | Doi | Sep 2006 | B2 |
7114859 | Tuohimaa et al. | Oct 2006 | B1 |
7127175 | Mani et al. | Oct 2006 | B2 |
7127176 | Sasaki | Oct 2006 | B2 |
7142503 | Grant et al. | Nov 2006 | B1 |
7142535 | Kubler et al. | Nov 2006 | B2 |
7142619 | Sommer et al. | Nov 2006 | B2 |
7146506 | Hannah et al. | Dec 2006 | B1 |
7160032 | Nagashima et al. | Jan 2007 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190748 | Kim et al. | Mar 2007 | B2 |
7194023 | Morrell et al. | Mar 2007 | B2 |
7199443 | Elsharawy | Apr 2007 | B2 |
7200305 | Dion et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7228072 | Mickelsson et al. | Jun 2007 | B2 |
7263293 | Ommodt et al. | Aug 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7280011 | Bayar et al. | Oct 2007 | B2 |
7286843 | Scheck | Oct 2007 | B2 |
7286854 | Ferrato et al. | Oct 2007 | B2 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7313415 | Wake et al. | Dec 2007 | B2 |
7315735 | Graham | Jan 2008 | B2 |
7324730 | Varkey et al. | Jan 2008 | B2 |
7343164 | Kallstenius | Mar 2008 | B2 |
7348843 | Qiu et al. | Mar 2008 | B1 |
7349633 | Lee et al. | Mar 2008 | B2 |
7359408 | Kim | Apr 2008 | B2 |
7359674 | Markki et al. | Apr 2008 | B2 |
7366150 | Lee et al. | Apr 2008 | B2 |
7366151 | Kubler et al. | Apr 2008 | B2 |
7369526 | Lechleider et al. | May 2008 | B2 |
7379669 | Kim | May 2008 | B2 |
7388892 | Nishiyama et al. | Jun 2008 | B2 |
7392025 | Rooyen et al. | Jun 2008 | B2 |
7392029 | Pronkine | Jun 2008 | B2 |
7394883 | Funakubo et al. | Jul 2008 | B2 |
7403156 | Coppi et al. | Jul 2008 | B2 |
7409159 | Izadpanah | Aug 2008 | B2 |
7412224 | Kotola et al. | Aug 2008 | B2 |
7424228 | Williams et al. | Sep 2008 | B1 |
7444051 | Tatat et al. | Oct 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7450854 | Lee et al. | Nov 2008 | B2 |
7451365 | Wang et al. | Nov 2008 | B2 |
7454222 | Huang et al. | Nov 2008 | B2 |
7460507 | Kubler et al. | Dec 2008 | B2 |
7460829 | Utsumi et al. | Dec 2008 | B2 |
7460831 | Hasarchi | Dec 2008 | B2 |
7466925 | Iannelli | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7477597 | Segel | Jan 2009 | B2 |
7483504 | Shapira et al. | Jan 2009 | B2 |
7483711 | Burchtlel | Jan 2009 | B2 |
7489641 | Miller et al. | Feb 2009 | B2 |
7496070 | Vesuna | Feb 2009 | B2 |
7496384 | Seto et al. | Feb 2009 | B2 |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7522552 | Fein et al. | Apr 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7542452 | Penumetsa | Jun 2009 | B2 |
7546138 | Bauman | Jun 2009 | B2 |
7548138 | Kamgaing | Jun 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7551641 | Pirzada et al. | Jun 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7580384 | Kubler et al. | Aug 2009 | B2 |
7586861 | Kubler et al. | Sep 2009 | B2 |
7590354 | Sauer et al. | Sep 2009 | B2 |
7593704 | Pinel et al. | Sep 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7599672 | Shoji et al. | Oct 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7630690 | Kaewell, Jr. et al. | Dec 2009 | B2 |
7633934 | Kubler et al. | Dec 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7646743 | Kubler et al. | Jan 2010 | B2 |
7646777 | Hicks, III et al. | Jan 2010 | B2 |
7653397 | Pemu et al. | Jan 2010 | B2 |
7668565 | Ylänen et al. | Feb 2010 | B2 |
7672643 | Loh | Mar 2010 | B2 |
7675936 | Mizutani et al. | Mar 2010 | B2 |
7688811 | Kubler et al. | Mar 2010 | B2 |
7693486 | Kasslin et al. | Apr 2010 | B2 |
7697467 | Kubler et al. | Apr 2010 | B2 |
7697574 | Suematsu et al. | Apr 2010 | B2 |
7715375 | Kubler et al. | May 2010 | B2 |
7720510 | Pescod et al. | May 2010 | B2 |
7751374 | Donovan | Jul 2010 | B2 |
7751838 | Ramesh et al. | Jul 2010 | B2 |
7756480 | Loh | Jul 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7761093 | Sabat, Jr. et al. | Jul 2010 | B2 |
7768951 | Kubler et al. | Aug 2010 | B2 |
