Monitoring of internal systems to detect and track cartridge motion status

Information

  • Patent Grant
  • 11696757
  • Patent Number
    11,696,757
  • Date Filed
    Friday, February 26, 2021
    3 years ago
  • Date Issued
    Tuesday, July 11, 2023
    a year ago
Abstract
A surgical end effector includes a cartridge. The cartridge includes first and second sensor arrays disposed in the cartridge. The first sensor array is configured to sense a function of a first component located within the cartridge and the second sensor array is configured to sense a function of a second component located within the cartridge. The first and second sensor arrays are electrically coupled to an electronic circuit. The electronic circuit includes a control circuit configured to receive signal samples from the first sensor array, receive signal samples from the second sensor array, and process the signals samples received from the first and second sensor arrays to determine a status of the cartridge.
Description
BACKGROUND

The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:



FIG. 1 is a perspective view of a surgical instrument in accordance with at least one embodiment;



FIG. 2 is a perspective view of a controller of a robotic surgical system;



FIG. 3 is a perspective view of the robotic surgical system of FIG. 2 comprising a plurality of robotic surgical arms which each operably support a surgical instrument thereon;



FIG. 4 is a side view of a robotic surgical arm illustrated in FIG. 3;



FIG. 5 is a perspective view of a staple cartridge in accordance with at least one embodiment;



FIG. 5A is an exploded view of the staple cartridge of FIG. 5;



FIG. 5B is a perspective view of the distal end of the staple cartridge of FIG. 5;



FIG. 5C is an elevational view of the distal end of the staple cartridge of FIG. 5;



FIG. 6 is a schematic of a communications system between a surgical instrument and a staple cartridge in accordance with at least one embodiment;



FIG. 7 is a schematic of a communications system between a surgical instrument and a staple cartridge in accordance with at least one embodiment;



FIG. 8 is a schematic of a communications system between a surgical instrument and a staple cartridge in accordance with at least one embodiment;



FIG. 8A is a segment of the schematic of FIG. 8;



FIG. 8B is a partial perspective view of the surgical instrument of FIG. 8 illustrated with some components removed;



FIG. 8C is a partial perspective view of a cartridge jaw of the surgical instrument of FIG. 8 illustrated with the staple cartridge removed;



FIG. 8D is a partial perspective view of the surgical instrument of FIG. 8 illustrated in a closed, or clamped, configuration;



FIG. 9 is a schematic of a communications system between a surgical instrument and a staple cartridge in accordance with at least one embodiment;



FIG. 10 is a schematic of a communications system between a surgical instrument and a staple cartridge in accordance with at least one embodiment;



FIG. 11 is a perspective view of a staple cartridge positioned in a cartridge jaw in accordance with at least one embodiment;



FIG. 11A is a partial cross-sectional view of the staple cartridge of FIG. 11;



FIG. 11B is a perspective view of the staple cartridge of FIG. 11 removed from the cartridge jaw;



FIG. 11C is an exploded view of the staple cartridge of FIG. 11;



FIG. 11D is a perspective view of a sled of the staple cartridge of FIG. 11;



FIG. 12 is a perspective view of a staple cartridge in accordance with at least one embodiment;



FIG. 13 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for optimizing sensor data collection, transmission, and/or processing, in accordance with at least one aspect of the present disclosure;



FIG. 14 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for optimizing sensor data collection, transmission, and/or processing, in accordance with at least one aspect of the present disclosure;



FIG. 15 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for optimizing sensor data collection, transmission, and/or processing, in accordance with at least one aspect of the present disclosure;



FIG. 16 is a simplified schematic diagram illustrating various features of a surgical system, in accordance with at least one aspect of the present disclosure;



FIG. 17 is a simplified schematic diagram illustrating various features of a staple cartridge, in accordance with at least one aspect of the present disclosure;



FIG. 18 is a table illustrating a correlation between a sampling rate (S) of a sensor array and corresponding values of a bandwidth capacity (B), a discharge rate (D), and a remaining capacity (R), in accordance with at least one aspect of the present disclosure;



FIG. 19 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for monitoring and addressing signal interference in wireless power and/or data signal transmission, in accordance with at least one aspect of the present disclosure;



FIG. 20 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for transfer efficiency in wireless power transmission, in accordance with at least one aspect of the present disclosure;



FIG. 21 illustrates an implementation of a first antenna circuit and a second antenna circuit of a wireless transmission system of for power transfer between a surgical instrument 1022 and a staple cartridge, in accordance with at least one aspect of the present disclosure;



FIG. 22 illustrates an adjustable series RLC (resistor, inductor, capacitor) circuit, in accordance with at least one aspect of the present disclosure;



FIG. 23 illustrates an adjustable parallel RLC circuit, in accordance with at least one aspect of the present disclosure;



FIG. 24 is a graph illustrating a resonant state of the adjustable series RLC circuit 1130, in accordance with at least one aspect of the present disclosure;



FIG. 25 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for improving power conservation or optimizing power consumption by a staple cartridge, in accordance with at least one aspect of the present disclosure;



FIG. 26 is a logic flow diagram of an algorithm 1150 depicting a control program or a logic configuration for optimizing a wireless transmission of power and/or data signal across a transmission system 1045, in accordance with at least one aspect of the present disclosure;



FIG. 27 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for calibrating a sensor array of a surgical instrument, in accordance with at least one aspect of the present disclosure;



FIG. 28 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for modulating a control parameter of the surgical instrument, in accordance with at least one aspect of the present disclosure;



FIG. 29 is a partial cross-sectional view of an end effector including a staple cartridge and an anvil separated by a stop member, in a closed configuration of the end effector with no tissue therebetween, in accordance with at least one aspect of the present disclosure;



FIG. 30 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for modulating a control parameter of the surgical instrument, in accordance with at least one aspect of the present disclosure;



FIG. 31 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for modulating a sensor parameter of the sensor array, in accordance with at least one aspect of the present disclosure;



FIG. 32 is a logic flow diagram of an algorithm depicting a control program or a logic configuration for modulating a sensor parameter of the sensor array, in accordance with at least one aspect of the present disclosure;



FIG. 33 is a top schematic view of a staple cartridge, in accordance with at least one aspect of the present disclosure;



FIG. 34 illustrates a diagram of a cartridge comprising a plurality of sensors coupled to a control circuit through a set of coils to transfer power and data between the cartridge and a control circuit located in an instrument housing, in accordance with at least one aspect of the present disclosure;



FIG. 35 illustrates a block diagram of a surgical instrument configured or programmed to control the distal translation of a displacement member, in accordance with at least one aspect of the present disclosure;



FIG. 36 illustrates a perspective view of an end effector of a surgical stapling and cutting instrument, in accordance with at least one aspect of the present disclosure;



FIG. 37 depicts an example tissue compression sensor system, in accordance with at least one aspect of the present disclosure;



FIGS. 38A and 38B are schematic illustrations of a tissue contact circuit showing the completion of the circuit upon contact with tissue a pair of spaced apart contact plates, in accordance with at least one aspect of the present disclosure;



FIG. 39 is a schematic illustration of a surgical instrument comprising a sensor monitoring and processing circuit, in accordance with at least one aspect of the present disclosure;



FIG. 40 is a schematic illustration of a portion of an end effector comprising an anvil and staple cartridge including sensor arrays, in accordance with at least one aspect of the present disclosure;



FIG. 41 is a partial cutaway view of the cartridge of FIG. 40 comprising a plurality of independently addressable sensors, in accordance with at least one aspect of the present disclosure;



FIG. 42 illustrates a flow diagram of a method of monitoring multiple sensors, in accordance with at least one aspect of the present disclosure;



FIG. 43 illustrates a flow diagram of a method of monitoring multiple sensors, in accordance with at least one aspect of the present disclosure;



FIG. 44 illustrates a flow diagram of a method of monitoring multiple sensors, in accordance with at least one aspect of the present disclosure;



FIG. 45 illustrates a flow diagram of a method of monitoring multiple sensors, in accordance with at least one aspect of the present disclosure;



FIG. 46 is an exploded view of an end effector comprising a plurality of sensor arrays, in accordance with at least one aspect of the present disclosure;



FIG. 47 is a schematic illustration of the first and second sensor arrays positioned in the pan or retainer of the cartridge base, the first and second sensor arrays shown coupled to an electronic circuit, in accordance with at least one aspect of the present disclosure;



FIG. 48 illustrates a perspective view of a staple-forming pocket of an anvil of including an electrically conductive circuit element, in accordance with one or more aspects of the present disclosure;



FIG. 49 illustrates a perspective view of the staple-forming pocket of FIG. 48 after the electrically conductive circuit element has been severed by a staple leg during proper formation of the staple leg, in accordance with one or more aspects of the present disclosure;



FIG. 50 illustrates a distal sensor plug comprising an electronic circuit configured to monitor and process signals from the first and second sensor arrays, in accordance with at least one aspect of the present disclosure; and



FIG. 51 is a method of monitoring internal systems of a staple cartridge to detect and track motion status of cartridge components, in accordance with at least one aspect of the present disclosure.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Applicant of the present application also owns the following U.S. patent applications that were filed on Feb. 26, 2021 and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application, Ser. No 17/186,269, entitled METHOD OF POWERING AND COMMUNICATING WITH A STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2022/0273306;
    • U.S. patent application, Ser. No. 17/186,273, entitled METHOD OF POWERING AND COMMUNICATING WITH A STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2022/0273307;
    • U.S. patent application Ser. No. 17/186,276, entitled ADJUSTABLE COMMUNICATION BASED ON AVAILABLE BANDWIDTH AND POWER CAPACITY, now U.S. Patent Application Publication No. 2022/0273299;
    • U.S. patent application Ser. No. 17/186,283, entitled ADJUSTMENT TO TRANSFER PARAMETERS TO IMPROVE AVAILABLE POWER, now U.S. Patent Application Publication No. 2022/0273300;
    • U.S. patent application Ser. No. 17/186,345, entitled MONITORING OF MANUFACTURING LIFE-CYCLE, now U.S. Patent Application Publication No. 2022/0273301;
    • U.S. patent application Ser. No. 17/186,350, entitled MONITORING OF MULTIPLE SENSORS OVER TIME TO DETECT MOVING CHARACTERISTICS OF TISSUE, now U.S. Patent Application Publication No. 2022/0273291;
    • U.S. patent application Ser. No. 17/186,357, entitled DISTAL COMMUNICATION ARRAY TO TUNE FREQUENCY OF RF SYSTEMS, now U.S. Patent Application Publication No. 2022/0273292;
    • U.S. patent application Ser. No. 17/186,364, entitled STAPLE CARTRIDGE COMPRISING A SENSOR ARRAY, now U.S. Patent Application Publication No. 2022/0273293;
    • U.S. patent application Ser. No. 17/186,373, entitled STAPLE CARTRIDGE COMPRISING A SENSING ARRAY AND A TEMPERATURE CONTROL SYSTEM, now U.S. Patent Application Publication No. 2022/0273303;
    • U.S. patent application Ser. No. 17/186,378, entitled STAPLE CARTRIDGE COMPRISING AN INFORMATION ACCESS CONTROL SYSTEM, now U.S. Patent Application Publication No. 2022/0273304;
    • U.S. patent application Ser. No. 17/186,407, entitled STAPLE CARTRIDGE COMPRISING A POWER MANAGEMENT CIRCUIT, now U.S. Patent Application Publication No. 2022/0273308;
    • U.S. patent application Ser. No. 17/186,421, entitled STAPLING INSTRUMENT COMPRISING A SEPARATE POWER ANTENNA AND A DATA TRANSFER ANTENNA, now U.S. Patent Application Publication No. 2022/0273305;
    • U.S. patent application Ser. No. 17/186,438, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING A POWER TRANSFER COIL, now U.S. Patent Application Publication No. 2022/0273294; and
    • U.S. patent application Ser. No. 17/186,451, entitled STAPLING INSTRUMENT COMPRISING A SIGNAL ANTENNA, now U.S. Patent Application Publication No. 2022/0278438.


Applicant of the present application also owns the following U.S. patent applications that were filed on Oct. 29, 2020 and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 17/084,179, entitled SURGICAL INSTRUMENT COMPRISING A RELEASABLE CLOSURE DRIVE LOCK;
    • U.S. patent application Ser. No. 17/084,190, entitled SURGICAL INSTRUMENT COMPRISING A STOWED CLOSURE ACTUATOR STOP;
    • U.S. patent application Ser. No. 17/084,198, entitled SURGICAL INSTRUMENT COMPRISING AN INDICATOR WHICH INDICATES THAT AN ARTICULATION DRIVE IS ACTUATABLE;
    • U.S. patent application Ser. No. 17/084,205, entitled SURGICAL INSTRUMENT COMPRISING AN ARTICULATION INDICATOR;
    • U.S. patent application Ser. No. 17/084,258, entitled METHOD FOR OPERATING A SURGICAL INSTRUMENT;
    • U.S. patent application Ser. No. 17/084,206, entitled SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK;
    • U.S. patent application Ser. No. 17/084,215, entitled SURGICAL INSTRUMENT COMPRISING A JAW ALIGNMENT SYSTEM;
    • U.S. patent application Ser. No. 17/084,229, entitled SURGICAL INSTRUMENT COMPRISING SEALABLE INTERFACE;
    • U.S. patent application Ser. No. 17/084,180, entitled SURGICAL INSTRUMENT COMPRISING A LIMITED TRAVEL SWITCH;
    • U.S. Design patent application Ser. No. 29/756,615, application entitled SURGICAL STAPLING ASSEMBLY;
    • U.S. Design patent application Ser. No. 29/756,620, entitled SURGICAL STAPLING ASSEMBLY;
    • U.S. patent application Ser. No. 17/084,188, entitled SURGICAL INSTRUMENT COMPRISING A STAGED VOLTAGE REGULATION START-UP SYSTEM; and
    • U.S. patent application Ser. No. 17/084,193, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR CONFIGURED TO SENSE WHETHER AN ARTICULATION DRIVE OF THE SURGICAL INSTRUMENT IS ACTUATABLE.


Applicant of the present application also owns the following U.S. patent applications that were filed on Apr. 11, 2020 and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 16/846,303, entitled METHODS FOR STAPLING TISSUE USING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345353;
    • U.S. patent application Ser. No. 16/846,304, entitled ARTICULATION ACTUATORS FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345354;
    • U.S. patent application Ser. No. 16/846,305, entitled ARTICULATION DIRECTIONAL LIGHTS ON A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345446;
    • U.S. patent application Ser. No. 16/846,307, entitled SHAFT ROTATION ACTUATOR ON A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/03453549;
    • U.S. patent application Ser. No. 16/846,308, entitled ARTICULATION CONTROL MAPPING FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345355;
    • U.S. patent application Ser. No. 16/846,309, entitled INTELLIGENT FIRING ASSOCIATED WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345356;
    • U.S. patent application Ser. No. 16/846,310, entitled INTELLIGENT FIRING ASSOCIATED WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345357;
    • U.S. patent application Ser. No. 16/846,311, entitled ROTATABLE JAW TIP FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345358;
    • U.S. patent application Ser. No. 16/846,312, entitled TISSUE STOP FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345359; and
    • U.S. patent application Ser. No. 16/846,313, entitled ARTICULATION PIN FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0345360.


The entire disclosure of U.S. Provisional Patent Application Ser. No. 62/840,715, entitled SURGICAL INSTRUMENT COMPRISING AN ADAPTIVE CONTROL SYSTEM, filed Apr. 30, 2019, is hereby incorporated by reference herein.


Applicant of the present application owns the following U.S. patent applications that were filed on Feb. 21, 2019 and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 16/281,658, entitled METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS, now U.S. Patent Application Publication No. 2019/0298350;
    • U.S. patent application Ser. No. 16/281,670, entitled STAPLE CARTRIDGE COMPRISING A LOCKOUT KEY CONFIGURED TO LIFT A FIRING MEMBER, now U.S. Patent Application Publication No. 2019/0298340;
    • U.S. patent application Ser. No. 16/281,675, entitled SURGICAL STAPLERS WITH ARRANGEMENTS FOR MAINTAINING A FIRING MEMBER THEREOF IN A LOCKED CONFIGURATION UNLESS A COMPATIBLE CARTRIDGE HAS BEEN INSTALLED THEREIN, now U.S. Patent Application Publication No. 2019/0298354;
    • U.S. patent application Ser. No. 16/281,685, entitled SURGICAL INSTRUMENT COMPRISING CO-OPERATING LOCKOUT FEATURES, now U.S. Patent Application Publication No. 2019/0298341;
    • U.S. patent application Ser. No. 16/281,693, entitled SURGICAL STAPLING ASSEMBLY COMPRISING A LOCKOUT AND AN EXTERIOR ACCESS ORIFICE TO PERMIT ARTIFICIAL UNLOCKING OF THE LOCKOUT, now U.S. Patent Application Publication No. 2019/0298342;
    • U.S. patent application Ser. No. 16/281,704, entitled SURGICAL STAPLING DEVICES WITH FEATURES FOR BLOCKING ADVANCEMENT OF A CAMMING ASSEMBLY OF AN INCOMPATIBLE CARTRIDGE INSTALLED THEREIN, now U.S. Patent Application Publication No. 2019/0298356;
    • U.S. patent application Ser. No. 16/281,707, entitled STAPLING INSTRUMENT COMPRISING A DEACTIVATABLE LOCKOUT, now U.S. Patent Application Publication No. 2019/0298347;
    • U.S. patent application Ser. No. 16/281,741, entitled SURGICAL INSTRUMENT COMPRISING A JAW CLOSURE LOCKOUT, now U.S. Patent Application Publication No. 2019/0298357;
    • U.S. patent application Ser. No. 16/281,762, entitled SURGICAL STAPLING DEVICES WITH CARTRIDGE COMPATIBLE CLOSURE AND FIRING LOCKOUT ARRANGEMENTS, now U.S. Patent Application Publication No. 2019/0298343;
    • U.S. patent application Ser. No. 16/281,666, entitled SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS, now U.S. Patent Application Publication No. 2019/0298352;
    • U.S. patent application Ser. No. 16/281,672, entitled SURGICAL STAPLING DEVICES WITH ASYMMETRIC CLOSURE FEATURES, now U.S. Patent Application Publication No. 2019/0298353;
    • U.S. patent application Ser. No. 16/281,678, entitled ROTARY DRIVEN FIRING MEMBERS WITH DIFFERENT ANVIL AND CHANNEL ENGAGEMENT FEATURES, now U.S. Patent Application Publication No. 2019/0298355; and
    • U.S. patent application Ser. No. 16/281,682, entitled SURGICAL STAPLING DEVICE WITH SEPARATE ROTARY DRIVEN CLOSURE AND FIRING SYSTEMS AND FIRING MEMBER THAT ENGAGES BOTH JAWS WHILE FIRING, now U.S. Patent Application Publication No. 2019/0298346.


Applicant of the present application owns the following U.S. Provisional Patent applications that were filed on Feb. 19, 2019 and which are each herein incorporated by reference in their respective entireties:

    • U.S. Provisional Patent Application Ser. No. 62/807,310, entitled METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS;
    • U.S. Provisional Patent Application Ser. No. 62/807,319, entitled SURGICAL STAPLING DEVICES WITH IMPROVED LOCKOUT SYSTEMS; and
    • U.S. Provisional Patent Application Ser. No. 62/807,309, entitled SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS.


Applicant of the present application owns the following U.S. Provisional Patent applications, filed on Mar. 28, 2018, each of which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/649,302, entitled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES;
    • U.S. Provisional Patent Application Ser. No. 62/649,294, entitled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD;
    • U.S. Provisional Patent Application Ser. No. 62/649,300, entitled SURGICAL HUB SITUATIONAL AWARENESS;
    • U.S. Provisional Patent Application Ser. No. 62/649,309, entitled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER;
    • U.S. Provisional Patent Application Ser. No. 62/649,310, entitled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS;
    • U.S. Provisional Patent Application Ser. No. 62/649,291, entitled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT;
    • U.S. Provisional Patent Application Ser. No. 62/649,296, entitled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/649,333, entitled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER;
    • U.S. Provisional Patent Application Ser. No. 62/649,327, entitled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES;
    • U.S. Provisional Patent Application Ser. No. 62/649,315, entitled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK;
    • U.S. Provisional Patent Application Ser. No. 62/649,313, entitled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/649,320, entitled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. Provisional Patent Application Ser. No. 62/649,307, entitled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; and
    • U.S. Provisional Patent Application Ser. No. 62/649,323, entitled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.


Applicant of the present application owns the following U.S. Provisional Patent application, filed on Mar. 30, 2018, which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/650,887, entitled SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES.


Applicant of the present application owns the following U.S. patent application, filed on Dec. 4, 2018, which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 16/209,423, entitled METHOD OF COMPRESSING TISSUE WITHIN A STAPLING DEVICE AND SIMULTANEOUSLY DISPLAYING THE LOCATION OF THE TISSUE WITHIN THE JAWS, now U.S. Patent Application Publication No. 2019/0200981.


Applicant of the present application owns the following U.S. patent applications that were filed on Aug. 20, 2018 and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 16/105,101, entitled METHOD FOR FABRICATING SURGICAL STAPLER ANVILS, now U.S. Patent Application Publication No. 2020/0054323;
    • U.S. patent application Ser. No. 16/105,183, entitled REINFORCED DEFORMABLE ANVIL TIP FOR SURGICAL STAPLER ANVIL, now U.S. Pat. No. 10,912,559;
    • U.S. patent application Ser. No. 16/105,150, entitled SURGICAL STAPLER ANVILS WITH STAPLE DIRECTING PROTRUSIONS AND TISSUE STABILITY FEATURES, now U.S. Patent Application Publication No. 2020/0054326;
    • U.S. patent application Ser. No. 16/105,098, entitled FABRICATING TECHNIQUES FOR SURGICAL STAPLER ANVILS, now U.S. Patent Application Publication No. 2020/0054322;
    • U.S. patent application Ser. No. 16/105,140, entitled SURGICAL STAPLER ANVILS WITH TISSUE STOP FEATURES CONFIGURED TO AVOID TISSUE PINCH, now U.S. Pat. No. 10,779,821;
    • U.S. patent application Ser. No. 16/105,081, entitled METHOD FOR OPERATING A POWERED ARTICULATABLE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2020/0054320;
    • U.S. patent application Ser. No. 16/105,094, entitled SURGICAL INSTRUMENTS WITH PROGRESSIVE JAW CLOSURE ARRANGEMENTS, now U.S. Patent Application Publication No. 2020/0054321;
    • U.S. patent application Ser. No. 16/105,097, entitled POWERED SURGICAL INSTRUMENTS WITH CLUTCHING ARRANGEMENTS TO CONVERT LINEAR DRIVE MOTIONS TO ROTARY DRIVE MOTIONS, now U.S. Patent Application Publication No. 2020/0054328;
    • U.S. patent application Ser. No. 16/105,104, entitled POWERED ARTICULATABLE SURGICAL INSTRUMENTS WITH CLUTCHING AND LOCKING ARRANGEMENTS FOR LINKING AN ARTICULATION DRIVE SYSTEM TO A FIRING DRIVE SYSTEM, now U.S. Pat. No. 10,842,492;
    • U.S. patent application Ser. No. 16/105,119, entitled ARTICULATABLE MOTOR POWERED SURGICAL INSTRUMENTS WITH DEDICATED ARTICULATION MOTOR ARRANGEMENTS, now U.S. Patent Application Publication No. 2020/0054330;
    • U.S. patent application Ser. No. 16/105,160, entitled SWITCHING ARRANGEMENTS FOR MOTOR POWERED ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,856,870; and
    • U.S. Design patent application Ser. No. 29/660,252, entitled SURGICAL STAPLER ANVILS.


Applicant of the present application owns the following U.S. patent applications and U.S. patents that are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 15/386,185, entitled SURGICAL STAPLING INSTRUMENTS AND REPLACEABLE TOOL ASSEMBLIES THEREOF, now U.S. Pat. No. 10,639,035;
    • U.S. patent application Ser. No. 15/386,230, entitled ARTICULATABLE SURGICAL STAPLING INSTRUMENTS, now U.S. Patent Application Publication No. 2018/0168649;
    • U.S. patent application Ser. No. 15/386,221, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS, now U.S. Pat. No. 10,835,247;
    • U.S. patent application Ser. No. 15/386,209, entitled SURGICAL END EFFECTORS AND FIRING MEMBERS THEREOF, now U.S. Pat. No. 10,588,632;
    • U.S. patent application Ser. No. 15/386,198, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS AND REPLACEABLE TOOL ASSEMBLIES, now U.S. Pat. No. 10,610,224;
    • U.S. patent application Ser. No. 15/386,240, entitled SURGICAL END EFFECTORS AND ADAPTABLE FIRING MEMBERS THEREFOR, now U.S. Patent Application Publication No. 2018/0168651;
    • U.S. patent application Ser. No. 15/385,939, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN, now U.S. Pat. No. 10,835,246;
    • U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS, now U.S. Pat. No. 10,736,629;
    • U.S. patent application Ser. No. 15/385,943, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS, now U.S. Pat. No. 10,667,811;
    • U.S. patent application Ser. No. 15/385,950, entitled SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES, now U.S. Pat. No. 10,588,630;
    • U.S. patent application Ser. No. 15/385,945, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN, now U.S. Pat. No. 10,893,864;
    • U.S. patent application Ser. No. 15/385,946, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS, now U.S. Patent Application Publication No. 2018/0168633;
    • U.S. patent application Ser. No. 15/385,951, entitled SURGICAL INSTRUMENTS WITH JAW OPENING FEATURES FOR INCREASING A JAW OPENING DISTANCE, now U.S. Pat. No. 10,568,626;
    • U.S. patent application Ser. No. 15/385,953, entitled METHODS OF STAPLING TISSUE, now U.S. Pat. No. 10,675,026;
    • U.S. patent application Ser. No. 15/385,954, entitled FIRING MEMBERS WITH NON-PARALLEL JAW ENGAGEMENT FEATURES FOR SURGICAL END EFFECTORS, now U.S. Pat. No. 10,624,635;
    • U.S. patent application Ser. No. 15/385,955, entitled SURGICAL END EFFECTORS WITH EXPANDABLE TISSUE STOP ARRANGEMENTS, now U.S. Pat. No. 10,813,638;
    • U.S. patent application Ser. No. 15/385,948, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS, now U.S. Patent Application Publication No. 2018/0168584;
    • U.S. patent application Ser. No. 15/385,956, entitled SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES, now U.S. Pat. No. 10,588,631;
    • U.S. patent application Ser. No. 15/385,958, entitled SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT, now U.S. Pat. No. 10,639,034;
    • U.S. patent application Ser. No. 15/385,947, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN, now U.S. Pat. No. 10,568,625;
    • U.S. patent application Ser. No. 15/385,896, entitled METHOD FOR RESETTING A FUSE OF A SURGICAL INSTRUMENT SHAFT, now U.S. Patent Application Publication No. 2018/0168597;
    • U.S. patent application Ser. No. 15/385,898, entitled STAPLE-FORMING POCKET ARRANGEMENT TO ACCOMMODATE DIFFERENT TYPES OF STAPLES, now U.S. Pat. No. 10,537,325;
    • U.S. patent application Ser. No. 15/385,899, entitled SURGICAL INSTRUMENT COMPRISING IMPROVED JAW CONTROL, now U.S. Pat. No. 10,758,229;
    • U.S. patent application Ser. No. 15/385,901, entitled STAPLE CARTRIDGE AND STAPLE CARTRIDGE CHANNEL COMPRISING WINDOWS DEFINED THEREIN, now U.S. Pat. No. 10,667,809;
    • U.S. patent application Ser. No. 15/385,902, entitled SURGICAL INSTRUMENT COMPRISING A CUTTING MEMBER, now U.S. Pat. No. 10,888,322;
    • U.S. patent application Ser. No. 15/385,904, entitled STAPLE FIRING MEMBER COMPRISING A MISSING CARTRIDGE AND/OR SPENT CARTRIDGE LOCKOUT, now U.S. Pat. No. 10,881,401;
    • U.S. patent application Ser. No. 15/385,905, entitled FIRING ASSEMBLY COMPRISING A LOCKOUT, now U.S. Pat. No. 10,695,055;
    • U.S. patent application Ser. No. 15/385,907, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT, now U.S. Patent Application Publication No. 2018/0168608;
    • U.S. patent application Ser. No. 15/385,908, entitled FIRING ASSEMBLY COMPRISING A FUSE, now U.S. Patent Application Publication No. 2018/0168609;
    • U.S. patent application Ser. No. 15/385,909, entitled FIRING ASSEMBLY COMPRISING A MULTIPLE FAILED-STATE FUSE, now U.S. Patent Application Publication No. 2018/0168610;
    • U.S. patent application Ser. No. 15/385,920, entitled STAPLE-FORMING POCKET ARRANGEMENTS, now U.S. Pat. No. 10,499,914;
    • U.S. patent application Ser. No. 15/385,913, entitled ANVIL ARRANGEMENTS FOR SURGICAL STAPLERS, now U.S. Patent Application Publication No. 2018/0168614;
    • U.S. patent application Ser. No. 15/385,914, entitled METHOD OF DEFORMING STAPLES FROM TWO DIFFERENT TYPES OF STAPLE CARTRIDGES WITH THE SAME SURGICAL STAPLING INSTRUMENT, now U.S. Patent Application Publication No. 2018/0168615;
    • U.S. patent application Ser. No. 15/385,893, entitled BILATERALLY ASYMMETRIC STAPLE-FORMING POCKET PAIRS, now U.S. Pat. No. 10,682,138;
    • U.S. patent application Ser. No. 15/385,929, entitled CLOSURE MEMBERS WITH CAM SURFACE ARRANGEMENTS FOR SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS, now U.S. Pat. No. 10,667,810;
    • U.S. patent application Ser. No. 15/385,911, entitled SURGICAL STAPLERS WITH INDEPENDENTLY ACTUATABLE CLOSING AND FIRING SYSTEMS, now U.S. Pat. No. 10,448,950;
    • U.S. patent application Ser. No. 15/385,927, entitled SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES, now U.S. Patent Application Publication No. 2018/0168625;
    • U.S. patent application Ser. No. 15/385,917, entitled STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS, now U.S. Patent Application Publication No. 2018/0168617;
    • U.S. patent application Ser. No. 15/385,900, entitled STAPLE-FORMING POCKET ARRANGEMENTS COMPRISING PRIMARY SIDEWALLS AND POCKET SIDEWALLS, now U.S. Pat. No. 10,898,186;
    • U.S. patent application Ser. No. 15/385,931, entitled NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS, now U.S. Patent Application Publication No. 2018/0168627;
    • U.S. patent application Ser. No. 15/385,915, entitled FIRING MEMBER PIN ANGLE, now U.S. Pat. No. 10,779,823;
    • U.S. patent application Ser. No. 15/385,897, entitled STAPLE-FORMING POCKET ARRANGEMENTS COMPRISING ZONED FORMING SURFACE GROOVES, now U.S. Patent Application Publication No. 2018/0168598;
    • U.S. patent application Ser. No. 15/385,922, entitled SURGICAL INSTRUMENT WITH MULTIPLE FAILURE RESPONSE MODES, now U.S. Pat. No. 10,426,471;
    • U.S. patent application Ser. No. 15/385,924, entitled SURGICAL INSTRUMENT WITH PRIMARY AND SAFETY PROCESSORS, now U.S. Pat. No. 10,758,230;
    • U.S. patent application Ser. No. 15/385,910, entitled ANVIL HAVING A KNIFE SLOT WIDTH, now U.S. Pat. No. 10,485,543;
    • U.S. patent application Ser. No. 15/385,903, entitled CLOSURE MEMBER ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,617,414;
    • U.S. patent application Ser. No. 15/385,906, entitled FIRING MEMBER PIN CONFIGURATIONS, now U.S. Pat. No. 10,856,868;
    • U.S. patent application Ser. No. 15/386,188, entitled STEPPED STAPLE CARTRIDGE WITH ASYMMETRICAL STAPLES, now U.S. Pat. No. 10,537,324;
    • U.S. patent application Ser. No. 15/386,192, entitled STEPPED STAPLE CARTRIDGE WITH TISSUE RETENTION AND GAP SETTING FEATURES, now U.S. Pat. No. 10,687,810;
    • U.S. patent application Ser. No. 15/386,206, entitled STAPLE CARTRIDGE WITH DEFORMABLE DRIVER RETENTION FEATURES, now U.S. Patent Application Publication No. 2018/0168586;
    • U.S. patent application Ser. No. 15/386,226, entitled DURABILITY FEATURES FOR END EFFECTORS AND FIRING ASSEMBLIES OF SURGICAL STAPLING INSTRUMENTS, now U.S. Patent Application Publication No. 2018/0168648;
    • U.S. patent application Ser. No. 15/386,222, entitled SURGICAL STAPLING INSTRUMENTS HAVING END EFFECTORS WITH POSITIVE OPENING FEATURES, now U.S. Patent Application Publication No. 2018/0168647;
    • U.S. patent application Ser. No. 15/386,236, entitled CONNECTION PORTIONS FOR DEPOSABLE LOADING UNITS FOR SURGICAL STAPLING INSTRUMENTS, now U.S. Patent Application Publication No. 2018/0168650;
    • U.S. patent application Ser. No. 15/385,887, entitled METHOD FOR ATTACHING A SHAFT ASSEMBLY TO A SURGICAL INSTRUMENT AND, ALTERNATIVELY, TO A SURGICAL ROBOT, now U.S. Pat. No. 10,835,245;
    • U.S. patent application Ser. No. 15/385,889, entitled SHAFT ASSEMBLY COMPRISING A MANUALLY-OPERABLE RETRACTION SYSTEM FOR USE WITH A MOTORIZED SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2018/0168590;
    • U.S. patent application Ser. No. 15/385,890, entitled SHAFT ASSEMBLY COMPRISING SEPARATELY ACTUATABLE AND RETRACTABLE SYSTEMS, now U.S. Pat. No. 10,675,025;
    • U.S. patent application Ser. No. 15/385,891, entitled SHAFT ASSEMBLY COMPRISING A CLUTCH CONFIGURED TO ADAPT THE OUTPUT OF A ROTARY FIRING MEMBER TO TWO DIFFERENT SYSTEMS, now U.S. Patent Application Publication No. 2018/0168592;
    • U.S. patent application Ser. No. 15/385,892, entitled SURGICAL SYSTEM COMPRISING A FIRING MEMBER ROTATABLE INTO AN ARTICULATION STATE TO ARTICULATE AN END EFFECTOR OF THE SURGICAL SYSTEM, now U.S. Pat. No. 10,918,385;
    • U.S. patent application Ser. No. 15/385,894, entitled SHAFT ASSEMBLY COMPRISING A LOCKOUT, now U.S. Pat. No. 10,492,785;
    • U.S. patent application Ser. No. 15/385,895, entitled SHAFT ASSEMBLY COMPRISING FIRST AND SECOND ARTICULATION LOCKOUTS, now U.S. Pat. No. 10,542,982;
    • U.S. patent application Ser. No. 15/385,916, entitled SURGICAL STAPLING SYSTEMS, now U.S. Patent Application Publication No. 2018/0168575;
    • U.S. patent application Ser. No. 15/385,918, entitled SURGICAL STAPLING SYSTEMS, now U.S. Patent Application Publication No. 2018/0168618;
    • U.S. patent application Ser. No. 15/385,919, entitled SURGICAL STAPLING SYSTEMS, now U.S. Patent Application Publication No. 2018/0168619;
    • U.S. patent application Ser. No. 15/385,921, entitled SURGICAL STAPLE CARTRIDGE WITH MOVABLE CAMMING MEMBER CONFIGURED TO DISENGAGE FIRING MEMBER LOCKOUT FEATURES, now U.S. Pat. No. 10,687,809;
    • U.S. patent application Ser. No. 15/385,923, entitled SURGICAL STAPLING SYSTEMS, now U.S. Patent Application Publication No. 2018/0168623;
    • U.S. patent application Ser. No. 15/385,925, entitled JAW ACTUATED LOCK ARRANGEMENTS FOR PREVENTING ADVANCEMENT OF A FIRING MEMBER IN A SURGICAL END EFFECTOR UNLESS AN UNFIRED CARTRIDGE IS INSTALLED IN THE END EFFECTOR, now U.S. Pat. No. 10,517,595;
    • U.S. patent application Ser. No. 15/385,926, entitled AXIALLY MOVABLE CLOSURE SYSTEM ARRANGEMENTS FOR APPLYING CLOSURE MOTIONS TO JAWS OF SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2018/0168577;
    • U.S. patent application Ser. No. 15/385,928, entitled PROTECTIVE COVER ARRANGEMENTS FOR A JOINT INTERFACE BETWEEN A MOVABLE JAW AND ACTUATOR SHAFT OF A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2018/0168578;
    • U.S. patent application Ser. No. 15/385,930, entitled SURGICAL END EFFECTOR WITH TWO SEPARATE COOPERATING OPENING FEATURES FOR OPENING AND CLOSING END EFFECTOR JAWS, now U.S. Patent Application Publication No. 2018/0168579;
    • U.S. patent application Ser. No. 15/385,932, entitled ARTICULATABLE SURGICAL END EFFECTOR WITH ASYMMETRIC SHAFT ARRANGEMENT, now U.S. Patent Application Publication No. 2018/0168628;
    • U.S. patent application Ser. No. 15/385,933, entitled ARTICULATABLE SURGICAL INSTRUMENT WITH INDEPENDENT PIVOTABLE LINKAGE DISTAL OF AN ARTICULATION LOCK, now U.S. Pat. No. 10,603,036;
    • U.S. patent application Ser. No. 15/385,934, entitled ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR IN AN ARTICULATED POSITION IN RESPONSE TO ACTUATION OF A JAW CLOSURE SYSTEM, now U.S. Pat. No. 10,582,928;
    • U.S. patent application Ser. No. 15/385,935, entitled LATERALLY ACTUATABLE ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR OF A SURGICAL INSTRUMENT IN AN ARTICULATED CONFIGURATION, now U.S. Pat. No. 10,524,789;
    • U.S. patent application Ser. No. 15/385,936, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH ARTICULATION STROKE AMPLIFICATION FEATURES, now U.S. Pat. No. 10,517,596;
    • U.S. patent application Ser. No. 14/318,996, entitled FASTENER CARTRIDGES INCLUDING EXTENSIONS HAVING DIFFERENT CONFIGURATIONS, now U.S. Patent Application Publication No. 2015/0297228;
    • U.S. patent application Ser. No. 14/319,006, entitled FASTENER CARTRIDGE COMPRISING FASTENER CAVITIES INCLUDING FASTENER CONTROL FEATURES, now U.S. Pat. No. 10,010,324;
    • U.S. patent application Ser. No. 14/318,991, entitled SURGICAL FASTENER CARTRIDGES WITH DRIVER STABILIZING ARRANGEMENTS, now U.S. Pat. No. 9,833,241;
    • U.S. patent application Ser. No. 14/319,004, entitled SURGICAL END EFFECTORS WITH FIRING ELEMENT MONITORING ARRANGEMENTS, now U.S. Pat. No. 9,844,369;
    • U.S. patent application Ser. No. 14/319,008, entitled FASTENER CARTRIDGE COMPRISING NON-UNIFORM FASTENERS, now U.S. Pat. No. 10,299,792;
    • U.S. patent application Ser. No. 14/318,997, entitled FASTENER CARTRIDGE COMPRISING DEPLOYABLE TISSUE ENGAGING MEMBERS, now U.S. Pat. No. 10,561,422;
    • U.S. patent application Ser. No. 14/319,002, entitled FASTENER CARTRIDGE COMPRISING TISSUE CONTROL FEATURES, now U.S. Pat. No. 9,877,721;
    • U.S. patent application Ser. No. 14/319,013, entitled FASTENER CARTRIDGE ASSEMBLIES AND STAPLE RETAINER COVER ARRANGEMENTS, now U.S. Patent Application Publication No. 2015/0297233; and
    • U.S. patent application Ser. No. 14/319,016, entitled FASTENER CARTRIDGE INCLUDING A LAYER ATTACHED THERETO, now U.S. Pat. No. 10,470,768.


Applicant of the present application owns the following U.S. patent applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 15/191,775, entitled STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES, now U.S. Patent Application Publication No. 2017/0367695;
    • U.S. patent application Ser. No. 15/191,807, entitled STAPLING SYSTEM FOR USE WITH WIRE STAPLES AND STAMPED STAPLES, now U.S. Pat. No. 10,702,270;
    • U.S. patent application Ser. No. 15/191,834, entitled STAMPED STAPLES AND STAPLE CARTRIDGES USING THE SAME, now U.S. Pat. No. 10,542,979;
    • U.S. patent application Ser. No. 15/191,788, entitled STAPLE CARTRIDGE COMPRISING OVERDRIVEN STAPLES, now U.S. Pat. No. 10,675,024; and
    • U.S. patent application Ser. No. 15/191,818, entitled STAPLE CARTRIDGE COMPRISING OFFSET LONGITUDINAL STAPLE ROWS, now U.S. Pat. No. 10,893,863.


Applicant of the present application owns the following U.S. patent applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:

    • U.S. Design patent application Ser. No. 29/569,218, entitled SURGICAL FASTENER, now U.S. Design Pat. No. D826,405;
    • U.S. Design patent application Ser. No. 29/569,227, entitled SURGICAL FASTENER, now U.S. Design Pat. No. D822,206;
    • U.S. Design patent application Ser. No. 29/569,259, entitled SURGICAL FASTENER CARTRIDGE, now U.S. Design Pat. No. D847,989; and
    • U.S. Design patent application Ser. No. 29/569,264, entitled SURGICAL FASTENER CARTRIDGE, now U.S. Design Pat. No. D850,617.


Applicant of the present application owns the following patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 15/089,325, entitled METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM, now U.S. Patent Application Publication No. 2017/0281171;
    • U.S. patent application Ser. No. 15/089,321, entitled MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY, now U.S. Pat. No. 10,271,851;
    • U.S. patent application Ser. No. 15/089,326, entitled SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD, now U.S. Pat. No. 10,433,849;
    • U.S. patent application Ser. No. 15/089,263, entitled SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION, now U.S. Pat. No. 10,307,159;
    • U.S. patent application Ser. No. 15/089,262, entitled ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM, now U.S. Pat. No. 10,357,246;
    • U.S. patent application Ser. No. 15/089,277, entitled SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER, now U.S. Pat. No. 10,531,874;
    • U.S. patent application Ser. No. 15/089,296, entitled INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS, now U.S. Pat. No. 10,413,293;
    • U.S. patent application Ser. No. 15/089,258, entitled SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION, now U.S. Pat. No. 10,342,543;
    • U.S. patent application Ser. No. 15/089,278, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE, now U.S. Pat. No. 10,420,552;
    • U.S. patent application Ser. No. 15/089,284, entitled SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT, now U.S. Patent Application Publication No. 2017/0281186;
    • U.S. patent application Ser. No. 15/089,295, entitled SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT, now U.S. Pat. No. 10,856,867;
    • U.S. patent application Ser. No. 15/089,300, entitled SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT, now U.S. Pat. No. 10,456,140;
    • U.S. patent application Ser. No. 15/089,196, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT, now U.S. Pat. No. 10,568,632;
    • U.S. patent application Ser. No. 15/089,203, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT, now U.S. Pat. No. 10,542,991;
    • U.S. patent application Ser. No. 15/089,210, entitled SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT, now U.S. Pat. No. 10,478,190;
    • U.S. patent application Ser. No. 15/089,324, entitled SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM, now U.S. Pat. No. 10,314,582;
    • U.S. patent application Ser. No. 15/089,335, entitled SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS, now U.S. Pat. No. 10,485,542;
    • U.S. patent application Ser. No. 15/089,339, entitled SURGICAL STAPLING INSTRUMENT, now U.S. Patent Application Publication No. 2017/0281173;
    • U.S. patent application Ser. No. 15/089,253, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS, now U.S. Pat. No. 10,413,297;
    • U.S. patent application Ser. No. 15/089,304, entitled SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET, now U.S. Pat. No. 10,285,705;
    • U.S. patent application Ser. No. 15/089,331, entitled ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS, now U.S. Pat. No. 10,376,263;
    • U.S. patent application Ser. No. 15/089,336, entitled STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES, now U.S. Pat. No. 10,709,446;
    • U.S. patent application Ser. No. 15/089,312, entitled CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT, now U.S. Patent Application Publication No. 2017/0281189;
    • U.S. patent application Ser. No. 15/089,309, entitled CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM, now U.S. Pat. No. 10,675,021; and
    • U.S. patent application Ser. No. 15/089,349, entitled CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL, now U.S. Pat. No. 10,682,136.


Applicant of the present application also owns the U.S. patent applications identified below which were filed on Dec. 30, 2015 which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/984,488, entitled MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,292,704;
    • U.S. patent application Ser. No. 14/984,525, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,368,865; and
    • U.S. patent application Ser. No. 14/984,552, entitled SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS, now U.S. Pat. No. 10,265,068.


Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 9, 2016, which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 15/019,220, entitled SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR, now U.S. Pat. No. 10,245,029;
    • U.S. patent application Ser. No. 15/019,228, entitled SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS, now U.S. Pat. No. 10,433,837;
    • U.S. patent application Ser. No. 15/019,196, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT, now U.S. Pat. No. 10,413,291;
    • U.S. patent application Ser. No. 15/019,206, entitled SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY, now U.S. Pat. No. 10,653,413;
    • U.S. patent application Ser. No. 15/019,215, entitled SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2017/0224332;
    • U.S. patent application Ser. No. 15/019,227, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS, now U.S. Patent Application Publication No. 2017/0224334;
    • U.S. patent application Ser. No. 15/019,235, entitled SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS, now U.S. Pat. No. 10,245,030;
    • U.S. patent application Ser. No. 15/019,230, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS, now U.S. Pat. No. 10,588,625; and
    • U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS, now U.S. Pat. No. 10,470,764.


Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 12, 2016, which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 15/043,254, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,258,331;
    • U.S. patent application Ser. No. 15/043,259, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,448,948;
    • U.S. patent application Ser. No. 15/043,275, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2017/0231627; and
    • U.S. patent application Ser. No. 15/043,289, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2017/0231628.


Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS, now U.S. Pat. No. 10,182,818;
    • U.S. patent application Ser. No. 14/742,941, entitled SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES, now U.S. Pat. No. 10,052,102;
    • U.S. patent application Ser. No. 14/742,933, entitled SURGICAL STAPLING INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION WHEN A CARTRIDGE IS SPENT OR MISSING, now U.S. Pat. No. 10,154,841;
    • U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,405,863;
    • U.S. patent application Ser. No. 14/742,900, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT, now U.S. Pat. No. 10,335,149;
    • U.S. patent application Ser. No. 14/742,885, entitled DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,368,861; and
    • U.S. patent application Ser. No. 14/742,876, entitled PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,178,992.


Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/640,746, entitled POWERED SURGICAL INSTRUMENT, now U.S. Pat. No. 9,808,246;
    • U.S. patent application Ser. No. 14/640,795, entitled MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,441,279;
    • U.S. patent application Ser. No. 14/640,832, entitled ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RATES FOR MULTIPLE TISSUE TYPES, now U.S. Pat. No. 10,687,806;
    • U.S. patent application Ser. No. 14/640,935, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, now U.S. Pat. No. 10,548,504;
    • U.S. patent application Ser. No. 14/640,831, entitled MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,895,148;
    • U.S. patent application Ser. No. 14/640,859, entitled TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY, CREEP, AND VISCOELASTIC ELEMENTS OF MEASURES, now U.S. Pat. No. 10,052,044;
    • U.S. patent application Ser. No. 14/640,817, entitled INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,924,961;
    • U.S. patent application Ser. No. 14/640,844, entitled CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE, now U.S. Pat. No. 10,045,776;
    • U.S. patent application Ser. No. 14/640,837, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, now U.S. Pat. No. 9,993,248;
    • U.S. patent application Ser. No. 14/640,765, entitled SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER, now U.S. Pat. No. 10,617,412;
    • U.S. patent application Ser. No. 14/640,799, entitled SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT, now U.S. Pat. No. 9,901,342; and
    • U.S. patent application Ser. No. 14/640,780, entitled SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING, now U.S. Pat. No. 10,245,033.


Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/633,576, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION, now U.S. Pat. No. 10,045,779;
    • U.S. patent application Ser. No. 14/633,546, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND, now U.S. Pat. No. 10,180,463;
    • U.S. patent application Ser. No. 14/633,560, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES, now U.S. Patent Application Publication No. 2016/0249910;
    • U.S. patent application Ser. No. 14/633,566, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY, now U.S. Pat. No. 10,182,816;
    • U.S. patent application Ser. No. 14/633,555, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED, now U.S. Pat. No. 10,321,907;
    • U.S. patent application Ser. No. 14/633,542, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,931,118;
    • U.S. patent application Ser. No. 14/633,548, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT, now U.S. Pat. No. 10,245,028;
    • U.S. patent application Ser. No. 14/633,526, entitled ADAPTABLE SURGICAL INSTRUMENT HANDLE, now U.S. Pat. No. 9,993,258;
    • U.S. patent application Ser. No. 14/633,541, entitled MODULAR STAPLING ASSEMBLY, now U.S. Pat. No. 10,226,250; and
    • U.S. patent application Ser. No. 14/633,562, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER, now U.S. Pat. No. 10,159,483.


Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING MEMBER, now U.S. Pat. No. 9,844,374;
    • U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS, now U.S. Pat. No. 10,188,385;
    • U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,844,375;
    • U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS, now U.S. Pat. No. 10,085,748;
    • U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE, now U.S. Pat. No. 10,245,027;
    • U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS, now U.S. Pat. No. 10,004,501;
    • U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Pat. No. 9,943,309;
    • U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Pat. No. 9,968,355;
    • U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM, now U.S. Pat. No. 9,987,000; and
    • U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM, now U.S. Pat. No. 10,117,649.


Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Pat. No. 9,700,309;
    • U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,782,169;
    • U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;
    • U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Pat. No. 9,358,003;
    • U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,554,794;
    • U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,326,767;
    • U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Pat. No. 9,468,438;
    • U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;
    • U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Pat. No. 9,398,911; and
    • U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Pat. No. 9,307,986.


Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Pat. No. 9,687,230;
    • U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,332,987;
    • U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,883,860;
    • U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;
    • U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,808,244;
    • U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Pat. No. 10,470,762;
    • U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,629,623;
    • U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,726;
    • U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,727; and
    • U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,888,919.


Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,629,629.


Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272582;
    • U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT, now U.S. Pat. No. 9,826,977;
    • U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, now U.S. Patent Application Publication No. 2015/0272580;
    • U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, now U.S. Pat. No. 10,013,049;
    • U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Pat. No. 9,743,929;
    • U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,028,761;
    • U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION, now U.S. Patent Application Publication No. 2015/0272571;
    • U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, now U.S. Pat. No. 9,690,362;
    • U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, now U.S. Pat. No. 9,820,738;
    • U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Pat. No. 10,004,497;
    • U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272557;
    • U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, now U.S. Pat. No. 9,804,618;
    • U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, now U.S. Pat. No. 9,733,663;
    • U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, now U.S. Pat. No. 9,750,499; and
    • U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, now U.S. Pat. No. 10,201,364.


Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE, now U.S. Pat. No. 10,111,679;
    • U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, now U.S. Pat. No. 9,724,094;
    • U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION, now U.S. Pat. No. 9,737,301;
    • U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION, now U.S. Pat. No. 9,757,128;
    • U.S. patent application Ser. No. 14/479,110, entitled POLARITY OF HALL MAGNET TO IDENTIFY CARTRIDGE TYPE, now U.S. Pat. No. 10,016,199;
    • U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, now U.S. Pat. No. 10,135,242;
    • U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE, now U.S. Pat. No. 9,788,836; and
    • U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION, now U.S. Patent Application Publication No. 2016/0066913.


Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entirety:

    • U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Pat. No. 9,826,976;
    • U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Pat. No. 9,649,110;
    • U.S. patent application Ser. No. 14/248,595, entitled SURGICAL SYSTEM COMPRISING FIRST AND SECOND DRIVE SYSTEMS, now U.S. Pat. No. 9,844,368;
    • U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Pat. No. 10,405,857;
    • U.S. patent application Ser. No. 14/248,591, entitled SURGICAL INSTRUMENT COMPRISING A GAP SETTING SYSTEM, now U.S. Pat. No. 10,149,680;
    • U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Pat. No. 9,801,626;
    • U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Pat. No. 9,867,612;
    • U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Pat. No. 10,136,887; and
    • U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Pat. No. 9,814,460.


Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entirety:

    • U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;
    • U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER;
    • U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;
    • U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and
    • U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.


Applicant of the present application owns the following U.S. Provisional Patent applications, filed on Dec. 28, 2017, the disclosure of each of which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/611,341, entitled INTERACTIVE SURGICAL PLATFORM;
    • U.S. Provisional Patent Application Ser. No. 62/611,340, entitled CLOUD-BASED MEDICAL ANALYTICS; and
    • U.S. Provisional Patent Application Ser. No. 62/611,339, entitled ROBOT ASSISTED SURGICAL PLATFORM.


Applicant of the present application owns the following U.S. Provisional Patent applications, filed on Mar. 28, 2018, each of which is herein incorporated by reference in its entirety:

    • U.S. Provisional Patent Application Ser. No. 62/649,302, entitled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES;
    • U.S. Provisional Patent Application Ser. No. 62/649,294, entitled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD;
    • U.S. Provisional Patent Application Ser. No. 62/649,300, entitled SURGICAL HUB SITUATIONAL AWARENESS;
    • U.S. Provisional Patent Application Ser. No. 62/649,309, entitled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER;
    • U.S. Provisional Patent Application Ser. No. 62/649,310, entitled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS;
    • U.S. Provisional Patent Application Ser. No. 62/649,291, entitled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT;
    • U.S. Provisional Patent Application Ser. No. 62/649,296, entitled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/649,333, entitled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER;
    • U.S. Provisional Patent Application Ser. No. 62/649,327, entitled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES;
    • U.S. Provisional Patent Application Ser. No. 62/649,315, entitled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK;
    • U.S. Provisional Patent Application Ser. No. 62/649,313, entitled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES;
    • U.S. Provisional Patent Application Ser. No. 62/649,320, entitled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS;
    • U.S. Provisional Patent Application Ser. No. 62/649,307, entitled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; and
    • U.S. Provisional Patent Application Ser. No. 62/649,323, entitled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.


Applicant of the present application owns the following U.S. patent applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 15/940,641, entitled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES, now U.S. Patent Application Publication No. 2019/0207911;
    • U.S. patent application Ser. No. 15/940,648, entitled INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES, now U.S. Patent Application Publication No. 2019/0206004;
    • U.S. patent application Ser. No. 15/940,656, entitled SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES, now U.S. Patent Application Publication No. 2019/0201141;
    • U.S. patent application Ser. No. 15/940,666, entitled SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS, now U.S. Patent Application Publication No. 2019/0206551;
    • U.S. patent application Ser. No. 15/940,670, entitled COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS, now U.S. Patent Application Publication No. 2019/0201116;
    • U.S. patent application Ser. No. 15/940,677, entitled SURGICAL HUB CONTROL ARRANGEMENTS, now U.S. Patent Application Publication No. 2019/0201143;
    • U.S. patent application Ser. No. 15/940,632, entitled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD, now U.S. Patent Application Publication No. 2019/0205566;
    • U.S. patent application Ser. No. 15/940,640, entitled COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS, now U.S. Patent Application Publication No. 2019/0200863;
    • U.S. patent application Ser. No. 15/940,645, entitled SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT, now U.S. Pat. No. 10,892,899;
    • U.S. patent application Ser. No. 15/940,649, entitled DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME, now U.S. Patent Application Publication No. 2019/0205567;
    • U.S. patent application Ser. No. 15/940,654, entitled SURGICAL HUB SITUATIONAL AWARENESS, now U.S. Patent Application Publication No. 2019/0201140;
    • U.S. patent application Ser. No. 15/940,663, entitled SURGICAL SYSTEM DISTRIBUTED PROCESSING, now U.S. Patent Application Publication No. 2019/0201033;
    • U.S. patent application Ser. No. 15/940,668, entitled AGGREGATION AND REPORTING OF SURGICAL HUB DATA, now U.S. Patent Application Publication No. 2019/0201115;
    • U.S. patent application Ser. No. 15/940,671, entitled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER, now U.S. Patent Application Publication No. 2019/0201104;
    • U.S. patent application Ser. No. 15/940,686, entitled DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE, now U.S. Patent Application Publication No. 2019/0201105;
    • U.S. patent application Ser. No. 15/940,700, entitled STERILE FIELD INTERACTIVE CONTROL DISPLAYS, now U.S. Patent Application Publication No. 2019/0205001;
    • U.S. patent application Ser. No. 15/940,629, entitled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS, now U.S. Patent Application Publication No. 2019/0201112;
    • U.S. patent application Ser. No. 15/940,704, entitled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT, now U.S. Patent Application Publication No. 2019/0206050;
    • U.S. patent application Ser. No. 15/940,722, entitled CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY, now U.S. Patent Application Publication No. 2019/0200905; and
    • U.S. patent application Ser. No. 15/940,742, entitled DUAL CMOS ARRAY IMAGING, now U.S. Patent Application Publication No. 2019/0200906.


Applicant of the present application owns the following U.S. patent applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 15/940,636, entitled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES, now U.S. Patent Application Publication No. 2019/0206003;
    • U.S. patent application Ser. No. 15/940,653, entitled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS, now U.S. Patent Application Publication No. 2019/0201114;
    • U.S. patent application Ser. No. 15/940,660, entitled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER, now U.S. Patent Application Publication No. 2019/0206555;
    • U.S. patent application Ser. No. 15/940,679, entitled CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET, now U.S. Patent Application Publication No. 2019/0201144;
    • U.S. patent application Ser. No. 15/940,694, entitled CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION, now U.S. Patent Application Publication No. 2019/0201119;
    • U.S. patent application Ser. No. 15/940,634, entitled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES, now U.S. Patent Application Publication No. 2019/0201138;
    • U.S. patent application Ser. No. 15/940,706, entitled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK, now U.S. Patent Application Publication No. 2019/0206561; and
    • U.S. patent application Ser. No. 15/940,675, entitled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES, now U.S. Pat. No. 10,849,697.


Applicant of the present application owns the following U.S. patent applications, filed on Mar. 29, 2018, each of which is herein incorporated by reference in its entirety:

    • U.S. patent application Ser. No. 15/940,627, entitled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201111;
    • U.S. patent application Ser. No. 15/940,637, entitled COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201139;
    • U.S. patent application Ser. No. 15/940,642, entitled CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201113;
    • U.S. patent application Ser. No. 15/940,676, entitled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201142;
    • U.S. patent application Ser. No. 15/940,680, entitled CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201135;
    • U.S. patent application Ser. No. 15/940,683, entitled COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201145;
    • U.S. patent application Ser. No. 15/940,690, entitled DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201118; and
    • U.S. patent application Ser. No. 15/940,711, entitled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, now U.S. Patent Application Publication No. 2019/0201120.


Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.


The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.


Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.


A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.


The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.


The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.


Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.


A surgical instrument 10000 is illustrated in FIG. 1. The surgical instrument 10000 comprises a handle 10100 including a handle housing 10120, a shaft 10200 extending from the handle 10100, and an end effector 10400. The end effector 10400 comprises a first jaw 10410 configured to receive a staple cartridge and a second jaw 10420 movable relative to the first jaw 10410. The second jaw 10420 comprises an anvil including staple forming pockets defined therein. The surgical instrument 10000 further comprises a closure actuator 10140 configured to drive a closure system of the surgical instrument 10000 and move the second jaw 10420 between an unclamped position and a clamped position. The closure actuator 10140 is operably coupled with a closure tube 10240 that is advanced distally when the closure actuator 10140 is closed. In such instances, the closure tube 10240 contacts the second jaw and cams and/or pushes the second jaw 10420 downwardly into its clamped position.


Further to the above, the second jaw 10420 is pivotably coupled to the first jaw 10410 about a pivot axis. In various embodiments, the second jaw can both translate and rotate as it is being moved into its clamped position. In various alternative embodiments, a surgical instrument comprises a staple cartridge jaw that is movable between an unclamped position and a clamped position relative to an anvil jaw. In any event, the handle 10100 comprises a lock configured to releasably hold the closure actuator 10140 in its clamped position. The handle 10100 further comprises release actuators 10180b on opposite sides thereof which, when actuated, unlock the closure actuator 10140 such that the end effector 10400 can be re-opened. In various alternative embodiments, the handle 10100 comprises an electric motor configured to move the closure tube 10240 proximally and/or distally when actuated by the clinician.


The end effector 10400 is attached to the shaft 10200 about an articulation joint 10500 and is rotatable within a plane about an articulation axis. The shaft 10200 defines a longitudinal axis and the end effector 10400 is articulatable between an unarticulated position in which the end effector 10400 is aligned with the longitudinal axis and articulated positions in which the end effector 10400 extends at a transverse angle relative to the longitudinal axis. In various embodiments, the surgical instrument 10000 comprises a first articulation joint which permits the end effector 10400 to be articulated in a first plane and a second articulation joint which permits the end effector 10400 to be articulated in a second plane which is orthogonal to the first plane, for example. The handle 10100 comprises at least one electric motor and a control system configured to control the operation of the electric motor in response to articulation actuators 10160 and 10170. The electric motor comprises a brushless DC motor; however, the electric motor can comprise any suitable motor, such as a brushed DC motor, for example.


The entire disclosure of U.S. Pat. No. 10,149,683, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, which issued on Dec. 11, 2018, is incorporated by reference herein. The entire disclosure of U.S. Patent Application Publication No. 2018/0125481, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, which published on May 10, 2018, is incorporated by reference herein. The handle 10100 further comprises a replaceable and/or rechargeable battery 10300 attachable to the handle housing which powers the surgical instrument 10000. The entire disclosure of U.S. Pat. No. 8,632,525, entitled POWER CONTROL ARRANGEMENTS FOR SURGICAL INSTRUMENTS AND BATTERIES, which issued on Jan. 21, 2014, is incorporated by reference herein.


Further to the above, the shaft 10200 is rotatable about a longitudinal axis extending through the shaft 10200. The shaft 10200 is rotatably connected to the handle 10100 about a rotation joint 10220 and the shaft 10200 comprises one or more finger grooves defined therein which facilitate a clinician using the stapling instrument 10000 to rotate the shaft 10200. In various embodiments, the surgical instrument 10000 comprises an electric motor and a rotation actuator that, when actuated by the clinician, powers the electric motor to rotate the shaft 10200 in a first direction or a second direction depending on the direction in which the rotation actuator is actuated.


Further to the above, the surgical instrument 10000 comprises a staple firing drive configured to eject the staples out of the staple cartridge. The staple firing drive comprises an electric motor and a firing member which is driven distally through a staple firing stroke by the electric motor. During the staple firing stroke, the firing member pushes the sled in the staple cartridge distally to eject the staples from the staple cartridge. The entire disclosure of U.S. Pat. No. 9,629,629, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, which issued on Apr. 25, 2017, is incorporated by reference herein.


The surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail, the entire disclosure of which is incorporated by reference herein. The disclosures of International Patent Publication No. WO 2017/083125, entitled STAPLER WITH COMPOSITE CARDAN AND SCREW DRIVE, published May 18, 2017, International Patent Publication No. WO 2017/083126, entitled STAPLE PUSHER WITH LOST MOTION BETWEEN RAMPS, published May 18, 2017, International Patent Publication No. WO 2015/153642, entitled SURGICAL INSTRUMENT WITH SHIFTABLE TRANSMISSION, published Oct. 8, 2015, U.S. Patent Application Publication No. 2017/0265954, filed Mar. 17, 2017, entitled STAPLER WITH CABLE-DRIVEN ADVANCEABLE CLAMPING ELEMENT AND DUAL DISTAL PULLEYS, now U.S. Pat. No. 10,350,016, U.S. Patent Application Publication No. 2017/0265865, filed Feb. 15, 2017, entitled STAPLER WITH CABLE-DRIVEN ADVANCEABLE CLAMPING ELEMENT AND DISTAL PULLEY, now U.S. Pat. No. 10,631,858, and U.S. Patent Application Publication No. 2017/0290586, entitled STAPLING CARTRIDGE, filed on Mar. 29, 2017, now U.S. Pat. No. 10,722,233, are incorporated herein by reference in their entireties.


Various embodiments disclosed herein may be employed in connection with a robotic surgical system, such as the robotic system 1000 depicted in FIGS. 1-3, for example. FIG. 1 depicts a master controller 5001 that may be used in connection with a robotic arm cart 5100 depicted in FIG. 2. The master controller 5001 and the robotic arm cart 5100, as well as their respective components and control systems, are collectively referred to herein as a robotic system 5000. Examples of such systems and devices are disclosed in U.S. Pat. No. 7,524,320, entitled MECHANICAL ACTUATOR INTERFACE SYSTEM FOR ROBOTIC SURGICAL TOOLS, as well as U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which are each hereby incorporated by reference herein in their respective entireties. The details of such systems and devices are not repeated herein for the sake of brevity. The master controller 5001 includes controls 5003 which are grasped and manipulated by the surgeon while the surgeon views the patient via a display 1002. The controls 5003 can comprise manual input devices which move with multiple degrees of freedom, for example, and can further comprise an actuatable trigger for actuating surgical instruments, or tools, to close grasping jaws, staple and incise tissue, and/or apply an electrical potential to an electrode, for example.


With reference to FIGS. 2 and 3, the robotic arm cart 5100 is configured to actuate one or more surgical instruments, such as surgical instruments 6000, for example, in response to inputs from the master controller 5001. In various forms, the robotic arm cart 5100 includes a base 5002, arm linkages including set-up joints 5104, and instrument manipulators 5106. Such an arrangement can facilitate the rotation of a surgical instrument 6000 around a point in space, which is described in U.S. Pat. No. 5,817,084, entitled REMOTE CENTER POSITIONING DEVICE WITH FLEXIBLE DRIVE, the entire disclosure of which is hereby incorporated by reference herein. This arrangement provides for pivoting rotation of a surgical instrument 6000 about an axis 5112a, or pitch axis. The arrangement also provides for rotation of the surgical instrument 6000 about an axis 5112b, or yaw axis. The pitch and yaw axes 5112a, 5112b intersect at a remote center 5114, which is aligned along an elongate shaft of the surgical instrument 6000. A surgical instrument 6000 may have further degrees of driven freedom, including sliding motion along a longitudinal axis LT-LT. As the surgical instrument 6000 slides along the longitudinal axis LT-LT relative to the instrument manipulator 5106 (arrow 5112c), the remote center 5114 remains fixed relative to a base 5116 of the instrument manipulator 5106. To move the remote center 5114, linkage 5108 is driven by one or more motors 5120 which move the linkage 5108 in response to commands from the master controller 5001 to position and/or manipulate the surgical instrument 6000 within the surgical site. Various other arrangements are disclosed in U.S. Pat. No. 5,878,193, entitled AUTOMATED ENDOSCOPE SYSTEM FOR OPTIMAL POSITIONING, the entire disclosure of which is hereby incorporated by reference herein.


Additionally, while the data communication between a robotic component and the processor of the robotic surgical system is primarily described herein with reference to communication between a surgical instrument, or tool, and the master controller 5001, it should be understood that similar communication may take place between the circuitry of a manipulator, a set-up joint, an endoscope or other image capture device, or the like, and the processor of the robotic surgical system for component compatibility verification, component-type identification, component calibration (such as off-set or the like) communication, confirmation of coupling of the component to the robotic surgical system, or the like. In accordance with at least one aspect, various surgical instruments disclosed herein may be used in connection with other robotically-controlled or automated surgical systems and are not necessarily limited to use with the specific robotic system components shown in FIGS. 1-3 and described in the aforementioned references. Various robotic surgery systems and methods are disclosed in U.S. Pat. No. 6,132,368, entitled MULTI-COMPONENT TELEPRESENCE SYSTEM AND METHOD, the entire disclosure of which is hereby incorporated by reference herein.


A staple cartridge 11000 is illustrated in FIGS. 5-5C. The staple cartridge 11000 comprises a cartridge body 11100 including a proximal end 11110 and a distal end 11120. The cartridge body 11100 further comprises a deck 11130 extending between the proximal end 11110 and the distal end 11120 and staple cavities 11140 defined in the deck 11130. The staple cavities 11140 are arranged in longitudinal rows on opposite sides of a longitudinal slot 11150 defined in the cartridge body 11100. The longitudinal slot 11150 is configured to receive a tissue cutting knife therein which is pushed distally during the staple firing stroke to cut tissue captured against the deck 11130 of the staple cartridge 11000. The staple cartridge 11000 further comprises a staple 11200 positioned in each staple cavity 11140 and staple drivers 11300 which support the staples 11200 and drive the staples 11200 out of the staple cavities 11140 during the staple firing stroke. The staple cartridge 11000 further comprises a sled 11400 which is pushed distally by a firing member of the staple firing drive to contact and lift the staple drivers 11300 toward the deck 11130 of the cartridge body 11100 during the staple firing stroke. The staple cartridge 11000 further comprises a pan 11700 attached to the cartridge body 11100 which is configured to retain the drivers 11300 and/or staples 11200 from falling out of the bottom of the cartridge body 11100.


The staple cartridge 11000 further comprises an electronic circuit. Although not illustrated in FIGS. 5-5C, the staple cartridge 11000 comprises the electronic circuit 11500 depicted in FIGS. 11-11C. Referring to FIGS. 11-11C, the electronic circuit 11500 comprises a proximal end 11510 and a second end 11520. The proximal end 11510 comprises a cartridge antenna 11530 that is placed in communication with an instrument antenna 10530 of the surgical instrument 10000 when the staple cartridge 11000 is seated in a jaw 10410 of the end effector 10400. The electronic circuit 11500 comprises a flexible substrate, such as a flex circuit, for example, conductive traces defined in and/or on the flexible substrate, and electronic components mounted to the flexible substrate that are in electrical communication with the conductive traces. In various embodiments, the electronic circuit 11500 is comprised of an insulator, conductive traces defined in and/or on the insulator, and electronic components mounted to the flexible substrate that are in electrical communication with the conductive traces.


Further to the above, referring again to FIGS. 11-11C, the electronic circuit 11500 is embedded in the cartridge body 11100. The cartridge body 11100 comprises a circuit slot 11160 defined in the deck 11130 and the electronic circuit 11500 is positioned in the circuit slot 11160. The cartridge body 11100 further comprises a first lateral side 11170, a second lateral side 11180, and the distal portion 11120 connecting the first lateral side 11170 and the second lateral side 11180. The circuit slot 11160 extends around and/or between the longitudinal rows of staple cavities 11140 on the first lateral side 11170 of the cartridge body 11100, around the distal portion 11120, and then proximally into the second lateral side 11180. Similar to the first lateral side 11170, the circuit slot 11160 extends around/or between the longitudinal rows of staple cavities 11140 on the second lateral side 11180. As a result of this arrangement, the electronic circuit 11500 can extend within both lateral sides of the cartridge body 11100 without having to cross over the longitudinal slot 11150. Moreover, such an arrangement permits the electronic circuit 11500 to extend into the distal portion 11120 of the cartridge body 11100. In various embodiments, the electronic circuit 11500 is embedded in the cartridge body 11100. In at least one embodiment, the electronic circuit 11500 is snap-fit and/or press-fit into the circuit slot 11160. In at least one embodiment, the cartridge body 11100 is comprised of plastic that is injection molded around at least a portion of the electronic circuit 11500.


In various embodiments, referring again to FIGS. 11-11C, the staple cartridge 11000 comprises elastomeric connectors which mechanically and electrically connect sensors 11600 to the cartridge body 11100. In at least one embodiment, the elastomeric connectors comprise conductive and insulative regions in a rubber or elastomeric matrix to produce overall anisotropic conductive properties. The matrix is molded into a three-dimensional shape and then attached to the cartridge body 11100. In various embodiments, the shape of the matrix matches features on the cartridge body. In at least one embodiment, short, fine metallic wires are embedded in a rubber sheet to connect the sensors 11600 to a control system of the staple cartridge 11000. In at least one instance, the metallic wires are comprised of silver, for example. In at least one instance, the density of the metallic wires in the matrix is between about 300 wires/cm2 and about 2000/cm2, for example. At the surfaces of the rubber sheet, the ends of the wires either extend from the surfaces or are bent back toward the rubber substrate. At least one material, trademarked ZEBRA, is available from Fuji Polymer Industries Company.


In various embodiments, a sensor system comprises a plurality of sections which are selectively powered by the control system of the staple cartridge. In at least one embodiment, the sensor system comprises a first sensor section and a second sensor section and a processor of the control system is configured to power only the first sensor section during a first operating mode, only the second sensor section during a second operating mode, and both sensor sections during a third operating mode, for example. Such embodiments can reduce the amount of heat produced by the staple cartridge, among other things. In various embodiments, the first sensor section and the second sensor section comprise the same number of sensors while, in other embodiments, the first sensor section and the second sensor section have a different number of sensors. In certain embodiments, the first sensor section comprises a first density of connection wires therein and the second sensor section comprises a second density of connection wires therein which is different than the first density.


Referring to FIG. 6, the cartridge antenna 11530 comprises a coil 11540 that is defined in a plane which is parallel to a plane defined by a coil 10540 of the instrument antenna 10530. The coils 10540 and 11540 are sized, configured, and positioned to provide a sufficient and/or optimal transfer coefficient such that data and/or power can be efficiently transmitted between the instrument antenna 10530 and the cartridge antenna 11530. In various instances, the instrument coil 10540 comprises a primary coil and the cartridge coil 11540 comprises a secondary coil and, in use, power is transmitted wirelessly from the instrument coil 10540 to the cartridge coil 11540. In at least this embodiment, data signals can also be transmitted between the instrument coil 10540 and the cartridge coil 11540. More specifically, data signals can be transmitted from the surgical instrument 10000 to the staple cartridge 11000 and/or from the staple cartridge 11000 to the surgical instrument 10000. Any suitable software protocol and/or hardware components can be used to co-ordinate the transmission of power and data across the single pair of coils comprising the instrument coil 10540 and the cartridge coil 11540. In at least one embodiment, power and data signals are transmitted simultaneously between the instrument coil 10540 and the cartridge coil 11540. In at least one alternative embodiment, referring to FIG. 7, power and data signals are transmitted sequentially between the instrument coil 10540 and the cartridge coil 11540. In various embodiments, the instrument antenna 10530 and/or the cartridge antenna 11530 comprises a multiplexer, for example, which co-ordinates the transmission of signals between the antennas 10530 and 11530.


Referring again to FIG. 6, the surgical instrument 10000 comprises a processor 10610 in communication with the instrument antenna 10530. In at least one embodiment, the processor 10610 comprises a near field communication (NFC) reader chip, for example. A NFC reader chip uses high frequency radio frequency identification at a frequency of 13.56 MHz at a data rate of about 426 kbits/s, for example. In various instances, the processor 10610 comprises a low frequency RFID reader which communicates at a frequency between about 120 kHz and about 150 kHz, for example. In various instances, the processor 10610 comprises a high frequency RFID reader which communicates at a frequency of about 13.6 MHz, for example. In various instances, the processor 10610 comprises an ultra-high frequency RFID reader which communicates at a frequency of about 868 MHz, for example. The entire disclosure of U.S. Patent Application Publication No. 2020/0405301, entitled METHOD FOR AUTHENTICATING THE COMPATIBILITY OF A STAPLE CARTRIDGE WITH A SURGICAL INSTRUMENT, which published on Dec. 31, 2020, is incorporated by reference herein. In various instances, the processor 10610 comprises a Bluetooth component which communicates at a frequency of about 2.4 GHz, for example. In various instances, the processor 10610 comprises a Qi wireless charging component which communicates at a frequency between about 105 kHz and about 205 kHz, for example. In any event, the processor 10610 comprises input channels and output channels in communication with the instrument antenna 10530 which facilitate direct peer-to-peer communication with a NFC tag, for example, in communication with the cartridge antenna 11530, as discussed below.


Further to the above, the instrument antenna 10530 is configured to supply power and data signals to the staple cartridge 11000 via the cartridge antenna 11530. As discussed above, the staple cartridge circuit 11500 comprises a plurality of sensors 11600 which measure at least one property of the staple cartridge 11000 and/or at least one property of the tissue supported by the staple cartridge 11000. In at least one embodiment, the sensors 11600 comprise capacitance sensors configured to detect the thickness of the tissue and/or the amount of fluid, or edema, contained in the tissue, for example. In at least one embodiment, the sensors 11600 comprise resistance sensors, such as strain gauges, for example, which measure the strain, or force loading, within the cartridge body 11100, for example. In any event, the sensors 11600 require power to measure a property and produce an output voltage that is detectable by a cartridge processor 11610 of the staple cartridge 11000. In use, power is delivered to the cartridge coil 11540 from the instrument coil 10540, rectified by a rectifier 11620, and then filtered by a capacitor 11630 before it is supplied to the sensors 11600. The rectifier 11620 is configured to rectify an AC input to a DC output for at least one of the output channels of the rectifier 11620. In various instances, the rectifier 11620 is also configured to conduct the AC input to at least one of its output channels without rectification. The capacitor 11630 can comprise a low-pass filter and/or a high-pass filter which can filter out noise and/or extraneous signals received by the cartridge antenna 11530. The above-described arrangement, and/or any other suitable arrangement, can be used to supply an appropriate voltage potential and current to the sensors 11600 and/or the cartridge processor 11610. The output voltages of the sensors 11600 are supplied to input gates of the cartridge processor 11610. In at least one instance, the processor 11610 comprises a multiplexer (MUX), for example, configured to co-ordinate the output signals of the sensors 11600 into a single data signal that is transmitted back to the instrument antenna 10530 via the cartridge antenna 11530.


Further to the above, the staple cartridge 11000 comprises a NFC tag 11640 in communication with the instrument antenna 10530, the rectifier 11620, the processor 11610, and the cartridge antenna 11530. The NFC tag 11640 comprises an input in communication with the rectifier 11620 which is configured to control and/or limit the voltage potential applied to the NFC tag 11640. In at least one instance, the NFC tag 11640 comprises its own rectifier. Upon receiving an input from the rectifier 11620, the NFC tag 11640 is configured to output a data signal to the cartridge antenna 11530 which includes data regarding the staple cartridge 11000. The NFC tag 11640 has information stored therein regarding the identification of the staple cartridge 11000 stored therein which is included in the data signal. The data signal output by the NFC tag 11640 is transmitted to the instrument antenna 10530 via the cartridge antenna 11530 which is then transmitted to a control system of the surgical instrument 10000, such as the instrument processor 10610, for example, to verify the identification of, or authenticate, the staple cartridge 11000.


In various instances, further to the above, many different types of staple cartridges may be useable with the surgical instrument 10000. For instance, some staple cartridges may not comprise a sensor array while other staple cartridges, such as staple cartridge 11000, for example, may comprise one or more sensor arrays. If a staple cartridge does not comprise a sensor array, the staple cartridge may not need, or cannot use, the power that can be supplied by the surgical instrument 10000. As such, the control system of the surgical instrument 10000 is configured to supply, or not supply, a power signal to the staple cartridge seated in the surgical instrument 10000 if the staple cartridge does not properly respond to an interrogation signal supplied to the staple cartridge by the surgical instrument 10000 during an interrogation procedure. After a staple cartridge is seated in the surgical instrument 10000, in at least one such instance, the control system of the surgical instrument 10000 can instruct the instrument processor 10610 to send an interrogation signal to the instrument antenna 10530 which is emitted to and received by the cartridge antenna 11530. In various instances, the interrogation signal is emitted with a low power of about 10 mW to about 30 mW, for example, at a frequency that will pass through the filtering in the cartridge circuit 11500 so that the interrogation signal reaches the NFC tag 11640. The NFC tag 11640 is configured to transmit a response signal to the cartridge antenna 11530 upon receiving the interrogation signal. The response signal is emitted by the cartridge antenna 11530, received by the instrument antenna 10530, and conducted to the instrument processor 10610. If the response signal received by the instrument processor 10610 matches a response signal expected by the instrument processor, the staple cartridge 11000 is identified, or authenticated, by the surgical instrument 10000 and the instrument processor 10610 can supply a high-wattage power signal to the instrument antenna 10530 to power the staple cartridge 11000. In at least one instance, the high-wattage power signal can be about 1 W and/or in excess of 1 W, for example. In various instances, the wattage of the power signal supplied to the instrument antenna 10530 can depend on the staple cartridge that has been identified. For instance, if a first type of staple cartridge is identified, then a first wattage is used and, if a second type of staple cartridge is identified, then a second, or different, wattage is used. However, the control system of the surgical instrument 10000 is configured to not supply a power signal to the instrument antenna 10530 if a response signal is not received from the staple cartridge. If a response signal is received from the staple cartridge seated in the surgical instrument 10000, but not recognized, then the control system can be configured to perform one of two responses. In a first instance, the control system is configured to not supply a power signal to the staple cartridge if the received response signal is not recognized while, in a second instance, the control system is configured to supply a low-power signal if the received response signal is not recognized. In at least one instance, the lower power signal can be about 0.1 W, for example. In such instances, the sensors and electronic circuit may be sufficiently powered to transmit a return data signal that includes data from the sensors while reducing the risk of overpowering the staple cartridge.


In various instances, the surgical instrument 10000 is configured to initiate a cartridge interrogation routine when the surgical instrument 10000 is initially powered on and/or when the surgical instrument 10000 is woken up from a low-power sleep mode. In such instances, the surgical instrument 10000 interrogates the staple cartridge to assess whether to supply power to the staple cartridge and the level of power to supply to the surgical instrument 10000. That said, absent additional information, the control system of the surgical instrument 10000 may be unable to differentiate between whether the staple cartridge is not identifiable or it is missing altogether if a response signal is not received following the interrogation signal. To this end, the surgical instrument 10000 comprises a cartridge presence sensor configured to detect whether a staple cartridge is seated in the cartridge jaw of the end effector 10400. In at least one instance, the cartridge presence sensor comprises a Hall Effect sensor mounted in the cartridge jaw of the end effector 10400 which is configured to detect a metallic element in the staple cartridge, for example. In at least one instance, the cartridge presence sensor comprises a pressure sensor that is compressed by the staple cartridge when the staple cartridge is seated in the cartridge jaw of the end effector 10400. In either event, the cartridge presence sensor is in communication with the control system of the surgical instrument 10000. If the control system receives a signal that a staple cartridge is seated in the cartridge jaw but does not receive a response signal from the staple cartridge, in various instances, then the control system does not supply a power signal to the staple cartridge but permits the surgical instrument 10000 to be operated to fire the staples from the staple cartridge. If the control system receives a signal that a staple cartridge is missing from the cartridge jaw, then the control system does not supply a power signal and it also electronically locks out the staple firing system until a staple cartridge is seated in the cartridge jaw.


When the staple cartridge 11000 is seated in the cartridge jaw of the surgical instrument 10000, referring again to FIG. 6, the power signal and the data signal can be transmitted simultaneously from the instrument antenna 10530 to the cartridge antenna 11530. Moreover, a data signal can be transmitted from the staple cartridge 11000 to the surgical instrument 10000 at the same time that power is being delivered from the surgical instrument 10000 to the staple cartridge 11000. Referring now to FIG. 7, the control system of a surgical instrument 10000′ is configured and arranged to supply power and data signals intermittently to a staple cartridge 11000′. In at least one instance, the control system is configured to alternately deliver low-power signals and high-power signals to the instrument antenna 10530 to respectively transmit data and power to an electronic circuit 11500′ of the staple cartridge 11000′, but not at the same time. In at least one such instance, the control system delivers low-power signals having a power of about 0.1 W and high-power signals over 1 W, for example. As discussed above in connection with FIG. 6, the instrument processor 10610 comprises a NFC reader chip that generates and supplies both the power and data signals to the staple cartridge 11000 simultaneously. On the other hand, FIG. 7 depicts a control system including a NFC reader chip 10610′ that generates a data signal and a separate power driver 10620′ that generates a power signal. The NFC reader chip 10610′ and the power driver 10620′ are in communication with the instrument antenna 10530 and are configured to sequentially supply the separate data and power signals to the cartridge antenna 11530 via the instrument antenna 10530. In at least one instance, the NFC reader chip 10610′ and the power driver 10620′ are in communication with a multiplexer, for example, which co-ordinates the sequential transmission of the data and power signals to the staple cartridge 11000′.


As discussed above in connection with FIG. 7, data signals and power signals are transmitted between the surgical instrument and the staple cartridge 11000′ in an alternating manner. In various instances, the surgical instrument supplies power to the staple cartridge 11000′ until the instrument processor has data to transmit to the staple cartridge 11000′. At such point, the instrument processor stops the power signal and then emits the data signal. After the instrument processor has emitted the data signal, the instrument processor is configured to resume the power signal. The data signal and the power signal are transmitted at different frequencies, but could be emitted at the same frequency in other embodiments. In either event, the power signal is emitted at a higher intensity than the data signal. In various embodiments, the processor of the staple cartridge 11000′ is configured to emit a pause signal to the surgical instrument when the processor has data to transmit to the surgical instrument. After receiving the pause signal, the instrument processor stops the power signal or does not generate the power signal until after receiving the data from the staple cartridge 11000′. In at least one such embodiment, the surgical instrument can emit a paused signal back to the staple cartridge 11000′ after receiving the pause signal from the staple cartridge. Upon receiving the paused signal from the surgical instrument, the staple cartridge is configured to emit the data signal to the surgical instrument.


Referring now to FIGS. 8 and 8A, a surgical instrument 10000″ comprises a data antenna 10530″ and a separate power transmission antenna 10535″ that are used to communicate with and supply power to a staple cartridge 11000″ seated in a cartridge jaw of the surgical instrument 10000″. The data antenna 10530″ is in communication with the NFC reader chip 10610′. The power driver 10620′ is in communication with the power transmission antenna 10535″. The data antenna 10530″ comprises a coil 10540″ that is aligned with a coil 11540″ of a cartridge data antenna 11530″ when the staple cartridge 11000″ is seated in the cartridge jaw. In at least one instance, the coil 10540″ is wound in a plane which is parallel to, or at least substantially parallel to, a plane that defines the cartridge coil 11540″. The instrument coil 10540″ and the cartridge coil 11540″ are the same size, or at least substantially the same size, but can be any suitable size. The instrument coil 10540″ comprises a primary coil that comprises a first number of windings and the cartridge coil 11540″ comprises a secondary coil that comprises a second number of windings which, in at least one embodiment, is greater than the first number of windings. Such an arrangement can improve the transmission coefficient between the instrument data antenna 10530″ and the cartridge data antenna 11530″. The power transmission antenna 10535″ comprises a coil 10545″ that is aligned with a coil 11545″ of a cartridge power antenna 11535″ when the staple cartridge 11000″ is seated in the cartridge jaw. In at least one instance, the instrument coil 10545″ is wound in a plane which is parallel to, or at least substantially parallel to, a plane that defines the cartridge coil 11545″. The instrument coil 10545″ and the cartridge coil 11545″ are the same size, or at least substantially the same size, but can be any suitable size. The instrument coil 10545″ comprises a primary coil that comprises a first number of windings and the cartridge coil 11545″ comprises a secondary coil that comprises a second number of windings which, in at least one embodiment, is greater than the first number of windings. Such an arrangement can improve the transmission coefficient between the power transmission antenna 10535″ and the cartridge power antenna 11535″.


Further to the above, the staple cartridge 11000″ comprises a rectifier 11620 and a capacitor 11630 in communication with the cartridge power antenna 11535″. Similar to the above, the rectifier 11620 and the capacitor 11630 are configured to rectify, filter, and/or modify the power signal supplied to the staple cartridge 11000″ from the power transmission antenna 10535″ before the power is supplied to a sensor of the staple cartridge 11000″. The staple cartridge 11000″ further comprises a NFC tag 11640 in communication with the cartridge data antenna 11530″. Similar to the above, the control system of the surgical instrument 10000″ can interrogate the NFC tag 11640 with an interrogation signal that is generated by the NFC reader chip 10610″ and emitted to the NFC tag 11640 via the coupled data antennas 10530″ and 11530″. Upon receiving the interrogation signal, the NFC tag 11640 is configured to generate a response signal that is emitted back to the NFC reader chip 10610′ via the coupled data antennas 10530″ and 11530″. The NFC tag 11640 is also in communication with a cartridge processor 11610″ of the staple cartridge 11000″ which, similar to the above, is configured to receive data from the cartridge sensors, generate a data signal comprising the sensor data, and supply the data signal to the NFC tag 11640 and the cartridge data antenna 11530″. The data signal supplied to the cartridge data antenna 11530″ is transmitted to the NFC reader chip 10610′ via the instrument data antenna 10530″ and is then used by the control system to interpret a property of the surgical instrument 10000″, the staple cartridge 11000″, and/or the tissue captured against the staple cartridge 11000″, for example. Notably, the cartridge processor 11610″ is also in communication with the cartridge power antenna 11535″ of the staple cartridge 11000″ and can, in various embodiments, supply power to the NFC tag 11640 from the cartridge power antenna 11535″.


As detailed above, the surgical instrument 10000″ and the staple cartridge 11000″ comprise a first paired antenna system for communicating data and a second paired antenna system for communicating power. In various embodiments, the first paired antenna system is positioned on a first lateral side 11170 of the staple cartridge 11000″ and the second paired antenna system is positioned on a second, or opposite, lateral side 11180 of the staple cartridge 11000″. In at least one such embodiment, the cartridge jaw of the surgical instrument 10000″ comprises a channel including a bottom wall, a first lateral sidewall extending from a first side of the bottom wall, and a second lateral sidewall extending from a second, or opposite, side of the bottom wall. When the staple cartridge 11000″ is seated in the cartridge jaw, the staple cartridge 11000″ is positioned between the first lateral sidewall and the second lateral sidewall and pushed downwardly toward the bottom wall until snap features and/or lock features of the staple cartridge 11000″ engage the cartridge jaw which releasably lock the staple cartridge 11000″ in place in the cartridge jaw. In at least one such embodiment, the first instrument antenna is mounted to the first sidewall and the second instrument antenna is mounted to the second sidewall and, moreover, the first cartridge antenna is mounted to a first lateral side of the cartridge body and the second cartridge antenna is mounted to a second lateral side of the cartridge body. When the staple cartridge 11000″ is seated in the cartridge jaw, the first cartridge antenna becomes aligned with the first instrument antenna and, likewise, the second cartridge antenna becomes aligned with the second instrument antenna. By placing the first paired antenna system on one lateral side and the second paired antenna system on the opposite lateral side, the possibility of one paired antenna system interfering with the other is reduced. In various instances, the first paired antenna system is operated within a first frequency range and the second paired antenna system is operated within a second, or different, frequency range that does not overlap with the first frequency range such that the possibility of one paired antenna system interfering with the other is reduced. To this end, further to the above, the instrument antennas and/or the cartridge antennas can comprise one or more capacitors which can filter frequencies outside of the intended operating frequency range for each of the paired antenna systems.