7773573 | Chung et al. | Aug 2010 | B2 |
7778603 | Palin et al. | Aug 2010 | B2 |
7787823 | George et al. | Aug 2010 | B2 |
7805073 | Sabat, Jr. et al. | Sep 2010 | B2 |
7809012 | Ruuska et al. | Oct 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7812775 | Babakhani et al. | Oct 2010 | B2 |
7817969 | Castaneda et al. | Oct 2010 | B2 |
7835328 | Stephens et al. | Nov 2010 | B2 |
7848316 | Kubler et al. | Dec 2010 | B2 |
7848770 | Scheinert | Dec 2010 | B2 |
7853234 | Afsahi | Dec 2010 | B2 |
7870321 | Rofougaran | Jan 2011 | B2 |
7880677 | Rofougaran et al. | Feb 2011 | B2 |
7881755 | Mishra et al. | Feb 2011 | B1 |
7894423 | Kubler et al. | Feb 2011 | B2 |
7899007 | Kubler et al. | Mar 2011 | B2 |
7907972 | Walton et al. | Mar 2011 | B2 |
7912043 | Kubler et al. | Mar 2011 | B2 |
7912506 | Lovberg et al. | Mar 2011 | B2 |
7916706 | Kubler et al. | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
7920553 | Kubler et al. | Apr 2011 | B2 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7924783 | Mahany et al. | Apr 2011 | B1 |
7936713 | Kubler et al. | May 2011 | B2 |
7949364 | Kasslin et al. | May 2011 | B2 |
7957777 | Vu et al. | Jun 2011 | B1 |
7962111 | Solum | Jun 2011 | B2 |
7969009 | Chandrasekaran | Jun 2011 | B2 |
7969911 | Mahany et al. | Jun 2011 | B2 |
7990925 | Tinnakomsrisuphap et al. | Aug 2011 | B2 |
7996020 | Chhabra | Aug 2011 | B1 |
8018907 | Kubler et al. | Sep 2011 | B2 |
8023886 | Rofougaran | Sep 2011 | B2 |
8027656 | Rofougaran et al. | Sep 2011 | B2 |
8036308 | Rofougaran | Oct 2011 | B2 |
8082353 | Huber et al. | Dec 2011 | B2 |
8086192 | Rofougaran et al. | Dec 2011 | B2 |
8135102 | Wiwel et al. | Mar 2012 | B2 |
8175535 | Mu | May 2012 | B2 |
8213401 | Fischer et al. | Jul 2012 | B2 |
8223795 | Cox et al. | Jul 2012 | B2 |
8226003 | Frederick et al. | Jul 2012 | B2 |
8238463 | Arslan et al. | Aug 2012 | B1 |
8270387 | Cannon et al. | Sep 2012 | B2 |
8290483 | Sabat, Jr. et al. | Oct 2012 | B2 |
8306563 | Zavadsky et al. | Nov 2012 | B2 |
8346278 | Wala et al. | Jan 2013 | B2 |
8428201 | McHann, Jr. et al. | Apr 2013 | B1 |
8428510 | Stratford et al. | Apr 2013 | B2 |
8462683 | Uyehara et al. | Jun 2013 | B2 |
8472579 | Uyehara et al. | Jun 2013 | B2 |
8509215 | Stuart | Aug 2013 | B2 |
8509850 | Lavadsky et al. | Aug 2013 | B2 |
8526970 | Wala et al. | Sep 2013 | B2 |
8532242 | Fischer et al. | Sep 2013 | B2 |
8626245 | Lavadsky et al. | Jan 2014 | B2 |
8634766 | Hobbs et al. | Jan 2014 | B2 |
8737454 | Wala et al. | May 2014 | B2 |
8743718 | Grenier et al. | Jun 2014 | B2 |
8743756 | Uyehara et al. | Jun 2014 | B2 |
8837659 | Uyehara et al. | Sep 2014 | B2 |
8837940 | Smith et al. | Sep 2014 | B2 |
8873585 | Oren et al. | Oct 2014 | B2 |
8903346 | Fischer et al. | Dec 2014 | B2 |
8909133 | Hobbs et al. | Dec 2014 | B2 |
8929288 | Stewart et al. | Jan 2015 | B2 |
9042838 | Braithwaite | May 2015 | B2 |
9178635 | Ben-Shlomo | Nov 2015 | B2 |
9203462 | Petrovic et al. | Dec 2015 | B2 |
20010036163 | Sabat, Jr. et al. | Nov 2001 | A1 |
20010036199 | Terry | Nov 2001 | A1 |
20020003645 | Kim et al. | Jan 2002 | A1 |
20020009070 | Lindsay et al. | Jan 2002 | A1 |
20020012336 | Hughes et al. | Jan 2002 | A1 |
20020012495 | Sasai et al. | Jan 2002 | A1 |
20020016827 | McCabe et al. | Feb 2002 | A1 |
20020045519 | Watterson et al. | Apr 2002 | A1 |
20020048071 | Suzuki et al. | Apr 2002 | A1 |
20020051434 | Ozluturk et al. | May 2002 | A1 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020092347 | Niekerk et al. | Jul 2002 | A1 |
20020097564 | Struhsaker et al. | Jul 2002 | A1 |
20020103012 | Kim et al. | Aug 2002 | A1 |
20020111149 | Shoki | Aug 2002 | A1 |
20020111192 | Thomas et al. | Aug 2002 | A1 |
20020114038 | Amon et al. | Aug 2002 | A1 |
20020123365 | Thorson et al. | Sep 2002 | A1 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020128009 | Boch et al. | Sep 2002 | A1 |