In various instances, further to the above, the cartridge data antenna 11530″ is mounted to the first lateral side of the cartridge body 11100 and the cartridge power antenna 11535″ is mounted to the second lateral side of the cartridge body 11100. More specifically, the coils 11540″ and 11545″ of the antennas 11530″ and 11535″, respectively, are mounted on the proximal ends of their respective sides, i.e., they are positioned much closer to the proximal end 11110 of the staple cartridge 11000″ than the distal end 11120. As a result, the cartridge data antenna 11530″ and the cartridge power antenna 11535″ can be shorter than if they were positioned at the distal end 11120 of the staple cartridge 11000″ and are, as a result, less susceptible to interference. In various alternative embodiments, the coils 11540″ and 11545″ are mounted at or near the centerline between the proximal end 11110 and the distal end 11120 of the staple cartridge 11000″. In such an arrangement, the distance between the cartridge data coil 11540″ and the sensors mounted to the cartridge body 11100 can be shortened as compared to when the cartridge data coil 11540″ is mounted to the proximal end 11110 of the cartridge body 11100, thereby reducing the possibility of the sensor outputs being corrupted before the sensor outputs are processed and transmitted via the cartridge data coil 11540″.


In various embodiments, further to the above, the coils 11540″ and 11545″ are mounted to the cartridge body 11100 and/or the pan 11700 (FIG. 5A) of the staple cartridge. In at least one embodiment, the cartridge body 11100 comprises a recessed pocket defined in the lateral side thereof and the coils 11540″ and 11545″ are positioned in the recessed pocket. In at least one such embodiment, a potting material is poured into the recessed pocket to secure, seal, and/or protect the coils 11540″ and 11545″ within the pocket. The potting material can comprise a sealing glue such as TECHNOMELT from Eastern Adhesive Systems Technology, Inc., for example, a light-cured acrylic adhesive such as LOCTITE 3321 from Henkel Corporation, for example, wax, and/or paraffin, for example. In various instances, the potting material can comprise an air-cured material.


In various embodiments, the antenna coils 11540″ and 11545″ are enclosed in the cartridge body using one or more manufacturing processes. In at least one embodiment, the cartridge body 11100 is formed by a two-shot injection molding process. In at least one such embodiment, a first plastic component, or core, is molded during a first injection molding process, the coils 11540″ and 11545″ are attached to the core, and then a second injection molding process is used to at least partially cover, enclose, seal, and/or protect the coils 11540″ and 11545″. In at least one embodiment, the coils 11540″ and 11545″ are positioned in a recess or pocket defined in the cartridge body and a cover is attached to the cartridge body 11100 which at least partially covers, encloses, seals, and/or protects the coils 11540″ and 11545″. In at least one such embodiment, the cover is snap-fit and/or press-fit to the cartridge body 11100. In certain embodiments, an ultrasonic staking process is used to attach the cover to the cartridge body 11000.


The above-described materials and methods for attaching the antenna coils 11540″ and 11545″ to the cartridge body 11100 can also be used to attach RFID tags to the sled 11400 and/or staple drivers 11300. In such embodiments, the positions and/or motions of the sled 11400 and/or staple drivers 11300 can be tracked by the control system of the staple cartridge 11000 using the RFID tags attached to and/or embedded within the sled 11400 and/or staple drivers 11300.


As discussed above, the surgical instrument 10000 comprises a shaft 10200 extending distally from a handle and/or an instrument housing configured to be mounted to the arm of a robotic surgical system. In various instances, the shaft 10200, the handle 10100, the instrument housing, and/or the robotic surgical system can comprise an instrument processor in communication with the staple cartridge through one or more antenna couples, as discussed above. To facilitate communication between the instrument processor and the cartridge processor, the shaft 10200 comprises a wiring harness including the instrument antennas. In at least one such embodiment, the wiring harness comprises a flex circuit 10900 (FIG. 11B) including a flexible substrate and conductive wires, or traces, extending within the flexible substrate. In various embodiments, the flex circuit 10900 comprises a stack of conductive and insulative layers, for example. Referring to FIG. 8C, the distal end of a flex circuit of the surgical instrument 10000″ includes the coils 11540″ and 11545″ which comprise embedded wires within the non-conductive substrate of the flex circuit.


Further to the above, the distal end of the flex circuit is mounted to the sidewall of the first jaw 10410 by one or more adhesives, for example. In at least one embodiment, ferrite components can be mounted to and/or embedded within the substrate of the flex circuit to control the fields emitted by the coils 11540″ and 11545″. In at least one embodiment, the ferrite components are positioned intermediate the first jaw 10410 and the coils 11540″ and 11545″. Moreover, electronic components can be mounted to and/or embedded within the substrate of the flex circuit which condition and/or amplify the signals emitted by the coils 11540″ and 11545″. In at least one such embodiment, one or more capacitors are embedded in the flex circuit which filter out low and/or high frequencies. Moreover, in at least one such embodiment, one or more amplification circuits are embedded in the flex circuit which can boost and/or control the power of the signals being emitted by the coils 11540″ and 11545″. In various embodiments, the first jaw 10410 and/or the second jaw 10420 are comprised of metal and are configured to minimize the impact of the metal jaws on the fields emitted by the coils 11540″ and 11545″. In at least one embodiment, the cross-sections of the metal jaws are designed to create a uniform, or substantially uniform, area that shields, or substantially shields, external signals from interfering with signals within the end effector 10400.


In embodiments where the coils 11540″ and 11545″ are mounted to the cartridge body 11000 and the coils 10540″ and 10545″ are mounted to the first jaw 10410, the pan 11700 can comprise one or more windows defined therein such that the coils 10540″ and 11540″ of the data coil set have a direct line-of-sight with one another and the coils 10545″ and 11545″ of the power coil set have a direct line-of-sight with one another. In embodiments where the coils 11540″ and 11545″ are mounted to the pan 11700, the coils 10540″ and 11540″ of the data coil set have a direct line-of-sight with one another and the coils 10545″ and 11545″ of the power coil set have a direct line-of-sight with one another.


In various embodiments, the antennas of the surgical instrument 10000″ and/or the antennas of the staple cartridge 11000″ comprise coil antennas. That said, a surgical instrument and/or staple cartridge can comprise any suitable type of antennas. In at least one instance, the surgical instrument and/or the staple cartridge can comprise a slot antenna. In at least one such embodiment, a slot antenna comprises a flat plate with one or more holes or slots cut out. One or more slot antennas can be mounted to the sidewalls and/or bottom wall of the first jaw 10410 while one or more slot antennas can be mounted to the pan 11700. In various embodiments, a slot antenna can be integrally-formed with the first jaw 10410 and/or the pan 11700, for example.


In various embodiments, a surgical instrument and/or staple cartridge can comprise an active cancellation system including a control system which monitors for environmental magnetic and/or electrical fields and their frequencies and emits signals through one or more antennas to cancel, or at least partially cancel, the environmental fields.


In various embodiments, the cartridge body of a staple cartridge comprises conductive traces plated on a plastic substrate, which can be made of a liquid crystal polymer such as VECTRA from Ticona, for example. In at least one embodiment, the conductive traces are electroplated on the plastic substrate and/or plated onto the plastic substrate using a vapor deposition process, for example. In at least one embodiment, the electrical traces are comprised of a conductive ink that is printed onto the plastic substrate, for example. In various instances, the traces are comprised of silver and/or copper, for example. In various embodiments, the cartridge body comprises recesses defined in the plastic substrate where conductive traces are plated onto the plastic substrate in the recesses. In at least one embodiment, the recesses are laser-etched into the plastic substrate. In various embodiments, a non-conductive material is printed onto the conductive traces to cover the conducive traces where it is not desired for the tissue, for example, to touch the conductive traces. Such a non-conductive material can also control the fields produced by the conductive traces. In various embodiments, the plastic substrate is formed by a three-dimensional printing process using a non-conductive material and a conductive material, such as graphene-imbedded polylactic acid (PLA). In at least one such embodiment, conductive material is printed into conductive traces that are at least partially embedded in the non-conductive material.


In various embodiments, further to the above, the staple cavities 11140 are arranged in three longitudinal rows on a first side of the cartridge deck 11130 and three longitudinal rows on a second, or opposite side, of the cartridge deck 11130. After the staple firing stroke has been performed, the patient tissue has been incised with three rows of staples on both sides of the incision to seal, or at least substantially seal, the tissue. That said, implanting two rows of staples on both sides of the incision, instead of three, has been shown to be clinically acceptable. As such, the third row of staples does not need to comprise a continuous row of staples. Instead, in at least one embodiment, at least some of the staple cavities 11140 in the outermost rows house a sensor therein instead of staple and a staple driver. In at least one such embodiment, a force-sensitive sensor is positioned in a staple cavity 11140. The force-sensitive sensor comprises a tissue contact element slideable within the staple cavity 11140 that is sized and configured to match, or at least substantially match, the perimeter of the staple cavity 11140 such that the motion of the tissue contact element is limited, or at least substantially limited, to the ejection axis of the staple cavity 11140. The force-sensitive sensor further comprises a base mounted to the cartridge deck 11130 and a spring, such as a linear coil spring, for example, positioned intermediate the base and the tissue contact element. When the end effector 10400 is clamped onto the patient tissue, the tissue contacts the tissue contact element and compresses the spring. The force-sensitive sensor further comprises a magnetic element mounted to the tissue contact element, the motion of which is detectable and measurable by a Hall Effect circuit in the cartridge deck 11130, for example. The Hall Effect circuit is in communication with the cartridge processor which is configured to analyze the voltage output to assess whether there is tissue positioned over the force-sensitive sensor and the force being applied to the tissue at the force-sensitive sensor. The staple cartridge 11000 can comprise any suitable number of force-sensitive sensors. For instance, in at least one embodiment, both of the outermost rows of staple cavities 11140 comprises a sensor at the distal end of the staple cartridge 11000, a sensor at the proximal end of the staple cartridge 11000, and at least one sensor positioned intermediate the distal sensor and the proximal sensor. The above being said, the staple cartridge can comprise any suitable type of sensor and/or number of sensors in the staple cavities.


In at least one embodiment, further to the above, some of the staple cavities 11300 can include a typical staple driver positioned therein, but not a staple, and at least a portion of a sensor extending over the staple cavity. In at least one such embodiment, the portion of the sensor extending over the staple cavity is frangible and is configured to break, or snap, when the staple driver is driven upwardly toward the anvil during the staple firing stroke. Such an arrangement can be used to progressively cut off sensors from the cartridge processor as the staple firing stroke progresses. Such an arrangement can be used to conserve processing power and/or track the progress of the staple firing stroke, among other things.


The entire disclosures of U.S. Pat. No. 8,622,274, entitled MOTORIZED CUTTING AND FASTENING INSTRUMENT HAVING CONTROL CIRCUIT FOR OPTIMIZING BATTERY USAGE, U.S. Pat. No. 10,135,242, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, U.S. Pat. No. 10,548,504, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, U.S. Pat. No. 9,993,248, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, U.S. Patent Application Publication No. 2016/0256071, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, now U.S. Pat. No. 10,548,504, U.S. Patent Application No. 2018/0168625, entitled SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES, U.S. Patent Application No. 2018/0250002, entitled POWERED SURGICAL DEVICES HAVING TISSUE SENSING FUNCTION, and International Patent Publication No. WO 2018/049206, entitled STAPLER RELOAD DETECTION AND IDENTIFICATION, are incorporated by reference herein.


In various instances, referring to FIG. 9, a staple cartridge 12000 comprises an identification circuit 12100 and a power supply circuit 12200 which are independent from one other. The identification circuit 12100 comprises a passive RFID system 12110, for example, which is energized when an interrogation signal is transmitted to the cartridge data antenna 11530″ from the instrument data antenna 10530″. The identification circuit 12100 is self-contained and does not receive power from the power supply circuit. The passive RFID system 12110 does not comprise a power source and is powered by the interrogation signal. Once the passive RFID system 12110 has received the interrogation signal, the passive RFID system 12110 transmits a response signal back to the surgical instrument via the cartridge data antenna 11530″ that includes data regarding the identification of the staple cartridge 12000. The surgical instrument comprises an RFID reader chip 12610 which is configured to receive and process the response signal from the passive RFID system 12110. In at least one alternative embodiment, the independent identification circuit comprises an active RFID system that includes its own power source. In such an embodiment, the active RFID system can comprise a beacon that periodically emits an identification signal that has enough power to be received by the instrument data antenna 10530″.


In various embodiments, further to the above, the independent power supply circuit 12200 of the staple cartridge 12000 comprises a cartridge power antenna 11535″ configured to receive power from the power transmission antenna 10535″ of the surgical instrument. In various instances, similar to the above, the staple cartridge 12000 is configured to transmit a data signal back to the surgical instrument across the power antenna couple including the antennas 10535″ and 11535″ that includes data from the sensor array 11600 of the staple cartridge 12000. In certain instances, the staple cartridge 12000 comprises a third antenna configured to transmit sensor data back to the surgical instrument across a low-power antenna couple which is separate and independent from the power antenna couple of the power circuit 12200 and the cartridge identification circuit 12100. In such instances, power is transmitted from the surgical instrument to the staple cartridge across a power antenna couple, identification signals are transmitted between the surgical instrument and the staple cartridge across an identification signal antenna couple, and sensor data is transmitted from the staple cartridge to the surgical instrument across a sensor data signal antenna couple.


In various embodiments, referring to FIG. 10, a staple cartridge 13000 comprises a cartridge power antenna 11535″ and a cartridge data antenna 11530″ which are both coupled to a single instrument antenna 13530. In at least one such embodiment, the single instrument antenna 13530 comprises a coil 13540 which is defined in an instrument coil plane, the cartridge data antenna 11530″ comprises a coil 11540″ defined in a data coil plane, and the cartridge power antenna 11535″ comprises a coil 11545″ defined in a power coil plane. The coils 13540, 11540″, and 11545″ are stacked such that signals transmitted by the single instrument antenna 13530 are received by the cartridge data antenna 11530″ and the cartridge power antenna 11535″. In at least one instance, the coils 13540, 11540″, and 11545″ may be positioned on one lateral side of the staple cartridge 13000. In various instances, the coils 13540, 11540″, and 11545″ may be positioned on the bottom of the staple cartridge 13000. In various instances, it may be desirable for the cartridge data antenna 11530″ to receive signals at a lower power than the cartridge power antenna 11535″. In at least one such instance, the coils 13540, 11540″, and 11545″ are stacked such that the cartridge power coil 11545″ is positioned intermediate the instrument antenna coil 13540 and the cartridge data coil 11540″. In such instances, as a result, the intensity of the signals emitted by the instrument antenna coil 13540 is greater at the cartridge power coil 11545″ than at the cartridge data coil 11540″. In various instances, the coils 13540, 11540″, and 11545″ are spaced equally, or equidistant, from one another. In other instances, the gap between the cartridge data coil 11540″ and the cartridge power coil 11545″ is larger than the gap between the cartridge power coil 11545″ and the instrument antenna coil 13540. In such instances, the power transmitted to the cartridge data coil 11540″ may be substantially lower than the power transmitted to the cartridge power coil 11545″. In various alternative embodiments, the instrument antenna coil 13540 is positioned intermediate the cartridge data coil 11540″ and the cartridge power coil 11545″ and the coils 11540″ and 11545″ can be positioned at any suitable distance from the instrument antenna coil 13540.


Referring to FIG. 10 once again, the instrument antennas 10530″ and 10535″ are used to emit fields that interact with the cartridge antennas 11530″ and 11535″. In various instances, the fields emitted by the instrument antennas 10530″ and 10535″ are emitted omni-directionally. As a result, a significant amount of power may be emitted by the instrument antennas 10530″ and 10535″ which is not received by the cartridge antennas 11530″ and 11535″. In various instances, the surgical instrument is configured to shape the fields emitted by the instrument antennas 10530″ and 10535″. In at least one instance, the surgical instrument comprises one or more metal walls which surround the instrument data antenna 10530″ and/or the power transmission antenna 10535″, for example. Such metal walls can limit the intensity of the emitted fields in directions which are not toward the cartridge antennas 11530″ and 11535″. In at least one instance, the metal walls form a horn which directs the emitted fields from the coil of an instrument antenna toward the coil of the corresponding cartridge antenna. In at least one such instance, the metal walls extend from a metal sidewall and/or metal bottom wall of the cartridge jaw, for example. In various instances, a ferrite ring, for example, can be positioned around the coil of an instrument antenna to tunnel the emitted field toward the coil of the corresponding cartridge antenna. In at least one such instance, the ferrite ring is mounted to the sidewall and/or bottom wall of the cartridge jaw, for example. In various instances, the staple cartridge 11000″ comprises metal walls which direct the fields emitted from an instrument antenna toward the coil of the corresponding cartridge antenna. In at least one such instance, the metal walls form a horn mounted to the cartridge body of the staple cartridge which is comprised of plastic, for example. Also, in various instances, the staple cartridge comprises ferrite material which is configured to direct and/or amplify the fields emitted by the coils of the instrument antennas to the corresponding cartridge antennas. The entire disclosures of U.S. Pat. No. 10,135,242, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, which issued on Nov. 20, 2018, U.S. Pat. No. 9,345,481, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which issued on May 24, 2016, and U.S. Pat. No. 9,872,722, entitled WAKE-UP SYSTEM AND METHOD FOR POWERED SURGICAL INSTRUMENTS, which issued on Jan. 23, 2018, are incorporated by reference herein.


As discussed above, referring again to FIG. 5A, the staple cartridge 11000 comprises a metal pan 11700 attached to the cartridge body 11100. The metal pan 11700 comprises a floor 11710 that extends around the bottom of the cartridge body 11100 and is configured to prevent the staple drivers 11300 and/or the staples from falling out of the bottom of the staple cartridge 11000. The metal pan 11700 comprises a first sidewall 11720 that extends alongside the first lateral side of the cartridge body 11100 and a second sidewall 11720 that extends alongside the second lateral side of the cartridge body 11100. The first sidewall 11720 is attached to the cartridge body 11100 via one or more attachment features 11730 such as a hook and/or shoulder retainer, for example. Similar to the first sidewall 11720, the second sidewall 11720 is attached to the cartridge body 11100 via one or more attachment features 11730 such as a hook and/or shoulder retainer, for example. The metal pan 11700 is comprised of any suitable metal, such as stainless steel, for example. In various embodiments, the metal pan 11700 can also include portions comprised of plastic and/or any other suitable material. In various instances, the cartridge antennas are mounted to the metal pan 11700. In at least one such instance, the cartridge data coil 11540″ and/or the cartridge power coil 11545″ is mounted to the metal pan 11700 which can position the coils closer to their respective instrument antennas and improve the transmission efficiency of the antennas.


In various embodiments, a surgical instrument and/or staple cartridge can comprise a mask or shield configured to control, block, and/or direct signals emitted by the surgical instrument and/or the staple cartridge. In at least one embodiment, a mask is comprised of ferrite, for example. In at least one embodiment, the cartridge jaw comprises metal wall shields extending from the sidewalls and/or bottom walls. In at least one embodiment, the pan and/or cartridge body of a staple cartridge comprises metal wall shields contained therein and/or extending therefrom. In at least one embodiment, the mask is configured to limit the direction in which the signal is emitted and/or received. In various embodiments, a surgical instrument and/or staple cartridge comprises a horn antenna configured to direct a signal emitted therefrom. In at least one embodiment, a surgical instrument and/or staple cartridge can comprise an antenna comprised of a metal wall. In at least one such embodiment, the cartridge jaw of the surgical instrument is comprised of metal walls, at least one of which is used as an antenna. Moreover, in at least one such embodiment, the pan of the staple cartridge is comprised of metal walls, at least one of which is used as an antenna. In various embodiments, one or more capacitors or capacitive elements are soldered to the pan of the staple cartridge which can filter out unwanted frequencies being conducted within and/or transmitted through the pan.


Referring to FIG. 11, a staple cartridge, such as staple cartridge 14000, for example, comprises a cartridge body 11100 and an electronic circuit 11500 including sensors 11600. The staple cartridge 14000 is similar to the other staple cartridges disclosed herein in many respects and such respects are not discussed herein for the sake of brevity. As discussed above, the cartridge body 11100 comprises a deck 11130 and longitudinal rows of staple cavities 11140 defined in the deck 11130. Each staple cavity 11140 comprises a staple stored therein that is driven upwardly out of the staple cavity 11140 by a staple driver during a staple firing stroke. Each staple comprises a base and two legs extending from the base such that the legs extend generally upwardly and outwardly to form a V-shape configuration. In various instances, the legs of the staple are resiliently deflected inwardly by the proximal and distal end walls of the staple cavity 11140 when the staple is stored in the staple cavity 11140. When the staple is driven upwardly out of the staple cavity 11140, the legs of the staple emerge from the staple cavity 11140 and extend above the deck 11130 while the rest of the staple is pushed upwardly out of the staple cavity 11140. The cartridge body 11100 comprises projections 11132 (FIG. 5B) extending from the deck 11130 which are configured to guide and/or control the legs of the staples as the staples are being ejected from the staple cavities 11140. A projection 11132 is positioned at the distal end of each staple cavity 11140 and at the proximal end of each staple cavity 11140. However, alternative embodiments are envisioned in which a projection 11132 is positioned at only one end of each staple cavity 11140. Moreover, various embodiments are envisioned in which some of the staple cavities 11140 do not comprise projections 11132 at the ends thereof. The projections 11132 are further configured to engage the patient tissue positioned against the deck 11130 and limit the flow or movement of the patient tissue relative to the deck 11130.


In various embodiments, the electronic circuit 11500 comprises a substrate including features engaged with the projections 11132. In at least one embodiment, the substrate comprises apertures defined therein, the sidewalls of which are engaged with the projections 11132. The apertures are in a snap-fit and/or press-fit arrangement with the projections 11132 such that the electronic circuit 11500 is held in position relative to the cartridge body 11100. In at least one embodiment, the projections 11132 comprise at least partially annular or circumferential shoulders which hold the sensor circuit 11500 against the cartridge body 11100.


In various embodiments, a sensor circuit of a staple cartridge is comprised of a conductive material printed on the deck of the cartridge body. In at least one embodiment, the conductive material is comprised of metal particles bonded to the deck which form an electrical circuit connecting the sensors. In at least one such embodiment, the printed electrical circuit is printed onto the cartridge body with a three-dimensional printer. In various embodiments, the sensor circuit comprises electrodes, or contacts, that are printed onto the cartridge body. In at least one embodiment, the sensor circuit comprises electrodes which comprise a polygonal surface configured to contact the tissue. In at least one alternative embodiment, the electrodes comprise a curved and/or tortuous path on the deck surface which, in various instances, can increase the contact area between the electrodes and the tissue. In at least one embodiment, the electrodes comprise needles extending therefrom which are configured to penetrate the tissue. In at least one embodiment, the needles comprise a diameter of about 1 μm, for example. In various instances, the needles provide parallel signal paths between the tissue and the sensor circuit within one electrode to improve the sensitivity of the sensor circuit. In at least one embodiment, a conductive grease or conductive viscous agent covers the tissue contact points of the sensor circuit which improves the contact between the electrodes and the tissue. In various embodiments, portions of the sensor circuit are embedded in the cartridge body. In at least one such embodiment, the sensor circuit comprises flat, thin conductors that are embedded into the cartridge body when a plastic material, for example, is overmolded onto portions of the conductors. Portions of the conductors, however, remain exposed to provide tissue engaging pads and/or electrically-conductive attachment points for soldering sensors thereto. In at least one embodiment, part of the cartridge sensor circuit can be defined on the lateral sidewalls of the cartridge jaw. In at least one such embodiment, a proximal portion and a distal portion of the sensor circuit are defined on the cartridge body and an intermediate portion of the sensor circuit is defined on the cartridge jaw that electrically connects the proximal portion and the distal portion of the sensor circuit. In at least one embodiment, the portions of the sensor circuit mounted to the cartridge jaw comprise conductive strips mounted to the sidewalls. When the staple cartridge is seated in the cartridge jaw, the cartridge sensor circuit engages the conductive strips to complete the circuit.


As discussed above, a sensor circuit can include conductive tissue-contacting surfaces. In various embodiments, a sensor circuit can include non-conductive tissue-contacting surfaces. In at least one embodiment, a sensor circuit comprises one or more capacitive electrodes. In various instances, projected capacitance measurement techniques are used to measure the presence of the tissue over the capacitive electrodes and/or a property of the tissue over the capacitive electrodes. In at least one embodiment, each capacitive electrode comprises an insulative covering which covers capacitive pads contained therein. In various instances, further to the above, surface capacitance measurement techniques can be used. In various embodiments, a sensor circuit comprises one or more inductive sensors. In at least one embodiment, an eddy current is induced in each of the inductive sensors which changes when the tissue contacts the sensors. In such embodiments, the changes to the sensor eddy currents are detected by the control system of the staple cartridge. In various embodiments, the sensor circuit can comprise temperature sensors which are used to detect the presence of tissue over the temperature sensors. In at least one embodiment, the sensor circuit comprises electrodes comprised of a doped polycrystalline ceramic comprising barium titanate (BaTiO3), for example. The resistance of these ceramic materials changes in response to temperature changes, such as when patient tissue is positioned against the electrodes. The cartridge processor is configured to employ an algorithm to monitor the resistance fluctuations in the ceramic materials to assess whether or not tissue was positioned against the electrodes. In various instances, the electrodes of the sensor circuit are in a parallel arrangement such that a detected resistance, capacitance, voltage, and/or current change can be directly related to the position of a sensor. With this information, the processor can assess whether and where tissue is positioned over the staple cartridge.


Referring to FIGS. 11A and 11D, the staple cartridge 14000 further comprises a laminate material 14900 mounted to one or more components of the staple cartridge 14000 to control the electrical effects created within the cartridge components by the fields emitted from and/or surrounding the staple cartridge 14000. In at least one instance, the laminate material 14900 comprises a flux field directional material including at least two layers—a first layer 14910, or cover, and a second layer 14920 of magnetic material attached to the first layer 14910. The first layer 14910 is comprised of polyethylene terephthalate, for example, which protects the second layer 14920, but can be comprised of any suitable material. The second layer 14920 is comprised of a sintered ferrite sheet, for example, but can be comprised of any suitable material. In at least one instance, an adhesive layer 14930 comprised of a pressure-sensitive adhesive, for example, is bonded to the second layer 14920 and is used to attach the laminate material 14900 to one or more components of the staple cartridge 14000, as discussed further below. In at least one instance, the laminate material 14900 is a Flux Field Directional Material EM15TF manufactured by 3M, for example.


In various embodiments, further to the above, laminate material 14900 is bonded to the cartridge body 11100 and is arranged to change and/or control the shape of the fields extending from the cartridge antennas. In at least one embodiment, the laminate material 14900 focuses the fields away from the metal cartridge jaw of the surgical instrument 10000 in which the staple cartridge 14000 is seated. In at least one instance, the cartridge body 11100 is comprised of plastic and the laminate material 14900 is mounted to the cartridge body 11100 such that the laminate material 14900 surrounds, or at least substantially surrounds, the cartridge antennas. In at least one instance, laminate material 14900 is mounted to the cartridge body 11100 at a location which is intermediate the cartridge data coil 11540″ and the cartridge power coil 11545″ such that the cartridge coils 11540″ and 11545″ are separated by the laminate material 14900. In various embodiments, laminate material 14900 is bonded to the metal walls of the cartridge jaw 10410. In at least one instance, laminate material 14900 is mounted to the metal walls of the cartridge jaw 10410 at a location which is intermediate the instrument data coil 10540″ and the power transmission coil 10545″. In various embodiments, the laminate material 14900 bonds the cartridge data antenna 11530″ and/or the cartridge power antenna 11535″ to the cartridge body 11100. In at least one embodiment, the laminate material 14900 bonds the instrument data antenna 10530″ and/or the instrument power antenna 10535″ to the metal cartridge jaw 10410.


In various embodiments, further to the above, laminate material 14900 is mounted to the metal pan 11700. In at least one such instance, laminate material 14900 is positioned intermediate the metal pan 11700 and the cartridge data antenna 11530″ and, also, intermediate the metal pan 11700 and the cartridge power antenna 11535″. Such an arrangement can focus the fields created by the antennas 11530″ and 11535″ away from the metal pan 11700 to minimize the electrical effects that the fields have on the metal pan 11700. In various embodiments, laminate material 14900 is mounted to the movable components of the staple cartridge 14000. In at least one instance, referring to FIG. 11D, laminate material 14900 is mounted to the sled 11400. In at least one such instance, laminate material 14900 is mounted to the lateral sides 11410 of the sled 11400, for example. In at least one instance, referring to FIG. 11A, laminate material 14900 is mounted to one or more of the staple drivers 11300, for example. In at least one such instance, laminate material 14900 is mounted to the lateral sides 11310 of the staple drivers 11300. Laminate material 14900 can be mounted to all of the staple drivers 11300, or just the staple drivers 11300 adjacent the cartridge antennas 11530″ and 11535″, for example.


Further to the above, the fields generated by the cartridge antennas and/or instrument antennas can affect the output of the sensors 11600. Such an effect can be reduced or mitigated by the laminate material 14900, for example. In various instances, the processor of the staple cartridge 14000 is configured to electronically account for the effect that the antenna fields will have on the sensors 11600. In at least one such instance, the cartridge processor can monitor when signals are being transmitted between the antenna couples and, in such instances, modify the sensor outputs being received from the sensors 11600 before transmitting the sensor outputs to the surgical instrument processor and/or recording the sensor outputs in a memory device in the staple cartridge 14000. When signals are not being transmitted between the antenna couples, the sensor outputs may not need to be modified by the processor before being transmitted to the surgical instrument processor and/or recorded in a memory device in the staple cartridge 14000. In various instances, the processor can apply a first compensation factor to the sensor outputs when the power antenna couple is transmitting signals, a second compensation factor to the sensor outputs when the signal antenna couple is transmitting signals, and a third compensation factor to the sensor outputs when both antennas are transmitting signals. In at least one such instance, the third compensation factor is larger than the first compensation factor and the first compensation factor is larger than the second compensation factor, for example.


Further to the above, the circuit 11500 is flush with the top surface of the deck 11130 and/or recessed with respect to the top surface of the deck 11130. In various instances, the staple cartridge 11000 further comprises latches rotatably mounted thereto which are rotatable from an unlatched position to a latched position to hold the circuit 11500 in the circuit slot 11160. The latches engage the cartridge body 11100 in a press-fit and/or snap-fit manner when the latches are in their latched position. When the latches are in their latched position, the latches are flush with and/or recessed below the top surface of the deck 11130. In at least one embodiment, the projections 11132 are mounted to and/or integrally-formed with the latches and/or any other suitable restraining features. In any event, the circuit 11500 comprises one or more sensors which are held in place relative to the cartridge body 11100 as a result of the above.


As discussed above, the sensors 11600 may be effected by their surrounding environment. In various instances, the sensors 11600 may be effected by temperature changes when the end effector 10400 of the surgical instrument is inserted into a patient. Referring to FIG. 12, a staple cartridge, such as staple cartridge 15000, for example, can comprise a thermal management system. The staple cartridge 15000 is similar to the other staple cartridges disclosed herein in many respects, and such respects are not repeated for the sake of brevity. The staple cartridge 15000 comprises a cartridge body 15100 and sensors 11600 mounted to the cartridge body 15100. The staple cartridge 15000 further comprises a heat sink system 15800 that moves and/or equalizes thermal energy with the cartridge body 15100. The cartridge body 15100 comprises a first lateral side 15170 and a second lateral side 15180 and the heat sink system 15800 comprises a first heat sink 15870 embedded in the first lateral side 15170 and a second heat sink 15880 embedded in the second lateral side 15180. The first heat sink 15870 comprises a first longitudinal rail 15872 extending along the first lateral side 15170 of the cartridge body 15100 and lateral rails 15874 extending laterally from the first longitudinal rail 15872. The lateral rails 15874 extend between and around the staple cavities 11140 and conduct heat outwardly away from the sensors 11600 which are positioned adjacent the first longitudinal rail 15872. That said, other embodiments are envisioned in which the rails 15872 and 15874 are arranged to conduct heat inwardly away from sensors 11600 positioned along the outer perimeter of the cartridge body 15100. The second heat sink 15880 comprises a second longitudinal rail 15882 extending along the second lateral side 15180 and lateral rails 15884 extending from the second longitudinal rail 15882. The lateral rails 15884 extend between and around the staple cavities 11400 and conduct heat outwardly away from the sensors 11600 which are positioned adjacent the second longitudinal rail 15882. That said, other embodiments are envisioned in which the rails 15882 and 15884 are arranged to conduct heat inwardly away from sensors 11600 positioned along the outer perimeter of the cartridge body 15100.


Further to the above, the first heat sink 15870 and the second heat sink 15880 are configured to conduct heat from one region of the staple cartridge 15000 to another. In various instances, the first heat sink 15870 includes a first region comprised of a first material having a first thermal conductivity and a second region having a second thermal conductivity which is higher than the first thermal conductivity. In at least one instance, the first region is positioned adjacent the sensors 11600 such that the second region quickly draws heat out of the first region. In this way, the first heat sink 15870 comprises a heat pump. The second heat sink 15880 can comprise a similar arrangement. In various instances, the first heat sink 15870 includes a first region comprised of a first material having a first thermal capacitance and a second region comprised of a second material having a second thermal capacitance which is higher than the first thermal capacitance. In such embodiments, the second region can store heat away from the sensors 11600. The second heat sink 15880 can comprise a similar arrangement.


Further to the above, in various instances, the first longitudinal rail 15872 comprises a constant cross-section along the length thereof. In use, thermal energy will flow along the first longitudinal rail 15872 from a location with a higher temperature along the first longitudinal rail 15872 to a location with a lower temperature. In at least one alternative embodiment, the cross-section of the first longitudinal rail 15872 changes along the length thereof. In use, thermal energy can flow along the first longitudinal rail 15872 from a location having a small cross-section to a location having a larger cross-section. In at least one instance, the first longitudinal rail 15872 is tapered linearly from one end to the other. In at least one such instance, the larger end of the first longitudinal rail 15872 is at the distal end of the staple cartridge 15000. In such instances, heat may flow toward the distal end of the staple cartridge 15000 instead of toward the processor and/or other electronics in the proximal end of the staple cartridge 15000, for example. The second heat sink 15880 can comprise a similar arrangement.


Further to the above, in various instances, the lateral rails 15874 comprise a constant cross-section along the length thereof. In use, thermal energy will flow along the lateral rails 15874 from a location with a higher temperature to a location with a lower temperature. In at least one alternative embodiment, the cross-section of the lateral rails 15874 change along the length thereof. In use, thermal energy can flow along the lateral rails 15874 from a location having a small cross-section to a location having a larger cross-section. In at least one instance, each lateral rail 15874 is tapered linearly from one end to the other. In at least one such instance, the larger end of the lateral rail 15874 is at the lateral side of the staple cartridge 15000. In such instances, heat may flow from the first longitudinal rail 15872 toward the lateral side of the staple cartridge 15000 where the heat can be easily dissipated from the staple cartridge 15000. The second heat sink 15880 can comprise a similar arrangement. That said, any suitable configuration of heat sink can be used.


In various instances, further to the above, a portion of a heat sink is in direct contact with at least one electronic component of the staple cartridge 15000. In at least one instance, the staple cartridge 15000 comprises a microprocessor mounted to the cartridge body 15100 and the heat sink is in direct abutting contact with the microprocessor, for example. In various embodiments, the cartridge body 15100 directly contacts at least one electronic component of the staple cartridge 15000. In at least one instance, the cartridge body 15100 comprises fins extending therefrom which increase the convection surface area and the rate in which the electronic components can be cooled. In at least one such instance, referring to FIG. 11A, the cartridge body 15100 comprises longitudinal rails 11105 which define longitudinal slots 11115 configured to receive staple driving rails 11415 of the sled 11400 where the longitudinal rails 11015 are part of a thermal path for cooling the electronic components of the staple cartridge 15000. In at least one embodiment, the longitudinal rails 11105 of the cartridge body 15100 are at least partially coated in a material which improves the thermal conductivity, convection, and/or radiation of heat between the electronic components and the longitudinal rails 11105 and between the longitudinal rails 11105 and the ambient environment. In various embodiments, the metal pan 11700 of the staple cartridge 15000 is in abutting contact with one or more electronic components of the staple cartridge and is configured to conduct heat away from the electronic components. In at least one embodiment, the cartridge body 15100 and/or the metal pan 11700 comprises windows or throughholes therein which are configured to permit body fluids to enter into the staple cartridge 15000 when the end effector 10400 is in the patient. In such embodiments, the electronic components of the staple cartridge 15000 are coated in a sealant, such as an epoxy, for example, which protects the electronic components when the body fluids enter into the staple cartridge 15000. Such openings could also be positioned and arranged to facilitate the contact of body fluids with the heat sinks of the staple cartridge 15000.


In various embodiments, the staple cartridge 15000 further comprises a temperature sensor circuit including at least one temperature sensor 15900 in communication with the processor of the staple cartridge 15000. In at least one embodiment, the temperature sensor 15900 comprises a thermistor, thermocouple, and/or resistance temperature detector, for example. In various instances, the staple processor, electronic hardware, tissue sensors, and/or antennas of the staple cartridge 15000 generate heat which, in some circumstances, can negatively impact the function of these devices. With the data provided to the staple cartridge processor from the temperature sensor 15900, the staple cartridge processor can adjust its sampling or processing rate of the tissue sensors, for example, to reduce the heat generated by the staple cartridge processor. In at least one instance, the staple cartridge processor is configured to reduce the data sampling or processing rate of the tissue sensors when the temperature sensed by the temperature sensor 15900 exceeds a threshold. In at least one embodiment, the staple cartridge processor can maintain the lower sampling rate of the tissue sensors regardless of whether the temperature stays above or falls back below the temperature threshold. In other embodiments, the staple cartridge processor can increase, or restore, the sampling rate of the tissue sensors after the temperature sensed by the temperature sensor 15900 falls back below the temperature threshold. Similarly, the staple cartridge processor can be configured to reduce the data transfer rate between the staple cartridge 15000 and the surgical instrument across the data antenna couple when the temperature sensed by the temperature sensor 15900 exceeds a threshold. In at least one embodiment, the staple cartridge processor can maintain the lower transfer rate regardless of whether the temperature stays above or falls back below the temperature threshold. In other embodiments, the staple cartridge processor can increase, or restore, the data transfer rate across the data antenna couple after the temperature sensed by the temperature sensor 15900 falls back below the temperature threshold.


In at least one embodiment, further to the above, the processor of the staple cartridge 15000 and/or the processor of the surgical instrument 10000 is configured to reduce the power being transferred across the power antenna couple between the staple cartridge 15000 and the surgical instrument 10000 when the temperature sensed by the temperature sensor 15900 exceeds a threshold. In at least one embodiment, the processor, or processors, can maintain the lower power transfer rate regardless of whether the temperature stays above or falls back below the temperature threshold. In other embodiments, the processor, or processors, can increase, or restore, the power transfer rate after the temperature sensed by the temperature sensor 15900 falls back below the temperature threshold.


In various embodiments, the staple cartridge processor is configured to assess the operational state of the staple cartridge 15000 when the temperature sensed by the temperature sensor 15900 exceeds the temperature threshold before modifying the operation of the staple cartridge 15000. For instance, if the staple cartridge processor senses that the staple firing stroke has not yet been initiated by the surgical instrument 10000 when the sensed temperature exceeds the temperature threshold, the staple cartridge processor is configured to modify, or lower, the sensor sampling rate, the data transfer rate, and/or the power transfer rate, for example, and/or otherwise reduce the heat generated by the staple cartridge processor by altering or stopping a function of the staple cartridge processor. Such an arrangement can reduce the heat generated by the staple cartridge 15000 during use. If the staple cartridge processor senses that the staple firing stroke has already been initiated by the surgical instrument 10000 when the sensed temperature exceeds the temperature threshold, in at least one such embodiment, the staple cartridge processor does not modify the sensor sampling rate, the data transfer rate, and/or the power transfer rate, for example, during the staple firing stroke. After the staple firing stroke, in such instances, the staple cartridge processor can modify the operation of the staple cartridge 15000 in some way to reduce the heat generated by the staple cartridge 15000. In various instances, the staple cartridge 15000 comprises a sensor configured to detect the position of the sled, or at least whether the sled is in its proximal unfired position, to determine whether or not the staple firing stroke has been initiated. In various embodiments, the control system of the surgical instrument 10000 is configured to communicate to the staple cartridge processor that the staple firing stroke is being initiated. The staple cartridge 15000 can also comprise a sensor to determine when the sled has reached its fully-fired position and/or the control system of the surgical instrument 10000 is configured to communicate to the staple cartridge processor that the retraction stroke of the staple firing system is being initiated.


In various embodiments, further to the above, the staple cartridge processor is configured to modify the operation of a first system when the sensed temperature exceeds a first temperature threshold and modify the operation of a second system when the sensed temperature exceeds a second, or higher, temperature threshold. For instance, the staple cartridge processor can reduce the sensor sampling rate when the first temperature threshold has been exceeded and then also reduce the data transfer rate to the surgical instrument when the second temperature threshold has been exceeded.


In various embodiments, further to the above, the processor of the staple cartridge 15000 comprises an internal temperature sensor that is used in co-operation with or in lieu of the temperature sensor 15900. In various embodiments, the cartridge body 15100 is comprised of a positive temperature coefficient (PTC) material that is used as a temperature sensor. In such embodiments, the cartridge body 15100 is part of a temperature sensor circuit in communication with the processor of the staple cartridge 15000. In various instances, the cartridge body 15100 comprises a temperature sensor in addition to or in lieu of the other temperature sensors disclosed herein. In at least one instance, the PTC material is comprised of a doped polycrystalline ceramic including barium titanate BaTiO3, for example. In at least one embodiment, the processor of the staple cartridge 15000 is in communication with the temperature sensor 15900 and at least one temperature sensor in the surgical instrument 10000. In such embodiments, the staple cartridge processor can evaluate the temperature at multiple locations and employ an algorithm which considers the temperature readings of both temperature sensors before modifying the operation of the staple cartridge 15000. In various embodiments, the staple cartridge 15000 can comprise two or more temperature sensors and the staple cartridge processor can employ an algorithm which considers the temperature readings of all of the temperature sensors before modifying the operation of the staple cartridge 15000.


In various embodiments, the heat generated by the cartridge processor, for example, can affect the components of the sensor circuit and/or the voltage potential produced by the sensors of the sensor circuit. In various instances, an increase in the sensed temperature may be the result of an increased magnetic or electrical, field produced by the processor, for example. In at least one embodiment, the processor employs an algorithm configured to utilize a correction factor to compensate for the effect that a temperature increase has on the sensor outputs. In at least one such embodiment, the compensation factor is applied when the sensed temperature exceeds a threshold. In various embodiments, the voltage outputs are modified according to a modification function, such as a linear and/or non-linear function, for example. In various embodiments, the cartridge control system comprises a sensor configured to directly detect fields generated by the processor and employ an algorithm to compensate for the effect that the fields have on the sensor outputs.


In various embodiments, the staple cartridges disclosed herein are configured to be operated in a low-power mode and a high-power mode. The processor of the staple cartridge is configured to switch from the lower-power mode to the high-power mode when the staple cartridge processor has received one or more inputs, or triggers. In such embodiments, the staple cartridge consumes less power and generates a lower amount of heat while the staple cartridge processor waits for a signal, or combination of signals, to switch into the high-power mode. In the low-power mode, in at least one embodiment, the staple cartridge processor is configured to process data from the cartridge sensors at a low sampling rate and/or transmit data to the surgical instrument 10000, for example, across the data antenna couple at a low transmission rate. In the high-power mode, in at least one embodiment, the staple cartridge processor is configured to process data from the cartridge sensors at a higher sampling rate and/or transmit data to the surgical instrument 10000 across the data antenna couple at a higher transmission rate. In at least one embodiment, the staple cartridge comprises at least one strain gauge, for example, mounted to the cartridge body which is in communication with the staple cartridge processor and is configured to sense when the cartridge body is being compressed. When the voltage potential being output by the strain gauge exceeds a threshold—in response to the cartridge body being subjected to a high strain—the staple cartridge processor switches from the low-power mode to the high-power mode. In such instances, the staple cartridge can detect that the end effector 10400 of the surgical instrument 10000 has been clamped onto the patient tissue. In addition to or in lieu of the strain gauge discussed above, the processor of the surgical instrument 10000 can emit a signal to the processor of the staple cartridge across the data antenna couple, for example, when the surgical instrument 10000 has been clamped. In either event, the processor of the staple cartridge switches from its lower-power mode to its high-power mode when the processor determines that the surgical instrument 10000 is in its clamped state. In such instances, the staple cartridge processor can increase its sampling rate of the tissue sensor outputs and/or increase the data transfer rate back to the processor of the surgical instrument 10000, for example.


In at least one embodiment, further to the above, the staple cartridge is in a low-power mode when the surgical instrument 10000 is in an unclamped state and the staple cartridge is in an unfired state. When the surgical instrument 10000 is clamped, the staple cartridge enters into a first high-power mode where one or more functions, but not all of the functions, of the staple cartridge are switched on and/or modified. When the staple firing stroke is initiated by the surgical instrument 10000, the staple cartridge enters into a second high-power mode where all of the functions of the staple cartridge are switched on and are fully-operational. In at least one such embodiment, the processor of the staple cartridge is configured to emit a first signal to the surgical instrument 10000 indicating that the staple cartridge has entered the first high-power mode and a second signal to the surgical instrument 10000 indicating that the staple cartridge has entered the second high-power mode. When the instrument processor of the surgical instrument 10000 receives the first signal, the instrument processor increases the wattage of the power signal to the staple cartridge to power the staple cartridge in its first high-power mode. Likewise, the instrument processor increases the wattage of the power signal to the staple cartridge to power the staple cartridge in its second high-power mode when the instrument processor receives the second signal.


In at least one embodiment, the surgical instrument is configured to supply power to the staple cartridge at a first wattage when the staple cartridge is seated in the end effector of the surgical instrument and the end effector is in an unclamped state, at a second wattage when the end effector is in a clamped state before the staple firing stroke, and at a third wattage during the staple firing stroke. In at least one such embodiment, the second wattage is higher than the first wattage and the third wattage such that the cartridge processor can process data from the tissue sensors at a higher rate to evaluate the tissue prior to the staple firing stroke without generating an excessive amount of heat prior to the end effector being clamped and/or during the staple firing stroke. In at least one alternative embodiment, the third wattage is higher than the first wattage and the second wattage such that the cartridge processor can process data from the tissue sensors at a higher rate to evaluate the tissue during the staple firing stroke without generating an excessive amount of heat prior to the staple firing stroke.


In at least one embodiment, the staple cartridge is in a low-power mode before the staple cartridge is seated in the surgical instrument 10000. When the staple cartridge is seated in the surgical instrument 10000, the staple cartridge enters into a first high-power mode where one or more functions, but not all of the functions, of the staple cartridge are switched on and/or modified. For instance, the identification circuit of the staple cartridge is switched on when the staple cartridge is in the first high-power mode. When the surgical instrument 10000 is clamped, the staple cartridge enters into a second high-power mode where one or more additional functions, but not all of the functions, of the staple cartridge are switched on and/or modified. For instance, the tissue sensing circuit of the staple cartridge is switched on when the staple cartridge is in the second high-power mode. When the staple firing stroke is initiated by the surgical instrument 10000, the staple cartridge enters into a third high-power mode where all of the functions of the staple cartridge are switched on and are fully-operational. In at least one such embodiment, the processor of the staple cartridge is configured to emit a first signal to the surgical instrument 10000 indicating that the staple cartridge has entered the first high-power mode, a second signal to the surgical instrument 10000 indicating that the staple cartridge has entered the second high-power mode, and a third signal to the surgical instrument 10000 indicating that the staple cartridge has entered the third high-power mode. When the instrument processor of the surgical instrument 10000 receives the first signal, the instrument processor increases the wattage of the power signal to the staple cartridge to power the staple cartridge in its first high-power mode. Likewise, the instrument processor increases the wattage of the power signal to the staple cartridge to power the staple cartridge in its second high-power mode when the instrument processor receives the second signal. Likewise, the instrument processor increases the wattage of the power signal to the staple cartridge to power the staple cartridge in its third high-power mode when the instrument processor receives the third signal.


As discussed above, the processor of a staple cartridge is responsive to an input, or trigger, which activates one or more systems of the staple cartridge when the trigger is received. In various embodiments, the staple cartridge comprises a control system including a wake-up circuit and an on-board power source. The wake-up circuit, when energized by a power source from outside of the staple cartridge, i.e., an off-board power source, connects the on-board power source with a data transmission circuit of the control system to transmit data to the surgical instrument 10000 via the data antenna couple. In at least one instance, the data transmission circuit emits an identification beacon to the surgical instrument 10000. If the control system of the staple cartridge does not establish authenticated communication with the surgical instrument 10000 within a predefined time period after emitting the identification beacon, the control system shuts down the data transmission circuit by disconnecting the on-board power source from the data transmission circuit until the wake-up circuit is re-energized by the off-board power source. If, however, the staple cartridge does establish authenticated communication with the surgical instrument 10000 within the predefined time period after emitting the identification beacon, the control system enters into a fully-awake high-power operating mode.


In various embodiments, further to the above, the control system of the staple cartridge will switch from a low-power, or sleep, mode to a high-power, or awake, mode after receiving two inputs, or triggers. In at least one embodiment, referring to FIG. 5A, the staple cartridge comprises a retainer, or cover, 11900 attached to the cartridge body that extends over the top, or deck, of the cartridge body. The cover 11900 comprises one or more attachment features 11910 configured to releasably hold the cover 11900 to the staple cartridge. The staple cartridge further comprises a cover sensor circuit including a sensor, such as a Hall Effect sensor, for example, in communication with a processor of the cartridge control system. When the cover 11900 is attached to the cartridge body, a magnetic element mounted to the cover 11900 interferes with the field emitted by the Hall Effect sensor and, when the cover 11900 is removed from the cartridge body, the magnetic element no longer interferes with the Hall Effect sensor field. This change in the Hall Effect sensor field is reflected in the voltage output of the Hall Effect sensor which is one of the triggers used by the cartridge control system to switch the staple cartridge into its wake mode. In addition to the above, the cartridge jaw of the surgical instrument comprises a cartridge presence sensor circuit that is completed, or closed, when the staple cartridge is seated in the cartridge jaw. In at lease one instance, the staple cartridge closes a proximity switch, for example, when the staple cartridge is seated in the cartridge jaw. Like the cover sensor circuit, the cartridge presence sensor circuit is part of a wake circuit. The processor of the control system is configured to switch from its low-power, or sleep, mode to its high-power, or wake, mode when the processor receives an input that the staple cartridge is seated in the cartridge jaw and an input that the cover 11900 has been removed from the staple cartridge. In the sleep mode, the processor is not sampling data from the tissue sensors, processing data communicated to the staple cartridge from the surgical instrument, and/or transmitting data to the surgical instrument. In the wake mode, the processor is sampling data from the tissue sensors, processing data communicated to the staple cartridge from the surgical instrument, and transmitting data to the surgical instrument.


Further to the above, any suitable combination of wake-up events, or triggers, can be used to switch the control system of a staple cartridge from its sleep mode to its wake mode. In at least one embodiment, a first trigger is the removal of a cover from the staple cartridge and the second trigger comprises a completed authentication sequence. In at least one instance, the removal of the cover from the staple cartridge is sensed by the processor of the control system which switches the staple cartridge from its sleep mode into an authentication mode. In the authentication mode, the processor of the staple cartridge emits an identification beacon through a data antenna couple. If the instrument processor recognizes the identification beacon, the instrument beacon emits a wake-up signal back to the staple cartridge. Upon receiving the wake-up signal, the processor switches from its authentication mode to its wake mode. In the wake mode, the control system of the staple cartridge is fully-functional while, in the authentication mode, the control system of the staple cartridge may not be fully-functional. For instance, in at least one embodiment, the control system of the staple cartridge does not process the inputs from the tissue sensors when the staple cartridge is in its authentication mode. Moreover, the processor includes a timer circuit, function, and/or clock, for example, that is activated when the processor enters into its authentication mode. The processor is configured such that, if the processor does not receive the wake-up signal within a predetermined period of time as measured by the timer circuit, the processor returns back into its sleep mode. In various instances, the identification beacon and/or the wake-up signal is encoded or encrypted. In at least one such instance, the instrument processor is configured to decode or decrypt the identification beacon and/or the cartridge processor is configured to decode or decrypt the wake-up signal.


Various wake-up triggers can include, for example, installing a battery into the surgical instrument, removing the surgical instrument from a charging station, and/or attaching the surgical instrument to a robotic surgical system. In at least one embodiment, the surgical instrument comprises electrical contacts which are mated with corresponding electrical contacts on an arm of the robotic surgical system which close a circuit that is sensed by the processor of the surgical instrument and/or a processor of the robotic surgical system. In such instances, the surgical instrument and/or the robotic surgical system sends a wake-up trigger signal to the staple cartridge seated in the surgical instrument. In at least one embodiment, the robotic surgical system comprises a vision system including one or more cameras which is configured to visually confirm the attachment of the stapling instrument to the arm of the robotic surgical system and/or the presence of a staple cartridge in the cartridge jaw and then send a wake-up trigger signal to the staple cartridge seated in the surgical instrument. In at least one such embodiment, the arm of the robotic surgical system and/or the surgical instrument comprises clips which releasably retain the surgical instrument to the arm and the vision system is configured to confirm that the clips are in their locked position before emitting the wake-up trigger signal. In various embodiments, the operating theatre, or surgical suite, comprises a control system which is configured to send a wake-up signal to the staple cartridge either directly and/or through the robotic surgical system and/or surgical instrument.


In various embodiments, a staple cartridge comprises a circuit in communication with the processor of the staple cartridge. The circuit comprises two contacts on the deck of the cartridge body and a gap between the contacts. When the staple cartridge is seated in the cartridge jaw and the end effector is in an open configuration, the circuit is in an open condition. In such instances, the memory devices of the staple cartridge cannot be accessed. When the end effector is closed, the anvil jaw bridges the contacts and the circuit is in a closed condition. In such instances, the memory devices of the staple cartridge can be accessed. In various embodiments, the circuit comprises a wake-up circuit that, when closed, provides a voltage potential to an input gate of the processor which, when received, causes the processor to switch from a sleep mode to a wake mode. In at least one such embodiment, closing the wake up circuit when the end effector is closed places a battery or power source in the staple cartridge in communication with the control system of the staple cartridge. In various other embodiments, closing the anvil opens a wake-up circuit in communication with the processor. In at least one such embodiment, the anvil comprises a cutting element, such as a knife, for example, which cuts a circuit in the staple cartridge leaving the circuit in an open state. In such instances, the processor can interpret the loss of a voltage potential at an input gate as a wake-up signal.


In various instances, further to the above, the staple cartridge is stored in a hermetically-sealed package. Before loading the staple cartridge into the surgical instrument, a clinician must open the package and remove the staple cartridge. In at least one instance, removing the staple cartridge from the package activates a wake-up trigger that causes the staple cartridge to switch from a sleep mode to a wake mode. In at least one embodiment, a sticker is attached to the package and the staple cartridge. In such instances, the sticker maintains a wake-up circuit in the staple cartridge in an open condition. When the staple cartridge is removed from the package, the sticker detaches from the staple cartridge and the wake-up circuit becomes closed. In such instances, the processor receives the wake-up trigger signal to an input thereof. In at least one such instance, the staple cartridge comprises an on-board power source, such as a battery and/or charge accumulator, for example, that delivers a voltage potential to the processor input when the sticker is detached from the staple cartridge thereby providing the wake-up trigger signal to the processor. In at least one embodiment, the staple cartridge comprises a wake-up circuit including a battery and spring-loaded battery contacts which are held in an open condition by a tab when the staple cartridge is positioned in a package. In at least one instance, the package is comprised of a plastic material, such as TYVEK, for example. The tab is attached to the package and, when the staple cartridge is removed from the package, the tab is removed from between the battery and the spring-loaded battery contacts such that the battery contacts engage the battery and close the wake-up circuit. At such point, the processor of the staple cartridge is powered and fully-functional.


As discussed above, the staple cartridge can comprise a cover, or retainer, 11900 that is attached to the cartridge body and, when the cover 11900 is removed from the cartridge body, a wake-up circuit in the staple cartridge is closed and the processor enters into a woken state. Similar to the above, in at least one embodiment, the staple cartridge comprises a wake-up circuit including a battery and spring-loaded battery contacts which are held in an open condition by a tab affixed to the cover 11900 when the cover 11900 is attached to the staple cartridge. When the cover 11900 is removed from the staple cartridge, the tab is removed from between the battery and the spring-loaded battery contacts such that the battery contacts engage the battery and close the wake-up circuit. At such point, the processor of the staple cartridge is powered and fully-functional. In other embodiments, the processor enters into a first powered mode when the cover 11900 is removed. In at least one such embodiment, the processor enters into a second powered mode as a result of a cartridge authentication process, for example.


In various embodiments, further to the above, a staple cartridge comprises a wake up circuit including a Hall Effect sensor, for example, mounted to a first lateral side of the cartridge body and a magnet mounted to a second, or opposite lateral side of the cartridge body. When the cover 11900 of the staple cartridge is attached to the cartridge body, the cover 11900 is positioned between the Hall Effect sensor and the magnet. When the cover 11900 is removed from the cartridge body, the field detected by the Hall Effect sensor changes and, as a result, the voltage output of the Hall Effect sensor changes which is detected by the cartridge processor. Such a change in the voltage potential is interpreted as a wake-up trigger by the processor and, in response to this wake-up trigger and/or a combination of wake-up triggers including this wake-up trigger, the processor switches from a sleep mode to a wake mode. In various instances, the cover 11900 comprises a fin comprised of ferrite, for example, which is positioned between the magnet and the Hall Effect sensor when the cover 11900 is attached to the cartridge body.


Once the staple cartridge is removed from its packaging, further to the above, the staple cartridge is seated in the cartridge jaw of the surgical instrument. In various instances, there is a snap-fit and/or press-fit arrangement between the staple cartridge and the cartridge jaw. When the staple cartridge is inserted into the cartridge jaw in such instances, there may be a sudden acceleration of the staple cartridge into its seated position when a sufficient force is applied to the staple cartridge to overcome the snap-fit and/or press-fit feature by the clinician. In various embodiments, the staple cartridge comprises a power source, such as a battery and/or a charge accumulator, for example, and, in addition, a wake-up circuit including an accelerometer in communication with the processor of the staple cartridge. The accelerometer is in communication with the power source and an input gate of the processor and, when the staple cartridge is accelerated as it seated in the surgical instrument, the voltage output of the accelerometer being supplied to the input gate of the processor increases above a wake voltage threshold and, as a result, the staple cartridge switches from its sleep mode to its wake mode, for example. In other embodiments, the processor enters into a first powered mode when the staple cartridge is seated. In at least one such embodiment, the processor enters into a second powered mode as a result of a cartridge authentication process, for example.


Once the staple cartridge is seated in the cartridge jaw, further to the above, the end effector of the surgical instrument can be inserted into a patient. In various instances, the end effector of the surgical instrument is inserted into the patient through a large, or open, incision, and then clamped onto the patient tissue. In other instances, the end effector of the surgical instrument is inserted into the patient through a cannula, or trocar. In such instances, the end effector is closed, inserted through the trocar, and then re-opened once the end effector is in the patient. At such point, the end effector is then clamped onto the patient tissue. In either event, the end effector may be opened and closed one or more times before being used in the patient and the clamping of the end effector can supply a wake-up trigger to the staple cartridge. In at least one embodiment, a staple cartridge comprises a processor, a power source, and a wake-up circuit in communication with the processor and the power source. The wake-up circuit comprises a switch in an open state which is closed when the end effector of the surgical instrument is clamped. When the switch is closed, the processor enters into its fully-powered state. In at least one such embodiment, a movable anvil jaw physically contacts the staple cartridge to close the wake-up circuit. In at least one embodiment, the wake-up circuit comprises a Hall Effect sensor that detects the presence of a magnetic element mounted to the anvil jaw when the anvil jaw is in its closed position. When the voltage output of the Hall Effect sensor changes as a result of the presence of the magnetic element, the processor interprets the voltage output change as a wake-up trigger. In at least one embodiment, the wake-up circuit comprises an induction sensor that detects the presence of the metal anvil jaw in its closed position. When the voltage output of the induction sensor changes as a result of the anvil jaw being closed, the processor interprets the voltage output change as a wake-up trigger.


In various embodiments, further to the above, a trocar comprises a proximal end including a sealed port, a distal end including a sharp tip configured to incise patient tissue, and a tube extending between the proximal end and the distal end. The sealed port comprises an enlarged opening and a flexible seal configured to form a substantially air-tight seal against the end effector and/or the shaft of the surgical instrument as they are inserted there through. In various embodiments, the trocar comprises a data transmitter including an antenna configured to emit a wake-up signal to the staple cartridge as the staple cartridge passes through the trocar. In various instances, the wake-up signal from the trocar data transmitter is a sufficient trigger to switch the control system of the staple cartridge from its sleep mode to its wake mode and, in other instances, the wake-up signal from the trocar data transmitter is one of several triggers needed to switch the control system of the staple cartridge from its sleep mode to its wake mode. In at least one embodiment, the trocar comprises a magnetic member, such as a permanent magnet, for example, and the staple cartridge comprises a wake-up circuit including a sensor configured to detect the magnetic member. In at least one such embodiment, the staple cartridge comprises a power source in communication with the sensor which comprises a Hall Effect sensor, for example. When the staple cartridge is seated in the end effector and the end effector is inserted through the trocar, the field emitted by the Hall Effect sensor is distorted by the magnetic member in the trocar which changes the voltage output of the Hall Effect sensor. This change in the sensor voltage output is detected by the processor of the staple cartridge and when the change exceeds a predetermined threshold, the processor is configured to switch from its sleep mode to its wake mode. In various embodiments, the tube of the trocar comprises ferrous rings embedded therein and/or mounted thereto and the staple cartridge comprises a wake-up circuit including an inductive sensor configured to detect the ferrous rings. In at least one embodiment, the inductive sensor comprises a field sensor, an oscillator, a demodulator, a flip-flop, and an output, for example. When the staple cartridge is seated in the end effector and the end effector is inserted through the trocar, the ferrous rings change the voltage output of the inductive sensor. This change in the sensor voltage output is detected by the processor of the staple cartridge and when the change exceeds a predetermined threshold, the processor is configured to switch from its sleep mode to its wake mode. In various instances, the inductive sensor outputs a voltage pulse for each ferrous ring that the inductive sensor passes through. In such instances, the processor is configured to switch to its wake mode after it has received a number of pulses from the inductive sensor that exceeds a predetermined number of pulses.


Referring again to FIG. 7, a staple cartridge can comprise a power management system including a processor and a charge accumulator, such as the charge accumulator 11800, for example. The power management system further comprises a charging circuit in communication with the charge accumulator 11800 and includes an antenna configured to receive power from a surgical instrument when the staple cartridge is seated in the surgical instrument. In various instances, the surgical instrument is capable of supplying power to the staple cartridge at a first, or maximum, charging rate; however, there may be situations during the use of the staple cartridge in which the staple cartridge uses power at a second rate which is higher than the maximum charging rate. To accommodate this higher power usage, the charge accumulator 11800 stores power when the power usage of the staple cartridge is below the maximum charging rate. The processor of the staple cartridge is configured to manage the power being stored in the charge accumulator 11800 and, when the charge accumulator 11800 reaches its maximum capacity, the processor sends a signal to the surgical instrument to reduce the power being supplied to the staple cartridge by the surgical instrument. In at least one such instance, the signal includes data regarding the actual power usage of the staple cartridge. The processor of the surgical instrument, upon receiving the signal, reduces the power being supplied to the staple cartridge such that the charging rate matches the staple cartridge use rate. In many instances, the power usage of the staple cartridge may increase above the charging rate and the power management system is configured to utilize power from the charge accumulator 11800 until the charge of the charge accumulator 11800 falls below a re-charge threshold. When the processor detects that the charge of the charge accumulator 11800 has fallen below the re-charge threshold, the processor of the staple cartridge sends a signal to the surgical instrument to restore the charging rate to the maximum charging rate in order to re-charge the charge accumulator 11800. In addition to or in lieu of the charge accumulator 11800, the staple cartridge can comprise any suitable power storage device, such as a charge pump, battery, and/or super-capacitor, for example.


In various instances, further to the above, the charge accumulator 11800 is not actively charged by the surgical instrument until at least one trigger event has occurred. In at least one instance, the cartridge power management system charges the charge accumulator 11800 after receiving a signal from a NFC antenna of the surgical instrument. In at least one such instance, the power transferred from the NFC antenna sufficiently charges the charge accumulator 11800 to place the staple cartridge in a charging mode before the staple cartridge enters into a fully-powered mode. In certain instances, the cartridge processor emits an identification beacon to the surgical instrument after the charge accumulator 11800 has been at least partially charged by the power transferred from the NFC antenna. When the instrument processor receives the identification beacon from the staple cartridge, the instrument processor delivers additional power to the staple cartridge across the NFC antenna and/or across a power antenna so that the cartridge power management system fully charges the charge accumulator 11800. In various instances, the charge accumulator 11800 is at least partially charged by power transmitted to the cartridge NFC antenna from the control system of the operating room.


In various embodiments, the surgical instrument is configured to supply power to the staple cartridge as soon as the staple cartridge is seated in the surgical instrument. In at least one embodiment, the surgical instrument immediately supplies power to the staple cartridge via a low-power data antenna couple, such as a NFC antenna couple, for example, when the staple cartridge is seated in the surgical instrument. In such instances, the cartridge power management system charges the charge accumulator 11800 as part of a charging mode. In at least one instance, less than 0.1 W, for example, is supplied to the cartridge power management system during the charging mode. After the processor of the staple cartridge has received the wake trigger or the combination of wake triggers needed to switch the staple cartridge into its wake mode, the processor supplies a woken signal to the surgical instrument that the staple cartridge is in its wake mode. Once the processor of the surgical instrument receives the woken signal, the surgical instrument begins supplying power to the staple cartridge through a high-power antenna couple. In such instances, the cartridge power management system can then complete the charging of the charge accumulator 11800 if it has not already been fully-charged. In at least one instance, more that 1.0 W, is supplied to the cartridge power management system during the wake mode. In various alternative embodiments, there is only one antenna couple between the staple cartridge and the surgical instrument. In such embodiments, the surgical instrument can control whether low power or high power is supplied to the staple cartridge via the antenna based on whether the instrument processor has received the woken signal from the staple cartridge. In any event, if the cartridge power management system determines that the charge accumulator 11800 has been fully charged and the cartridge processor has not received the necessary wake trigger or triggers to switch the staple cartridge into its wake mode, the cartridge power management system can switch open the charging circuit supplying power to the charge accumulator 11800 to stop the charging of the charge accumulator 11800. In at least one embodiment, the cartridge processor can emit a charged-but-not-woken signal to the instrument processor which, upon receiving this signal, is configured to stop supplying power to the staple cartridge until the instrument processor has received the woken signal from the staple cartridge. Once the instrument processor has received the woken signal, in such circumstances, the instrument processor is configured to start supplying power to the staple cartridge at the high-power level.


In various embodiments, as described above, a processor of a staple cartridge is configured to switch from a low-power, or sleep, mode to a high-power, or wake, mode when the processor receives a combination of wake-up triggers. In various embodiments, the processor requires a specific combination of triggers to enter into its wake mode. For instance, the cartridge processor switches into its wake mode when a sufficient voltage potential is applied to a first input gate of the processor and a sufficient voltage potential is applied to a second input gate of the processor. In various embodiments, the processor is configured to switch from its sleep mode to its wake mode after a subset of triggers out of a larger set of triggers has been received by the processor. In at least one such embodiment, the processor is configured to receive three wake triggers but is configured to switch into its wake mode after any two of the wake triggers have been received. The voltage potentials do not need to be applied to the processor gates at the same time, but embodiments are envisioned in which the wake triggers must be applied to the processor simultaneously for the processor to switch into its wake mode. In at least one embodiment, a processor is configured to receive two specific wake triggers at the same time to switch from its sleep mode to its wake mode. In at least one such embodiment, one of the wake triggers is the charge accumulator 11800 reaching a sufficient charge level and the other trigger is an event, for example. That said, the charge accumulator 11800 reaching a sufficient charge level can serve as a wake trigger in any of the embodiments disclosed herein that includes the charge accumulator 11800, and/or any other suitable power storage device. Moreover, various alternative embodiments are envisioned in which the charge accumulator 11800 is not charged until after the cartridge processor has switched from its sleep mode to its wake mode.


In various embodiments, the staple cartridges disclosed herein comprise at least one memory device configured to store data regarding a property of the staple cartridge before, during, and/or after the staple firing stroke and/or a tissue property before, during, and/or after the staple firing stroke. The memory device is in communication with the processor and the processor is configured to read data from the memory device and communicate the data in a stored data signal that is transmitted to an antenna of the staple cartridge. In various embodiments, the processor is configured to emit the stored data signal only after receiving a key, or key signal, that unlocks this function of the processor. For each time that the processor accesses the memory device to generate the stored data signal, the event is recorded on the memory device. In this way, the memory device includes data regarding the number of times that the memory device has been accessed and when. Such access data can be included in the stored data signal. If the key signal supplied to the cartridge processor does not match an anticipated key signal stored in the cartridge processor and/or memory device, the cartridge processor does not generate the stored data signal. Instead, the failed attempt is recorded on the memory device. In this way, the memory device includes data regarding the number of times that access to the memory device data was denied. Such access denial data can be included in the stored data signal when the proper key signal is supplied to the cartridge processor. In at least one embodiment, the cartridge processor enters into a locked mode after the number of failed attempts to access the memory device has exceeded a threshold. In at least one instance, the threshold is five failed attempts, for example. Once the cartridge processor is in the locked mode, the cartridge processor is configured to not generate the stored data signal even if the proper key signal is thereafter provided. In such instances, the data stored on the memory device is no longer accessible. In at least one alternative embodiment, the processor is unlockable after it has entered into its locked mode when a master key, or master key signal, is provided to the processor. The master key is different than the key and, in various instances, may only be held by the original manufacturer of the staple cartridge, for example. Providing the processor with the master key signal would cause the processor to emit the stored data signal even if the processor is not in the locked mode.


Further to the above, the data stored on the memory device can be encrypted or encoded according to any suitable protocol. After receiving the key and/or master key, the processor is configured to decrypt or decode the data stored on the memory device and transmit the decrypted or decoded data in the stored data signal. However, various alternative embodiments are envisioned in which the processor is configured to emit encrypted or encoded data as part of the stored data signal. In at least one such embodiment, a decryption key or code stored on the memory device is included in the stored data signal. In such embodiments, the surgical instrument, and/or any suitable system, can decrypt or decode the data in the stored data system.


In various instances, the cartridge processor must receive a unique identification key to create the stored data signal discussed above. This unique identification key is predefined and static and anyone who supplies the unique identification key to the cartridge processor can access the data stored on the memory device. In other embodiments, the key needed to access the data stored on the memory device is dynamic. In at least one embodiment, the dynamic key includes performance information regarding the staple cartridge. Such performance information can comprise data regarding a mechanical feature and/or an electrical feature. For instance, the dynamic key can include information regarding the final position of the sled in the staple cartridge after the staple firing stroke, for example. Also, for instance, the dynamic key can include information regarding the maximum current drawn by the electric motor of the staple firing system drawn during the staple firing stroke, for example. In such instances, the performance information can be shared between the staple cartridge and the surgical instrument during and/or after the staple firing stroke. For instance, the staple cartridge can comprise a sled position sensor and can communicate the final position of the sled after the staple firing stroke to the surgical instrument. Also, for instance, the surgical instrument can comprise an electric motor current sensor and can communicate the peak current drawn by the electric motor during the staple firing stroke to the staple cartridge. This performance information can also be shared with the robotic surgical system and/or the operating room control system, for example. In any event, such shared performance data can comprise the dynamic key that is used to access the data stored on the memory device of the staple cartridge.


In addition to or in lieu of the above, a staple cartridge comprises a security circuit that is closed when the movable components of the staple cartridge are arranged in a specific arrangement. The security circuit is in communication with the processor and, when the security circuit is in a closed state, the processor is in an unlocked state which permits the processor to generate the stored data signal in response to an interrogation signal and/or otherwise permit the data stored on the memory device to be accessed by the surgical instrument, the robotic surgical system, and/or the operating room control system, for example. When the security circuit is in an open state, the processor is in a locked state and is configured to not emit the stored data signal or permit the data stored on the memory device to be accessed. In at least one embodiment, the security circuit of a staple cartridge is in a closed state when the cover 11900 is not attached to the cartridge body and the sled is not in its unfired position. In various embodiments, the security circuit prevents the processor from being powered by a surgical instrument, for example, when the security circuit is in its open state. When the security circuit is in its closed state, the processor can be powered by the surgical instrument. When the processor is powered by the surgical instrument, in such embodiments, the processor can generate the stored data signal. In at least one such embodiment, the staple cartridge must be seated in the surgical instrument, for example, to complete the security circuit. In at least one embodiment, the security circuit comprises electrical contacts that engage corresponding electrical contacts in the surgical instrument, for example, which close the security circuit when the staple cartridge is seated in the surgical instrument.


In various embodiments, the security circuit comprises a security antenna which is in communication with a corresponding security antenna in the surgical instrument, for example, when the staple cartridge is seated in the surgical instrument. In at least one such embodiment, the sled is positioned between the cartridge security antenna and the instrument security antenna when the sled is in its unfired position. In such instances, the sled inhibits or prevents communication between the staple cartridge and the surgical instrument across the security antenna couple. After the sled has been moved distally, the sled no longer blocks the transmission of data and/or power between the staple cartridge and the surgical instrument.


In various embodiments, as discussed above, the security circuit of a staple cartridge is configurable in an open state and a closed state. Various alternative embodiments are envisioned in which the security circuit is in a closed state, but a detectable property of the security circuit changes as a result of the moveable components of the staple cartridge being in a specific configuration or range of configurations. In at least one embodiment, the voltage potential across the security circuit is within a first voltage range when the cover 11900 is attached to the cartridge body and the sled is in its unfired position, a second voltage range when the cover 11900 is removed from the cartridge body and the sled is in its unfired position, and a third voltage range when the cover 11900 is removed from the cartridge body and sled is in a fired position. When the voltage potential across the security circuit is within the third voltage range, the processor is in its unlocked state. When the voltage potential across the security circuit is within the first voltage range or the second voltage range, the processor is in its locked state, for example.


In various embodiments, a staple cartridge comprises an access cover that is opened when the staple cartridge is seated in the cartridge jaw of the surgical instrument. When the access cover is opened, a data access circuit is closed which permits the surgical instrument to access the memory devices of the staple cartridge. In at least one instance, a cartridge jaw comprises a conductive contact element that bridges an opening in the data access circuit when the staple cartridge is seated in the cartridge jaw and the access cover is opened. In at least one embodiment, the access door comprises a foil sheet, for example. In at least one embodiment, the memory device comprises an RFID tag, for example. When the staple cartridge is not seated in the surgical instrument, however, the data access circuit is in an open condition and the memory devices of the surgical instrument cannot be accessed.


The entire disclosures of U.S. Pat. No. 8,991,678, entitled SURGICAL INSTRUMENT WITH STOWING KNIFE BLADE, which issued on Mar. 31, 2015, U.S. Pat. No. 10,085,749, entitled SURGICAL APPARATUS WITH CONDUCTOR STRAIN RELIEF, which issued on Oct. 2, 2018, and U.S. Patent Application Publication No. 2015/0324317, entitled AUTHENTICATION AND INFORMATION SYSTEM FOR REUSABLE SURGICAL INSTRUMENTS, which published on Nov. 12, 2015, are incorporated by reference herein.


Further to the above, the memory device of the staple cartridge can store any suitable data. For instance, the stored data can include the size of the staples stored in the staple cartridge, the unformed height of the staples stored in the staple cartridge (which may be reflected in the color of the cartridge body), the number of staples stored in the staple cartridge, the arrangement of the staples stored in the staple cartridge, and/or the length of the staple pattern of the staples stored in the staple cartridge (such as 30 mm, 45 mm, or 60 mm, for example). Also, for instance, the stored data can include whether or not the staple cartridge has been fired, when the staple cartridge was fired, the distance traveled by the sled during the staple firing stroke, the time lapsed during the staple firing stroke, the speed of the staple firing stroke, the accelerations and decelerations of the staple firing system incurred during the staple firing stroke, the firing force experienced during the staple firing stroke, and/or whether a foreign object was encountered and/or incised during the staple firing stroke. Also, for instance, the stored data can include the number of sensors in the staple cartridge, the type of sensors, and/or the location of the sensors in the cartridge body. Also, for instance, the stored data can include the data sensed by the sensors. Also, for instance, the stored data can include the type of tissue being stapled, the thickness of the tissue being stapled, the properties of the tissue being stapled, and/or the position of the tissue between the jaws of the end effector. Also, for instance, the stored data can include the manufacturing date of the staple cartridge, the lot to which the staple cartridge belongs, the manufacturing location of the staple cartridge, the manufacturer of the staple cartridge, the sterilization date of the staple cartridge, the type of sterilant used to sterilize the staple cartridge, the expiration date of the staple cartridge, and/or whether the staple cartridge was fired past the expiration date and by how much.


According to at least one method, a staple cartridge is removed from its package and seated in the cartridge jaw of a stapling instrument. The stapling instrument is then attached to an arm of a robotic surgical system and the robotic surgical system is powered on and/or switched from a sleep mode to a wake mode. The control system of the robotic surgical system is configured to transmit electrical power down through the surgical instrument to assess whether or not the staple cartridge is seated in the cartridge jaw and then transmit mechanical power down through the surgical instrument to assess whether or not the staple cartridge is in an unfired condition. In at least one embodiment, further to the above, the robotic surgical system sends power to the data antenna, such as an NFC antenna, for example, in the surgical instrument to supply power to the staple cartridge. As discussed above, the staple cartridge is configured to return an identification signal back to the surgical instrument. In various instances, this identification signal is processed on the surgical instrument and/or in the robotic surgical system. In either event, the staple cartridge is validated if the authentication procedure is successful. If the authentication procedure is unsuccessful, the robotic surgical system is configured to notify the clinician operating the robotic surgical system. In order to verify if the staple cartridge is unspent, i.e., not previously fired, the staple firing member is advanced distally a small stroke by a motor drive of the surgical instrument and/or robotic surgical system. If the staple firing drive is blocked by a mechanical feature in the surgical instrument, then the robotic surgical system is configured to determine that the staple cartridge has been previously spent and prevents the staple cartridge from being fired. If the staple firing system is not blocked by the mechanical feature, then the robotic surgical system is configured to stop the staple firing drive after the small stroke and determine that the staple cartridge is unfired. In addition to the identification data transmitted from the staple cartridge to the surgical instrument and/or robotic surgical system, the staple cartridge can also transmit data stored on a cartridge memory device including the expiration date of the staple cartridge, the length of the pattern of staples stored in the staple cartridge, the unformed height of the staples stored in the staple cartridge, the color of the plastic cartridge body, the manufacturer of the staple cartridge, and/or whether the staple cartridge has been fired. If the received parameters of the staple cartridge do not match the required parameters of the staple cartridge, then the clinician operating the robotic surgical system is notified.


In addition to the above, the staple cartridge, surgical instrument, and/or robotic surgical system are configured to mitigate errors in and/or data missing from the cartridge data supplied by the staple cartridge. Data may be missing or have errors resulting from shorting within the sensors, corrosion, an incompatible or incorrect staple cartridge being used, electronic interference from adjacent surgical instruments and/or surgical systems, software bugs, defective hardware, and/or the sterilization process, for example. As such, one or more forms of redundancy can be employed to improve the likelihood that the surgical instrument and/or robotic surgical system receive the data from the staple cartridge. For instance, in at least one embodiment, the same data is stored in different locations within the stored data signal. In such instances, some data may be lost or corrupted in one part of the signal but can be obtained from another part of the signal. Also, the stored data can include data from two different sources that can be seen as functional equivalents. For instance, data from a force, or load, sensor in the staple firing drive and data from a current sensor monitoring the current drawn by the electric motor of the staple firing drive can both be part of the stored data. In such instances, if the force sensor data is lost or corrupted in the signal, the processor can rely on the current sensor data to assess the forces experienced by the staple firing drive, for example.


In at least one embodiment, a staple cartridge can comprise more than one memory device with the stored data. In at least one such embodiment, the processor of the staple cartridge emits a first stored data signal including the data from a first memory device and then a second stored data signal including the data from a second memory device as part of an authentication or interrogation process of the staple cartridge. If the data from the first memory device and the second memory device is uncorrupted, in at least one embodiment, the first stored data signal will match the second stored data signal. In at least one embodiment, the first stored data signal comprises a first signal header at the beginning of the first stored data signal and the second stored data signal comprises a second signal header at the beginning of the second stored data signal which is different than the first signal header. In such instances, the surgical instrument processor and/or the control system of the robotic surgical system are able to differentiate between the first stored data signal and the second data signal. If the surgical instrument processor and/or the control system of the robotic surgical system determine that the either of the signals was corrupted and/or missing data, they are configured to establish a preference for the other signal. In various instances, the first memory device is located on a first lateral side of the staple cartridge while the second memory device is located on a second, or opposite, lateral side of the staple cartridge. Such an arrangement can reduce the possibility of electronic interference effecting both signals. In at least one embodiment, the staple cartridge comprises a first data antenna for transmitting the first stored data signal and a second data antenna for transmitting the second data signal.


The staple cartridge, surgical instrument, and/or robotic surgical system can be configured to take other mitigation efforts if the data contained in the stored data signal is corrupted and/or missing. In various instances, the staple cartridge can increase the power of the stored data signal if data is missing from the signal received by the surgical instrument and/or robotic surgical system. In at least one instance, the processor of the surgical instrument and/or robotic surgical system can increase its noise threshold if the data received from the staple cartridge is corrupted.


In various embodiments, the data and/or power transmitted between the surgical instrument and the staple cartridge can be continuous or intermittent. In various embodiments, the transferred data may comprise discrete digital data and/or continuous analog data, for example. When transferring digital data, RFID, NFC, Hitachi UHF, Bluetooth, Zigbee, mm wave, WiFi 802.11 and/or any other suitable wireless system can be used. Also, when transferring digital data, wired LAN communications, 1-wire communication, EPROM IC, I2C, and/or any other suitable devices can be used. The various types of digital data that can be transferred includes motor feedback comprising the current magnitude, the time rate of change of the current, the torque magnitude, the time rate of change of the torque, position data from the encoder, the torque constant, magnetic strength, number of wire turns, armature length, data regarding the torque-current curve, motor regulation, EMF constant, dynamic resistance, back EMF, angular speed, motor speed, and/or the motor speed time rate of change, for example. Other transferred data can include the instrument handle hardware configuration and/or data regarding physical contacts and/or switches, for example.


Further to the above, the transferred analog data can include electrically-derived and mechanically-derived data. Electrically-derived data can include magnetic indicators, Hall Effect sensor data, data regarding the state of switches, diode data, the opening or closing of a circuit, and/or the destruction of a circuit such as when the sled and/or tissue cutting knife cuts a circuit during the staple firing stroke, for example. Mechanically-derived data can include magnitude-based data such as the force transmitted by the motor and/or the motor current, for example, related to specific events of the staple firing stroke such as the firing member contacting the sled, the sled being dislodged from its proximal unfired position, the formation of the staples, and/or the firing member contacting and/or destroying a detent feature of the staple cartridge, for example. Mechanically-derived data can also include time-based data comparing the performance data of the motor to the time in which the event occurred and/or position-based data comparing the performance data of the motor with the position of the staple firing drive, for example. Mechanically-derived data can also include feature-based data such as when the staple firing drive opens and/or closes a gate and/or when a detent feature of the staple cartridge is destroyed by the staple firing drive, for example.


In various embodiments, a surgical system, such as a robotic surgical system, for example, can include a visualization system including at least one camera which is configured to observe a parameter of the staple cartridge, for example, and modify the operation of the robotic surgical system, surgical instrument, and/or staple cartridge based on the observation. For instance, the visualization system is configured to detect and evaluate physical features, or markers, on the staple cartridge and the cartridge jaw to assess whether the staple cartridge is fully seated in the cartridge jaw. If the markers on the staple cartridge and cartridge jaw are not properly aligned, the visualization system can instruct the robotic surgical system to lock out the jaw clamping and/or staple firing functions of the robotic surgical system, for example. In various embodiments, the visualization system can instruct the robotic surgical system to warn the operator that the staple cartridge may not be seated correctly in the cartridge jaw. Also, for instance, the visualization system is configured to detect whether an implantable adjunct is attached to the deck of the staple cartridge and/or whether the implantable adjunct is aligned with the deck of the staple cartridge. Similar to the above, the implantable adjunct and the staple cartridge comprise markers which the visualization system can detect and compare to assess whether the implantable adjunct is sufficiently aligned and, if it is not, instruct the robotic surgical system to warn the operator.


In various embodiments, further to the above, a visualization system is configured to observe the color of the cartridge body and provide this data to the robotic surgical system which can display this data to the operator. In various instances, the color of the cartridge body signifies the size and/or unformed height of the staples contained therein. The robotic surgical system is configured to assess whether the staples contained in the staple cartridge are suitable for the surgical procedure being performed and, if they are not, warn the operator. In various instances, the visualization system is configured to read a bar code and/or a QR code, for example, on the staple cartridge and provide this data to the robotic surgical system which can display this data to the operator. Similar to the above, this data can include the size and/or unformed height of the staples contained therein. The robotic surgical system is configured to assess whether the staples contained in the staple cartridge are suitable for the surgical procedure being performed and, if they are not, warn the operator. The QR code, for example, can include the serial number of the staple cartridge, the manufacturing date, and/or data identifying the manufacturer of the staple cartridge, for example. In various embodiments, the QR code contains the decryption key, or a portion of the decryption key, to access the memory devices in the staple cartridge. In various embodiments, the QR code, for example, is molded into the cartridge body, laser-etched into the cartridge body and/or pan, and/or printed on the cartridge body and/or pan, for example.


As discussed above, referring again to FIG. 1, the surgical instrument 10000 comprises a shaft 10200 and an end effector 10400 rotatably coupled to the shaft 10200 about an articulation joint 10500. The surgical instrument 10000″, referring to FIGS. 8-8D, is similar to the surgical instrument 10000 in many respects, many of which are not discussed herein for the sake of brevity. The surgical instrument 10000″, like the surgical instrument 10000, comprises a staple firing drive which is operable to perform a staple firing stroke to eject the staples from the staple cartridge 11000″. The staple firing drive includes an electric motor, a tissue cutting knife 10630, and a firing bar 10640 that is driven distally by the electric motor to push the tissue cutting knife 10630 through the staple cartridge 11000″ during the staple firing stroke. In such instances, the tissue cutting knife 10630 contacts the sled 11400 of the staple cartridge 11000″ and pushes the sled 11400 distally to eject the staples as the tissue cutting knife 10630 is advanced distally through the staple firing stroke. The tissue cutting knife 10630 further comprises a first cam 10610 configured to engage the first jaw 10410 and a second cam 10620 configured to engage the second jaw 10420 during the staple firing stroke. The first cam 10610 and the second cam 10620 are configured to co-operatively hold the jaws 10410 and 10420 in position relative to one another as the staples are being deformed against the second jaw 10420.


In various embodiments, the staple firing drive can also be used to close the end effector 10400. In at least one such embodiment, the tissue cutting knife 10630 is advanced distally during a closure stroke such that the second cam 10620 contacts the second jaw 10420 and moves the second jaw 10420 from an open position to a closed position. After the closure stroke, the staple firing drive can be re-actuated to perform the staple firing stroke discussed above. In alternative embodiments, the surgical instrument comprises separate and distinct closing and staple firing drives. In at least one such embodiment, the closing drive is actuated to close the second jaw 10420 and the staple firing drive is then separately actuated to perform the staple firing drive. In either event, the cams 10610 and 10620 can co-operate to hold the jaws 10410 and 10420 together during the staple firing stroke. That said, other embodiments are envisioned without one or both of the cams 10610 and 10620.


Further to the above, the surgical instrument 10000″, like the surgical instrument 10000, comprises a lockout 10700 which prevents the staple firing stroke from being performed if the first jaw 10410 is empty, i.e., missing a staple cartridge, the staple cartridge is positioned in the first jaw 10410 but not fully-seated in the first jaw 10410, and/or the staple cartridge is seated in the first jaw 10410 but has been previously fired. In any of these instances, the tissue cutting knife 10630 is pushed downwardly by a spring (in the shaft 10200) into a recess 10710 defined in the first jaw 10410 when the staple firing stroke is initiated such that the tissue cutting knife 10630 contacts a lock shoulder 10720 and the tissue cutting knife 10630 is blocked from being advanced further distally. At such point, the surgical instrument 10000″ is locked out and the staple firing stroke cannot be performed until an unspent staple cartridge is fully seated in the first jaw 10410. When an unspent staple cartridge is fully seated in the first jaw 10410 and the staple firing stroke is re-initiated, the tissue cutting knife 10630 passes over the lock shoulder 10720 of the lockout 10700 and the staple firing stroke can be completed. More specifically, the sled 11400 of the staple cartridge 11000″ supports the tissue cutting knife 10630 above the lock shoulder 10720 when the sled 11400 is in its proximal, unfired position at the beginning of the staple firing stroke. The above being said, any suitable lockout can be used.


The entire disclosures of U.S. Pat. No. 7,143,923, entitled SURGICAL STAPLING INSTRUMENT HAVING A FIRING LOCKOUT FOR AN UNCLOSED ANVIL, which issued on Dec. 5, 2006; U.S. Pat. No. 7,044,352, SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, which issued on May 16, 2006; U.S. Pat. No. 7,000,818, SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006; U.S. Pat. No. 6,988,649, SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, which issued on Jan. 24, 2006; and U.S. Pat. No. 6,978,921, SURGICAL STAPLING INSTRUMENT INCORPORATING AN E-BEAM FIRING MECHANISM, which issued on Dec. 27, 2005, are incorporated by reference herein.