20020130778 | Nicholson | Sep 2002 | A1 |
20020181668 | Masoian et al. | Dec 2002 | A1 |
20020190845 | Moore | Dec 2002 | A1 |
20020197984 | Monin et al. | Dec 2002 | A1 |
20030002604 | Fifield et al. | Jan 2003 | A1 |
20030007214 | Aburakawa et al. | Jan 2003 | A1 |
20030016418 | Westbrook et al. | Jan 2003 | A1 |
20030022645 | Runzo | Jan 2003 | A1 |
20030045284 | Copley et al. | Mar 2003 | A1 |
20030069922 | Arunachalam | Apr 2003 | A1 |
20030078074 | Sesay et al. | Apr 2003 | A1 |
20030112826 | Smith et al. | Jun 2003 | A1 |
20030141962 | Barink | Jul 2003 | A1 |
20030161637 | Yamamoto et al. | Aug 2003 | A1 |
20030165287 | Krill et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20040001719 | Sasaki | Jan 2004 | A1 |
20040008114 | Sawyer | Jan 2004 | A1 |
20040017785 | Lelst | Jan 2004 | A1 |
20040037565 | Young et al. | Feb 2004 | A1 |
20040041714 | Forster | Mar 2004 | A1 |
20040043764 | Bigham et al. | Mar 2004 | A1 |
20040047313 | Rumpf et al. | Mar 2004 | A1 |
20040078151 | Aljadeff et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040100930 | Shapira et al. | May 2004 | A1 |
20040106435 | Bauman et al. | Jun 2004 | A1 |
20040126068 | Van Bijsterveld | Jul 2004 | A1 |
20040126107 | Jay et al. | Jul 2004 | A1 |
20040139477 | Russell et al. | Jul 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040149736 | Clothier | Aug 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040151503 | Kashima et al. | Aug 2004 | A1 |
20040157623 | Splett | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040162084 | Wang | Aug 2004 | A1 |
20040162115 | Smith et al. | Aug 2004 | A1 |
20040162116 | Han et al. | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040175173 | Deas | Sep 2004 | A1 |
20040196404 | Loheit et al. | Oct 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040203703 | Fischer | Oct 2004 | A1 |
20040203704 | Ornmodt et al. | Oct 2004 | A1 |
20040203846 | Caronni et al. | Oct 2004 | A1 |
20040204109 | Hoppenstein | Oct 2004 | A1 |
20040208526 | Mibu | Oct 2004 | A1 |
20040208643 | Roberts et al. | Oct 2004 | A1 |
20040215723 | Chadha | Oct 2004 | A1 |
20040218873 | Nagashima et al. | Nov 2004 | A1 |
20040233877 | Lee et al. | Nov 2004 | A1 |
20040258105 | Spathas et al. | Dec 2004 | A1 |
20040267971 | Seshadri | Dec 2004 | A1 |
20050052287 | Whitesmith et al. | Mar 2005 | A1 |
20050058451 | Ross | Mar 2005 | A1 |
20050068179 | Roesner | Mar 2005 | A1 |
20050076982 | Metcalf et al. | Apr 2005 | A1 |
20050078006 | Hutchins | Apr 2005 | A1 |
20050085186 | Sandrin | Apr 2005 | A1 |
20050093679 | Zai et al. | May 2005 | A1 |
20050099343 | Asrani et al. | May 2005 | A1 |
20050116821 | Wilsey et al. | Jun 2005 | A1 |
20050123232 | Piede et al. | Jun 2005 | A1 |
20050141545 | Fein et al. | Jun 2005 | A1 |
20050143077 | Charbonneau | Jun 2005 | A1 |
20050147067 | Mani et al. | Jul 2005 | A1 |
20050147071 | Karaoguz et al. | Jul 2005 | A1 |
20050148306 | Hiddink | Jul 2005 | A1 |
20050159108 | Fletcher | Jul 2005 | A1 |
20050174236 | Brookner | Aug 2005 | A1 |
20050176458 | Shklarsky et al. | Aug 2005 | A1 |
20050201323 | Mani et al. | Sep 2005 | A1 |
20050201761 | Bartur et al. | Sep 2005 | A1 |
20050219050 | Martin | Oct 2005 | A1 |
20050224585 | Durrant et al. | Oct 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050232636 | Durrant et al. | Oct 2005 | A1 |
20050242188 | Vesuna | Nov 2005 | A1 |
20050252971 | Howarth et al. | Nov 2005 | A1 |
20050266797 | Utsumi et al. | Dec 2005 | A1 |
20050266854 | Niiho et al. | Dec 2005 | A1 |
20050269930 | Shimizu et al. | Dec 2005 | A1 |
20050271396 | Iannelli | Dec 2005 | A1 |
20050272439 | Picciriello et al. | Dec 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060014548 | Bolin | Jan 2006 | A1 |
20060017633 | Pronkine | Jan 2006 | A1 |
20060028352 | McNamara et al. | Feb 2006 | A1 |