Further to the above, the cartridge body 11100 comprises a longitudinal slot 11150 defined therein which is configured to receive the tissue cutting knife 10630 during the staple firing stroke. The longitudinal slot 11150 comprises a wide proximal end 11152 leading into a longitudinal portion 11156. The longitudinal slot 11150 further comprises bumps, or projections, 11154 that extend inwardly into the longitudinal portion 11156. The bumps 11154 releasably hold the sled 11400 in its proximal, unfired position until the sled 11400 is pushed distally by the tissue cutting knife 10630 during the staple firing stroke. Such an arrangement prevents, or reduces the possibility of, the sled 11400 being accidentally pushed distally when the staple cartridge 11000″ is seated in the first jaw 10410, for example. The bumps 11154 can also be contacted by the tissue cutting knife 10630 during the staple firing stroke. In such instances, the tissue cutting knife 10630 can yield, plastically deform, and/or destroy one or both of the bumps 11154. Such an event may create a momentary pulse or increase in the force needed to move the tissue cutting knife 10630 distally that is detectable by the control system operating the staple firing drive, as discussed further below. Notably, the bumps 11154 are positioned distally with respect to the lockout 11700 and, as such, the tissue cutting knife 10630 will pass by the lockout 11700 and then the bumps 11154 at the beginning of the staple firing stroke. The above being said, alternative embodiments of are envisioned with two sets of bumps—one set of bumps 11154 for holding the sled 11400 in position and a second set of bumps for creating the detectable force pulse.


Sensors in an end effector of a surgical instrument measure various tissue parameters and instrument parameters that allow the surgical instrument to perform a number of tasks. Although higher sensor sampling rates are generally associated with more accurate sensor data, indiscriminately maximizing the sampling rates of all the sensors within an end effector while the surgical instrument is active is quite taxing on power consumption, data transmission, and/or data processing.


Various aspects of the present disclosure are directed to circuits and/or algorithms for optimizing sensor data collection, transmission, and/or processing based on real-time constraints of data bandwidth or capacity, power transfer or discharge rate, and/or remaining power capacity.


Additionally, or alternatively, various aspects of the present disclosure are directed to circuits and/or algorithms that optimize sensor data collection, transmission, and/or processing based on one or more detected aspects of the surgical instrument, the surgical task being performed by the surgical instrument, and/or signal(s) from a situationally-aware surgical hub, which can represent a priority level of the sensor data, as discussed in greater detail below.


In various aspects, the surgical instrument may require different sensor arrangements for different tasks. Also, sensor-data resolution requirements may vary between different tasks and, in certain instances, within the duration of a single task. Various aspects of the present disclosure are directed to circuits and/or algorithms that optimize sensor data collection, transmission, and/or processing based on various contextual information derived from various sources of data, as discussed in greater detail below.


Optimizing sensor data collection, transmission, and/or processing can be achieved by modulating, adapting, or adjusting one or more sensor parameters associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation. In at least one example, a sensor, or a group of sensors, can be switched to an inactive mode, an idler mode, or an active mode to optimize sensor data collection, transmission, and/or processing.



FIG. 13 is a logic flow diagram of an algorithm 1000 depicting a control program or a logic configuration for optimizing sensor data collection, transmission, and/or processing in connection with a sensor array configured to detect one or more conditions of an end effector of a surgical instrument. In the illustrated example, the algorithm 1000 includes detecting 1002 a bandwidth or capacity (B) of data transmission between the sensor array and a remote processing unit, detecting 1004 a discharge rate (D) of a power source configured to supply power to the end effector, and modulating 1008 a sensor parameter of a sensor, or a subset of sensors, of the sensor array based on a detected value of the bandwidth (B) and a detected value of the discharge rate (D). In certain instances, the algorithm 1000 further includes detecting 1006 a remaining capacity (R) of the power source, and modulating 1008 a sensor parameter of the sensor, or the subset of sensors, of the sensor array further based on a detected value of the remaining capacity (R) of the remote power source. In certain instances, as described in greater detail below, sensor-parameter modulation can be achieved by selecting a sensor-parameter value based on detected values of bandwidth (B), discharge rate (D), and/or remaining capacity (R).



FIG. 14 is a logic flow diagram of another algorithm 1010 depicting a control program or a logic configuration for optimizing sensor data collection, transmission, and/or processing in connection with a sensor array configured to detect one or more conditions of an end effector of a surgical instrument. The algorithm 1010 includes receiving 1012 one or more signals indicative of a priority level of sensor data of a subset of sensors of the sensor array, and modulating 1014 a sensor parameter of the subset of sensors based on the detected priority level of the sensor data. Additionally, or alternatively, the algorithm 1010 may further include modulating 1016 a sensor parameter of another subset of sensors based on the priority level of the sensor data.


As discussed above, the sensor parameter modulation (e.g. 1014, 1016) can be performed on one or more sensor parameters associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation. In certain instances, the modulation (e.g. 1014, 1016) of the sensor parameter of the subset of sensors is further based on real-time constraints of data bandwidth (B), power discharge rate (D), and/or power remaining capacity (C), for example.


In certain instances, sensor-parameter modulation comprises adjusting the content of the sampling waveform/signal (i.e. spectrum of light, frequency of vibration, AC frequencies, etc.). In other instances, sensor-parameter modulation comprises adjusting sampling time of the signal analyzer, reducing the number of active sensors, multiplexing/combining individual sensors into a single sensor, and/or analyzing different combinations of sensors.


Furthermore, sensor-parameter modulation can include one or more stepped adjustments to the sensor parameter, which may be implemented over one or more predetermined time periods. Additionally, or alternatively, sensor-parameter modulation can include one or more gradual adjustments to the sampling parameter, which may be implemented over one or more predetermined time periods.


In certain instances, a sensor parameter can be modulated to a value equal to, or at least substantially equal to, zero. Further, sensor-parameter modulations can be separated by periods of no modulation, for example. In various instances, sensor-parameter modulation can be implemented in accordance with one or more preset equations, tables, and/or databases, as discussed in greater detail below.


Further to the above, the algorithm 1010 may include adjusting a sensor parameter of a first subset of sensors of the sensor array based on the priority level of the sensor data received from a second subset of the sensor array. For example, during articulation of the end effector, the algorithm 1010 may decrease a sampling parameter of a first subset of sensors relevant to closure and/or firing of the end effector, and may increase a sampling parameter of a second subset sensors relevant to articulation. The adjustments improve the resolution of the articulation sensor data without data and/or power overtaxing. In another example, during firing of the end effector, the algorithm 1010 may decrease the sampling parameter of the second subset of sensors relevant to closure of the end effector, and may increase the sampling parameter of the first subset of sensors relevant to firing. Additionally, or alternatively, during closure, the algorithm 1010 may increase the sampling parameter of the second subset of sensors relevant to closure of the end effector, and may increase the sampling parameter of the first subset of sensors relevant to firing. In at least one example, the articulation, firing, and/or closure durations can be ascertained based on situational awareness data, as discussed in greater detail below.



FIG. 15 is a logic flow diagram of another algorithm 1080 depicting a control program or a logic configuration for optimizing sensor data collection, transmission, and/or processing in connection with a sensor array configured to detect one or more conditions of an end effector of a surgical instrument. In the illustrated example, the algorithm 1080 determines 1081 a priority level of one or more subsets of sensors of the sensor array. In certain instances, the priority level can be determined based on one or more signals indicative of the priority level such as, for example, the task being performed, or about to be performed, by the surgical instrument. In any event, if 1082 the priority level is determined to be a high priority level, the one or more subsets of sensor are switched to an active mode 1083, for example. However, if 1082 the priority level is determined to be a low priority level, the one or more subsets of sensor are switched to an idler mode 1084, for example.


In various aspects, the active mode 1083 is defined by one or more higher values of sensor parameters associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation. On the contrary, the idler mode 1084 is defined by lower values of such sensor parameters compared to the active mode 1083. As such, sensor data in the idler mode 1084 can be associated with higher noise and a lowered resolution. In certain instances, the priority level of a subset of sensors is determined to be a high priority level, which triggers a switch to the active mode 1082, if a variation, or a spike, in the high noise/low resolution sensor data is detected.



FIG. 16 illustrates various aspects of a surgical system 1020 configured to implement aspects of one or more algorithms for optimizing sensor data collection, transmission, and/or processing such as, for example, the algorithms 1000, 1010, 1080. In the illustrated example, the surgical system 1020 includes a surgical instrument 1022 including a control circuit 1026. The surgical instrument 1022 may also include wired and/or wireless communication circuits to communicate with a surgical hub 1024, a local server, and/or a cloud-based system. In certain instances, the surgical instrument 1022 is a handheld surgical instrument. In other instances, the surgical instrument 1022 is a robotic surgical tool.


In the illustrated example, the control circuit 1026 includes a microcontroller 1028 comprising one or more processors 1030 (e.g., microprocessor, microcontroller) coupled to at least one memory circuit 1032. The memory circuit 1032 stores machine-executable instructions that, when executed by the processor 1030, cause the processor 1030 to implement various processes or algorithms described herein. The processor 1030 may be any one of a number of single-core or multicore processors known in the art. The memory circuit 1032 may comprise volatile and non-volatile storage media. The processor 1030 may include an instruction processing unit and an arithmetic unit. The instruction processing unit may be configured to receive instructions from the memory circuit 1032 of this disclosure. The control circuit 1026 may comprise analog or digital circuits such as, for example, programmable logic devices (PLD), field programmable gate arrays (FPGA), discrete logic, or other hardware circuits, software, and/or firmware, or other machine executable instructions to perform the functions explained in the present description.


Further to the above, the control circuit 1026 is in signal communication with a motor driver 1034, a feedback system 1038, a power source 1043 (e.g. a battery, a super capacitor, or any other suitable energy source), and a sensor array 1036 configured to detect one or more conditions of an end effector 1040 of the surgical instrument 1022. An electric motor 1042, driven by the motor driver 1034, operably couples to a longitudinally movable displacement member 1044 configured to drive firing, closure, and/or articulation motions at the end effector 1040, as explained in greater detail elsewhere herein. In certain instances, a surgical instrument 1022 may include dedicated motor drivers and/or motors for firing, closure, and/or articulation.


In certain instances, the control circuit 1026 may control the motor 1042 by generating a motor set point signal. The motor set point signal may be provided to the motor driver 1034. The motor driver 1034 may comprise one or more circuits configured to provide a motor drive signal to the motor 1042 to drive the motor 1042 as described herein. In some examples, the motor 1042 may be a brushed DC electric motor. For example, the velocity of the motor 1042 may be proportional to the motor drive signal. In some examples, the motor 1042 may be a brushless DC electric motor and the motor drive signal may comprise a PWM signal provided to one or more stator windings of the motor 1042. Also, in some examples, the motor driver 1034 may be omitted, and the control circuit 1026 may generate the motor drive signal directly.


In various arrangements, the sensor array 1036 may comprise any suitable sensor for detecting one or more conditions at the end effector 1040 including, without limitation, a tissue thickness sensor such as a Hall Effect Sensor or a reed switch sensor, an optical sensor, a magneto-inductive sensor, a force sensor, a pressure sensor, a piezo-resistive film sensor, an ultrasonic sensor, an eddy current sensor, an accelerometer, a pulse oximetry sensor, a temperature sensor, a sensor configured to detect an electrical characteristic of a tissue path (such as capacitance or resistance), or any combination thereof. In certain instances, and without limitation, the sensor array 1036 may include one or more sensors located at, or about, articulation joint of the surgical instrument 1022 such as, for example, a potentiometer, a capacitive sensor (slide potentiometer), piezo-resistive film sensor, a pressure sensor, a pressure sensor, or any other suitable sensor type. In some arrangements, the sensor array 1036 may comprise a plurality of sensors located in multiple locations in, or on, the end effector 1040.


Still referring to FIG. 16, the surgical instrument 1022 further includes a transmission system 1045 configured to transfer a data/communication signal from the microcontroller 1028 to the end effector 1040. Additionally, or alternatively, the transmission system 1045 can further be configured to transfer power from the power source 1040 to the end effector 1040. In at least one exemplification, the data transfer and/or power transfer is achieved through a wired connection. In another exemplification, the data transfer and/or power transfer is achieved through a wireless connection. In certain instances, the transmission system 1045 includes wireless connection portions and wired connection portions. The wireless connection portions facilitate a reliable transmission of power and/or data over moving parts of the surgical instrument 1022 such as, for example, an articulation joint.


In various exemplifications, the transmission system 1045 employs one or more wireless communication protocols such as, for example, a low frequency RFID protocol, a high frequency RFID protocol, a near field communication (NFC) protocol, an ultra-high frequency RFID protocol, a Bluetooth communication protocol, a Qi protocol, or a proprietary communication protocol, or any other suitable communication protocol. United States patent U.S. Pat. No. 9,171,244, issued Oct. 27, 2015, and titled RFID TAG, which is incorporated by reference herein in its entirety, discloses a short range wireless communication mechanism.


In at least one example, an NFC protocol may utilize a gross bit rate of 426 kbits/s. Other gross bit rates are contemplated by the present disclosure. In certain instances, the transmission system 1045 will run at lower bit rates due to excessive noise, for example. In certain instances, the NFC communication protocol utilizes a half-duplex communication.


The transmission system 1045 connects the end effector 1040 to a remote processing unit such as, for example, the processor 1030 and/or a remote power source such as, for example, the power source 1043. In certain exemplifications, the remote processing unit and/or the power source can be located at a remote proximal location from the end effector 1040 such as, for example, in a proximal housing or a handle of the surgical instrument 1022. The transmission system 1045 ensures a reliable connection between the end effector 1040 and the remote processing unit and/or the remote power source.


As discussed above, the end effector 1040 may include a sensor array 1036 configured to monitor one or more aspects of the surgical instrument 1022 and/or tissue grasped by the end effector 1040. In at least one exemplification, the sensor array 1036 is incorporated, or partially incorporated, into a staple cartridge 1046 releasably couplable to a cartridge channel 1048 of the end effector 1040. At least one of the cartridge channel 1048 and an anvil 1031 is movable relative to the other to grasp the tissue between the anvil 1031 and the staple cartridge 1046. The transmission system 1045 can be configured to transfer power to the staple cartridge 1046 for operation of the sensor array 1036. Additionally, or alternatively, the transmission system 1045 may transfer a data/communication signal between the staple cartridge 1046 and the microcontroller 1028, for example.


As described in greater detail below, various components of the transmission system 1045 are arranged, or positioned, in a manner that facilitates a wireless transmission of power and/or a data signal within the end effector 1040 such as, for example, from a cartridge support channel of the end effector 1040 to a staple cartridge 1046 releasably insertable into the cartridge support channel. Additionally, or alternatively, the transmission system 1045 can be arranged, or positioned, in a manner that facilitates a wireless transmission of power and/or a data signal from a shaft of the surgical instrument 1022 to the end effector 1040 across an articulation joint connecting the shaft and the end effector 1040, for example.


In various instances, the staple cartridge 1046 may house, or at least partially house, the sensor array 1036. The power source 1043 can be configured to power the sensor array 1036. Power supplied by the power source 1043 can be wirelessly transferred to the staple cartridge 1046 through the transmission system 1045. Furthermore, the microcontroller 1028 can be in signal communication with the sensor array 1036. Data/communication signals can be wirelessly transferred between the surgical instrument 1022 and the staple cartridge 1046 through the transmission system 1045. Further, various command signals can also be transferred using the transmission system 1045 to the sensor array 1036.


Referring to FIGS. 16 and 17, in certain instances, the staple cartridge 1046 includes a local control circuit 1049 in communication with the sensor array 1036. The local control circuit 1049 and/or the sensor array 1036 can be powered wirelessly by the power source 1043 through the transmission system 1045. FIG. 17 illustrates an example implementation of the local control circuit 1049. In the illustrated example, the local control circuit 1049 includes a local microcontroller 1076 with a local processor 1041 and a local memory circuit 1047. The local memory circuit 1047 may store machine-executable instructions that, when executed by the processor 1041, may cause the processor 1041 to implement various processes or algorithms in accordance with the present disclosure. The processor 1041 may be any one of a number of single-core or multicore processors known in the art. The memory circuit 1047 may comprise volatile and non-volatile storage media. The processor 1041 may include an instruction processing unit and an arithmetic unit. The instruction processing unit may be configured to receive instructions from the memory circuit 1047 of this disclosure. In certain instances, the control circuit 1049 may comprise analog or digital circuits such programmable logic devices (PLD), field programmable gate arrays (FPGA), discrete logic, or other hardware circuits, software, and/or firmware, or other machine executable instructions to perform the functions explained in the following description.


In certain instances, the control circuit 1049 comprises a sensor circuit. Signals (e.g., voltage, current, resistance, impedance, capacitance, inductance, frequency, phase, etc.) from the sensors of the sensor array 1036 can be conditioned by the sensors circuit.


Further to the above, the local microcontroller 1076 can be in wireless signal communication with the microcontroller 1028 through the transmission system 1045. Sensor data of the sensor array 1036 can be collected and prepared for transmission by the local control circuit 1049. The local microcontroller 1076 can be configured to compress the sensor data prior to transmission to the control circuit 1026 through the transmission system 1045.


Various aspects of one, or more, algorithms described by the present disclosure can be executed by the control circuit 1026, the control circuit 1049, or both in collaboration. For brevity, the following description will only focus on an execution by the control circuit 1049 or an execution by the control circuit 1026, but this should not be construed as limiting.



FIGS. 6-8 illustrate different implementations 1051, 1052, 1053 of the transmission system 1045. The reader will understand that other implementations are contemplated by the present disclosure. FIG. 8 illustrates an example implementation 1053 of the transmission system 1045 where data and power are wirelessly transmitted separately using two independent pathways. Alternatively, FIG. 7 illustrates an example implementation 1052 of the transmission system 1045 where data and power are wirelessly transmitted sequentially using a single pathway. Alternatively, FIG. 6 illustrates an example implementation 1051 of the transmission system 1045 where data and power are wirelessly transmitted simultaneously using a single pathway.


Through the transmission system 1045, and as described in the implementations 1051, 1052, 1053 of FIGS. 6-8, the staple cartridge 1046 can be supplied by power wirelessly from the power source 1043. The supplied power is utilized in collection and/or signal processing of sensor data of the sensor array 1036. In certain instances, the power is supplied by the power source 1043 directly to the sensor array 1036. Alternatively, a local power source such as, for example, the charge accumulator 11800 (FIG. 7) may supply the power to the sensor array 1036. The charge accumulator 11800 may include a storage capacitor which can be charged by power supplied by the power source 1043. In various aspects, discharge rate (D) and/or remaining-charge capacity (C) can be detected, or monitored, by a charge meter.


Further to the above, the control circuit 1049 can be configured, or programmed, to modulate 1008 a sensor parameter of one or more subsets of sensors of the sensor array 1036 to balance power draw with remaining power capacity in accordance with one or more equations, tables, and/or databases stored, for example, in the memory circuit 1032, or the memory circuit 1047. As illustrated in FIG. 18, a sampling rate (S) can be selected from a table 1090 based on detected values of bandwidth (B), discharge rate (D), and/or remaining capacity (R). For example, detected values B1, D1, R1, cause the control circuit 1049, to select a sampling rate (S1). The sampling rate (S) of one or more subsets of sensors of the sensor array 1036 can then be adjusted to the sampling rate (S1), for example. Accordingly, collection and/or signal processing of the sensor data of the sensor array 1036 can be automatically adjusted by the control circuit 1026, or the local control circuit 1049, to balance power draw with remaining capacity.


Referring primarily to FIGS. 15, and 16, a control circuit 1026 can be configured to determine the priority level of sensor data received from a subset of sensors of the sensor array 1036 based one or more signals indicative of the priority level. In certain instances, the signal is transmitted to the control circuit 1026 from the surgical hub 1024. In other instances, the one or more signals are transmitted to the control circuit 1026 from one or more sensors. In other instances, the one or more signals are transmitted to the control circuit 1026 from the feedback system 1038.


In certain instances, the one or more signals communicate contextual information derived from received data concerning a surgical procedure, the surgical instrument 1022, and/or a patient. The contextual information could be derived by a situationally aware surgical hub 1024. In one exemplification, the contextual information can be derived by a control circuit of the surgical hub 1024. In another exemplification, the contextual information can be derived by a cloud computing system. In yet another exemplification, the contextual information can be derived by a distributed computing system including at least one of the aforementioned cloud computing system and/or a control circuit of the surgical hub 1024 in combination with a control circuit 1026 of the surgical instrument 1022, for example. For economy, the following description focuses on contextual information derived by the control circuit of a surgical hub 1024; however, it should be understood that deriving the contextual information can be accomplished by any of the aforementioned exemplifications.


In certain instances, the contextual information is derived from one or more data sources such as, for example, databases, patient monitoring devices, and modular devices. In one exemplification, the databases can include a patient EMR database associated with the medical facility at which the surgical procedure is being performed. The data received from the data sources can include perioperative data, which includes preoperative data, intraoperative data, and/or postoperative data associated with the given surgical procedure. The data received from the databases can include the type of surgical procedure being performed or the patient's medical history (e.g., medical conditions that may or may not be the subject of the present surgical procedure). In one exemplification, the control circuit of the surgical hub 1024 can receive the patient or surgical procedure data by querying the patient EMR database with a unique identifier associated with the patient. The surgical hub can receive the unique identifier from, for example, a scanner for scanning the patient's wristband encoding the unique identifier associated with the patient when the patient enters the operating theater.


In one exemplification, the patient monitoring devices include BP monitors, EKG monitors, and other such devices that are configured to monitor one or more parameters associated with a patient. The patient monitoring devices can be paired with the surgical hub 2034 such that the surgical hub receives data therefrom. In one exemplification, the data received from the modular devices that are paired with (i.e., communicably coupled to) the surgical hub 1024 includes, for example, activation data (i.e., whether the device is powered on or in use), data of the internal state of the modular device (e.g., force to fire or force to close for a surgical cutting and stapling device, pressure differential for an insufflator or smoke evacuator, or energy level for an RF or ultrasonic surgical instrument), or patient data (e.g., tissue type, tissue thickness, tissue mechanical properties, respiration rate, or airway volume).


In certain instances, the contextual information can include, for example, the type of procedure being performed, the particular step being performed in the surgical procedure, the patient's state (e.g., whether the patient is under anesthesia or whether the patient is in the operating room), or the type of tissue being operated on. In certain instances, the contextual information is derived from perioperative data that includes, for example, data regarding a modular device (e.g., pressure differential, motor current, internal forces, or motor torque) or data regarding the patient with which the modular device is being utilized (e.g., tissue properties, respiration rate, airway volume, or laparoscopic image data). Additional details are disclosed in U.S. patent application Ser. No. 16/209,395, titled METHOD OF HUB COMMUNICATION, and filed Dec. 4, 2018, now U.S. Patent Application Publication No. 2019/0201136, which is hereby incorporated by reference herein in its entirety.


In certain instances, the contextual information is derived from imaging data received from one or more imaging devices. The imaging data can represent individual images or a video stream. The medical imaging device can includes an optical component and an image sensor that generates imaging data. The optical component includes a lens or a light source, for example. The image sensor includes a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS), for example. In various exemplifications, the medical imaging device includes an endoscope, a laparoscope, a thoracoscope, and other such imaging devices. The image or video data from the medical imaging device (or the data stream representing the video for a digital medical imaging device) can processed by a pattern recognition system or a machine learning system to recognize features (e.g., organs or tissue types) in the field of view (FOV) of the medical imaging device 5108, for example. The contextual information that can be derived from the recognized features can include, for example, what type of surgical procedure (or step thereof) is being performed, what organ is being operated on, or what body cavity is being operated in.


In various aspects, the control circuit 1026 is configured to select a priority level of one or more subsets of sensors of the sensor array 1036, in accordance with the algorithm 1010, based on the contextual information. Further, the control circuit 1026 may switch one or more subsets of sensors of the sensor array 1036 between the active mode 1083 and the idler mode 1084, in accordance with the algorithm 1080, based on the contextual information. In at least one example, the control circuit 1026 may utilize the contextual information derived from an operating room imaging/video feed to identify steps in a surgical procedure and, further, prioritize sensor data collection, transmission, and/or processing based on the step being performed. For example, the control circuit 1026 may identify a step in an anastomosis surgical procedure such as, for example, an initial tissue engaging step, based on the contextual information. The identification of the initial tissue engaging step, then causes the control circuit 1026 to switch one or more sensor subsets to the active mode 1083.


Referring still to FIGS. 13 and 16, the control circuit 1026 can be configured to determine a priority level of one or more sensor subsets of the sensor array 1036 based on one or more signals indicative of a surgical state of the surgical instrument 1022. The signals may include data relating to an operational parameter of the surgical instrument 1022. For example, the signals may include data relating to a function of a motor (e.g. motor 1042).


Motor data can indicate whether the end effector 1040 is in an articulation motion, a closure motion, or a firing motion. A control circuit (e.g. control circuits 1026, 049) may be configured, or programmed, to prioritize one or more sensors of the surgical instrument 1022 based on the type of motion undertaken by the end effector 1040. For example, closure and firing typically occur after completion of the articulation motion, when a user is fully satisfied with the articulation position of the end effector 1040. Accordingly, the control circuit can be configured, or programmed, to assign a lower priority to closure and/or firing sensor data than articulation sensor data in response to detecting an articulation motion, for example. The control circuit may adjust sensor parameters associated with a subset of sensors relevant to articulation to increase the subset's sampling rate, for example. Additionally, the control circuit may also adjust sensor parameters associated with a subset of sensors relevant to closure and/or firing to reduce the subset's sampling rate during articulation.


Similar arrangements can be undertaken to prioritize closure sensor data over firing sensor data during closure of the end effector 1040 and/or prioritize firing sensor data over closure sensor data during firing of the end effector 1040. As discussed above, this real-time balancing approach ensures that power resources and data transmission, and/or data processing resources are not overtaxed.


Referring still to FIGS. 14, 15 and 16, the control circuit 1026 can be configured to determine 1081 a priority level of one or more sensor subsets of the sensor array 1036 based on one or more signals indicative of a gross movement of the surgical instrument 1022. The surgical instrument 1022 may include one or more sensors configured to measure a gross movement of the surgical instrument 1022 such as, for example, an accelerometer. Detecting a gross movement of the surgical instrument 1022 can indicate a condition of the end effector 1040. For example, the gross movement can indicate that the end effector 1040 is outside the patient's body cavity. Accordingly, the control circuit 1026 can be configured, or programmed, to deprioritize closure and/or firing sensor data in response to a signal indicative of a gross movement of the surgical instrument 1022. In at least one example, deprioritizing the closure and/or firing sensor data comprises switching sensors of the sensor array 1036 associated with closure and/or firing to the idler mode 1084. In at least one example, deprioritizing the closure and/or firing sensor data comprises adjusting one are more sensor parameter of sensors of the sensor array 1036 associated with closure and/or firing such as, for example, sensor parameter that control sensor data collection, processing, and/or transmission.


Further to the above, a similar approach can be taken in response to signals indicative of a loading procedure, signals comprising initiation data, and/or tool-docking data, signals indicative of a high end-effector velocity, and/or any other signals indicating that cartridge sensing is unnecessary at a particular stage. The control circuit 1026 can be configured, or programmed, to adjust one or more sensor parameter of the sensor array 1036 in response to the detection of one or more of such conditions to minimize sensor power/data overtaxing.


Determining 1081 a priority level of one or more sensor subsets, in accordance with one or more algorithms (e.g. algorithms 1010, 1080), can be achieved in multiple ways. In one example, the priority level can be a binary priority level, where the control circuit 1026 is configured to select between, for example, a high-priority level or a low-priority level. In certain instances, the high-priority level is associated with the active mode 1083, while the low-priority level is associated with the idler mode 1084. In other examples, the priority level comprises a value that can be determined based on one or more equations, tables, and or databases stored in the memory circuit 1032, for example. One or more conditions can contribute to the priority level in accordance with preset values stored in the form of equations, tables, and or databases.


Referring primarily to FIGS. 13 and 16, as discussed above, the algorithm 1000 includes detecting 1002 a data-transmission bandwidth (B), or maximum data-transmission rate through the transmission system 1045. The data-transmission bandwidth (B) can be detected 1002 in multiple ways. For example, data can be transferred through the transmission system 1045 at rates that are increased gradually, or incrementally, until an error is detected, or the signal strength is no longer able to permit higher rates of transfer. With each transfer a data receipt confirmation and/or a data integrity confirmation can be requested. If confirmation is received, the transfer rate of the following transfer is increased. If, however, a confirmation is not received, it can be concluded that the most recent transfer rate is beyond the bandwidth capability of the transmission system 1045. In such instances, the transfer rate preceding the most recent transfer rate can be determined to be the data-transmission bandwidth (B) of the transmission system, for example. In certain instances, an initial transfer is performed using a default transfer rate. Following transfers are then performed using transfer rates that are increased gradually, or incrementally, in accordance with predetermined values until a data-transmission bandwidth (B) is detected by a lack of a confirmation, for example.


Additionally, or alternatively, the data-transmission bandwidth (B) can be detected 1002 during an initial acknowledgment or handshake. Acknowledgement and/or handshake signals can be transferred between the control circuit 1026 and the local control circuit 1049 through the transmission system 1045 as part of an activation, initialization, and/or wake-up sequence of the staple cartridge 1046 and/or the surgical instrument 1022, for example.


In certain instances, transmission rates associated with successful transmissions during one or more prior uses of a surgical instrument 1022 are stored, and are then used in detecting 1002 a bandwidth (B) in subsequent uses of the surgical instrument 1022, or other similar surgical instruments 1022. In one example, the successful transmission rates can be stored in the memory circuit 1032 for sharing during the initial acknowledgment or handshake in future uses. The control circuit 1026 can be configured, or programmed, to monitor the cartridge reloads used with the surgical instrument 1022 which are each trying to maximize data throughput, and can subsequently suggest to future cartridge reloads the maximum transfer rate previous cartridge reloads were capable of achieving.


In another example, the successful transmission rates can be transmitted to a surgical hub (e.g. surgical hub 1024) and/or a cloud based system for data aggregation and analysis. The data-transmission bandwidth (B) can be detected 1002 based on a signal received from the surgical hub or the cloud based system indicative of the data-transmission bandwidth (B), for example.



FIG. 19 is a logic flow diagram of an algorithm 1100 depicting a control program or a logic configuration for monitoring and addressing signal interference in power and/or data signals transmission between a staple cartridge 1046 and a surgical instrument 1022. As described elsewhere herein, reloads of the staple cartridge 1046 are releasably coupled to the surgical instrument 1022 by seating in a cartridge channel 1048 of the end effector 1040. Further, a wireless connection can be established between the staple cartridge 1046 and the surgical instrument 1022 when the staple cartridge 1046 is seated in the cartridge channel 1048 to wirelessly transmit 1102 power and/or data signals. The power and/or data signals can be transferred through a wiring harness, extending in the cartridge channel, and then through wireless power and/or data transfer circuit(s) of the transmission system 1045. The power and/or data signals transmission is subject to various internal and external interferences.


Various internal and external factors may cause signal interference such as, for example, signal interference from environmental factors including tissue and/or fluid presence in the end effector 1040, signal interference from other surgical tools, or even other components of the surgical instrument 1022. The wireless power and/or data transfer circuit(s) can be at least partially affixed to the metallic cartridge channel 1048. In certain instances, parasitic losses through the metallic cartridge channel 1048, antenna misalignment in the wireless power and/or data transfer circuit(s), and/or secondary magnetic field generation may also contribute to signal interference.


To manage signal interferences, the algorithm 1100 monitors 1104 an interference in a transmission of electrical power and/or the data signals between the surgical instrument 1022 and the staple cartridge 1046. The algorithm 1100 further modulates 1106 an operational parameter of the surgical instrument 1022 based on the interference. In at least one exemplification, modulating 1106 the operational parameter includes adjusting a strength of the data signals, a rate of the data transmission, and/or a rate of the power transmission based on the detected interference. In certain instances, modulating 1106 the operational parameter includes adjusting one or more sensor parameters associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation. In at least one example, a sensor or a group of sensors can be switched to, an inactive mode, an idler mode, or an active mode to mitigate the interference.


Further to the above, monitoring 1104 the interference can be accomplished by comparing an anticipated data transfer and an actual data transfer by the transmission system 1045 to account for losses due to interference. If a difference between the anticipated data transfer and the actual data transfer is greater than, or equal to, a predetermined threshold, the transmission system 1045 adjusts one or more operational parameters of the surgical instrument 1022 such as, for example, a strength of the data signal to mitigate the interference. In various aspects, monitoring 1104 the interference includes monitoring signal stability, number of lost data packets, and/or ratio of distinguishable signal to random noise. If signal stability, number of lost data packets, and/or ratio of distinguishable signal to random noise is greater than, or equal to, a predetermined threshold, the transmission system 1045 adjusts one or more operational parameters of the surgical instrument 1022, as previously discussed.


Furthermore, monitoring 1104 the interference may comprise determining an interference level based one or more factors that contribute to the inference level. The factors may include, for example, ratio of anticipated data transfer to actual data transfer, signal stability, number of lost data packets, and/or ratio of distinguishable signal to random noise. The contributions of the individual factors to the interference level can be ascertained from an interference equation, interference table, and/or interference database, which can be stored in a memory circuit (e.g. memory circuits 1032, 1047). The control circuit 1026, for example, can be configured, or programed, to calculate an interference level based on the individual contributions of the individual factors. The control circuit 1026 may further compare the determined interference level to a predetermined threshold. If the determined interference level is greater than, or equal to, the predetermined threshold, the processor may modulate 1016, as previously discussed, one or more operational parameters of the surgical instrument 1022 until the monitored interference level decreases to a value below the predetermined threshold, for example.


Referring primarily to FIGS. 6-8 and 17, a staple cartridge 1046 can be configured to detect which of the implementations 1051, 1052, 1053 of the transmission system 1045 is available for wireless signal transmission between the staple cartridge 1046 and the surgical instrument 1022. The staple cartridge 1046 may further select various protocols and/or algorithms associated with an available implementation. In one example, a control circuit 1049 can detect the available implementation of the transmission system 1045 by detecting the presence of one or two local antenna arrays. If two antenna arrays are detected, as embodied by the implementation 1053 of FIG. 8, the control circuit 1049 may adjust one or more operational parameters of the surgical instrument 1022 and/or select one or more algorithms and/or communication protocols associated with separate power and data transfers. Alternatively, if only a single antenna array is detected, as embodied by the implementations 1051, 1052 of FIGS. 6, 7, the control circuit 1049 may adjust one or more operational parameters of the surgical instrument 1022 and/or select one or more algorithms and/or communication protocols associated with simultaneous/sequential power and data transfers.


In various aspects, antenna array detections are performed during a wakeup or activation sequence, or a handshaking protocol, implemented, or at least partially implemented, by the control circuit 1049. In at least one example, antenna array detections are performed by the control circuit 1049 using predefined test signals. In certain instances, control circuit 1049 detects and monitors short range and/or long range data transfer activity to determine connection characteristics and/or instructional hierarchy. In certain instances, the control circuit 1049 performs selective pairing based on sensor array capabilities.



FIG. 20 is a logic flow diagram of an algorithm 1110 depicting a control program or a logic configuration for optimizing power transmission from a surgical instrument 1022 to a staple cartridge 1046. As discussed above, a transmission system 1045 can electrically couple the surgical instrument 1022 and the staple cartridge 1046 wirelessly while the staple cartridge 1046 is seated in a jaw of the end effector 1040. In at least one exemplification, one or more aspects of the algorithm 1110 are performed by a power management circuit which can be implemented, at least in part, by the control circuit 1026, the control circuit 1049, and/or a separate power management circuit. In the illustrated example, the algorithm 1110 includes wirelessly transmitting 1112 power from the surgical instrument 1022 to the staple cartridge 1046, monitoring 1114 an efficiency of a transfer of the power from the surgical instrument 1022 to the staple cartridge 1046, and adjusting 1116 an operational parameter of the surgical instrument 1022 based on the efficiency of the transfer.


In various aspects, monitoring 1114 the efficiency of the power transfer includes comparing an anticipated power transfer to an actual power transfer. In certain instances, monitoring 1114 the efficiency of the power transfer includes comparing a transfer parameter such as, for example, a rate of transfer to a predetermined threshold. Further efficiency of the power transfer can be affected a number of environmental factors including parasitic losses, interference, antenna misalignment, and/or secondary magnetic field generation. In certain instances, monitoring 1114 the efficiency of the power transfer includes monitoring one or more of such environmental factors.


Referring still to FIG. 20, the adjusted 1116 operational parameter of the surgical instrument may be a transfer parameter of the transmission system 1045. In certain instances, adjusting 1116 the operational parameter of the surgical instrument 1022 includes adjusting one or more aspects of a waveform of the power transfer, adjusting a rate of the power transfer, and/or adjusting a frequency of the power transfer. Additionally, or alternatively, adjusting 1116 the operational parameter of the surgical instrument 1022 may include an adaptive voltage scaling. Additionally, or alternatively, adjusting 1116 the operational parameter of the surgical instrument 1022 may include a real-time tuning of at least one component of the transmission system 1045, as described in greater detail below.


One or more transfer parameters associated with previous power transfers between the surgical instrument 1022 and one or more staple cartridges 1046 are stored by, for example, the memory circuit 1032. Additionally, or alternatively, transfer parameters associated with previous power transfers can be uploaded to a local server and/or a cloud based system for data aggregation and analysis, for example. In certain instances, the power management circuit of the surgical instrument 1022 may determine transfer parameters of future power transfers based, at least in part, on the stored transfer parameters associated with previous power transfers. In at least one exemplification, the power management circuit may determine transfer parameters for a future power transfer, then compare the determined transfer parameters to the stored transfer parameters, prior to implementation of the determined transfer parameters, to ensure that the determined transfer parameter is within acceptable thresholds based on the stored transfer parameters.


In certain instances, adjusting 1116 the operational parameter of the surgical instrument 1022 includes adjusting the power drive frequency of the transmission system 1045 based on current operating conditions. Since there are restricting regulations around the use of EM frequencies, which may vary between different regions, the power management circuit may implement one or more algorithms that select an optimal power drive frequency that also complies with such regulations. Said another way, in selecting the optimal power drive frequency, the power management circuit may be limited to regionally-available unlicensed frequency bands.


Further to the above, selecting the optimal power drive frequency may also depend on which implementation of the transmission system 1045 is available. For example, in the implementation 1053 of FIG. 8, which denotes separate data and power transmission, power transfer is not limited by data-transfer frequency standards. In such instances, the optimal power drive frequency is selected from values different than data-transfer frequency. However, the implementations 1051, 1052 of FIGS. 6 and 7, which denote simultaneous or sequential power and data transfer, are limited by data-transfer frequency standards. Accordingly, the power management circuit may implement one or more algorithms that select the optimal power drive frequency, at least in part, based on available implementations of the transmission system 1045. As discussed above, detecting the available implementation of the transmission system 1045 can be performed by detecting the presence of one or two local antenna arrays. Alternatively, the power management circuit may detect the available implementation of the transmission system 1045 by various testing signals.


In certain instances, adjusting 1116 the operational parameter of the surgical instrument 1022 includes circuit tuning for resonance, frequency matching, and/or impedance matching. FIG. 21 illustrates an example implementation 1120 of a first antenna circuit 1121 and a second antenna circuit 1122 of the transmission system of 1045 for power transfer between the surgical instrument 1022 and the staple cartridge 1046. Other implementations are contemplated by the present disclosure. In the illustrated example, the first antenna circuit 1121 is connected to an input voltage Vin. The input voltage Vin can be the power source 1043, which can be positioned proximally from the end effector 1040 in a housing, or handle, of the surgical instrument 1022, for example. The second antenna circuit 1122 is connected to a load resistor RL, which represents the sensor array 1036, the control circuit 1049, and/or other power consuming components of the staple cartridge 1046.


In the illustrated example, the antenna circuits 1121, 1122 cooperate to wirelessly transmit power supplied by the power supply 1043 to the staple cartridge 1046. The first antenna circuit 1021 further includes a voltage driver resistor Rin, a primary inductor L1, and a primary coil resistor R1. The second antenna circuit 1122 further includes a secondary inductor L2 and a secondary coil resistor R2. Power is transferred from a first antenna implemented by the primary inductor L1, and the primary coil resistor R1 to a second antenna implemented by the secondary inductor L2, and the secondary coil resistor R2. The input voltage Vin drives a current through the primary coil, which induces a voltage in the secondary coil, and hence a current across the load resistor RL. As current flows in the secondary coil, the current induces a voltage in the primary coil, depending on a coupling coefficient (k).


Referring still to FIG. 21, the first antenna circuit 1121 further includes a first resonant capacitor C1 in parallel with the primary coil. In addition, the second antenna circuit 1122 includes a second resonant capacitor C2 in series with the secondary coil. In various instances, the power management circuit utilizes the first resonant capacitor C1 and the second resonant capacitor C2 in tuning for resonance, frequency matching, and/or impedance matching. Resonance is a way to compensate for a lower coupling coefficient (k) by increasing the power in the magnetic field around the primary coil. If the coupling coefficient is unchanged then the resultant power across the secondary coil is increased. Accordingly, resonance minimizes the reactive power in the primary coil, and maximizes the power across the load resistor RL.


To optimize power transfer through the transmission system 1045, the power management circuit is configured to perform a real-time electro/mechanical algorithm driven adjustment and tuning of various components of the transmission system 1045 such as, for example, transmission capacitors, inductors, and resistors to optimize power transfer. In certain instances, the power management circuit employs various adjustment/tuning mechanisms such as, for example, potentiometers, banks of resistors, capacitors, and/or inductors. Further, the power management circuit may employ variable capacitors and/or variable inductors. In certain instances, optimizing power transfer through the transmission system 1045 comprises impedance matching. In certain instances, optimizing power transfer through the transmission system 1045 comprises maximizing a coupling coefficient k.



FIGS. 22 and 23 illustrate an adjustable series RLC (resistor, inductor, capacitor) circuit 1130 and an adjustable parallel RLC circuit 1135, respectively, which can be employed by the power management circuit in tuning the primary, or drive, coil of the transmission system 1045 to optimize wireless power transfer therethrough. The adjustable series RLC circuit 1130 and the adjustable parallel RLC circuit 1135 include adjustable components (e.g. resistor R, inductor L, capacitor C) that can be modulated to tune the primary, or drive, coil to a frequency equal to, or at least substantially equal to, that of the secondary, or receiving, coil of the transmission system 1045. In certain instances, the power management circuit is configured to employ the adjustable series RLC circuit 1130 or the adjustable parallel RLC circuit 1135 to adjust a drive frequency of the primary, or drive, coil to a resonant, or most efficient, frequency of the secondary, or receiver, coil, or at least within the resonant band. The real-time frequency matching of the transmission system 1045 optimizes power transfer by eliminating manufacturing variability such as, for example, part, installation, and/or use variability.


In various aspects, an adjustable series RLC circuit 1130 or an adjustable parallel RLC circuit 1135 can also be employed to tune the secondary, or receiver, coil of the transmission system 1045 in a similar manner to the primary, or drive, coil. Accordingly, the power management circuit can be configured to achieve frequency matching by tuning both of the primary, or drive, coil and the secondary, or receiver, coil to a desirable frequency. In various aspects, one or more RLC circuits can be employed by the power management circuit as a band-pass filter, band-stop filter, low-pass filter, or high-pass filter.



FIG. 24 is a graph 1246 illustrating a resonant state of the adjustable series RLC circuit 1130. The graph 1136 depicts frequency on the X-axis and Impedance on the Y-axis. At resonance, in a series RLC circuit, the inductor reactance XL and the capacitor reactance XC are equal and canceling. So in resonant series RLC circuit, the opposition to the flow of current is due to resistance R only. In addition, the inductor voltage VL and capacitor voltage VC are also opposite and equal in value, thereby canceling each other out. At resonance, the series RLC circuit acts purely as resistive circuit which maximizes current passing there through.


Various implementations (e.g. 1051, 1052, 1053) of the transmission system 1045, as illustrated in FIGS. 6-8, include a rectifier 11620 that is configured to rectify the AC signal to a DC output. In certain instances, the rectifier 11620 is a full bridge rectifier. The need to rectify the AC signal to a DC output may reduce the efficiency of the power transfer through the transmission system 1045 and/or detune its resonance. In certain instances, monitoring 1114 the efficiency of power transfer includes monitoring changes caused by AC to DC regulation and/or rectification based on power levels and efficiencies of the conversion. Various controlled aspects of the transmission system 1045 can be regulated based on power conversion efficiencies.


In certain instances, adjusting 1116 the operational parameter of the surgical instrument 1022 includes adaptive voltage scaling based on the power draw of the staple cartridge 1046 and the power reservoir and/or power transfer capabilities of the power source 1043 (FIG. 16) and/or the charge accumulator 11800 (FIG. 7), for example. The power management circuit may implement algorithms for conserving power by selectively determining which systems are permitted to draw power and the voltage levels at which the power can be drawn.


In one example, the power management circuit may implement an algorithm that causes two subsets of sensors of the sensor array 1036 to draw power at different voltage levels depending, for example, on a priority level of the sensor data from the two subsets. The power management circuit may cause a first sensor subset to operate in an idler mode or an inactive mode, and may cause a second sensor subset, different from the first sensor subset, to operate in an active mode. The power management circuit may implement the active mode, idler mode, and/or inactive mode by changing power-draw permissions of the sensor subsets and/or by adjusting the voltage levels at which the sensor subsets may draw the power.


In addition to optimizing power transfer, a power management circuit of the surgical instrument 1022 may also implement one, or more, algorithms for power conservation and/or optimizing power consumption by the staple cartridge 1046. FIG. 25 is a logic flow diagram of an algorithm 1140 depicting a control program or a logic configuration for power conservation or optimizing power consumption by a staple cartridge 1046, in accordance with at least one aspect of the present disclosure. The algorithm 1140 includes monitoring 1142 a level of power available for power consumption by the staple cartridge 1046. The algorithm 1140 may further include determining 1144 a power requirement for signal processing of raw data such as, for example, sensor data of the sensor array 1036.


Further to the above, the algorithm 1140 may include selecting 1146 between local processing and remote processing of the raw data based on the available power level and/or the power requirement for locally processing the raw data. In certain instances, the selection 1146 is between performing a signal processing of the raw data locally within the staple cartridge 1046, using for example the control circuit 1049, or remotely outside the staple cartridge 1046, using, for example, the control circuit 1026.


Further to the above, monitoring 1142 the power level can be accomplished by measuring the power level using, for example, a charge meter and comparing the measured power level to a predetermined threshold. Additionally, or alternatively, monitoring 1142 the power level can be achieved by monitoring power consumption. The present power level can then be calculated by subtracting the value of the power consumed from the total power available for consumption.


Further to the above, the power requirement for signal processing of a particular set of raw data can be determined 1146 from an equation, table, and/or database stored in the memory circuit 1047, for example. In certain instances, the power requirement can be a function of the size of the raw data set and/or the nature or type of the signal processing. Various details of local signal processing are disclosed in U.S. Pat. No. 9,993,248, titled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, and issued Jun. 12, 2018, which is hereby incorporated by reference herein in its entirety.


In various instances, in situations of low power levels, the local processing unit, e.g. control circuit 1147, may perform selective data processing, instead of a wholesale transfer of the data processing to a remote processing unit, e.g. control circuit 1026. The selective data processing can be based on previously assigned priorities of different data processing tasks and/or data types. In one example, to mitigate low power levels, the control circuit 1147 may elect to maintain a previously defined sampling rate for collection of sensor data from the sensor array 1036, while forgoing, or pausing, data encryption. In another example, to mitigate low power levels, the control circuit 1147 may elect to maintain a first sampling rate by a first subset of sensors of the sensor array 1036, while adjusting a second sampling rate by a second subset of sensors of the sensor array 1036.


In various aspects, the staple cartridge 1046 includes a local charge accumulator (e.g. charge accumulator 1075 of FIG. A5) configured to locally store power supplied thereto by a remote power source (e.g. power source 1043 of FIG. 16), through the transmission system 1045. The local charge accumulator 11800 may be configured to supply power to the control circuit 1049, the sensor array 1036, and/or other power consuming components of the staple cartridge 1046. In certain instances, monitoring 1142 the power level, in accordance with the algorithm 1140, includes monitoring a charge status, a discharge rate, and/or a charge rate of the local charge accumulator. In at least one example, the monitoring 1142 is accomplished by comparing determined values of the charge status, discharge rate, and/or charge rate to predetermined charge status, discharge rate, and/or charge rate thresholds, respectively.


Further to the above, the power management circuit may adjust one or more operational parameters of the staple cartridge 1046 based on one or more of the comparisons to mitigate power consumption. For example, if a determined value of the charge status is less than or equal to the predetermined charge status threshold, if a determined value of the discharge rate is greater than or equal to the predetermined discharge rate threshold, and/or if a determined value of the charge rate is less than or equal to the predetermined charge rate threshold, the power management circuit may adjust one or more operational parameters of the staple cartridge 1046. The adjustments may comprise a series of progressively increasing adjustments configured to mitigate power consumption.


Further to the above, adjusting the operational parameters of the staple cartridge 1046 may include adapting, or adjusting, one or more sensor parameters associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation. In certain instances, adjusting the operational parameters of the staple cartridge 1046 can be further based on situational awareness data derived by a surgical hub 1024 (FIG. 16), for example.



FIG. 26 is a logic flow diagram of an algorithm 1150 depicting a control program or a logic configuration for optimizing a wireless transmission of power and/or data signal across a transmission system 1045, in accordance with at least one aspect of the present disclosure. In the illustrated example, the algorithm 1150 includes detecting 1151 a location of the surgical instrument 1022, and selecting 1152 a frequency band based on the location of the surgical instrument 1022. Further, the algorithm 1150 may include selecting 1153 a drive frequency of the primary, or drive, coil of the transmission system 1045 from the frequency band. In addition, the algorithm 1150 may include selecting 1154 a receiving frequency of the secondary, or receiver, coil of the transmission system 1045 from the frequency band.


In various aspects, one or more aspects of the algorithm 1150 can be implemented by a control circuit such as, for example, the control circuit 1026, the control circuit 1049, or a local processing unit of the transmission system 1045. In certain instances, detecting 1151 the location of the surgical instrument 1022 comprises detecting a parameter indicative of the location such as, for example, longitude and latitude readings. The readings can be utilized by the control circuit 1049 to identify a location of the surgical instrument 1022. In other instances, the location of the surgical instrument 1022 can be entered by a user through the feedback system 1038, for example. Further, selecting 1153 the drive frequency and/or selecting 1154 the receiving frequency from the frequency band can be based on one or more operational parameters of the surgical instrument 1022.


Frequency band selection can depend on local regulations. In various aspects, a memory circuit 1032, or memory circuit 1047, may store a table or database listing various locations and corresponding available frequency bands. A control circuit executing the algorithm 1150 can be configured to utilize the table or database to select 1152 a suitable frequency band based on available frequency bands at a detected 1151 location, for example.


Referring to FIGS. 8B, 8C, and 8D various components of an adaptive control system 1155 of the surgical instrument 1022 can be located in a cavity 1156 within a proximal portion of an end effector 10400, which is similar in many respects to the end effector 1040. The adaptive control system 1155 is configured to manage various aspects of wireless power and/or data signal transfer between the staple cartridge 1046 and the surgical instrument 1022. In the illustrated example, the adaptive control system 1155 includes a tuning electronics package 1157 for optimizing wireless power and/or data signal transfer through the transmission system 1045. The tuning electronics package 1157 is positioned in the cavity 1156 in close proximity to the antenna array(s) of the transmission system 1045 to enable locally tunable wireless power and/or data signal transfer including adjustments of frequency usage, power transfer rate, and/or data transfer rate, for example.


Further to the above, the adaptive control system 1155 may include a dedicated power management circuit and a dedicated data-signal management circuit or, alternatively, a common power and data signal management circuit. Various algorithms described elsewhere in the present disclosures can be implemented by the circuits of the adaptive control system 1155 to optimize various aspects of wireless power and/or data-signal transfer between the staple cartridge 1046 and the surgical instrument 1022. The adaptive control system 1155 may include various tuning circuits, or tuning circuit components, as described in greater detail in connection with FIGS. 21-23, such as an adjustable series RLC circuit 1130 and/or an adjustable parallel RLC circuit 1135, for example. In one exemplification, the adaptive control system 1155 implements tuning by multiple sequential adjustments of transfer parameters associated with wireless transfer of power then data, or data then power.


In one implementation, the adaptive control system 1155 includes a capacitor, an inductor, a digital-to-analog converter (DAC), a voltage regulator, and/or a local processing unit such as, for example, an integrated circuit (IC) chip, which can be configured to adjust/filter a drive frequency of the antenna array(s) of transmission system 1045 and/or adjust at least one of a capacitance and an impedance to optimize wireless power and/or data-signal transfer between the staple cartridge 1046 and the surgical instrument 1022. In certain instances, the adaptive control system 1155 optimizes the wireless power and/or data-signal transfer by adjusting one or more parameters of the surgical instrument 1022 such as wireless power and/or data-signal transfer parameters, for example, to minimize signal reflection.


To minimize latency and improve speed of dynamic balance, the electronics package 1157 of the adaptive control system 1155 and an antenna array of the transmission system 1045 (e.g. antenna array 10530″, 10535″) configured to be tuned by the adaptive control system 1155 are placed in closed proximity to one another. In certain instances, as illustrated in FIG. 8C, the electronics package 1157 of the adaptive control system 1155 and the antenna array 10530″, 10535″ of the transmission system 1045 are spaced apart a predefined distance (D).



FIG. 8C depicts an implementation 1053 of the transmission system 1045 with separate power and data signal transfer. However, other implementations (e.g. implementations 1051, 1052 of FIGS. 6 and 7) of the transmission system 1045 may include similar arrangements where the separation between the electronics package 1157 of the adaptive control system 1155 and an antenna array is limited to the predefined distance (D). For brevity, the following discussion of the predefined distance (D) will focus on the example implementation 1053 illustrated in FIG. 8C, which includes the antenna array 10530″, 10535″.


As described above, the electronics package 1157 is stored in a cavity 1156 at a proximal portion of an end effector 10400 which is similar in many respects to the end effector 1040. Further, the antenna array 10530″, 10535″ is mounted on a sidewall of a jaw 10410. In the illustrated example, the electronics package 1157 resides in the cavity 1156 at a proximal portion of the jaw 10410, but distal to an articulation joint 10500. The placement of the electronics package 1157 within the cavity 1156 permits the electronics package 1157 to be a predefined distance (D) away from the antenna array 10530″, 10535″, as illustrated in FIG. 8C.


In various aspects, the predefined distance (D) is selected from a range of about 0.1″ to about 1.0″, a range of about 0.2″ to about 0.8″, a range of about 0.3″ to about 0.7″, a range of about 0.4″ to about 0.6″, or a range of about 0.45″ to about 0.55″, for example. In at least one example, the predefined distance (D) is 0.50″, 0.51″, 0.52″, 0.49″, or 0.48″. Other values for the predefined distance (D) are also contemplated by the present disclosure.


In various aspects, the cavity 1156 is located under a distal channel retainer 1158 that provides a location where the end effector 10400 can be operatively coupled (mounted) to the articulable joint 10500. In the illustrated example, the cavity 1156 is located below a pin 1159 configured to attach the distal channel retainer 1158 to the jaw 10400. In certain instances, a firing bar 10640, which is operatively coupled to a motor (e.g. motor 1042), extends over the cavity 1156. The firing bar 10640 is driven distally by the motor 1042 to push the tissue cutting knife 10630 through a staple cartridge 11000″, which is similar in many respects to the staple cartridge 1046, during a staple firing stroke.


Further to the above, the pin 1159 may be fixed to sidewalls of the jaw 10410 to prevent rotation of the distal channel retainer 1158 relative to the jaw 10410. The placement of the pin 1159 leaves a sufficient space between the pin 1159 and a base 1174 of the jaw 10410 to accommodate the electronics package 1157 within sufficient proximity from the sensor array 10530″, 10535″ to minimize latency and/or improve speed of dynamic balance performed by the adaptive control system 1155.


In the illustrated example, the electronics package 1157 is connected to the antenna array 10530″, 10535″ by a flex circuit 1175. In other examples, the electronics package 1157 is integrated onto the flex circuit 1175 with no hard circuit board. In such instances, the flex circuit 1175 may bridge the articulation joint 10500. One or more retention features can be incorporated into the articulation joint to minimize the interaction between the flex circuit 1175 and moving components within the articulation joint 10500. In certain instances, portions of the flex circuit 1175 can be coupled to biasing members that ensure that the flex circuit 1175 is retained away from pinch and/or catch points, for example.



FIG. 27 is a logic flow diagram of an algorithm 1160 depicting a control program or a logic configuration for calibrating a sensor array 1036 of a surgical instrument 1022, in accordance with at least one aspect of the present disclosure. In the illustrated example, the algorithm 1160 includes performing 1161 an initial calibration of the sensor array 1036, and determining 1162 an initial adjustment to the measurements based on the initial calibration. Additionally, the algorithm 1160 may include performing 1163 an in-use calibration of the sensor array 1036, and modifying 1164 the initial adjustment based on the in-use calibration. The modification 1164 of the initial adjustment may yield a final adjustment, for example.


In the illustrated example, the algorithm 1160 is implemented, or at least partially implemented, by the control circuit 1049. In other examples, various aspects of the algorithm 1160 can be implemented by other control circuits such as, for example, the control circuit 1026, or any other suitable control circuit. Further, in the illustrated example, the algorithm 1160 is executed in a calibration of the sensor array 1036. In other examples, the algorithm 1160 can be equally executed in a calibration of other sensors, or sensor arrays, of the surgical instrument 1022.


As discussed elsewhere in the present disclosure in greater detail, sensors of the sensor array 1036 are configured to determine a parameter associated with a function of the surgical instrument 1022. The initial adjustment and/or final adjustment normalize readings of the sensors that are utilized to determine the parameter. In one form, the parameter is a tissue parameter such as, for example, a tissue thickness. In another form, the parameter is an operational parameter of the end effector 1040 such as, for example, a parameter of a closure state of the end effector 1040.


In one form, the algorithm 1160 can be limited to performing 1161 the initial calibration, and determining 1162 the initial adjustment. In another form, the algorithm 1160 can be limited to performing 1163 an in-use calibration, and determining an adjustment based on the in-use calibration without the initial calibration.


Further to the above, the initial calibration may include a calibration performed at a manufacturing facility, or a testing facility, outside an operating room and/or before shipping to an end user. On the other hand, the in-use calibration may include a calibration performed by an end-user, after unpacking, such as, for example, in an operating room or hospital. The in-use calibration of a sensor array 1036 of a staple cartridge 1046 can be triggered by a wake-up or an initialization signal, for example, from the surgical instrument 1022, for example. The wake-up or an initialization signal can be delivered through the transmission system 1045, for example. In certain instances, performing 1161 the initial calibration and/or performing 1163 the in-use calibration can be triggered by a user input through the feedback system 1038.


In various aspects, the algorithm 1160 includes performing 1161 the initial calibration and/or performing 1163 the in-use calibration against a cartridge retainer disposed against the sensor array 1036. Cartridge retainers are typically used to maintain staples of a staple cartridge in place during shipping and/or seating of the staple cartridge in a jaw of the surgical instrument 1022, for example. In certain instances, the cartridge retainer can be modified to include calibration features with known resistive, capacitive, and/or inductive properties. An initial calibration of the sensor array 1036 can be performed 1161 by causing one or more sensors of the sensor array 1036 to take measurements of the calibration features corresponding to their known resistive, capacitive, and/or inductive properties. The measurements can then be compared to stored values of the known resistive, capacitive, and/or inductive properties. An initial adjustment to the sensor array 1162 measurements can be determined 1162 based on the measurements and the stored values. The initial calibration may include a normalizing process using reference values to correct for capacitive bleed, variation in wiring length, and read distance across sensors, for example. In addition, the initial calibration may include a sequence of comparisons against known design variation to identify correction values.


Similarly, an in-use calibration of the sensor array 1036 can be performed 1163 using a cartridge retainer, in an operating room for example, by causing one or more sensors of the sensor array 1036 to take measurements of the calibration features of the cartridge retainer corresponding to their known resistive, capacitive, and/or inductive properties. The in-use calibration can be performed automatically as a part of an activation, initialization, and/or wake-up sequence. In one example, the measurements can be compared to stored values of the known resistive, capacitive, and/or inductive properties, and a final adjustment to the sensor array 1162 measurements can be determined 1162 based on the measurements and the stored values. In another example, the measurements of the in-use calibration are compared to the measurements of the initial calibration to detect any changes due to the sterilization, packing, transit, shelf-life, and/or un-boxing that may have further affected the sensor array 1036.


In certain instances, a conductive medium such as, for example, an electric grease is placed between the staple cartridge and the cartridge retainer to ensure a proper electrical connection between the measured features of the cartridge retainer and corresponding sensors of the sensor array 1036. The conductive medium eliminates, or at least reduces, environmental, or contact, based variations in measurements taken by the sensors of the sensor array 1036 of the features of the cartridge retainer. In other instances, another calibration member can be employed instead of the cartridge retainer to perform 1161 the initial calibration and/or perform 1163 the in-use calibration. The measured features can be disposed onto, or under, a flat, or substantially flat, surface of the calibration member, which can be placed against the sensors of the sensor array 1036 to perform a calibration thereof.


In various aspects, the algorithm 1160 may include performing 1161 the initial calibration and/or in-use calibration in a predetermined medium such as air, saline, or any other suitable with known properties that can be measured by the sensors of the sensor array 1036. An initial calibration of the sensor array 1036 can be performed 1161 by causing one or more sensors of the sensor array 1036 to take measurements of one or more of the medium's known properties while the sensors are immersed in the medium. The measurements can then be compared to predetermined values of the known properties. An initial adjustment to the sensor array 1162 measurements can be determined 1162 based on the measurements and the predetermined values.


Similarly, an in-use calibration of the sensor array 1036 can be performed 1163 by causing one or more sensors of the sensor array 1036 to take measurements corresponding to one or more of the medium's known properties while the sensors are immersed in the medium. As discussed above, the in-use calibration can be performed automatically as a part of an activation, initialization, and/or wake-up sequence. In one example, the measurements can be compared to stored values of the known properties, and a final adjustment to the sensor array 1162 measurements can be determined 1162 based on the measurements and the stored values. In another example, the measurements of the in-use calibration are compared to the measurements of the initial calibration to detect any changes due to the sterilization, packing, transit, shelf-life, and/or un-boxing that may have further affected the sensor array 1036.


In certain instances, the control circuit 1026 may give instructions to immerse the end effector 1040 in an operating room medium such as, for example, saline prior to taking sensor measurements in accordance with the in-use calibration. The instructions can be given through the feedback system 1038, for example. The control circuit 1026 may request a confirmation of the immersion. The instructions can be issued during an activation, initialization, and/or wake-up sequence of the staple cartridge 1046, after a seating of the staple cartridge in a jaw of the end effector 1040, for example. Upon receipt of the confirmation, the in-use calibration can then be performed as previously described.


Further to the above, the algorithm 1160 may store a determined 1162 value of the initial adjustment in a memory circuit 1047 of the staple cartridge 1046. During a wake-up or an initialization sequence of the staple cartridge 1046, the stored value of the initial adjustment can be communicated to the main control circuit 1026 of the surgical instrument 1022, for example, using the transmission system 1045, for example. The processor 1030 may employ the initial adjustment in converting readings of the sensors of the sensor array 1036 to values of a corresponding tissue parameter, for example. Alternatively, the processor 1041 may perform the conversion locally in the staple cartridge 1046. Converted values can then be communicated to the control circuit 1026 using the transmission system 1045.


Further to the above, performing 1163 the in-use calibration may include determining one or more conversion factors representing variations due to various influences such as sterilization, shipping time, shelf life, previous use time, elevation, environmental impacts such as humidity and/or temperature, physical damage, sensor degradation, and/or drift, for example. Each of these influences may contribute to a deviation that can be remedied by a modification 1064 to the initial adjustment. In certain instances, the algorithm 1160 calculates a final adjustment based on the initial adjustment and one, or more, additional conversion factors corresponding to sterilization, shipping time, shelf life, previous use time, elevation, environmental impacts such as humidity and/or temperature, physical damage, sensor degradation, and/or drift, for example.


In certain instances, the conversion factors can be determined from equations, tables, and/or databases stored in the memory circuit 1047. Information about these influences can be provided by a user input through the feedback system 1038, for example. Additionally, or alternatively, the information can be ascertained locally using internal clocks, timers/counters (e.g. timer/counter 2781), various sensors, and/or various forms of signal processing. Additionally, or alternatively, the information can be determined based on one or more signals received by the surgical instrument 1022 from a local server, a surgical hub (e.g. surgical hub 1024), and/or a cloud based system, for example.


In one example, the shipping time can be determined based on a manufacturing date, which can be stored in the memory circuit 1047 or entered by a user, and an activation date. In another example, elevation can be determined based on a geographical location of the surgical instrument 1022. In other examples, environmental parameters such as humidity and/or temperature parameters can be entered by a user or can be ascertained from environmental sensors on the staple cartridge 1046, outer packaging, and/or the surgical instrument 1022. In other examples, physical damage and/or sensor degradation can be determined by detecting a lack of a sensor signal after activation and/or by detecting a lack of a response signal following a transmission of an interrogation signal to the sensors of the sensor array 1036.


In any event, the control circuit 1026 may utilize the information received regarding the one or more influences to develop individual conversion factors for the influences based on one or more equations, tables, and/or databases stored in the memory circuit 1032, for example. The control circuit 1026 may then determine a final adjustment based on the initial adjustment and one, or more, conversion factors of the individual influences.



FIG. 28 is a logic flow diagram of an algorithm 1165 depicting a control program or a logic configuration for modulating a control parameter of the surgical instrument 1022, in accordance with at least one aspect of the present disclosure. In the illustrated example, the algorithm 1165 includes measuring 1166 a physical parameter of a staple cartridge 1046 seated in a jaw of the end effector 1040, for example. The algorithm 116 further includes adjusting 1167 a control parameter of the surgical instrument 1022 based on the measured physical parameter of the staple cartridge 1046.


In the illustrated example, the algorithm 1160 is implemented, or at least partially implemented, by the control circuit 1026. In other examples, various aspects of the algorithm 1160 can be implemented by other control circuits such as, for example, the control circuit 1049, or any other suitable control circuit. For brevity the following description will focus on executing various aspects of the algorithm 1160 by the control circuit 1026.


In various aspects, the physical parameter is a tissue gap. In certain exemplifications, the tissue gap is a minimum gap (G) between the anvil 1031 and the staple cartridge 1046 determined at a closed configuration of the end effector 1040, as illustrated in FIG. 29. In the illustrated example, the minimum gap (G) is defined by a stop member 1039 configured to interfere with closure of the end effector 1040. The stop member 1039 protrudes from the staple cartridge 1046, and is contacted by the anvil 1031 at the closed configuration. In certain instances, the stop member 1039 is positioned at proximal location of the end effector 1040 such as, for example, behind tissue stops. In other instances, the stop member 1039 can be positioned at a distal end portion of the staple cartridge 1046 or the anvil 1031, for example.



FIG. 30 is a logic flow diagram of an algorithm 1170 depicting a control program or a logic configuration similar in many respects to the algorithm 1165. Like the algorithm 1165, various aspects of the algorithm 1170 can be implemented, or at least partially implemented, by the control circuit 1026, the control circuit 1049, and/or any other suitable control circuit. The algorithm 1165 exemplifies a specific execution of the measuring 1166 of the physical parameter of the staple cartridge 1046, in accordance with the algorithm 1165, wherein the physical parameter is a tissue gap. In the illustrated example, the algorithm 1170 includes detecting 1171 the closed configuration based on a current draw of the motor 1042, and determining 1172 the minimum gap between the anvil 1031 and the staple cartridge 1046 at the closed configuration. In one example, as described in greater detail below, the minimum gap (G) is determined based on an output signal of a sensor 1035 at the closed configuration.


During closure of the end effector 1040, the control circuit 1026 is configured to cause the motor 1042 to generate a closure motion that motivates the longitudinally movable displacement member 1044 to transition the end effector 1040 to the closed configuration, as illustrated in FIG. 29. The stop member 1039 is configured to resist the closure motion of the end effector 1040 at the closed configuration. The resistance can be detected by an increase in the current draw of the motor 1042 during a closure of the end effector 1040 to a value greater than, or equal to, a predetermined threshold, which represents reaching the closed configuration. In various aspects, the control circuit 1026 is configured to determine 1173 the minimum gap (G) between the staple cartridge 1046 and the anvil 1031 when the current draw of the motor 1042 is greater than, or equal to, the predetermined threshold.


The control circuit 1026 may further adjust one or more control parameters of the surgical instrument 1022 based on the determined minimum gap (G). In certain exemplifications, the control parameter can be a parameter of an algorithm executable to perform a function of the surgical instrument 1022. In certain exemplifications, the control parameter is a threshold, or a predetermined algorithm reaction, for example.


Referring still to FIGS. 29 and 30, the control circuit 1026 can be configured to monitor the gap between the staple cartridge 1046 and the anvil 1031 using one or more sensors 1035. In the illustrated example, the sensor 1035 is a magnetic sensor such as, for example, a Hall Effect sensor. A corresponding magnet 1069 is placed on the anvil 1031. The sensor 1035 can be configured to measure the strength of a magnetic field produced by the magnet 1069. As the gap between the anvil 1031 and the staple cartridge 1046 decreases, the strength of the magnetic field increases. Accordingly, the control circuit 1026 can be configured to monitor the gap between the staple cartridge 1046 and the anvil 1031 by monitoring output signals of the sensor 1035.


Other sensors for detecting the minimum gap (G) are contemplated by the present disclosure. In one example, the sensor 1035 comprises a strain gage, a photoelectric sensor, a pressure sensor, an inductive sensor, such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor.


In various instances, the control circuit 1026 can utilize an algorithm to determine the change in current drawn by the motor 1042. For example, a current sensor can detect the current drawn by the motor 1042 during the closure motion. The current sensor can continually detect and/or can intermittently detect the current drawn by electric motor 1042. In various instances, the algorithm can compare the most recent current reading to the immediately preceding current reading, for example. Additionally or alternatively, the algorithm can compare a sample reading within a time period X to a previous current reading. For example, the algorithm can compare the sample reading to a previous sample reading within a previous time period X, such as the immediately preceding time period X, for example. In other instances, the algorithm can calculate the trending average of current drawn by the motor 1042. The algorithm can calculate the average current draw during a time period X that includes the most recent current reading, for example, and can compare that average current draw to the average current draw during an immediately preceding time period time X, for example.


In one exemplification, the control circuit 1026 is configured to receive a first signal indicative of the current draw of the motor 1042 during a closure of the end effector 1040, and receive a second signal indicative of the gap between the staple cartridge 1046 and the anvil 1031. The first signal can represent an output of a current sensor configured to monitor a current draw of the motor 1042 during the closure motion, while the second signal can represent an output of the sensor 1035. Further, the control circuit 1026 can be configured to measure a physical parameter of the staple cartridge 1046 by determining the minimum gap (G) between the staple cartridge 1046 and the anvil 1031 at a closed configuration identified by a current draw of the motor 1042 greater than, or equal to, a predetermined threshold.


The control circuit 1026 may be configured to compare the current draw of the motor 1042 to a predetermined threshold stored in the memory circuit 1032, for example. The control circuit 1026 may further be configured to store a value of the minimum gap (G) between the staple cartridge 1046 and the anvil 1031 when the current draw of the motor 1042 is greater than, or equal to, a predetermined threshold. The stored value can then be employed to modulate one or more control parameters of the surgical instrument 1022.


Referring still to FIG. 30, the algorithm 1170 may include verifying a tissue compression parameter of the tissue grasped by the end effector 1040 based on the minimum gap (G) and an initial tissue thickness. In certain instances, the algorithm 1170 may verify that the tissue compression parameter is as expected. In one example, the tissue compression parameter is a tissue compression creep which occurs when tissue grasped by the end effector 1040 is allowed time for fluid egress.


The tissue compression creep depends on the minimum gap (G) and an initial tissue thickness. The initial tissue thickness can be measured using one or more suitable sensors or sensor arrangements such as those described in U.S. Pat. No. 9,345,481, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which issued on May 24, 2016, which is herein incorporated by reference in its entirety; U.S. Patent Application Publication No. 2014/0263552, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which published on Sep. 18, 2014, now U.S. Pat. No. 10,032,719, which is herein incorporated by reference in its entirety; and U.S. patent application Ser. No. 15/628,175, titled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, filed Jun. 20, 2017, now U.S. Pat. No. 10,881,399, which is herein incorporated by reference in its entirety. In any event, the control circuit 1026 may be configured to verify the tissue compression creep by comparing an expected value of the tissue compression creep, which can be stored in the memory circuit 1032 for example, with a value the tissue compression creep determined based on the minimum gap (G) and an initial tissue thickness.


In various aspects, as illustrated in FIG. 28, the algorithm 1165 may include verifying 1168, or identifying, the type of staple cartridge 1046 seated in a jaw of the end effector 1040 based on a measured 1166 physical parameter of the staple cartridge 1046. In one example, the physical parameter is a tissue gap, or a minimum gap (G) between the staple cartridge 1046 and the anvil 1031 at the closed configuration.


As described above, the control circuit 1026 is configured to determine a tissue gap, or a minimum gap (G) between the staple cartridge 1046 and the anvil 1031 at the closed configuration. Different staple cartridge types may include different stop members configured to define different tissue gaps, or minimum gaps (G). Accordingly, the control circuit 1026 may utilize the determined minimum gap (G) to verify the type of the staple cartridge 1046. In one example, the control circuit 1026 is configured to verify 1168, or identify, a type of the staple cartridge 1046 by using a look-up table or database that stores staple cartridge types and corresponding minimum gap (G) values, for example.


In various aspects, the algorithm 1165 includes modulating one or more control parameters of the surgical instrument 1022 based on the verified 1168, or identified, staple cartridge type. In one example, the control circuit 1026 is configured to select between different algorithms depending on the identified staple cartridge type. The different algorithms can be different sensing algorithms configured to control the sensor array 1036 differently. In another example, the control circuit 1026 is configured to select between different operating modes for sensors, or groups of sensors, of the sensor array 1036 depending on the identified staple cartridge type. The operating mode can include an idler mode, an inactive mode, and/or an active mode. In one example, the control circuit 1026 is configured to adjust algorithm parameter based on the identified staple cartridge type. The algorithm parameter can be a predetermined threshold, for example. In one example, the control circuit 1026 is configured to adjust one or more sensor parameters based on the identified staple cartridge type. Adjustable sensor parameters may include ones associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation.



FIG. 31 is a logic flow diagram of an algorithm 1180 depicting a control program or a logic configuration for modulating a sensor parameter of the sensor array 1036, in accordance with at least one aspect of the present disclosure. In the illustrated example, the algorithm 1180 includes detecting 1181 closure states of the end effector 1040 based on an operational parameter of the motor 1042. The algorithm 1180 further includes selectively modulating 1182 a sensor parameter of sensors of the sensor array 1036 in accordance with the detected closure states. In the illustrated example, the algorithm 1180 is implemented, or at least partially implemented, by the control circuit 1026. In other examples, various aspects of the algorithm 1180 can be implemented by other control circuits such as, for example, the control circuit 1049, or any other suitable control circuit. For brevity the following description will focus on executing various aspects of the algorithm 1180 by the control circuit 1026.


During closure, the control circuit 1026 is configured to cause the motor 1042 to generate a closure motion that transitions the end effector 1040 from an open configuration toward a closed configuration to grasp tissue between the jaws of the end effector 1040. The transition to the closed configuration includes a plurality of closure states. For example, a first closure state can be characterized by making a first tissue contact which is achieved when both of the anvil 1031 and the staple cartridge 1046 are first simultaneously in contact with the tissue. In certain instances, the staple cartridge 1046 is first placed in contact with a target tissue. The anvil 1031 is then moved toward the target tissue to grasp the tissue between the staple cartridge 1046 and the anvil 1031. In such instances, the first closure state is detected when the anvil 1031 makes first contact with the target tissue placed against the staple cartridge 1046. In other instances, the anvil 1031 is first placed in contact with a target tissue, and the staple cartridge 1046 is then moved toward the target tissue. In such instances, the first closure state is detected when the staple cartridge 1046 makes first contact with the target tissue placed against the anvil 1031.


In any event, the initial contact with the tissue can yield an increase in the current draw of the motor 1042 during the closure of the end effector due to an initial resistance of the tissue. In certain instances, the increase is in the form of an uptick, or a step-up, which can be detected by the control circuit 1026 as indicative of reaching the first closure state. In other instances, one or both of the jaws of the end effector 1040 may include one or more sensors configured to detect an initial tissue contact. In one example, the initial tissue contact can be detected when the target tissue closes a tissue contact detection circuit located on a tissue contacting surface of one or both of the jaws of the end effector 1040. When closed, the tissue contact detection circuit may transmit a signal indicative of a first tissue contact, for example. The control circuit 1026 can be configured to detect a second closure state in response to the signal from the tissue contact detection circuit.


Further to the above, the closure motion generated by the motor 1042 further causes the end effector 1040 to transition from the first closure state to a second closure state characterized by a fully-clamped condition, for example. At the second closure state, a closure force applied to the tissue is equal to, or greater than, a predetermined threshold. Accordingly, the control circuit 1026 can be configured to detect the second closure state by monitoring the closure force. The closure force can be measured by one or more force sensors responsive to a clamping load applied by the motor 1042. In various examples, the one or more force sensors may comprise a force transducer, a torque cell, a load cell, a strain gauge, a Wheatstone bridge, or any other suitable force sensor, for example. The control circuit 1026 can be configured to detect the second closure state in response to a sensor signal generated by the one or more force sensor that indicates a closure force equal to, or greater than, the predetermined threshold, for example.


Further to the above, the second closure state can be followed by a third closure state characterized by a fully-stabilized tissue creep. During the initial clamping of the target tissue between the anvil 1031 and the staple cartridge 1046, the longitudinally movable displacement member 1044 must transmit a sufficient amount of axial closure force to the anvil 1031 to pivot the anvil 1031 to a closed position and retain it in that position throughout the staple forming process. The amount of closure force required to close the anvil and retain it in a closed position can vary during the stapling process due to “tissue creep”. For example, as the anvil 1031 compresses the target tissue, fluid within the clamped target tissue can “creep” or migrate within the tissue and even flow to adjacent unclamped tissue. Following the fully-clamped condition, the grasped tissue is allowed time for fluid egress until the closure force is stabilized. Accordingly, the control circuit 1026 can be configured to detect the third closure state based on the closure force.


The control circuit 1026 may monitor the closure force for a steady state after the second closure state is detected. In certain instances, the control circuit 1026 is configured to detect the third closure state in response to a sensor signal from the one or more force sensors indicative of reaching a steady state after the second closure state is detected, or after reaching a value greater than, or equal to, the predetermined threshold. In certain instances, the steady state can be characterized by a change in the closure force less than, or equal to, a predetermined threshold over a predetermined time period (t). In other instances, the steady state can be characterized by a change in the closure force within a predetermined range over a predetermined time period (t).


Further to the above, selectively modulating 1182 a sensor parameter of sensors of the sensor array 1036 may include selectively modulating sensor parameters may include ones associated with data collection, transmission, and/or processing such as, for example, sensor sampling rate, sampling drive current and/or voltage, collection rate, sensor data resolution, sensor-data transmission rate, duration of activation, and/or frequency of activation. In certain instances, the control circuit 1026 can be configured to selectively switch sensors, or subsets of sensors, of the sensor array 1036 to an active mode, an idler mode, or an inactive mode based on the closure states to optimize data collection, transmission, and/or processing, for example. In at least one example, the control circuit 1026 is configured to incrementally adjust the sampling rate of one or more sensors, or groups of sensors, of the sensor array with the detection of each of the closure states.


In various aspects, one or more closure states of the end effector 1040 can be detected based on situational awareness data. For example, the control circuit 1026 may detect a closure state of the end effector 1040 based on a signal indicative of situational awareness data received from a surgical hub (e.g. surgical hub 1024) and/or a cloud based system for data aggregation and analysis, for example.


In various aspects, selectively modulating 1182 a sensor parameter, in accordance with the algorithm 1180, comprises assigning different priorities to different sensor data. The assigned priorities can dictate various aspects of the data collection, transmission, and/or processing, for example. The control circuit 1026 can be configured to assign selectively assign priorities to sensor data from different sensors, or groups of sensors, based on the closure states. In one example, cartridge identification data may be assigned a higher priority in the open configuration, and a lower priority at the first, second, and/or third closure states. In another example, sensor data from tissue contact sensors may be assigned a higher priority up to and/or at the first closure state, and a lower priority at the second and/or third closure states. In yet another example, tissue interrogation data may be assigned a higher priority at the first, second, and/or third closure state, and a lower priority after the third closure state. The higher priority and/or lower priority can be implemented by a circuit 1026 by adjusting various aspects of the data collection, transmission, and/or processing, as previously described in greater detail.



FIG. 32 is a logic flow diagram of an algorithm 1190 depicting a control program or a logic configuration for modulating a sensor parameter of the sensor array 1036, in accordance with at least one aspect of the present disclosure. In the illustrated example, the algorithm 1190 includes detecting 1191 a tissue contact status of the staple cartridge 1046. The algorithm 1190 further includes selectively modulating 1182 a sensor parameter of one or more sensors of the sensor array 1036 in accordance with the detected tissue contact status. In the illustrated example, the algorithm 1190 is implemented, or at least partially implemented, by the control circuit 1026. In other examples, various aspects of the algorithm 1190 can be implemented by other control circuits such as, for example, the control circuit 1049, or any other suitable control circuit. For brevity the following description will focus on executing various aspects of the algorithm 1190 by the control circuit 1026.


In various aspects, detecting 1191 the tissue contact status of the staple cartridge 1046 is performed at each of a plurality of closure states. As the closure of the end effector 1040 commences, the size and/or position of the tissue in contact with the sensor array 1036 of the staple cartridge 1046 may change. To optimize sensor data collection, transmission, and/or processing, the control circuit 1026 can be configured to adjust one or more sensor parameters of one or more sensors, or groups of sensors, of the sensor array 1036 based on whether tissue contact is detected at the different closure states.


In certain exemplifications, as illustrated in FIG. 33, the sensor array 1036 is disposed along a length L of the staple cartridge 1046. However, the tissue grasped by the end effector 1040 may cover a region 1193 extending only along a portion of the length L, for example extending along a length L1. In such instances, sensor data from sensors beyond the region 1193 can be assigned a lower priority than sensor data from sensors within the region 1193. A control circuit 1026 can be configured to determine a priority level of the sensors of the sensor array 1036 based on their location with respect to the region 1193, for example. Furthermore, the control circuit 1026 can be configured to switch sensors of the sensor array 1036 that are within the region 1193 to an active mode 1083 and/or switch sensors of the sensor array 1136 that are outside the region 1193 to an idler mode 1084 (See FIG. 15), for example.


In various aspects, tissue contact detection can be accomplished by a tissue contact circuit 2830, as described in greater detail elsewhere in the present disclosure. The tissue contact circuit 2830 is in open circuit mode with no tissue located against the sensors 2788a, 2788b. The tissue contact circuit 2830 is transitioned to a closed circuit mode by the tissue 2820. The sensors 2788a, 2788b are powered by voltage source V and a sensors circuit 2790 measures a signal generated by the sensors 2788a, 2788b. In some aspects, the sensors 2788a, 2788b may include a pair of opposing electrode plates to make electrical contact with the tissue 2820.


Any of the sensors 2788a, 2788b disclosed herein may include, and are not limited to, electrical contacts placed on an inner surface of a jaw which, when in contact with tissue, close a sensing circuit that is otherwise open. The contact sensors may also include sensitive force transducers that detect when the tissue being clamped first resists compression. Force transducers may include, and are not limited to, piezoelectric elements, piezoresistive elements, metal film or semiconductor strain gauges, inductive pressure sensors, capacitive pressure sensors, and resistive sensors.


Further to the above, a control circuit 1026, for example, may receive one or more signals from the sensor circuit 2790 and/or sensors 2788a, 2788b indicative of a tissue contact status of one or more regions along the length L of the staple cartridge 1046. In response, the adjust one or more sensor parameters of one or more sensors, or groups of sensors, the control circuit 1026 can be configured to adjust sensor parameters of one or more sensors of the sensor array 1036 in the one or more regions based on the tissue contact status.


Additional details are disclosed in U.S. Pat. No. 10,595,887, titled SYSTEMS FOR ADJUSTING END EFFECTOR PARAMETERS BASED ON PERIOPERATIVE INFORMATION, and issued Mar. 24, 2020, U.S. Pat. No. 9,724,094, titled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, and issued Aug. 8, 2017, and U.S. Pat. No. 9,808,246, titled METHOD OF OPERATING A POWERED SURGICAL INSTRUMENT, and issued Nov. 7, 2017, the entireties of disclosures of which are hereby incorporated by reference herein.


In one general aspect, the present disclosure provides methods of monitoring multiple sensors over time to detect moving characteristics of tissue located in the jaws of the end effector. In one aspect, the end effector comprises a cartridge. More than one sensor can be located on a cartridge to sense the motion of the tissue from one sensor towards an adjacent sensor. In a stapling cartridge, multiple sensors may be located on the stapling cartridge to sense movement of tissue by monitoring a property of the tissue. In one aspect, the tissue property could be an electrical property of the tissue such as impedance or capacitance. In another aspect, monitoring the impedance of the tissue from one time point to the next can allow the system to detect the motion of the tissue from one sensor towards the next.


In one aspect, a method of monitoring multiple sensors over time to detect moving characteristics of the tissue comprises monitoring multiple sensors over time to detect tissue movement relative to at least two sensed locations. The method provides real-time tissue flow sensing through monitoring a sensed tissue property through time.


Turning now to FIG. 34, which illustrates a diagram of a surgical instrument 2750 comprising an instrument housing 2800 and an end effector 2752 inductively coupled to the instrument housing 2800 via a set of coils 2818 implementing a wireless power and data communication system, in accordance with at least one aspect of the present disclosure. The instrument housing 2800 comprises an energy source 2762 and a control circuit 2760 inductively coupled to the end effector 2752. Power from the energy source 2762 is inductively coupled to the end effector 2752 from a primary coil 2802 tuned for power located in the instrument housing 2800 to a secondary coil 2804 tuned for power located in the end effector 2752. Data is transmitted between the control circuit 2760 and the end effector sensor circuits 2790 between a primary coil 2816 tuned for data located in the instrument housing 2800 and a secondary coil 2814 tuned for data located in the end effector 2752.



FIG. 34 illustrates one implementation of the transmission system 1045 for wireless transmission of power and data. In the implementation illustrated in FIG. 34, power and data are transmitted separately. In other implementations, as described supra, power and data are transmitted sequentially or simultaneously. For brevity, the following description focuses on the implementation of the transmission system 1045 that is configured to separately transmit power and data. However, it is understood that the other implementations of the transmission system 1045 can be equally utilized.


In various aspects, the end effector 2752 comprises a cartridge 2768 and an anvil 2766 pivotally coupled to the cartridge 2768. A plurality of sensors 2788 (see FIG. 40 for a detail view) may be disposed in the cartridge 2768, the anvil 2766, or both. As described supra, the end effector 2752 comprises secondary coils 2804, 2814 to receive power from the instrument housing 2800 and communicate between the end effector 2752 circuits and the instrument housing 2800 circuits, respectively. Power from the secondary coil 2804 is rectified by a rectifier circuit 2806 and filter capacitor 2808 and is provided to a plurality of sensors 2788 via an analog multiplexer 2810 or other analog switching circuit. Signals from the sensors 2788 are transmitted through the analog multiplexer 2810, coupled to a near field communication (NFC) tag 2812, and coupled to the control circuit 2760 from the secondary coil 2814 located in the end effector 2752 and the primary coil 2816 located in the instrument housing 2800. The NFC tag 2812 is configured to transmit data from the cartridge 2768. The sensors 2788 may be configured to measure tissue impedance, tissue temperature, tissue capacitance, tissue inductance, elapsed time, among other tissue parameters explained in the following description.


In other aspects, the cartridge 2768 portion of the end effector 2752 may comprise electrodes to receive electrosurgical energy to assist or enhance the tissue sealing process. In such aspects, some or all of the plurality of sensors 2788 may act as electrodes to deliver the electrosurgical energy through the tissue clamped between the anvil 2766 and the cartridge 2768. In such aspects, the plurality of sensors 2788 may be configured to measure tissue parameters such as impedance, capacitance, among other tissue parameters explained in the following description.


In other aspects, the end effector 2752 may comprise a clamp arm assembly and an ultrasonic blade for cutting and sealing tissue clamped between the clamp arm assembly and the ultrasonic blade instead of the anvil 2766 and cartridge 2768 as shown in the example of FIG. 34. Is such aspects comprising a clamp arm assembly and ultrasonic blade, the plurality of sensors 2788 may be disposed in the clamp arm assembly and the electrical return path may be provided through the electrically conductive ultrasonic blade. The plurality of sensors 788 may be configured to measure tissue parameters such as impedance, capacitance, among other tissue parameters explained in the following description.


In other aspects, the end effector 2752 may comprise a pair of jaws configured with electrodes to deliver electrosurgical energy to seal tissue clamped between the jaws instead of the anvil 2766 and cartridge 2768 as shown in the example of FIG. 34. One of the jaws may be configured with a knife slot for cutting through the tissue after sealing. In such aspects, the plurality of sensors 2788 may be disposed in either jaw or both. The plurality of sensors 2788 may be configured to measure tissue parameters such as impedance, capacitance, among other tissue parameters explained in the following description.


In other aspects, the end effector 2752 may comprise a clamp arm assembly and an ultrasonic blade instead of the anvil 2766 and cartridge 2768 as shown in the example of FIG. 34. In such aspects, the clamp arm assembly is configured with electrodes for receiving electrosurgical energy for sealing tissue located between the clamp arm assembly and the ultrasonic blade. The electrical return path for the electrosurgical energy is provided through the electrically conductive ultrasonic blade. In such aspects, the ultrasonic blade is utilized to cut the sealed tissue clamped between the clamp arm assembly and the ultrasonic blade. The plurality of sensors 2788 may be configured to measure tissue parameters such as impedance, capacitance, among other tissue parameters explained in the following description.


In certain instances, as described in greater detail elsewhere in the present disclosure, wireless power and/or data transmission between an instrument housing 2800 and the end effector 2752 encompasses a wireless power and/or data transmission between the surgical instrument 2750 and the staple cartridge 2768. For example, the primary coils 2802, 2816 can be disposed on a cartridge channel of the end effector 2752, and the secondary coils 2804, 2814 can be disposed on the staple cartridge 2768 such that the primary coils 2802, 2816 and the secondary coils 2804, 2814 are aligned for a wireless connection when the staple cartridge 2768 is seated in the cartridge channel. In such instances, the instrument housing 2800 may encompass a proximal housing including the energy source 2762 and the control circuit 2760, a shaft extending distally from the proximal housing, and the cartridge channel.