20060045054 | Utsumi et al. | Mar 2006 | A1 |
20060045524 | Lee et al. | Mar 2006 | A1 |
20060045525 | Lee et al. | Mar 2006 | A1 |
20060053324 | Giat et al. | Mar 2006 | A1 |
20060056327 | Coersmeier | Mar 2006 | A1 |
20060062579 | Kim et al. | Mar 2006 | A1 |
20060083520 | Healey et al. | Apr 2006 | A1 |
20060094470 | Wake et al. | May 2006 | A1 |
20060104643 | Lee et al. | May 2006 | A1 |
20060159388 | Kawase et al. | Jul 2006 | A1 |
20060160550 | Edwards | Jul 2006 | A1 |
20060172775 | Conyers et al. | Aug 2006 | A1 |
20060182446 | Kim et al. | Aug 2006 | A1 |
20060182449 | Iannelli et al. | Aug 2006 | A1 |
20060189354 | Lee et al. | Aug 2006 | A1 |
20060209745 | MacMullan et al. | Sep 2006 | A1 |
20060223439 | Pinel et al. | Oct 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060239630 | Hase et al. | Oct 2006 | A1 |
20060268738 | Goerke et al. | Nov 2006 | A1 |
20060274704 | Desai et al. | Dec 2006 | A1 |
20070009266 | Bothwell | Jan 2007 | A1 |
20070050451 | Caspi et al. | Mar 2007 | A1 |
20070054682 | Fanning et al. | Mar 2007 | A1 |
20070058978 | Lee et al. | Mar 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070060055 | Desai et al. | Mar 2007 | A1 |
20070071128 | Meir et al. | Mar 2007 | A1 |
20070076649 | Lin et al. | Apr 2007 | A1 |
20070093273 | Cai | Apr 2007 | A1 |
20070149250 | Crozzoli et al. | Jun 2007 | A1 |
20070166042 | Seeds et al. | Jul 2007 | A1 |
20070173288 | Skarby et al. | Jul 2007 | A1 |
20070174889 | Kim et al. | Jul 2007 | A1 |
20070224954 | Gopi | Sep 2007 | A1 |
20070230328 | Saitou | Oct 2007 | A1 |
20070243899 | Hermel et al. | Oct 2007 | A1 |
20070248358 | Sauer | Oct 2007 | A1 |
20070253714 | Seeds et al. | Nov 2007 | A1 |
20070257796 | Easton et al. | Nov 2007 | A1 |
20070264009 | Sabat, Jr. et al. | Nov 2007 | A1 |
20070264011 | Sone et al. | Nov 2007 | A1 |
20070268846 | Proctor et al. | Nov 2007 | A1 |
20070274279 | Wood et al. | Nov 2007 | A1 |
20070292143 | Yu et al. | Dec 2007 | A1 |
20070297005 | Montierth et al. | Dec 2007 | A1 |
20080002652 | Gupta et al. | Jan 2008 | A1 |
20080007453 | Vassilakis et al. | Jan 2008 | A1 |
20080013909 | Kostet et al. | Jan 2008 | A1 |
20080013956 | Ware et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080014948 | Scheinert | Jan 2008 | A1 |
20080026765 | Charbonneau | Jan 2008 | A1 |
20080031628 | Dragas et al. | Feb 2008 | A1 |
20080043714 | Pemu | Feb 2008 | A1 |
20080056167 | Kim et al. | Mar 2008 | A1 |
20080058018 | Scheinert | Mar 2008 | A1 |
20080063397 | Hu et al. | Mar 2008 | A1 |
20080070502 | George et al. | Mar 2008 | A1 |
20080080863 | Sauer et al. | Apr 2008 | A1 |
20080098203 | Master et al. | Apr 2008 | A1 |
20080118014 | Reunamaki et al. | May 2008 | A1 |
20080119198 | Hettstedt et al. | May 2008 | A1 |
20080124086 | Matthews | May 2008 | A1 |
20080124087 | Hartmann et al. | May 2008 | A1 |
20080129634 | Pera et al. | Jun 2008 | A1 |
20080134194 | Liu | Jun 2008 | A1 |
20080145061 | Lee et al. | Jun 2008 | A1 |
20080150514 | Codreanu et al. | Jun 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080194226 | Rivas et al. | Aug 2008 | A1 |
20080207253 | Jaakkola et al. | Aug 2008 | A1 |
20080212969 | Fasshauer et al. | Sep 2008 | A1 |
20080219670 | Kim et al. | Sep 2008 | A1 |
20080232305 | Oren et al. | Sep 2008 | A1 |
20080232799 | Kim | Sep 2008 | A1 |
20080247716 | Thomas | Oct 2008 | A1 |
20080253280 | Tang et al. | Oct 2008 | A1 |
20080253351 | Pemu et al. | Oct 2008 | A1 |
20080253773 | Iheng | Oct 2008 | A1 |
20080260388 | Kim et al. | Oct 2008 | A1 |
20080261656 | Bella et al. | Oct 2008 | A1 |
20080268766 | Narkman et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080273844 | Kewitsch | Nov 2008 | A1 |
20080279137 | Pemu et al. | Nov 2008 | A1 |
20080280569 | Hazani et al. | Nov 2008 | A1 |
20080291830 | Pemu et al. | Nov 2008 | A1 |
20080292322 | Daghighian et al. | Nov 2008 | A1 |
20080298813 | Song et al. | Dec 2008 | A1 |
20080304831 | Miller, II et al. | Dec 2008 | A1 |
20080310464 | Schneider | Dec 2008 | A1 |
20080310848 | Yasuda et al. | Dec 2008 | A1 |
20080311876 | Leenaerts et al. | Dec 2008 | A1 |
20080311944 | Hansen et al. | Dec 2008 | A1 |
20090006194 | Sridharan et al. | Jan 2009 | A1 |
20090022304 | Kubler et al. | Jan 2009 | A1 |
20090028087 | Nguyen et al. | Jan 2009 | A1 |
20090028317 | Ling et al. | Jan 2009 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090047023 | Pescod et al. | Feb 2009 | A1 |
20090059903 | Kubler et al. | Mar 2009 | A1 |
20090061796 | Arkko et al. | Mar 2009 | A1 |
20090061939 | Andersson et al. | Mar 2009 | A1 |
20090061940 | Scheinert et al. | Mar 2009 | A1 |
20090067402 | Forenza et al. | Mar 2009 | A1 |
20090073916 | Zhang et al. | Mar 2009 | A1 |
20090081985 | Rofougaran et al. | Mar 2009 | A1 |
20090087179 | Underwood et al. | Apr 2009 | A1 |
20090088071 | Rofougaran | Apr 2009 | A1 |
20090088072 | Rofougaran et al. | Apr 2009 | A1 |
20090135078 | Lindmark et al. | May 2009 | A1 |
20090141780 | Cruz-Albrecht et al. | Jun 2009 | A1 |
20090149221 | Liu et al. | Jun 2009 | A1 |
20090154621 | Shapira et al. | Jun 2009 | A1 |
20090169163 | Abbott, III et al. | Jul 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090180407 | Sabat et al. | Jul 2009 | A1 |
20090180426 | Sabat et al. | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218657 | Rofougaran | Sep 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090245084 | Moffatt et al. | Oct 2009 | A1 |
20090245153 | Li et al. | Oct 2009 | A1 |
20090245221 | Piipponen | Oct 2009 | A1 |
20090247109 | Rofougaran | Oct 2009 | A1 |
20090252136 | Mahany et al. | Oct 2009 | A1 |
20090252139 | Ludovico et al. | Oct 2009 | A1 |
20090252205 | Rheinfelder et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090278596 | Rofougaran et al. | Nov 2009 | A1 |
20090279593 | Rofougaran et al. | Nov 2009 | A1 |
20090285147 | Subasic et al. | Nov 2009 | A1 |
20090316608 | Singh et al. | Dec 2009 | A1 |
20090319909 | Hsueh et al. | Dec 2009 | A1 |
20100002626 | Schmidt et al. | Jan 2010 | A1 |
20100002661 | Schmidt et al. | Jan 2010 | A1 |
20100002662 | Schmidt et al. | Jan 2010 | A1 |
20100014494 | Schmidt et al. | Jan 2010 | A1 |
20100027443 | LoGalbo et al. | Feb 2010 | A1 |
20100056200 | Tolonen | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100080182 | Kubler et al. | Apr 2010 | A1 |
20100091475 | Toms et al. | Apr 2010 | A1 |
20100118864 | Kubler et al. | May 2010 | A1 |
20100127937 | Chandrasekaran et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100142598 | Murray et al. | Jun 2010 | A1 |
20100142955 | Yu et al. | Jun 2010 | A1 |
20100144285 | Behzad et al. | Jun 2010 | A1 |
20100148373 | Chandrasekaran | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100159859 | Rofougaran | Jun 2010 | A1 |
20100188998 | Pemu et al. | Jul 2010 | A1 |
20100189439 | Novak et al. | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100202326 | Rofougaran et al. | Aug 2010 | A1 |
20100225413 | Rofougaran et al. | Sep 2010 | A1 |
20100225520 | Mohamadi et al. | Sep 2010 | A1 |
20100225556 | Rofougaran et al. | Sep 2010 | A1 |
20100225557 | Rofougaran et al. | Sep 2010 | A1 |
20100232323 | Kubler et al. | Sep 2010 | A1 |
20100246558 | Harel | Sep 2010 | A1 |
20100255774 | Kenington | Oct 2010 | A1 |
20100258949 | Henderson et al. | Oct 2010 | A1 |
20100260063 | Kubler et al. | Oct 2010 | A1 |
20100261501 | Behzad et al. | Oct 2010 | A1 |
20100266287 | Adhikari et al. | Oct 2010 | A1 |
20100278530 | Kummetz et al. | Nov 2010 | A1 |
20100284323 | Tang et al. | Nov 2010 | A1 |
20100290355 | Roy et al. | Nov 2010 | A1 |
20100309049 | Reunamäki et al. | Dec 2010 | A1 |
20100311472 | Rofougaran et al. | Dec 2010 | A1 |
20100311480 | Raines et al. | Dec 2010 | A1 |