FIG. 35 illustrates a block diagram of the surgical instrument 2750 shown in FIG. 34 comprising an instrument housing 2800 and an end effector 2752 inductively coupled to the instrument housing 2800 via a set of coils 2818 implementing a wireless power and data communication system, in accordance with at least one aspect of the present disclosure. In one aspect, the surgical instrument 2750 is configured or programmed to control the distal translation of a displacement member such as the !-beam 2764. The surgical instrument 2750 comprises an end effector 2752 that may comprise an anvil 2766, an I-beam 2764 (including a sharp cutting edge), and a removable cartridge 2768. The end effector 2752 comprises sensors 2788 and a sensors circuit 2790 coupled to the sensors 2788. Power is inductively coupled to the sensor circuit 2790 and to the sensors 2788 through coils 2802, 2804 via near field communication. Signals (e.g., voltage, current, resistance, impedance, capacitance, inductance, frequency, phase, etc.) from the sensors 2788 are conditioned by the sensors circuit 2790. The signals or data corresponding to the signals are communicated between the sensors circuit 2790 in the end effector 2752 and the control circuit 2760 in the instrument housing 2800 via near field communication inductive coupling between the coils 2814, 2816.


It will be appreciated that the sensors 2788 may be located in any suitable location in the end effector 2752. In one aspect, the sensors 2788 are arranged in an array in the cartridge 2768. In another aspect, the sensors 2788 are arranged in an array in the anvil 2766. In various aspects, the sensors 2788 are arranged in arrays in the cartridge 2768 and the anvil 2766. The control circuit 2760 may be configured to monitor the sensors 2788 over time to detect moving characteristics of tissue located in the jaws of the end effector 2752. In one aspect, the jaws of the end effector 2752 may be comprised of the anvil 2766 and the cartridge 2768, for example.


The position, movement, displacement, and/or translation of a linear displacement member, such as the I-beam 2764, can be measured by an absolute positioning system, sensor arrangement, and position sensor 2784. A control circuit 2760 may be configured or programmed to control the translation of the displacement member, such as the I-beam 2764. The control circuit 2760, in some examples, may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to control the displacement member, e.g., the I-beam 2764. In other aspects, the control circuit 2760 may comprise analog or digital circuits such as, for example, programmable logic devices (PLD), field programmable gate arrays (FPGA), discrete logic, or other hardware circuits, software, and/or firmware, or other machine executable instructions to perform the functions explained in the following description.


In one aspect, the control circuit 2760 may be configured or programmed to sense multiple longitudinal and lateral locations within the end effector 2752 independently and to use these different sensed locations with a localized predetermined return path to sense changes in the impedance of tissue grasped between the anvil 2766 and the cartridge 2768 both laterally and longitudinally to be able to detect any specific tissue mid-thickness measure by triangulating at least two interconnected session combinations. For example, the sensors 2788 may comprise an array of impedance sensors distributed laterally and longitudinally along the length of the stapler jaws, i.e., the cartridge 2768 and anvil 2766. As the jaws are closing, the control circuit 2760 may track the local impedance over time during the course of the jaw closure for each sensor, based on readings from the timer/counter 2781, or using software timing techniques. This time history can be used to infer, if present, regions of heterogeneous impedance values—where there are distinct changes or anomalies that mark a particular location. These baseline location(s) are noted and tracked as firing is initiated. Once initiated, the position histories of these locations is tracked and used for feedback control of the firing process. In another example, the control circuit may be configured or programmed to modify functions of the surgical instrument 2750 to alter tissue flow during firing of the I-beam 2764 including changing the firing speed, pauses (complete stops) in firing, closure force, among other parameters.


In other aspects, the control circuit 2760 may be configured or programmed to predict an amount of tissue flow occurring in the jaws of the end effector 2752 by monitoring the sensors 2788. Knowledge of tissue type from situational awareness and/or other device sensed measures, e.g., rate of change of closure load during closure, rate of change of closure load after closure is complete, etc. can be used by the control circuit 2760 to predict tissue flow. Accordingly, in one aspect, the control circuit 2760 is configured or programmed to determine tissue type or condition by combining tissue flow during jaw closure with force feedback of the anvil 2766 closure system.


In another example, the predictions can be further refined by using the sensors 2788 to measure tissue impedance, among other parameters, detect rigid or foreign objects in the jaws, measure magnitude of tissue impedance, measure tissue flow during jaw closure, etc. In another example, the control circuit 2760 may execute a jaw closure algorithm to sense tissue movements during closure as an indicator of the potential effect of each change during firing of the I-beam 2764. For example, at a first closure rate, the control circuit 2760 estimates the magnitude/direction of tissue flow, adjusts the closure rate of the jaws, and observes or records the changes in tissue flow within the jaws. In another example, the control circuit 2760 may be configured or programmed to predict post-fire tissue position by utilizing closure flow in combination with closure force feedback prior to firing to provide feedback to surgeon and allowing an opportunity to reposition the end effector 2752 to ensure tissue is fully captured in cut the line of the end effector 2752 (See slots 2822, 2824 in FIG. 40 for an example of a cut line).


In other aspects, the control circuit 2760 may be configured or programmed to receive data for various configurations of the sensors 2788 to monitor and interrogate tissue. This may include, monitoring tissue impedance, and tracking the impedance of the tissue across a single electrode or segmented electrode set configured along the length of the cartridge 2788. The control circuit 2760 may be configured or programmed to monitor spectrographic impedance by utilizing sweeps of different frequencies and monitoring the tissue impedance to the power and frequency to determine the physiological composition of the tissue, monitoring capacitance of the tissue, and determining the tissue characteristics and gap relationship of the jaws to determine the amount of tissue present within the jaws. In another aspect, the control circuit 2760 may be configured or programmed to measure light transmissivity, refractivity or Doppler effects to determine tissue characteristics. Local light refractivity analysis may be employed to determine the surface conditions of the tissue to monitor irregularities within the tissue captured between the jaws. The control circuit 2760 may be configured or programmed to monitor local moving particles of tissue using Doppler effect frequency analysis of the light.


In one aspect, a timer/counter 2781 provides an output signal, such as the elapsed time or a digital count, to the control circuit 2760 to correlate the position of the I-beam 2764 as determined by the position sensor 2784 with the output of the timer/counter 2781 such that the control circuit 2760 can determine the position of the !-beam 2764 at a specific time (t) relative to a starting position. The timer/counter 2781 may be configured to measure elapsed time, count external events, or time external events. In other aspects, the timer/counter 2781 may be employed to measure elapsed time to monitor the sensors 2788 over time to detect moving characteristics of tissue located in the jaws of the end effector 2752.


The control circuit 2760 may generate a motor set point signal 2772. The motor set point signal 2772 may be provided to a motor controller 2758. The motor controller 2758 may comprise one or more circuits configured to provide a motor drive signal 2774 to the motor 2754 to drive the motor 2754 as described herein. In some examples, the motor 2754 may be a brushed DC electric motor. For example, the velocity of the motor 2754 may be proportional to the motor drive signal 2774. In some examples, the motor 2754 may be a brushless DC electric motor and the motor drive signal 2774 may comprise a PWM signal provided to one or more stator windings of the motor 2754. Also, in some examples, the motor controller 2758 may be omitted, and the control circuit 2760 may generate the motor drive signal 2774 directly.


The motor 2754 may receive power from an energy source 2762. The energy source 2762 may be or include a battery, a super capacitor, or any other suitable energy source. The motor 2754 may be mechanically coupled to the I-beam 2764 via a transmission 2756. The transmission 2756 may include one or more gears or other linkage components to couple the motor 2754 to the I-beam 2764. A position sensor 2784 may sense a position of the I-beam 2764. The position sensor 2784 may be or include any type of sensor that is capable of generating position data that indicate a position of the I-beam 2764. In some examples, the position sensor 2784 may include an encoder configured to provide a series of pulses to the control circuit 2760 as the !-beam 2764 translates distally and proximally. The control circuit 2760 may track the pulses to determine the position of the I-beam 2764. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of the I-beam 2764. Also, in some examples, the position sensor 2784 may be omitted. Where the motor 2754 is a stepper motor, the control circuit 2760 may track the position of the I-beam 2764 by aggregating the number and direction of steps that the motor 2754 has been instructed to execute. The position sensor 2784 may be located in the end effector 2752 or at any other portion of the instrument.


The control circuit 2760 may be in communication with one or more sensors 2788 located in the end effector 2752. The sensors 2788 may be positioned in the end effector 2752 and adapted to operate with the surgical instrument 2750 to measure various derived parameters such as gap distance versus time, tissue compression versus time, anvil strain versus time, tissue movement versus time, tissue impedance, tissue capacitance, spectroscopic impedance, light transmissivity, refractivity or Doppler effects, among other parameters. The sensors 2788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of the end effector 2752. The sensors 2788 may include one or more sensors.


The one or more sensors 2788 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in the anvil 2766 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. The sensors 2788 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between the anvil 2766 and the cartridge 2768. The sensors 2788 may be configured to detect impedance of a tissue section located between the anvil 2766 and the cartridge 2768 that is indicative of the thickness and/or fullness of tissue located therebetween.


The sensors 2788 may be is configured to measure forces exerted on the anvil 2766 by a closure drive system. For example, one or more sensors 2788 can be at an interaction point between a closure tube and the anvil 2766 to detect the closure forces applied by a closure tube to the anvil 2766. The forces exerted on the anvil 2766 can be representative of the tissue compression experienced by the tissue section captured between the anvil 2766 and the cartridge 2768. The one or more sensors 2788 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to the anvil 2766 by the closure drive system. The one or more sensors 2788 may be sampled in real time during a clamping operation by a processor of the control circuit 2760. The control circuit 2760 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to the anvil 2766.


A current sensor 2786 can be employed to measure the current drawn by the motor 2754. The force required to advance the I-beam 2764 corresponds to the current drawn by the motor 2754. The force is converted to a digital signal and provided to the control circuit 2760.


The drive system of the surgical instrument 2750 is configured to drive the displacement member, cutting member, or I-beam 2764, by a brushed DC motor with gearbox and mechanical links to an articulation and/or knife system. Another example is the electric motor 2754 that operates the displacement member and the articulation driver, for example, of an interchangeable shaft assembly. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies and friction on the physical system. Such outside influence can be referred to as drag which acts in opposition to the electric motor 2754. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.


Various example aspects are directed to a surgical instrument 2750 comprising an end effector 2752 with motor-driven surgical stapling and cutting implements. For example, a motor 2754 may drive a displacement member distally and proximally along a longitudinal axis of the end effector 2752. The end effector 2752 may comprise a pivotable anvil 2766 and, when configured for use, a cartridge 2768 positioned opposite the anvil 2766. A clinician may grasp tissue between the anvil 2766 and the cartridge 2768, as described herein. When ready to use the instrument 2750, the clinician may provide a firing signal, for example by depressing a trigger of the instrument 2750. In response to the firing signal, the motor 2754 may drive the displacement member distally along the longitudinal axis of the end effector 2752 from a proximal stroke begin position to a stroke end position distal of the stroke begin position. As the displacement member translates distally, an I-beam 2764 with a cutting element positioned at a distal end, may cut the tissue between the cartridge 2768 and the anvil 2766.


In various examples, the control circuit 2760 may be configured or programmed to control the distal translation of the displacement member, such as the !-beam 2764, for example, based on one or more tissue conditions. The control circuit 2760 may be configured or programmed to sense tissue conditions, such as thickness, flow, impedance, capacitance, light transmissivity, either directly or indirectly, as described herein. The control circuit 2760 may be configured or programmed to select a firing control program based on tissue conditions. A firing control program may describe the distal motion of the displacement member. Different firing control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, the control circuit 2760 may be configured or programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, the control circuit 2760 may be configured or programmed to translate the displacement member at a higher velocity and/or with higher power.



FIG. 36 illustrates a perspective view of an end effector 2752 of the surgical instrument 2750 shown in FIGS. 34 and 35, in accordance with at least one aspect of the present disclosure. The end effector 2752 comprises an anvil 2766 and a cartridge 2768 forming a pair of jaws to grasp tissue 2820 therebetween as shown in FIG. 37. The plurality of sensors 2788 may be disposed in the anvil 2766, the cartridge 2768, or both.



FIG. 37 depicts an example of an end effector 2752 with tissue 2820 compressed in the jaws formed by the anvil 2766 and cartridge 2768, in accordance with at least one aspect of the present disclosure. The anvil 2766 defines a first longitudinal slot 2822 configured to slidably receive an I-beam portion for closing the anvil 2766 in order to grasp tissue 2820. The cartridge 2768 defines a second longitudinal slot 2824 configured to receive a cutting element for severing the tissue 2820 grasped between the anvil 2766 and the cartridge 2768. The longitudinal slots 2822, 2824 define a cut the line of the end effector 2752. (See slots 2822, 2824 in FIG. 40.)


With reference now to FIGS. 36-37, the sensors 2788 may be positioned in the anvil 2766 and the cartridge 2768 on opposite sides of the tissue 2820 grasped therebetween. As described supra, the plurality of sensors 2788 may be configured to measure various derived parameters such as gap distance versus time, tissue compression versus time, anvil strain versus time, tissue movement versus time, tissue impedance, tissue capacitance, spectroscopic impedance, light transmissivity, refractivity or Doppler effects, among other parameters.



FIGS. 38A and 38B are schematic illustrations of a tissue contact circuit 2830, in accordance with at least one aspect of the present disclosure. The tissue contact circuit 2830 in FIG. 38A is shown in open circuit mode with no tissue located between sensors 2788a, 2788b prior to clamping between the anvil 2766 and cartridge 2768 (described in FIGS. 34-37), respectively. The tissue contact circuit 2830 shown in FIG. 38B is shown in closed circuit mode showing the completion of the circuit upon the sensors 2788a, 2788b in contact with tissue 2820 after clamping between the anvil 2766 and cartridge 2768. The sensors 2788a, 2788b are powered by voltage source V and the sensors circuit 2790 measures a signal generated by the sensors 2788a, 2788b. and come in contact with the tissue 2829 in the jaws. In some aspects, the sensors 2788a, 2788b may include a pair of opposing electrode plates to make electrical contact with the tissue 2820.


Any of the sensors 2788a, 2788b disclosed herein may include, and are not limited to, electrical contacts placed on an inner surface of a jaw which, when in contact with tissue, close a sensing circuit that is otherwise open. The contact sensors may also include sensitive force transducers that detect when the tissue being clamped first resists compression. Force transducers may include, and are not limited to, piezoelectric elements, piezoresistive elements, metal film or semiconductor strain gauges, inductive pressure sensors, capacitive pressure sensors, and resistive sensors.


In an aspect, any one of the aforementioned surgical instruments may include one or more piezoelectric elements to detect a change in pressure occurring on the jaw members. Piezoelectric elements are bi-directional transducers which convert stress into an electrical potential. Elements may consist of metallized quartz or ceramics. In operation, when stress is applied to the crystals there is a change in the charge distribution of the material resulting in a generation of voltage across the material. Piezoelectric elements may be used to indicate when any one or both of the jaw members (e.g., anvil 2766, cartridge 2768) makes contact with the tissue 2820 and the amount of pressure exerted on the tissue 2820 after contact is established.


In an aspect, the sensors 2788a, 2788b may comprise one or more metallic strain gauges placed within or upon a portion of the body thereof. Metallic strain gauges operate on the principle that the resistance of the material depends upon length, width and thickness. Accordingly, when the material of the metallic strain gauge undergoes strain the resistance of the material changes. Thus, a resistor made of this material incorporated into a circuit will convert strain to a change in an electrical signal. Desirably, the strain gauge may be placed on the surgical instruments such that pressure applied to the tissue effects the strain gauge.


Alternatively, in another aspect, the sensors 2788a, 2788b may comprise one or more semiconductor strain gauges may be used in a similar manner as the metallic strain gauge described above, although the mode of transduction differs. In operation, when a crystal lattice structure of the semiconductor strain gauge is deformed, as a result of an applied stress, the resistance of the material changes. This phenomenon is referred to as the piezoresistive effect.


In yet another aspect, the sensors 2788a, 2788b may comprise one or more inductive pressure sensors to transduce pressure or force into motion of inductive elements relative to each other. This motion of the inductive elements relative to one another alters the overall inductance or inductive coupling. Capacitive pressure transducers similarly transduce pressure or force into motion of capacitive elements relative to each other altering the overall capacitance.


In still another aspect, the sensors 2788a, 2788b may comprise one or more capacitive pressure transducers to transduce pressure or force into motion of capacitive elements relative to each other altering an overall capacitance.


In one aspect, the sensors 2788a, 2788b may comprise one or more mechanical pressure transducers to transduce pressure or force into motion. In use, a motion of a mechanical element is used to deflect a pointer or dial on a gauge. This movement of the pointer or dial may be representative of the pressure or force applied to the tissue 2820. By way of example, mechanical elements may be coupled with other measuring and/or sensing elements, such as a potentiometer pressure transducer. In this example the mechanical element is coupled with a wiper on the variable resistor. In use, pressure or force may be transduced into mechanical motion which deflects the wiper on the potentiometer thus changing the resistance to reflect the applied pressure or force.


In another aspect, the tissue 2820 impedance Z may be measured by the sensors circuit 2790 by applying a voltage difference V across the sensors 2788a, 2788b, conducting an electrical current I through the tissue 2820, and measuring the voltage and current (V, I) to determine the impedance Z. In another aspect, the capacitance C of the tissue 2820 between the sensors 2788a, 2788b may be measured by the sensors circuit 2790 based on the tissue impedance Z according to the following formula C=1/2πfZ, where f is the frequency of the alternating voltage and current and C is the capacitance of the tissue 2820.


In one aspect, the sensors circuit 2790 may generally be an integrated circuit that measures the capacitance of the conductive plates of the sensors 2788a, 2788b. In some aspects, the sensors circuit 2790 may measure a supply voltage V and current I, measure an external voltage, and/or measure a temperature. The tissue capacitance sensors circuit 2790 system applies an electric field signal to the tissue 2820 to determine a capacitance signal. The sensors circuit 2790 generates one or more electric signals to generate an electric field signal in the tissue 2820 to drive a capacitance node defined by the conductive plate of sensor 2788a to emit an electric field in the tissue 2820. In some examples, the capacitance node includes a single plate capacitor which uses the tissue 2820 as a dielectric. In many examples, the electric field signal may be a modulated electric signal.


In one aspect, the sensors circuit 2790 can apply an electric field proximate to the tissue 2820, which can include application of an electric field signal without contact of any capacitor plate portion of capacitance node to the tissue 2820. In other examples, any associated capacitor plate portion of capacitance node is positioned to contact tissue 2820. A contact example is shown in FIG. 38B. An electric field signal may comprise a modulated signal produced by the sensors circuit 2790 and apply by the voltage supply V.


The sensors circuit 2790 can detect changes in the electric field signal applied to the tissue 2820 to identify a capacitance signal. These changes in electric field signal can be measured and detected by the sensors circuit 2790. The change in capacitance can be monitored as an electric field signal is applied to the tissue 2820 and the capacitance signal can reflect the change in capacitance. In various aspects, the electric field signal may comprise a modulated signal, such as a sine wave signal. Modulation circuitry used to produce electric field signal can include a capacitor portion of the conductive plate of the sensors 2788a forming a capacitance node. Changes in a capacitance value of a capacitor used to apply electric field signal to the tissue 2820 can be detected by the sensors circuit 2790 as a change in modulation frequency or a change in power draw of the capacitor or associated modulation circuitry, among other detection methods. These changes in electric field signal also can be measured by monitoring changes in a noise level, current draw, or other characteristics of electric field signal as detected by the sensors circuit 2790. The sensors circuit 2790 may comprise capacitance-to-digital converter circuitry. The capacitance signal can be monitored concurrent with other physiological parameter monitoring, as explained in the following description.



FIG. 39 is a schematic illustration of a surgical instrument 2750 described in connection with FIGS. 34 and 35 comprising sensor monitoring and processing circuit 2400, in accordance with at least one aspect of the present disclosure. The sensor monitoring and processing circuit 2400 is contained within the instrument housing 2800 and is wirelessly coupled to the end effector 2752 through near field communication coils 2802/2804 for power and coils 2814/2816 for data.


In one aspect, the sensor monitoring and processing circuit 2400 comprises tissue impedance module 2442. In one aspect, the tissue impedance module 2442 may be configured to measure tissue impedance Z and capacitance. The tissue impedance module 2442 also may be employed to monitor other tissue parameters. In one aspect, the tissue impedance module 2442 may comprise an RF oscillator 2446, a voltage sensing circuit 2448, and a current sensing circuit 2450. The voltage and current sensing circuits 2448, 2450 respond to the RF voltage Vrf applied to electrodes or sensors 2788 disposed in the end effector 2752 and the RF current irf conducted through the electrodes of the sensors 2788, the tissue, and other conductive portions of the end effector 2752. The sensed current Irf and the sensed voltage Vrf from the current sense circuit 2430 and the voltage sense circuit 2432 are converted to digital form by the analog-to-digital converter 2436 (ADC) via an analog multiplexer 2434. The control circuit 2760 receives the digitized output 2438 of the ADC 2436 and processes the signals in conjunctions with sensor data coupled through coils 2814/2816 to determine various tissue parameters including to measure tissue impedance, tissue temperature, tissue capacitance, tissue inductance, elapsed time, among other tissue parameters explained in the following description. In one aspect, tissue impedance Z and/or tissue capacitance may be calculated by the control circuit 2760 by calculating the ratio of the RF voltage Vrf to current Irf measured by the voltage sensing circuit 2448 and the current sense circuit 2450 or by processing the data received from the sensors circuit 2790 independently.


In one form, the control circuit 2760 may be configured to generate a digital current signal 2420 and a digital frequency signal 2422. These signals 2420, 2422 are applied to a direct digital synthesizer (DDS) circuit 2424 to adjust the amplitude and the frequency (f) of the current output signal 2404 to the sensors 2788 disposed in the end effector 2752. The output of the DDS circuit 2424 is applied to an amplifier 2426 whose output may be applied to a transformer 2428. The output of the transformer 2428 is inductively coupled to a power module 2805 in the end effector 2752 through the coils 2802/2804. The power module 2805 may include rectifiers, filters, and other elements to apply power to the sensors 2788 and the sensors circuit 2790.


In one form, the RF voltage Vrf applied to the end effector 2752 electrodes and the RF current Irf conducted through the tissue clamped by the end effector 2752 are suitable for vessel sealing and/or dissecting. Thus, the RF power output of the sensor monitoring and processing circuit 2400 can be selected for therapeutic functions such as sealing and dissecting and non-therapeutic functions such as measuring tissue impedance, capacitance, and other tissue parameters. It will be appreciated, that in the context of the present disclosure, ultrasonic and RF electrosurgical energies can be supplied to the end effector 2752 either individually or simultaneously for therapeutic or non-therapeutic functions.


In one aspect, inputs 2412 to the sensor monitoring and processing circuit 2400 may comprise any suitable input signals 2414 that can be applied to the control circuit 2760 to control the operation of the sensor monitoring and processing circuit 2400. In various forms, the inputs 2412 may be preprogrammed, uploaded, and/or entered via a user interface such as buttons, switches, thumbwheels, keyboard, keypad, touch screen monitor, pointing device, remote connection to a general purpose or dedicated computer. In other forms, the inputs 2412 may comprise a suitable user interface. Accordingly, by way of example, the inputs 2412 may be set or entered by a user to program the current (I), voltage (V), frequency (f), and/or period (T) for programming the function output of the sensor monitoring and processing circuit 2400. The control circuit 2760 may display the selected inputs 2412.


In one form, the various executable modules (e.g., algorithms 2410) comprising computer readable instructions can be executed by the control circuit 2760 portion of the sensor monitoring and processing circuit 2400. In various forms, the operations described with respect to the techniques may be implemented as one or more software components, e.g., programs, subroutines, logic; one or more hardware components, e.g., processors, DSPs, PLDs, ASICs, circuits, registers; and/or combinations of software and hardware. In one form, the executable instructions to perform the techniques may be stored in memory. When executed, the instructions cause the control circuit 2760 to determine tissue parameters as described herein. In accordance with such executable instructions, the control circuit 2760 monitors and evaluates voltage, current, and/or frequency signal samples available from the sensor monitoring and processing circuit 2400 and according to the evaluation of such signal samples determines tissue parameters. As further explained in the following description, a change in tissue parameters, state, or condition may be determined based on processing such signals.



FIG. 40 is a schematic illustration of a portion of the end effector 2752 comprising the anvil 2766 and cartridge 2768 to show arrays of sensors 2788a, 2788b disposed therein, in accordance with at least one aspect of the present disclosure. A first array of sensors 2788a may be disposed in the anvil 2766 longitudinally, along the I-beam slot 2822, and laterally, on either side of the I-beam slot 2822. A second array of sensors 2788b may be disposed in the cartridge 2768 longitudinally, along the knife slot 2824, and laterally, on either side of the knife slot 2824. In various other aspects, the sensors 2788 may be located in the anvil 2766, or in the cartridge 2768, or both the anvil 2766 and the cartridge 2768. Further, in some aspects the array of sensors 2788a disposed in the anvil 2766 may be arranged longitudinally, laterally, or both longitudinally and laterally as shown in FIG. 40. In other aspects the array of sensors 2788b disposed in the anvil 2766 may be arranged longitudinally, laterally, or both longitudinally and laterally as shown in FIG. 40. The sensors 2788 may be arranged in arrays comprising a single row or multiple rows or single sensors. Still further, the sensors 2788 in either array of sensors 2788a, 2788b may be individually addressed, powered, and read by the control circuit 2760. In other aspects, the array of sensors 2788a in the anvil 2766 may be addressed, powered, and read by the control circuit 2760 as a group separately from the array of sensors 2788b in the cartridge 2768. In other aspects, the array of sensors 2788b in the cartridge 2768 may be addressed, powered, and read by the control circuit 2760 as a group separately from the array of sensors 2788a in the anvil 2766. In other aspects, the array of sensors 2788a in the anvil 2766 and the array of sensors 2788b in the cartridge 2768 may be addressed, powered, and read by the control circuit 2760 as a group.



FIG. 41 is a partial cutaway view of the cartridge 2768 comprising a plurality of independently addressable sensors 2788 (S1-Sn), in accordance with at least one aspect of the present disclosure. To address and read each one of the plurality of sensors 2788, individually labeled S1-Sn, the sensors circuit 2790 comprises a multiplexer 2840 and a logic circuit 2842 to control the selection and reading of the individual sensors 2788. The outputs of the sensor 2788 are routed to the inputs 2844 of the multiplexer 2840. Individual sensors S1-Sn can be selected by the logic circuit 2842 by individually addressing a sensor through the multiplexer input select 2846 lines. The output 2848 of a selected sensor S1-Sn is provided to the logic circuit 2842 and coupled to the control circuit 2760 through coils 2814, 2816, for example, for further processing to track properties of the tissue and execute algorithms for tracking to motion of the tissue across multiple sensors S1-Sn. As shown in FIG. 41, in one aspect, the sensors S1-Sn are coupled to a common return path. A similar configuration may be provided in the anvil 2766 portion of the end effector 2752 (FIG. 40).


The positions of the sensors S1-Sn are mapped to the cartridge 2768 such that the control circuit 2760 knows the location of each sensor S1-Sn on the cartridge 2768. By monitoring the output of each sensor S1-Sn, the control circuit 2760 can determine if tissue is occupying the location of a sensor S1-Sn based on the output of the monitored sensor S1-Sn. For example, if the monitored property of the tissue 2820 is impedance Z, the control circuit 2760 can map the location of the tissue 2820 based on impedance outputs read from each sensor S1-Sn, to infer the presence of tissue 2820 based on an impedance reading and infer the absence of tissue based on no impedance reading (e.g., open circuit).


The description now turns to various methods 2900, 2910, 2930, 2950 as illustrated in the accompanying FIGS. 42-45. Each of the methods 2900, 2910, 2930, 2950 may be implemented as algorithms 2410 stored in program memory of the sensor monitoring and processing circuit 2400 that may be executed by the control 2760 as explained in connection with FIG. 39. In one aspect, the algorithms 2410 (e.g., methods 2900, 2910, 2930, 2950) may be stored as a series of machine executable instructions that the control circuit 2760 is programmed to execute. In other aspects, the algorithms 2410 (e.g., methods 2900, 2910, 2930, 2950) may be executed by the control circuit 2760 implemented in in hardware where the control circuit 2760 is configured to execute the algorithms 2410.


With reference now to FIGS. 34-42, in one general aspect, FIG. 42 illustrates a flow diagram of a method 2900 of monitoring multiple sensors 2788 located is the jaws of end effector 2752 over time to detect characteristics of tissue 2820 grasped in the jaws of the end effector 2752, in accordance with at least one aspect of the present disclosure. In one aspect one aspect, the surgical instrument 2750 comprises an end effector 2752 comprising a pair of jaws for grasping tissue 2820 therebetween. In one aspect the end effector 2752 comprises an anvil 2766 and cartridge 2768. A plurality of sensors 2788 may be located on the cartridge 2768 to sense the motion of tissue 2820 grasped between the anvil 2766 and the cartridge 2768 from one sensor S1 towards an adjacent sensor S2, for example. As explained supra, the control circuit 2760 may be configured to execute the method 2900, implemented as an algorithm 2410 in the sensor monitoring and processing circuit 2400.


In one aspect, the control circuit 2760 is configured to independently select any one or more of the sensors S1-Sn disposed in the end effector 2752. The one or more sensors S1-Sn are configured to sense 2902 a property of tissue 2820 disposed in the end effector 2752 of the surgical instrument 2750. The control circuit 2760 is configured to monitor 2904 the sensed property of the tissue 2820 disposed in the end effector 2752 of the surgical instrument 2750 over time. In a stapling cartridge, multiple sensors 2788 are disposed on the stapling cartridge 2768 and can be independently monitored to sense movement of the tissue 2820 relative to each sensor 2788 as described in FIG. 41. In one aspect, the control circuit 2760 sends a command to the logic circuit 2842 to select an individual sensor S1-Sn through the multiplexer 2840. Each sensor S1-Sn be sequentially addressed and monitored in a continuous loop. By monitoring 2904 the output 2848 of each of the selected sensor S1-Sn, the control circuit 2760 may be configured to sense 2906 movement of the tissue 2820 from one sensor S1 relative to an adjacent sensor S2 based on the monitored property of the tissue 2820. In one aspect, the tissue property monitored by the control circuit 2760 can be an electrical property of the tissue 2820 such as impedance Z or capacitance C. In another aspect, monitoring the impedance Z or capacitance C of the tissue 2820 from one time point to the next can allow the control circuit 2760 to detect the motion of the tissue 2820 from one sensor towards the next. The control circuit 2760 may be configured to select 2908 a function of the surgical instrument 2750 based on the sensed movement of the tissue 2820. The control circuit 2760 can detect the position on the tissue 2820 based on the monitored property of the tissue 2820. In various other aspects, the monitored 2902 property may be rate of change of closure load during closure of the end effector 2752 on the tissue 2820, rate of change of closure load after closure of the end effector 2752 on the tissue 2820 is complete, force applied to the tissue 2820, impedance Z spectrography, light transmissivity, light refractivity, or Doppler effects to determine tissue characteristics, among other properties that may be monitored by the sensors S1-Sn.


With reference now to FIGS. 34-41 and 43, in one general aspect, FIG. 43 illustrates a flow diagram of a method 2910 of monitoring multiple sensors 2788 located in the jaws of the end effector 2752 over time to detect characteristics or properties of tissue 2820 grasped in the jaws of the end effector 2752, in accordance with at least one aspect of the present disclosure. In one aspect, the method 2910 comprises monitoring multiple sensors S1-Sn over time to detect motion characteristics of the tissue 2820, to detect tissue 2820 movement relative to at least two sensed locations, and to provide real-time tissue flow sensing by monitoring one or more than one sensed tissue property over a period of time. As explained supra, the control circuit 2760 may be configured to execute the method 2910 implemented as an algorithm 2410 in the sensor monitoring and processing circuit 2400.


In one aspect, the control circuit 2760 is configured to independently sense tissue 2820 properties by monitoring multiple longitudinally and laterally disposed sensor S1-Sn locations in the end effector 2752. The control circuit 2760 may be configured to employ sensing techniques with a localized predetermined return path to sense changes in a property of the both laterally and longitudinally. In various aspects, the tissue property may be impedance Z, impedance Z spectrography, capacitance C, force exerted on the end effector 2752, force applied to the tissue 2820, light transmissivity, light refractivity, or Doppler effects to determine tissue characteristics, among other tissue properties that may be monitored by the sensors S1-Sn.


light reflectivity, light refraction, among others. Using these sensing techniques, the control circuit 2760 can detect specific a mid-thickness measure of the tissue 2820 located between at least two interconnected sensor combinations in the array of sensors 2788, for example S1-S2 or S1-S4, using well-known triangulation algorithm techniques.


More specifically, according to one aspect of the method 2910, the control circuit 2760 may be configured to monitor 2912 an array of longitudinal and lateral sensors S1-Sn independently and measure a property of the tissue 2820. For example, the control circuit 2760 may monitor the impedance Z, capacitance C, force exerted on the end effector 2752, light reflection, light refraction etc., of the tissue 2820 to determine if an individual or group of sensors S1-S2 is in contact with tissue 2820. The control circuit 2760 may be configured to determine 2914 any changes in the monitored property of the tissue 2820 both laterally and longitudinally and these changes may be tracked over a period of time occurring during closure, after closure is complete, during firing, or after firing is complete. The control circuit 2760 may be configured to triangulate 2916 at least two interconnected sensor combinations, for example S1-S2 or S1-S4, using well-known triangulation algorithm techniques to detect 2918 the mid-thickness measure of tissue 2820 located between two S1-S2 or S1-S4, for example, and select 2920 a function of the surgical instrument 2750 based on the detected mid-thickness of the tissue 2820.


There are a variety of well-known triangulation algorithms that may be employed by the control circuit 2760 to detect mid-thickness of the tissue 2820. These algorithms include the Delaunay Triangulation Algorithm, “A New Voronoi-Based Surface Reconstruction Algorithm” (Amenta et al., SIGGRAPH 1998), and “Poisson Surface Reconstruction” (Kazhdan et al, Symposium on Geometry Processing 2006), for example, each of which is herein incorporated by reference.


The Delaunay Triangulation Algorithm is able to generate edges between vertices based on spatial geometric relationship among vertices from a set of vertices, thereby constructing a set of triangular faces and thus constructing a target mesh model. The vertices may be determined by sensors S1-Sn locations that sense the presence of tissue 2820. Specifically, the Delaunay Triangulation Algorithm speculatively may calculate out the vertices between which there should be a connecting line by attempting to maximize the value of the least of the three interior angles of each triangular face. In most cases, the Delaunay Triangulation Algorithm would avoid generating a triangle that is too narrow and long in shape (e.g., a triangle of which at least one of the interior angles is less than 10 degrees). From experimental results disclosed in a number of literatures it may be known that, in the case of a large number of vertices, the Delaunay Triangulation Algorithm can make a relatively accurate guess on the edges among vertices.


With reference to FIGS. 34-41 and 44, in one general aspect, FIG. 44 illustrates a method 2930 of monitoring an array of sensors S1-Sn distributed laterally and longitudinally along the length of the end effector 2752 jaws (e.g., cartridge 2768 and anvil 2766) to determine the location of heterogeneous tissue impedance regions of tissue 2820 grasped in the jaws of the end effector 2752, in accordance with at least one aspect of the present disclosure. As explained supra, the control circuit 2760 may be configured to execute the method 2930 implemented as an algorithm 2410 in the sensor monitoring and processing circuit 2400.


In one aspect, the control circuit 2760 is configured to monitor 2932 the jaws of the end effector 2752 closing on tissue 2820 (e.g., the anvil 2766 pivotally rotating toward the cartridge 2768 to grasp tissue therebetween). The control circuit 2760 may be configured to monitor 2934 each sensor S1-Sn located on the anvil 2766 and/or cartridge 2768 of the jaw for a tissue property during the jaw closing period. In various aspects, the tissue property may be impedance Z, impedance Z spectrography, capacitance C, force exerted on the end effector 2752, force applied to the tissue 2820, light transmissivity, light refractivity, or Doppler effects to determine tissue characteristics, among other tissue properties that may be monitored by the sensors S1-Sn. The control circuit 2760 can track and record the sensed tissue property for each sensor S1-Sn during the jaw closure period. This time history of the sensed tissue property during the jaw closure period can be used by the control circuit 2760 to determine 2936, e.g., by inference, if present, heterogeneous regions of the monitored tissue property—where the heterogeneous define distinct changes or anomalies that mark a particular baseline location. The control circuit 2760 may be configured to track 2938 these baseline location(s) as the firing of the knife/I-beam 2764 is initiated. Once firing of the knife/I-beam 2764 is initiated, the control circuit 2760 is configured to track 2940 the position histories of these baseline locations and use them for feedback control of the firing process. The control circuit 2760 is configured to modify 2942 functions of the surgical instrument 2750 to alter tissue flow during the knife/I-beam 2764 firing process. Device functions that can be modified to alter tissue flow during the firing process includes changing the firing speed, pausing (complete stops) the firing process, closure force among, others.


With reference to FIGS. 34-41 and 45, in one general aspect, FIG. 45 illustrates a method 2950 of monitoring an array of sensors S1-Sn distributed laterally and longitudinally in the end effector 2752 (e.g., cartridge 2768 and anvil 2766) to predict tissue 2820 flow in the jaws of the end effector 2752, in accordance with at least one aspect of the present disclosure. As explained supra, the control circuit 2760 may be configured to execute the method 2950 implemented as an algorithm 2410 in the sensor monitoring and processing circuit 2400.


In order to predict the amount of tissue 2820 flow in the jaws of the end effector 2752, according to the method 2950, the control circuit 2760 may be configured to monitor 2952 an array of longitudinal and lateral sensors S1-Sn independently and measure a property of the tissue 2820. In various aspects, the tissue property may be impedance Z, impedance Z spectrography, capacitance C, force exerted on the end effector 2752, force applied to the tissue 2820, light transmissivity, light refractivity, or Doppler effects to determine tissue characteristics, among other tissue properties that may be monitored by the sensors S1-Sn. During the monitoring 2952 phase, the control circuit 2760 may be configured to determine 2954 changes in the monitored property of the tissue 2820 both longitudinally and laterally and based on the determined 2954 changes, the control circuit 2760 may be configured to sense 2956 tissue flow during the jaw closure time period. Once the tissue flow is sensed 2956, the control circuit 2760 may be configured to determine 2958 at least one device parameter after jaw closure is complete. The at least one device parameter may include device sensed parameters such as, for example, rate of change of closure load during closure, rate of change of closure load after closure is complete, etc. The control circuit 2760 may be configured to determine 2960 tissue type or tissue condition based on the tissue flow during jaw closure in combination with the at least one device parameter determined 2958 after the jaw closure is complete. The control circuit 2760 may be further configured to modify 2962 functions of the surgical instrument based on the tissue type.


In one aspect, sensing 2956 tissue flow can be based on knowledge of tissue type from situational awareness and/or other device sensed measures (e.g., rate of change of closure load during closure, rate of change of closure load after closure is complete, etc.). Tissue type or tissue condition may be determined tissue type by combining tissue flow during jaw closure with force feedback of closure system. Tissue flow may be further refined by determining tissue impedance. The process may be employed to detect rigid or foreign objects within the jaws of the end effector 2752.


In another aspect, the control circuit 2760 may be configured to monitor and record the magnitude of tissue impedance Z while measuring tissue flow during jaw closure. A jaw closure algorithm can be used to sense tissue movements during closure as an indicator of the potential effect of each change during firing of the knife/I-beam 2764. For example, at a first closure rate, the magnitude/direction of tissue flow may be estimated, then the closure rate may be adjusted and the changes in tissue flow are tracked and recorded in memory by the control circuit 2760. In one aspect, the control circuit 2760 my be configured to predict post-fire tissue position by utilizing closure tissue flow and closure force feedback prior to firing—to provide feedback to surgeon allowing opportunity to reposition to ensure tissue is fully captured in the cut line 2824 of the end effector 2752.


In various other aspects, the control circuit 2760 of the sensor monitoring and processing circuit 2400 may be configured or programmed to execute algorithms 2410 to monitor and interrogate tissue based on a variety of sensor configurations in the end effector 2752.


In one aspect, the control circuit 2760 may be configured or programmed to monitor tissue impedance Z over time and tracking the tissue impedance Z across a single electrode or segmented electrodes of the sensor array S1-Sn configured along the length of the cartridge 2768.


In other aspects, the control circuit 2760 may be configured or programmed to monitor tissue impedance Z spectrography. This may be accomplished by utilizing sweeps of different frequencies and monitoring the tissue impedance Z to the power and frequency to determine the composition of the tissue 2820.


In other aspects, the control circuit 2760 may be configured or programmed to monitor tissue capacitance C. Tissue characteristics and gap relationship of the jaws may be utilized to determine the amount of tissue 2820 present in the jaws of the end effector 2752.


In other aspects, the jaws of the end effector 2752 may include optical sensors disposed longitudinally and laterally in the anvil 2766 and/or cartridge 2768. The control circuit 2760 may be configured to monitor light transmissivity, refractivity, or Doppler effects to determine tissue characteristics. The method may include analyzing local light refractivity to determine the surface conditions of the tissue 2820 to monitor irregularities within the tissue captured between the jaws. The method further may include analyzing a Doppler effect frequency of the light to monitor for local moving particles of tissue in the jaws of the end effector 2752.


In one general aspect, the present disclosure provides a sensor and electronic circuit capable of monitoring at least two internal cartridge component locations to determine status or operation of the cartridge. The disclosure also provides sensors and electronic circuit for monitoring the internal function or motion of components within the cartridge to determine the status, operation, or current stroke location of the couple firing actuator. In one aspect, the sensors and electronic circuit provides information to the user derived from the sensed parameters. In another aspect, the electronic circuit can alter the functional status of the device (e.g., safety lock-out) based on the sensed status.


In various aspects, the cartridge sensors and electronic circuit are configured to monitor the operation of the cartridge elements comprises sensors and electronic circuit for detecting staple drivers and the deployment of staples to monitor the status and operation of staple deployment. In another aspect, the cartridge sensors and electronic circuit are configured to monitor and interrogate tissue captured in the jaws of the end effector. Finally, in another aspect, the cartridge sensors and electronic circuit are configured to employ a combination of data aggregation that can be employed to create redundant measures of safety. These aspects are explained in more detail in the following description accompanying the drawings.


An exploded view of an end effector 4000 of a surgical stapling system is illustrated in FIG. 46. The end effector 4000 comprises a frame 4002, a cartridge jaw 4004, and an anvil 4006. The cartridge jaw 4004 extends fixedly from the frame 4002. The anvil 4006 is movable between an open, or unclamped, position and a closed, or clamped, position relative to the cartridge jaw 4004. In alternative aspects, the cartridge jaw 4004 is movable between an open, or unclamped, position and a closed, or clamped, position relative to the anvil 4006. In at least one such embodiment, the anvil 4006 extends fixedly from the frame 4002.


The cartridge jaw 4004 includes a channel or carrier 4022 configured to receive a staple cartridge, such as a staple cartridge 4008, for example. Referring to FIG. 58, the staple cartridge 4008 comprises a cartridge body 4010. The cartridge body 4010 comprises a deck 4012 configured to support the tissue of a patient, a longitudinal slot 4014, and six longitudinal rows of staple cavities 4016 defined therein. Each staple cavity 4016 is configured to receive and removably store a staple therein. The staple cartridge 4008 further comprises staple drivers 4028 configured to drive the staples out of the staple cavities 4016. Other staple cartridges with various other arrangements of staple cavities, decks, and/or staples are envisioned for use with the end effector 4000.


Further to the above, the staple cartridge 4008 further comprises a sled 4018 configured to engage the staple drivers 4028. More specifically, the sled 4018 comprises ramps 4020 configured to engage cams defined on the staple drivers 4028 and lift the staple drivers 4028 and the staples within the staple cavities 4016 as the sled 4018 is moved distally through the staple cartridge 4008. A firing member is configured to motivate the sled 4018 distally from a proximal, unfired, or starting position toward a distal, fired, or end position during a staple firing stroke.


The staples are supported by the staple drivers 4028 in the cartridge body 4010. The staple drivers 4028 are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities 4016. The staple drivers 4028 are retained in the cartridge body 4010 by a pan or retainer 4030 which extends around the bottom of the cartridge body 4010 and includes resilient members 4031 configured to grip the cartridge body 4010 and hold the retainer 4030 to the cartridge body 4010. The staple drivers 4028 are movable between their unfired positions and their fired positions by the sled 4018. The sled 4018 is movable between a proximal position and a distal position. The sled 4018 comprises a plurality of ramped surfaces 4020 configured to slide under the staple drivers 4028 and lift the staple drivers 4028, and the staples supported thereon, toward the anvil 4006.


In various examples, the staple cartridge 4008 includes one or more retaining members that are configured to ensure a tight attachment between an unfired staple cartridge 4008 and a cartridge channel or carrier 4022. The retaining members can be moved, or otherwise modified, during the firing of the staple cartridge 4008 to yield a reduced attachment between the fired staple cartridge 4008 and the cartridge channel or carrier 4022. The reduced attachment permits a user to easily remove the fired staple cartridge 4008 from the cartridge channel or carrier 4022.