20100329161 | Ylanen et al. | Dec 2010 | A1 |
20100329166 | Mahany et al. | Dec 2010 | A1 |
20100329680 | Presi et al. | Dec 2010 | A1 |
20110002687 | Sabat, Jr. et al. | Jan 2011 | A1 |
20110007724 | Mahany et al. | Jan 2011 | A1 |
20110007733 | Kubler et al. | Jan 2011 | A1 |
20110008042 | Stewart | Jan 2011 | A1 |
20110019999 | George et al. | Jan 2011 | A1 |
20110021146 | Pemu | Jan 2011 | A1 |
20110021224 | Koskinen et al. | Jan 2011 | A1 |
20110026844 | Francois et al. | Feb 2011 | A1 |
20110026932 | Yeh et al. | Feb 2011 | A1 |
20110045767 | Rofougaran et al. | Feb 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110066774 | Rofougaran | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110071734 | Van Wiemeersch et al. | Mar 2011 | A1 |
20110086614 | Brisebois et al. | Apr 2011 | A1 |
20110116393 | Hong et al. | May 2011 | A1 |
20110116572 | Lee et al. | May 2011 | A1 |
20110122912 | Benjamin et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110158298 | Djadi et al. | Jun 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110194475 | Kim et al. | Aug 2011 | A1 |
20110200328 | In De Betou et al. | Aug 2011 | A1 |
20110201368 | Faccin et al. | Aug 2011 | A1 |
20110204504 | Henderson et al. | Aug 2011 | A1 |
20110206383 | Chien et al. | Aug 2011 | A1 |
20110211439 | Manpuria et al. | Sep 2011 | A1 |
20110215901 | Van Wiemeersch et al. | Sep 2011 | A1 |
20110222415 | Ramamurthi et al. | Sep 2011 | A1 |
20110222434 | Chen | Sep 2011 | A1 |
20110222619 | Ramamurthi et al. | Sep 2011 | A1 |
20110227795 | Lopez et al. | Sep 2011 | A1 |
20110244887 | Dupray et al. | Oct 2011 | A1 |
20110256878 | Zhu et al. | Oct 2011 | A1 |
20110268033 | Boldi et al. | Nov 2011 | A1 |
20110268446 | Cune et al. | Nov 2011 | A1 |
20110274021 | He et al. | Nov 2011 | A1 |
20110281536 | Lee et al. | Nov 2011 | A1 |
20120052892 | Braithwaite | Mar 2012 | A1 |
20120099490 | Kummetz et al. | Apr 2012 | A1 |
20120100813 | Mow et al. | Apr 2012 | A1 |
20120177026 | Uyehara et al. | Jul 2012 | A1 |
20130012195 | Sabat, Jr. et al. | Jan 2013 | A1 |
20130070816 | Aoki et al. | Mar 2013 | A1 |
20130071112 | Melester et al. | Mar 2013 | A1 |
20130089332 | Sauer et al. | Apr 2013 | A1 |
20130095870 | Phillips et al. | Apr 2013 | A1 |
20130210490 | Fischer et al. | Aug 2013 | A1 |
20130252651 | Zavadsky et al. | Sep 2013 | A1 |
20130260705 | Stratford | Oct 2013 | A1 |
20130273854 | Lhang et al. | Oct 2013 | A1 |
20130295980 | Reuven et al. | Nov 2013 | A1 |
20140016583 | Smith | Jan 2014 | A1 |
20140072064 | Lemson et al. | Mar 2014 | A1 |
20140112667 | Neukirch et al. | Apr 2014 | A1 |
20140140225 | Wala | May 2014 | A1 |
20140146797 | Zavadsky et al. | May 2014 | A1 |
20140146905 | Zavadsky et al. | May 2014 | A1 |
20140146906 | Zavadsky et al. | May 2014 | A1 |
20140219140 | Uyehara et al. | Aug 2014 | A1 |
20150016441 | Hanson et al. | Jan 2015 | A1 |
20150031316 | Berlin et al. | Jan 2015 | A1 |
20150195055 | Ben-Shlomo | Jul 2015 | A1 |
20160094267 | Petrovic et al. | Mar 2016 | A1 |
20160105816 | Berlin et al. | Apr 2016 | A1 |
20160226653 | Bharadia et al. | Aug 2016 | A1 |
20160249346 | Harel | Aug 2016 | A1 |
20160301436 | Lou et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
645192 | Oct 1992 | AU |
731180 | Mar 1998 | AU |
2065090 | Feb 1998 | CA |
2242707 | Jan 1999 | CA |
101389148 | Mar 2009 | CN |
101547447 | Sep 2009 | CN |
20104862 | Aug 2001 | DE |
10249414 | May 2004 | DE |
0477952 | Apr 1992 | EP |
0477952 | Apr 1992 | EP |
0461583 | Mar 1997 | EP |
851618 | Jul 1998 | EP |
0687400 | Nov 1998 | EP |
3993124 | Apr 2000 | EP |
1037411 | Sep 2000 | EP |
1179895 | Feb 2002 | EP |
1267447 | Dec 2002 | EP |
1347584 | Sep 2003 | EP |
1363352 | Nov 2003 | EP |
1391897 | Feb 2004 | EP |
1443687 | Aug 2004 | EP |
1455550 | Sep 2004 | EP |
1501206 | Jan 2005 | EP |
1503451 | Feb 2005 | EP |
1530316 | May 2005 | EP |
1511203 | Mar 2006 | EP |
1267447 | Aug 2006 | EP |
1693974 | Aug 2006 | EP |
1742388 | Jan 2007 | EP |
1227605 | Jan 2008 | EP |
1954019 | Aug 2008 | EP |
1968250 | Sep 2008 | EP |
1056226 | Apr 2009 | EP |
1357683 | May 2009 | EP |
2081334 | Jul 2009 | EP |
2276298 | Jan 2011 | EP |
1570626 | Nov 2013 | EP |
2323252 | Sep 1998 | GB |
2370170 | Jun 2002 | GB |
2399963 | Sep 2004 | GB |
2428149 | Jan 2007 | GB |
H4189036 | Jul 1992 | JP |
05260018 | Oct 1993 | JP |
09083450 | Mar 1997 | JP |
09162810 | Jun 1997 | JP |
09200840 | Jul 1997 | JP |
11068675 | Mar 1999 | JP |
2000152300 | May 2000 | JP |
2000341744 | Dec 2000 | JP |
2002264617 | Sep 2002 | JP |
2002353813 | Dec 2002 | JP |
2003148653 | May 2003 | JP |
2003172827 | Jun 2003 | JP |
2004172734 | Jun 2004 | JP |
2004245963 | Sep 2004 | JP |
2004247090 | Sep 2004 | JP |
2004264901 | Sep 2004 | JP |
2004265624 | Sep 2004 | JP |
2004317737 | Nov 2004 | JP |
2004349184 | Dec 2004 | JP |
2005018175 | Jan 2005 | JP |
2005087135 | Apr 2005 | JP |
2005134125 | May 2005 | JP |
2007228603 | Sep 2007 | JP |
2008172597 | Jul 2008 | JP |
20010055088 | Jul 2001 | KR |
9603823 | Feb 1996 | WO |
9729608 | Aug 1997 | WO |
9810600 | Mar 1998 | WO |
00042721 | Jul 2000 | WO |
0072475 | Nov 2000 | WO |
0178434 | Oct 2001 | WO |
0184760 | Nov 2001 | WO |
0221183 | Mar 2002 | WO |
0230141 | Apr 2002 | WO |
02091599 | Nov 2002 | WO |
02102102 | Dec 2002 | WO |
03024027 | Mar 2003 | WO |
03098175 | Nov 2003 | WO |
2004030154 | Apr 2004 | WO |
2004047472 | Jun 2004 | WO |
2004056019 | Jul 2004 | WO |
2004059934 | Jul 2004 | WO |
2004086795 | Oct 2004 | WO |
2004093471 | Oct 2004 | WO |
2005062505 | Jul 2005 | WO |
2005069203 | Jul 2005 | WO |
2005073897 | Aug 2005 | WO |
2005079386 | Sep 2005 | WO |
2005101701 | Oct 2005 | WO |
2005111959 | Nov 2005 | WO |
2006011778 | Feb 2006 | WO |
2006018592 | Feb 2006 | WO |
2006019392 | Feb 2006 | WO |
2006039941 | Apr 2006 | WO |
2006051262 | May 2006 | WO |
2006060754 | Jun 2006 | WO |
2006077569 | Jul 2006 | WO |
2006105185 | Oct 2006 | WO |
2006133609 | Dec 2006 | WO |
2006136811 | Dec 2006 | WO |
2007048427 | May 2007 | WO |
2007077451 | Jul 2007 | WO |
2007088561 | Aug 2007 | WO |
2007091026 | Aug 2007 | WO |
2008008249 | Jan 2008 | WO |
2008027213 | Mar 2008 | WO |
2008033298 | Mar 2008 | WO |
2008039830 | Apr 2008 | WO |
2008116014 | Sep 2008 | WO |
2009029077 | Mar 2009 | WO |
2006046088 | May 2009 | WO |
2010022156 | Feb 2010 | WO |
2010090999 | Aug 2010 | WO |
2010126667 | Nov 2010 | WO |
2010132739 | Nov 2010 | WO |
2010151849 | Dec 2010 | WO |
2011023592 | Mar 2011 | WO |
2011100095 | Aug 2011 | WO |
2011139939 | Nov 2011 | WO |
2012058061 | May 2012 | WO |
2012148938 | Nov 2012 | WO |
2012148940 | Nov 2012 | WO |
2013028197 | Feb 2013 | WO |
2013096563 | Jun 2013 | WO |
2013122915 | Aug 2013 | WO |
2014072947 | May 2014 | WO |
2015011702 | Jan 2015 | WO |
2015089719 | Jun 2015 | WO |
2016124248 | Aug 2016 | WO |
Entry |
---|
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041. |
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/948,536, dated Jan. 16, 2015, 13 pages. |
International Search Report for PCT/IL2014/050657, dated Dec. 1, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/948,536, dated May 28, 2015, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/948,536, dated Oct. 7, 2015, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/146,964, dated Jul. 14, 2015, 9 pages. |
Author Unknown, “DECT: The standard explained,” DECT Forum, Feb. 1997, Solothum, Switzerland, 16 pages. |
Tekmar Sistemi s.r.l., “Definition of Wideband Distribution Systems,” R4-020721, TSG-RAN Working Group 4 (Radio), meeting #23, Gyeongju, Korea, May 13-17, 2002, 12 pages. |
International Search Report for PCT/US2013/038843 dated Jul. 18, 2013, 4 pages. |
Non-final Office Action for U.S. Appl. No. 13/873,927 dated Aug. 14, 2015, 19 pages. |
Final Office Action for U.S. Appl. No. 13/873,927 dated Feb. 8, 2016, 24 pages. |
Advisory Action for U.S. Appl. No. 13/873,927 dated Apr. 14, 2016, 3 pages. |
Non-final Office Action for U.S. Appl. No. 13/873,927 dated May 12, 2016, 23 pages. |
Notice of Allowance for U.S. Appl. No. 13/873,927, dated Nov. 4, 2016, 8 pages. |
Non-final Office Action for U.S. Appl. No. 14/972,149, dated Apr. 7, 2016, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/972,149, dated Aug. 15, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/042,532, dated Sep. 30, 2016, 13 pages. |
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3. |
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720. |
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages. |
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3. |
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26. |
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5. |
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2. |
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2. |
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8. |
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710. |
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168. |
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985. |
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, vol. 4, pp. 206-208. |
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011. |
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58. |
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages. |
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages. |
Author Unknown, RFID Technology Overview, Date Unknown, 11 pages. |
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages. |
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages. |
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282. |
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709. |
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design. |
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56. |
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118. |
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406. |
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages. |
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751. |
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480. |
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages. |
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages. |
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages. |
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages. |
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages. |
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613. |
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages. |
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages. |
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages. |
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967. |
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages. |
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209. |
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation). |
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3. |
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages. |
Notice of Allowance for U.S. Appl. No. 13/873,927, dated Mar. 10, 2017, 8 pages. |
Final Office Action for U.S. Appl. No. 15/042,532, dated Mar. 17, 2017, 16 pages. |
Final Office Action for U.S. Appl. No. 15/086,861, dated May 31, 2017, 14 pages. |
Advisory Action for U.S. Appl. No. 15/086,861, dated Aug. 30, 2017, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20170064565 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14972149 | Dec 2015 | US |
Child | 15350503 | US | |
Parent | 13948536 | Jul 2013 | US |
Child | 14972149 | US |