In the example illustrated in FIG. 46, the staple cartridge 4008 is removably seated in the cartridge channel or carrier 4022. The staple cartridge 4008 includes two retaining members 4037 on opposite sides of the staple cartridge 4008. The retaining members 4037 are configured to maintain, or to help maintain, a tight attachment between the staple cartridge 4008 and the cartridge channel or carrier 4022. The retaining members 4037 may extend from a base 4019 of the retainer 4030. In various examples, the retaining members 4037 are spaced apart from walls 4039 of the retainer 4030 to permit the retaining members 4037 to flex relative to the walls 4039.


Each retaining member 4037 is in the form of a resilient member movable between a biased configuration in an unfired staple cartridge 4008, and an unbiased, or less biased, configuration in a fired staple cartridge 4008. In the unfired staple cartridge 4008, the retaining member 4037 is biased into an engagement with the cartridge channel or carrier 4022 to maintain, or to help maintain, a pre-firing cartridge removal load. A load greater than or equal to the pre-firing cartridge removal load is needed to separate an unfired staple cartridge 4008 from the cartridge channel or carrier 4022.


Each retaining member 4037 includes a first curved portion 4044 that defines a first retention feature or detent receivable in a depression or groove defined in a side wall 4009 of the cartridge channel or carrier 4022. The first curved portion 4044 is retained in groove while the retaining member 4037 is in the biased configuration. Each retaining member 4037 further includes a second curved portion 4047 that defines a second retention feature detent configured to rest against at least one staple driver 4028 while the retaining member 4037 is in the biased configuration. In various examples, each retaining member 4037 defines a plane transecting the base 4019, wherein the first curved portion 4044 defines a first detent on the first side of the plane, and wherein the second curved portion 4047 defines a second detent on the second side of the plane.


In one aspect, the pan or retainer 4030 comprises a first plurality of sensors 4050 arranged in a first array disposed longitudinally on both sides of a longitudinal slot 4054 formed in the base 4019 of the retainer 4030. A second plurality of sensors 4052 arranged in a second array are disposed on one side of the longitudinal slot 4054. It will be appreciated, however, that the second sensor array 4052 also may be disposed on both sides of the longitudinal slot 4054. In one general aspect, the first sensor array 4050 are configured to detection motion of the movable staple drivers 4028 and more particularly, the first sensor array 4050 are configured to sense the advancement state of the staple drivers 4028 to drive the staples out of the staple cavities 4016. In one aspect, the second sensor array 4052 are configured to sense the motion of the sled 4018 as it moves along the longitudinal slot 4054 and actuates the staple drivers 4028.


In one aspect, the sled 4018 and/or the staple drivers 4028 may be formed out of ferromagnetic material or embedded with ferromagnetic particles. The first and second sensor arrays 4050, 4052 may be positioned in the pan or retainer 4030 of the cartridge base 4019. The movement of the sled 4018 and/or the staple drivers 4028 induces a current (signal) in the first and/or second sensor arrays 4050, 4052 below the staple driver 4028 to produce a signal detectable by the electronic circuit 4074, described in FIG. 47. This configuration of the sled 4018 and staple drivers 4028 and the first and second sensor arrays 4050, 4052 enable the electronic circuit 4074 to determine the position and speed of the staple driver 4028 and/or the position and speed of the sled 4018.


Referring to FIGS. 46 and 47, the staple cartridge 4008 includes a cartridge circuit 4044. The cartridge circuit 4024 includes a storage medium 4026, a cartridge connector-region 4017 comprising a plurality of external electrical contacts 4028, and a cartridge-status circuit portion 4032 that includes a trace element 4034. The storage medium 4026 can be a memory that stores information about the staple cartridge 4008 such as, for example, various characteristics of the staple cartridge 4008 including a firing status, staple-type, staple-size, cartridge batch number, and/or cartridge color.



FIG. 47 is a schematic illustration of the first and second sensor arrays 4050, 4052 positioned in the pan or retainer 4030 of the cartridge base 4019, the first and second sensor arrays 4050, 4052 shown coupled to an electronic circuit 4074, in accordance with at least one aspect of the present disclosure. As shown, the first sensor array 4050 is longitudinally disposed on both sides of the slot 4054 defined in the pan or retainer 4030. The second sensor array 4052 is disposed longitudinally along one side of the slot 4054, although in other aspects the second sensor array 4052 may be disposed on both sides of the slot 4054 similar to the first sensor array 4050.


With reference now to FIGS. 46 and 47, in one aspect, the first sensor array 4050 comprises a plurality of elements configured to detect the movement of the staple drivers 4028 as they move between their unfired positions and their fired positions by the sled 4018. As discussed supra, the staple drivers 4028 may be made of a ferromagnetic material or may be embedded with a ferromagnetic material that is detected by the elements in the first sensor array 4050. In one aspect, the movement of the staple driver 4028 induces a current (signal) in the first array sensor 4050 located below the staple driver 4028. Thus, the first sensor array 4050 can detect the position and speed of the staple driver 4028. In one aspect, the first sensor array 4050 may comprise a plurality of Hall cells constructed from a semiconductor strip. In other aspects, the first sensor array 4050 may comprise a plurality of Hall sensor elements. In other aspects, the first sensor array 4050 may comprises other sensor elements configured to detect magnetic fields generated by moving ferromagnetic elements in the cartridge 4008.


Still with reference to FIGS. 46 and 47, in one aspect, the second sensor array 4052 comprises a plurality of elements configured to detect the movement of the sled 4018 or the tissue cutting knife and it moved along the slot 4014 of the staple cartridge 4008. As discussed supra, the sled 4018 or the tissue cutting knife may be made of a ferromagnetic material or may be embedded with a ferromagnetic material that is detected by the elements in the second sensor array 4052. In one aspect, the movement of the sled 4018 or cutting knife induces a current (signal) in the second array sensor 4052 as it travels along the slot 4054. Thus, the second sensor array 4052 can detect the position and speed of the sled 4018 or cutting knife. In one aspect, the sensor array 4052 may comprise a plurality of Hall cells constructed from a semiconductor strip. In other aspects, the second sensor array 4052 may comprise a plurality of Hall sensor elements. In other aspects, the second sensor array 4052 may comprises other sensor elements configured to detect magnetic fields generated by moving ferromagnetic elements in the cartridge 4008.


Still with reference to FIGS. 46 and 47, the first sensor array 4050 is coupled to a control circuit 4062 for processing the signals 4058 generated by the motion of the staple drivers 4028. The signals 4058 generated by the first sensor array 4050 may comprise voltage, current, resistance, impedance, capacitance, inductance, frequency, phase, etc. The individual sensor elements of the first sensor array 4050 are selected by a multiplexer 4056 by the control circuit 4062 and are selected by a logic/analog-to-digital converter (ADC) circuit 4060 via select line 4066. The output signal 4058 of the selected sensor element is routed to the output 4068 of the multiplexer 4056 to an ADC portion of the logic/ADC circuit 4060. The digital output value of the output signal 4058 of the selected sensor element in the first sensor array 4050 is read by the control circuit 4062 through data lines 4064. The value may be stored in the memory 4066 coupled to the control circuit 4062.


The second sensor array 4052 is coupled to the control circuit 4062 for processing the signals 4070 generated by the motion of the sled 4018 or tissue cutting knife. The signals 4070 generated by the second sensor array 4052 may comprise voltage, current, resistance, impedance, capacitance, inductance, frequency, phase, etc. The individual sensor elements of the second sensor array 4052 are selected by the multiplexer 4056 by the control circuit 4062 and are selected by the logic/ADC circuit 4060 via select line 4066. The output signal 4070 of the selected sensor element is routed to the output 4068 of the multiplexer 4056 to an ADC portion of the logic/ADC circuit 4060. The digital output value of the output signal 4070 of the selected sensor element in the second sensor array 4052 is read by the control circuit 4062 through data lines 4064. The value may be stored in the memory 4066 coupled to the control circuit 4062.


In various aspects, the control circuit 4062 may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to process the signals received from the first and second sensor arrays 4050, 4052. In other aspects, the control circuit 4062 may comprise analog or digital circuits such programmable logic devices (PLD), field programmable gate arrays (FPGA), discrete logic, or other hardware circuits, software, and/or firmware, or other machine executable instructions to perform the functions explained in the following description. The control circuit 4062 is coupled to a memory 4066 for storing data and/or machine executable instructions. In various aspects, the control circuit 4062 and the memory 4066 may be located in the cartridge 4008. In other aspects, the control circuit 4062 and the memory 4066 may be located off the cartridge 4008 and coupled to the other components of the electronic circuit 4074 via wired or wireless communication techniques. In other aspects, the memory 4066 may be located in the cartridge 4008 and the control circuit 4062 may be located off the cartridge 4008 and coupled to the electronic circuit 4074 via wired or wireless connection techniques.


Still with reference to FIGS. 46 and 47, for configurations where the tissue cutting knife is housed within the cartridge 4008 instead of being integrated to the !-Beam, the knife can serve as the ferromagnetic material. Same principle can be applied to the staple pan or retainer 4030, the I-beam, and anvil 4006. In some aspects, the staples may be made of Titanium or Titanium alloys. However, if staples are made of a ferromagnetic material, the same principle could also be applied to the staples.


If the motions of measured components such as staple drivers 4028 and the sled 4018, for example, deviates from what is desired improper device status, poor staple formation, etc. can occur which can lead to complications such as bleeding, leaks, etc. Accordingly, the control circuit 4062 may be programmed or configured to detect the deviation from the proper operation based on the readings obtained from the first and second sensor arrays 4050, 4052 and intervene in the function of the device before the next step in the operation has begun to improve the operation of the device. For example, if a staple driver 4028 does not move the intended distance, staple formation can be compromised. If the sled 4018 does not move the intended distance, the staple line may not be complete. Accordingly, the control circuit 4062 may process the measured signals 4058, 4070 obtained from the first and second sensor arrays 4050, 4052 to authenticate the cartridge 4008 and to ensure it is not a (sub-optimal) copy. In addition, the control circuit 4062 may process the measured signals 4058, 4070 obtained from the first and second sensor arrays 4050, 4052 to determine device status including whether the cartridge 4008 was properly loaded, the staple pan or retainer 4030 has been removed, cartridge 4008 was already fired, etc. Additional circuits explained below in reference to FIGS. 48 and 49 can be employed by the control circuit 4062 to determine if a bad staple formation may occur such as when a staple leg does not contact a staple pocket, which likely increases the potential for leaks in that area. Other conditions that can be monitored be the control circuit 4062 include, for example, determining whether the anvil 4006 is fully closed prior to firing the sled 4018 and tissue cutting knife, for example.


Turning now primarily to FIGS. 48 and 49 and with reference back to FIGS. 46 and 47, the anvil 4006 comprises staple-forming pockets 4310 including an electrically conductive circuit element 4314, in accordance with one or more aspects of the present disclosure. FIG. 49 illustrates a perspective view of the staple-forming pocket 4310 of FIG. 48 after the electrically conductive circuit element 4314 has been severed by a staple leg during proper formation of the staple leg, in accordance with one or more aspects of the present disclosure.


As illustrated in FIG. 48, a staple-forming pocket 4310 comprises a concave surface 4324 that intersects the tissue-contacting surface 4308 at outer edges 4326. The electrically conductive circuit element 4314 can be positioned onto the concave surface 4324 in the path of a properly forming staple. Sidewalls 4328 along with the concave surface 4324 define a forming track 3325 for a staple leg. The concave surface 4324 includes a first contact portion 4330, a deep portion 4332, and an end portion 4334. The first contact portion 4330 is configured to make first contact with the tip of the staple leg as the staple leg enters the staple-forming pocket 4310. The staple leg is then curled as it follows the forming track 4325 passing along the deep portion 4332 and the end portion 4334 of the concave surface 4324. The end portion 4334 guides the staple leg toward the base of the staple.


As illustrated in FIG. 48, the electrically conductive circuit element 4314 can be positioned across the forming track 4325. Since successful contact with the first contact portion 4330 increases the likelihood of proper formation of a staple leg, placing the electrically conductive circuit element 4314 onto the forming track 4325 at a position beyond the first contact portion 4330 improves the accuracy of detecting proper or improper staple formation.


In at least one example, the electrically conductive circuit element 4314 is placed on the forming track 4325 between the first contact portion 4330 and the deep portion 4332. In at least one example, the electrically conductive circuit element 4314 is placed on the forming track 4325 between the deep portion 4332 and the end portion 4334. In at least one example, the electrically conductive circuit element 4314 is placed on the forming track 4325 within the deep portion 4332. In at least one example, the electrically conductive circuit element 4314 is placed on the forming track 4325 at the center, or substantially at the center, of the deep portion 4332. In at least one example, the electrically conductive circuit element 4314 is placed on the forming track 4325 at the deepest section of the forming track 4325. In at least one example, the electrically conductive circuit element 4314 is positioned onto the concave surface 4324 closer to the first contact portion 4330 than end portion 4334. In at least one example, the electrically conductive circuit element 4314 is positioned onto the concave surface 4324 closer the end portion 4334 than the first contact portion 4330.


In certain instances, an electrical circuit can be positioned in the path of a properly forming staple and may be coupled to the electronic circuit 4074 (FIG. 47). The electronic circuit 4074 is configured to detect the continuity of the electrically conductive circuit element 4314 to determine if a staple was properly formed in the staple-forming pocket 4310. In such instances, an interruption in the electrical circuit can be construed by the electronic circuit 4074 as an indication that a staple was properly formed while persistence in the electrical continuity of the electronic circuit can be construed by the electronic circuit 4074 as an indication that a staple was improperly formed. In other instances, an electrical circuit can be positioned in a likely path of an improperly forming staple. In such other instances, an interruption in the electrical continuity of the electrical circuit can be construed as an indication that a staple was improperly formed while persistence in the electrical continuity of the electrical circuit can be construed by the electronic circuit 4074 as an indication that the staple was properly formed.


Referring to FIG. 48, an electrical circuit can include one or more electrically conductive circuit elements 4314 that cause an interruption in the electrical circuit when severed by a staple leg as the staple leg is formed. An electrically conductive circuit element 4314 of an electrical circuit can be positioned in the path of a properly forming staple leg. A severance of the electrically conductive circuit element 4314, as illustrated in FIG. 49, can be construed as an indication that the staple was properly formed. In other instances, an electrically conductive circuit element 4314 of an electrical circuit can be positioned in a likely path of an improperly forming staple. In such instances, a severance of the electrically conductive circuit element 4314 can be construed by the electronic circuit 4074 as an indication that a staple was improperly formed.


With reference to FIGS. 46-49, in one aspect the control circuit 4062 may be programmed or configured to monitor and interrogate tissue. In one aspect, the control circuit 4062 may be programmed or configured to monitor magnetic fields by reading the output signals 4058, 4070 of the first and second sensor arrays 4050, 4052 located in the pan or retainer 4030 portion of the staple cartridge 4008 in the end effector 4000. The first and second sensor arrays 4050, 4052 may be disposed in the pan or retainer 4030 portion to monitor magnetic structures located within the boundaries of the cartridge 4008 or to monitor or aero magnetic fields outside the cartridge 4008. The control circuit 4062 may be further programmed or configured to detection the staple legs contacting the staple-forming pocket 4310 as explained in FIGS. 48 and 49 as associated description. The control circuit 4062 may consider the detection of the staple legs contacting the staple-forming pocket 4310 in combination with the signals 4058, 4070 received from the first and second sensor arrays 4050, 4052 to determine the status of the cartridge 4008 such as, for example, determining whether the cartridge 4008 was properly loaded, the staple pan or retainer 4030 has been removed, cartridge 4008 was already fired, staples are properly formed, location and speed of the staple drivers 4028, and/or location and speed of the sled 4018, among others. Additional techniques for detecting staple formation are described in U.S. Pat. No. 10,456,137 titled STAPLE FORMATION DETECTION MECHANISMS, which is herein incorporated by reference in its entirety.



FIG. 50 illustrates a distal sensor plug 4816 comprising an electronic circuit 4074 configured to monitor and process signals 4058, 4070 from the first and second sensor arrays 4050, 4052, in accordance with at least one aspect of the present disclosure. The distal sensor plug 4816 comprises a memory sensor 4810 and an electronic circuit 4074. The distal sensor plug 4816 further comprises a flex board 4814. The sensor 4810 and the electronic circuit 4074 are operatively coupled to the flex board 4814 such that they are capable of communicating. Additional smart cartridge techniques are described in U.S. Pat. No. 9,993,248 titled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, which is herein incorporated by reference in its entirety.


With reference to FIGS. 46-50, in one aspect, the cartridge 4008 feature sensing of the staple drivers 4028, sled 4018, and other elements, employed to monitor the operation of the cartridge 4008 may be used in combination with other data aggregations to create redundant measures of safety. Accordingly, a combination or hybrid of data transferred to the cartridge 4008 and data sensed locally on the cartridge 4008 may be processed by the control circuit 4062 for safety context resolution.


In on aspect, the combination of aggregated data may be obtained by the control circuit 4062 from mechanically derived data sources and instrument lockout data sources. The combination of data may be processed by the control circuit 4062 to determine authenticity, safety, and data value of the cartridge 4008 or other end effector 4000 components. For example, the mechanical lockout acts a safety system for force detection. In one aspect, as explained herein, a force feature may be provided in the cartridge 4008 to identify the presence of an unfired reload and some level of identification of the type of cartridge 4008 loaded in the end effector 4000. The mechanical lockout exists in conjunction to ensure that failure of digital detection still allows safe operation of the device. This could be as part of the same system or as a separate system, for example.


In another aspect, the combination of aggregated data may be obtained by the control circuit 4062 from multiple radio frequency identification (RFID) tags or 1-wire memories located on different data channels. This combination of data may be processed by the control circuit 4062 to determine authenticity, safety, and data value of the cartridge 4008 or other end effector 4000 components. The authenticity of the cartridge 4008 may be determined by a combination of multiple RFID or 1-wire memory sources for security. Safety may be accomplished by employing multiple data channels in the cartridge 4008 to ensure redundancy in the system. In one aspect, the reading should not be established unless all system faults/challenges are successfully mitigated.


In yet another aspect, the combination of aggregated data may be obtained by the control circuit 4062 from at least one RFID tag or 1-wire memory in combination with mechanical lockout data. This combination of data may be processed by the control circuit 4062 to determine authenticity, safety, and data value of the cartridge 4008 or other end effector 4000 components. Authenticity may be determined by encryption of the memory device and embedding force features in the cartridge 4008 mechanical lockout as explained supra. Further, the mechanical lockout acts as a safety system for the memory device.


In yet another aspect, the combination of aggregated data may be obtained by the control circuit 4062 from at least one RFID tag or 1-wire memory in combination with force detection data. This combination of data may be processed by the control circuit 4062 to determine authenticity, safety, and data value of the cartridge 4008 or other end effector 4000 components. Authenticity may be determined by encryption of the memory device and the presence of a force detection feature. Safety may be accomplished by a force detection confirmation of proper system function. Needs to only function if all system faults/challenges are successfully mitigated.


In yet another aspect, the combination of aggregated data may be obtained by the control circuit 4062 from multiple RFID tags in combination with mechanical lockout data. This combination of data may be processed by the control circuit 4062 to determine authenticity, safety, and data value of the cartridge 4008 or other end effector 4000 components. Authenticity may be determined by employing multiple memory sources for security device and the presence of a mechanical lockout. The mechanical lockout acts as a safety system for the memory device.


In yet another aspect, the combination of aggregated data may be obtained by the control circuit 4062 from a memory source and force detection data where memory access is restricted. The memory source data is used to unlock the memory source and force detection. A tuning circuit may be employed to unlock memory access a force detection data. The force detection data may be employed as an input value to authenticate memory reads.


Each of the above described processing of aggregated data may be based on a hardware based programmable logic risk mitigation strategy comprising digital logic including, for example, FPGAs and ASICs (application specific integrated circuits).



FIG. 51 is a method 4100 of monitoring internal systems of a staple cartridge 4000 to detect and track motion status of cartridge components, in accordance with at least one aspect of the present disclosure. Having described a sensor system configured to monitor at least two internal cartridge 4008 component locations to determine status or operation of the cartridge 4008 to determine the status, operation, or current stroke location of the coupled firing actuator, provide information to the user derived from the sensed parameters, and alter the functional status of the device (e.g., safety lock-out) based on the sensed status, the description now turns to a method 4100 of monitoring the internal function or motion of components within the cartridge 4008 as shown in FIG. 51. The method 4100 may be implemented by the control circuit 4062 of the electronic circuit 4074 as described with reference to FIGS. 46-50 and more particularly in FIG. 47.


According to the method, the control circuit 4062 is programmed or configured to receive 4102 the digitized signal 4058 samples from the first sensor array 4050 configured to monitor a first internal function or motion of a component located within the staple cartridge 4008 of a surgical instrument. The first sensor array 4050 is disposed in the cartridge 4008 to sense the location or motion of a first component located in the cartridge 4008. By way of example, as discussed supra, the first sensor array 4050 is disposed on the pan or retainer 4030 of the cartridge 4008 and is configured to sense the location or motion of the staple drivers 4028. In addition to the staple driver 4028 and sled 4018 information, the control circuit 4062 may receive a signal from the electrically conductive circuit element 4314 of the staple-forming pockets 4310 to determine proper formation of the staple leg.


According to the method 4100, the control circuit 4062 is programmed or configured to receive 4104 the digitized signal 4070 samples from the second sensor array 4052 configured to monitor a second internal function or motion of a component located within the staple cartridge 4008. The second sensor array also is disposed in the cartridge 4008 to sense the location or motion of a second component located in the cartridge 4008. By way of example, the second sensor array 4052 is disposed in the pan or retainer 4030 of the cartridge 4008 and is configured to sense the location or motion of the sled 4018. As discussed throughout this disclosure, the firing actuator is coupled to the sled 4018 and the tissue cutting knife. Accordingly, the position and speed of the sled 4018 as sensed by the second sensor array 4052 may be processed by the control circuit 4062 to determine status, operation, or current stroke location of the firing actuator and/or tissue cutting knife.


According to the method 4100, the control circuit 4062 is programmed or configured to process 4106 the signal 4058, 4070 samples received 4102, 4104 from the first and second sensor arrays 4050, 4052 to determine a status of the staple cartridge 4008. The control circuit 4062 is programmed or configured to provide 4108 information derived from the processed signal samples to a user of the surgical instrument. According to the method 4100, the control circuit 4062 is programmed or configured to alter 4110 the functional status of the surgical instrument (e.g., safety lock-out) based on the sensed status of the cartridge 4008 based on the processed signal samples.


Also, by way of example, as discussed supra, the control circuit 4062 may receive data from multiple sources including, without limitation, mechanical lockout features, force measurements, RFID tags, 1-wire or other memory devices to determine authenticity, safety, and data value associated with cartridge 4008.


The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.


The entire disclosures of:

    • U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
    • U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
    • U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
    • U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
    • U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
    • U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
    • U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
    • U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, now U.S. Pat. No. 7,845,537;
    • U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
    • U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
    • U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
    • U.S. patent application Ser. No. 12/235,972, entitled MOTORIZED SURGICAL INSTRUMENT, now U.S. Pat. No. 9,050,083.
    • U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
    • U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009, now U.S. Pat. No. 8,220,688;
    • U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
    • U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
    • U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
    • U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, now U.S. Pat. No. 9,101,358;
    • U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;


U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;

    • U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
    • U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.


Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.


The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution.


Instructions used to program logic to perform various disclosed aspects can be stored within a memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, compact disc, read-only memory (CD-ROMs), and magneto-optical disks, read-only memory (ROMs), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).


As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor including one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.


As used in one or more aspects of the present disclosure, a microcontroller may generally comprise a memory and a microprocessor (“processor”) operationally coupled to the memory. The processor may control a motor driver circuit generally utilized to control the position and velocity of a motor, for example. In certain instances, the processor can signal the motor driver to stop and/or disable the motor, for example. In certain instances, the microcontroller may be an LM 4F230H5QR, available from Texas Instruments, for example. In at least one example, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet.


It should be understood that the term processor as used herein includes any suitable microprocessor, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits. The processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system. In at least one instance, the processor may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation.


As used in any aspect herein, the term “logic” may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.


As used in any aspect herein, the terms “component,” “system,” “module” and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.


As used in any aspect herein, an “algorithm” refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.


A network may include a packet switched network. The communication devices may be capable of communicating with each other using a selected packet switched network communications protocol. One example communications protocol may include an Ethernet communications protocol which may be capable permitting communication using a Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may comply or be compatible with the Ethernet standard published by the Institute of Electrical and Electronics Engineers (IEEE) titled “IEEE 802.3 Standard”, published in December, 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be capable of communicating with each other using an X.25 communications protocol. The X.25 communications protocol may comply or be compatible with a standard promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communications protocol. The frame relay communications protocol may comply or be compatible with a standard promulgated by Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communications protocol. The ATM communications protocol may comply or be compatible with an ATM standard published by the ATM Forum titled “ATM-MPLS Network Interworking 2.0” published August 2001, and/or later versions of this standard. Of course, different and/or after-developed connection-oriented network communication protocols are equally contemplated herein.


As used in any aspect herein, a wireless transmission such as, for example, a wireless communication or a wireless transfer of a data signal can be achieved, by a device including one or more transceivers. The transceivers may include, but are not limited to cellular modems, wireless mesh network transceivers, Wi-Fi® transceivers, low power wide area (LPWA) transceivers, and/or near field communications transceivers (NFC). The device may include or may be configured to communicate with a mobile telephone, a sensor system (e.g., environmental, position, motion, etc.) and/or a sensor network (wired and/or wireless), a computing system (e.g., a server, a workstation computer, a desktop computer, a laptop computer, a tablet computer (e.g., iPad®, GalaxyTab® and the like), an ultraportable computer, an ultramobile computer, a netbook computer and/or a subnotebook computer; etc. In at least one aspect of the present disclosure, one of the devices may be a coordinator node.


The transceivers may be configured to receive serial transmit data via respective universal asynchronous receiver-transmitters (UARTs) from a processor to modulate the serial transmit data onto an RF carrier to produce a transmit RF signal and to transmit the transmit RF signal via respective antennas. The transceiver(s) can be further configured to receive a receive RF signal via respective antennas that includes an RF carrier modulated with serial receive data, to demodulate the receive RF signal to extract the serial receive data and to provide the serial receive data to respective UARTs for provision to the processor. Each RF signal has an associated carrier frequency and an associated channel bandwidth. The channel bandwidth is associated with the carrier frequency, the transmit data and/or the receive data. Each RF carrier frequency and channel bandwidth is related to the operating frequency range(s) of the transceiver(s). Each channel bandwidth is further related to the wireless communication standard and/or protocol with which the transceiver(s) may comply. In other words, each transceiver may correspond to an implementation of a selected wireless communication standard and/or protocol, e.g., IEEE 802.11 a/b/g/n for Wi-Fi® and/or IEEE 802.15.4 for wireless mesh networks using Zigbee routing.


One or more drive systems or drive assemblies, as described herein, employ one or more electric motors. In various forms, the electric motors may be a DC brushed driving motor, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The electric motors may be powered by a power source that in one form may comprise a removable power pack. Batteries may each comprise, for example, a Lithium Ion (“LI”) or other suitable battery. The electric motors can include rotatable shafts that operably interface with gear reducer assemblies, for example. In certain instances, a voltage polarity provided by the power source can operate an electric motor in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor in a counter-clockwise direction. In various aspects, a microcontroller controls the electric motor through a motor driver via a pulse width modulated control signal. The motor driver can be configured to adjust the speed of the electric motor either in clockwise or counter-clockwise direction. The motor driver is also configured to switch between a plurality of operational modes which include an electronic motor braking mode, a constant speed mode, an electronic clutching mode, and a controlled current activation mode. In electronic braking mode, two terminal of the drive motor 200 are shorted and the generated back EMF counteracts the rotation of the electric motor allowing for faster stopping and greater positional precision.


Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.


Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.


In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


In this specification, unless otherwise indicated, terms “about” or “approximately” as used in the present disclosure, unless otherwise specified, means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 50%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a given value or range.


In this specification, unless otherwise indicated, all numerical parameters are to be understood as being prefaced and modified in all instances by the term “about,” in which the numerical parameters possess the inherent variability characteristic of the underlying measurement techniques used to determine the numerical value of the parameter. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter described herein should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


Any numerical range recited herein includes all sub-ranges subsumed within the recited range. For example, a range of “1 to 10” includes all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value equal to or less than 10. Also, all ranges recited herein are inclusive of the end points of the recited ranges. For example, a range of “1 to 10” includes the end points 1 and 10. Any maximum numerical limitation recited in this specification is intended to include all lower numerical limitations subsumed therein, and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited. All such ranges are inherently described in this specification.


Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.

Claims
  • 1. An end effector for a surgical instrument, the end effector comprising: a cartridge comprising:a first sensor array disposed in the cartridge, the first sensor array configured to sense a function of a first component located within the cartridge;a second sensor array disposed in the cartridge, the second sensor array configured to sense a function of a second component located within the cartridge;wherein the first and second sensor arrays are electrically coupled to an electronic circuit, wherein the electronic circuit comprises a control circuit configured to: receive signal samples from the first sensor array;receive signal samples from the second sensor array; andprocess the signals samples received from the first and second sensor arrays to determine a status of the cartridge.
  • 2. The end effector of claim 1, wherein the first component is a staple driver and the first sensor array is configured to sense motion of the staple driver.
  • 3. The end effector of claim 1, wherein the second component is a sled and the second sensor array is configured to sense motion of the sled.
  • 4. The end effector of claim 1, wherein the control circuit is configured to receive data from at least one additional source of data different from the signal samples received from the first and second sensor arrays, wherein the control circuit is configured to determine a redundant measure based on the data received from the at least one additional source in combination with the signal samples received from the first and second sensor arrays.
  • 5. The end effector of claim 4, wherein the additional source of data is selected from mechanically derived sources, lockout information, radio frequency identification tags, memory, or lockout force, and any combination thereof.
  • 6. The end effector of claim 4, comprising an anvil pivotally coupled to the cartridge, the anvil comprising staple-forming pockets including a circuit element to detect formation of a staple leg, wherein the circuit element is the at least one additional source of data.
  • 7. The end effector of claim 6, wherein the control circuit is configured to receive a signal from the circuit element and determine a state of the formation of the staple leg based on the signal received from the circuit element.
  • 8. The end effector of claim 1, wherein the control circuit is configured to provide information derived from the processed signal samples to a user of the surgical instrument.
  • 9. The end effector of claim 1, wherein the control circuit is configured to alter a functional status of the surgical instrument based on the status of the cartridge determined from the processed signal samples.
  • 10. The end effector of claim 1, wherein the electronic circuit is located within the cartridge.
  • 11. A method of monitoring a status of a cartridge located in an end effector of a surgical instrument, the end effector including a cartridge including a first sensor array disposed in the cartridge, the first sensor array configured to sense a function of a first component located within the cartridge, a second sensor array disposed in the cartridge, the second sensor array configured to sense a function of a second component located within the cartridge, wherein the first and second sensor arrays are electrically coupled to an electronic circuit, wherein the electronic circuit includes a control circuit, the method comprising: receiving, by the control circuit, signal samples from the first sensor array;receiving, by the control circuit, signal samples from the second sensor array; andprocessing, by the control circuit, the signals samples received from the first and second sensor arrays to determine a status of the cartridge.
  • 12. The method of claim 11, wherein the first component is a staple driver and the first sensor array is configured to sense motion of the staple driver.
  • 13. The method of claim 11, wherein the second component is a sled and the second sensor array is configured to sense motion of the sled.
  • 14. The method of claim 11, comprising: receiving, by the control circuit, data from at least one additional source of data different from the signal samples received from the first and second sensor arrays; anddetermining, by the control circuit, a redundant measure based on the data received from the at least one additional source in combination with the signal samples received from the first and second sensor arrays.
  • 15. The method of claim 14, wherein the end effector comprises an anvil pivotally coupled to the cartridge, the anvil comprising staple-forming pockets including a circuit element to detect formation of a staple leg, wherein the circuit element is the at least one additional source of data associated with the formation of the staple leg, the method comprising: receiving, by the control circuit, a signal from the circuit element; anddetermining, by the control circuit, a state of the formation of the staple leg based on the signal received from the circuit element.
  • 16. The method of claim 15, comprising receiving, by the control circuit, data from a source of data selected from mechanically derived sources, lockout information, radio frequency identification tags, memory, or lockout force, and any combination thereof.
  • 17. The method of claim 11, comprising providing, by the control circuit, information derived from the processed signal samples to a user of the surgical instrument.
  • 18. The method of claim 11, comprising altering, by the control circuit, a functional status of the surgical instrument based on the status of the cartridge determined from the processed signal samples.
  • 19. A surgical instrument, comprising: an end effector comprising: a cartridge comprising: a first sensor array disposed in the cartridge, the first sensor array configured to sense a function of a first component located within the cartridge;a second sensor array disposed in the cartridge, the second sensor array configured to sense a function of a second component located within the cartridge;an electronic circuit electrically coupled to the first and second sensor arrays, wherein the electronic circuit comprises a control circuit configured to: receive a first signal from the first sensor array indicative of at least one reading performed by the first sensor array;receive a second signal from the second sensor array indicative of at least one reading performed by the second sensor array; andprocess the first and second signals to determine a status of the cartridge.
  • 20. The surgical instrument of claim 19, wherein the first component is a staple driver and the first sensor array is configured to sense motion of the staple driver.
  • 21. The surgical instrument of claim 19, wherein the second component is a sled and the second sensor array is configured to sense motion of the sled.
  • 22. The surgical instrument of claim 19, wherein the control circuit is configured to receive data from at least one additional source of data different from the first and second sensor arrays, wherein the control circuit is configured to determine a redundant measure based on the data received from the at least one additional source in combination with the first and second signals.
  • 23. The surgical instrument of claim 22, comprising an anvil pivotally coupled to the cartridge, the anvil comprising staple-forming pockets including a circuit element to detect formation of a staple leg, wherein the circuit element is the at least one additional source of data.
  • 24. The surgical instrument of claim 23, wherein the control circuit is configured to receive a signal from the circuit element indicative of a state of the formation of the staple leg.
  • 25. The end effector of claim 22, wherein the additional source of data is selected from mechanically derived sources, lockout information, radio frequency identification tags, memory, lockout force, or any combination thereof.
  • 26. The surgical instrument of claim 19, wherein the control circuit is configured to provide information derived from the first and second signals to a user of the surgical instrument.
  • 27. The surgical instrument of claim 19, wherein the control circuit is configured to alter a functional status of the surgical instrument based on the status of the cartridge determined from the first and second signals.
US Referenced Citations (8061)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
719487 Minor Feb 1903 A
804229 Hutchinson Nov 1905 A
903739 Lesemann Nov 1908 A
951393 Hahn Mar 1910 A
1075556 Fenoughty Oct 1913 A
1082105 Anderson Dec 1913 A
1188721 Bittner Jun 1916 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1466128 Hallenbeck Aug 1923 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
1849427 Hook Mar 1932 A
1912783 Meyer Jun 1933 A
1944116 Stratman Jan 1934 A
1954048 Jeffrey et al. Apr 1934 A
2028635 Wappler Jan 1936 A
2037727 La Chapelle Apr 1936 A
2120951 Hodgman Jun 1938 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
D120434 Gold May 1940 S
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2224108 Ridgway Dec 1940 A
2224882 Peck Dec 1940 A
2256295 Schmid Sep 1941 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2377581 Shaffrey Jun 1945 A
2406389 Lee Aug 1946 A
2420552 Morrill May 1947 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith Oct 1948 A
2491872 Neuman Dec 1949 A
2507872 Unsinger May 1950 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2638901 Sugarbaker May 1953 A
2674149 Benson Apr 1954 A
2701489 Osborn Feb 1955 A
2711461 Happe Jun 1955 A
2724289 Wight Nov 1955 A
2742955 Dominguez Apr 1956 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2825178 Hawkins Mar 1958 A
2853074 Olson Sep 1958 A
2856192 Schuster Oct 1958 A
2887004 Stewart May 1959 A
2957353 Lewis Oct 1960 A
2959974 Emrick Nov 1960 A
3026744 Rouse Mar 1962 A
3032769 Palmer May 1962 A
3035256 Egbert May 1962 A
3060972 Sheldon Oct 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3080564 Strekopitov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3180236 Beckett Apr 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3252643 Strekopytov et al. May 1966 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3269631 Takaro Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3315863 O'Dea Apr 1967 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3359978 Smith, Jr. Dec 1967 A
3377893 Shorb Apr 1968 A
3480193 Ralston Nov 1969 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3509629 Kidokoro May 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
3572159 Tschanz Mar 1971 A
3583393 Takahashi Jun 1971 A
3589589 Akopov Jun 1971 A
3598943 Barrett Aug 1971 A
3604561 Mallina et al. Sep 1971 A
3608549 Merrill Sep 1971 A
3618842 Bryan Nov 1971 A
3635394 Natelson Jan 1972 A
3638652 Kelley Feb 1972 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3650453 Smith, Jr. Mar 1972 A
3661339 Shimizu May 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3685250 Henry et al. Aug 1972 A
3688966 Perkins et al. Sep 1972 A
3692224 Astafiev et al. Sep 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3724237 Wood Apr 1973 A
3726755 Shannon Apr 1973 A
3727904 Gabbey Apr 1973 A
3734207 Fishbein May 1973 A
3740994 De Carlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3747603 Adler Jul 1973 A
3747692 Davidson Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3752161 Bent Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3808452 Hutchinson Apr 1974 A
3815476 Green et al. Jun 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3822818 Strekopytov et al. Jul 1974 A
3826978 Kelly Jul 1974 A
3836171 Hayashi et al. Sep 1974 A
3837555 Green Sep 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3863639 Kleaveland Feb 1975 A
3863940 Cummings Feb 1975 A
3883624 McKenzie et al. May 1975 A
3885491 Curtis May 1975 A
3887393 La Rue, Jr. Jun 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3899829 Storm et al. Aug 1975 A
3902247 Fleer et al. Sep 1975 A
3940844 Colby et al. Mar 1976 A
3944163 Hayashi et al. Mar 1976 A
3950686 Randall Apr 1976 A
3952747 Kimmell, Jr. Apr 1976 A
3955581 Spasiano et al. May 1976 A
3959879 Sellers Jun 1976 A
RE28932 Noiles et al. Aug 1976 E
3972734 King Aug 1976 A
3973179 Weber et al. Aug 1976 A
3981051 Brumlik Sep 1976 A
3999110 Ramstrom et al. Dec 1976 A
4025216 Hives May 1977 A
4027746 Kine Jun 1977 A
4034143 Sweet Jul 1977 A
4038987 Komiya Aug 1977 A
4047654 Alvarado Sep 1977 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4066133 Voss Jan 1978 A
4085337 Moeller Apr 1978 A
4100820 Evett Jul 1978 A
4106446 Yamada et al. Aug 1978 A
4106620 Brimmer et al. Aug 1978 A
4108211 Tanaka Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4127227 Green Nov 1978 A
4129059 Van Eck Dec 1978 A
4132146 Uhlig Jan 1979 A
4135517 Reale Jan 1979 A
4149461 Simeth Apr 1979 A
4154122 Severin May 1979 A
4160857 Nardella et al. Jul 1979 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4185701 Boys Jan 1980 A
4190042 Sinnreich Feb 1980 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4203444 Bonnell et al. May 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4239431 Davini Dec 1980 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4250817 Michel Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4274398 Scott, Jr. Jun 1981 A
4275813 Noiles Jun 1981 A
4278091 Borzone Jul 1981 A
4282573 Imai et al. Aug 1981 A
4289131 Mueller Sep 1981 A
4289133 Rothfuss Sep 1981 A
4290542 Fedotov et al. Sep 1981 A
D261356 Robinson Oct 1981 S
4293604 Campbell Oct 1981 A
4296654 Mercer Oct 1981 A
4296881 Lee Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4319576 Rothfuss Mar 1982 A
4321002 Froehlich Mar 1982 A
4321746 Grinage Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4348603 Huber Sep 1982 A
4349028 Green Sep 1982 A
4350151 Scott Sep 1982 A
4353371 Cosman Oct 1982 A
4357940 Muller Nov 1982 A
4361057 Kochera Nov 1982 A
4366544 Shima et al. Dec 1982 A
4369013 Abildgaard et al. Jan 1983 A
4373147 Carlson, Jr. Feb 1983 A
4376380 Burgess Mar 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4389963 Pearson Jun 1983 A
4393728 Larson et al. Jul 1983 A
4394613 Cole Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4406621 Bailey Sep 1983 A
4408692 Sigel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4417890 Dennehey et al. Nov 1983 A
4421264 Arter et al. Dec 1983 A
4423456 Zaidenweber Dec 1983 A
4425915 Ivanov Jan 1984 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4430997 DiGiovanni et al. Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4452376 Klieman et al. Jun 1984 A
4454887 Kruger Jun 1984 A
4459519 Erdman Jul 1984 A
4461305 Cibley Jul 1984 A
4467805 Fukuda Aug 1984 A
4468597 Baumard et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4470414 Imagawa et al. Sep 1984 A
4471780 Menges et al. Sep 1984 A
4471781 Di Giovanni et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4476864 Tezel Oct 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480641 Failla et al. Nov 1984 A
4481458 Lane Nov 1984 A
4483562 Schoolman Nov 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4493983 Taggert Jan 1985 A
4494057 Hotta Jan 1985 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
D278081 Green Mar 1985 S
4503842 Takayama Mar 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4514477 Kobayashi Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530357 Pawloski et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4540202 Amphoux et al. Sep 1985 A
4548202 Duncan Oct 1985 A
4556058 Green Dec 1985 A
4560915 Soultanian Dec 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569346 Poirier Feb 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576165 Green et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4586501 Claracq May 1986 A
4586502 Bedi et al. May 1986 A
4589416 Green May 1986 A
4589582 Bilotti May 1986 A
4589870 Citrin et al. May 1986 A
4591085 Di Giovanni May 1986 A
RE32214 Schramm Jul 1986 E
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607636 Kula et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608980 Aihara Sep 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286180 Korthoff Oct 1986 S
D286442 Korthoff et al. Oct 1986 S
4617893 Donner et al. Oct 1986 A
4617914 Ueda Oct 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
4624401 Gassner et al. Nov 1986 A
D287278 Spreckelmeier Dec 1986 S
4628459 Shinohara et al. Dec 1986 A
4628636 Folger Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4635638 Weintraub et al. Jan 1987 A
4641076 Linden Feb 1987 A
4642618 Johnson et al. Feb 1987 A
4642738 Meller Feb 1987 A
4643173 Bell et al. Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4646745 Noiles Mar 1987 A
4651734 Doss et al. Mar 1987 A
4652820 Maresca Mar 1987 A
4654028 Suma Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671278 Chin Jun 1987 A
4671280 Dorband et al. Jun 1987 A
4671445 Barker et al. Jun 1987 A
4672964 Dee et al. Jun 1987 A
4675944 Wells Jun 1987 A
4676245 Fukuda Jun 1987 A
4679460 Yoshigai Jul 1987 A
4679719 Kramer Jul 1987 A
4684051 Akopov et al. Aug 1987 A
4688555 Wardle Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4698579 Richter et al. Oct 1987 A
4700703 Resnick et al. Oct 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4721099 Chikama Jan 1988 A
4722340 Takayama et al. Feb 1988 A
4724840 McVay et al. Feb 1988 A
4726247 Hormann Feb 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4744363 Hasson May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4755070 Cerutti Jul 1988 A
4761326 Barnes et al. Aug 1988 A
4763669 Jaeger Aug 1988 A
4767044 Green Aug 1988 A
D297764 Hunt et al. Sep 1988 S
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4781186 Simpson et al. Nov 1988 A
4784137 Kulik et al. Nov 1988 A
4787387 Burbank, III et al. Nov 1988 A
4788485 Kawagishi et al. Nov 1988 A
D298967 Hunt Dec 1988 S
4788978 Strekopytov et al. Dec 1988 A
4790225 Moody et al. Dec 1988 A
4790314 Weaver Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4807628 Peters et al. Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817643 Olson Apr 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819495 Hormann Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827552 Bojar et al. May 1989 A
4827911 Broadwin et al. May 1989 A
4828542 Hermann May 1989 A
4828944 Yabe et al. May 1989 A
4830855 Stewart May 1989 A
4832158 Farrar et al. May 1989 A
4833937 Nagano May 1989 A
4834096 Oh et al. May 1989 A
4834720 Blinkhorn May 1989 A
4838859 Strassmann Jun 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4860644 Kohl et al. Aug 1989 A
4862891 Smith Sep 1989 A
4863423 Wallace Sep 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4868958 Suzuki et al. Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport et al. Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4894051 Shiber Jan 1990 A
4896584 Stoll et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4909789 Taguchi et al. Mar 1990 A
4915100 Green Apr 1990 A
4919679 Averill et al. Apr 1990 A
4921479 Grayzel May 1990 A
4925082 Kim May 1990 A
4928699 Sasai May 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4931737 Hishiki Jun 1990 A
4932960 Green et al. Jun 1990 A
4933800 Yang Jun 1990 A
4933843 Scheller et al. Jun 1990 A
D309350 Sutherland et al. Jul 1990 S
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4946067 Kelsall Aug 1990 A
4948327 Crupi, Jr. Aug 1990 A
4949707 LeVahn et al. Aug 1990 A
4950268 Rink Aug 1990 A
4951860 Peters et al. Aug 1990 A
4951861 Schulze et al. Aug 1990 A
4954960 Lo et al. Sep 1990 A
4955959 Tompkins et al. Sep 1990 A
4957212 Duck et al. Sep 1990 A
4962681 Yang Oct 1990 A
4962877 Hervas Oct 1990 A
4964559 Deniega et al. Oct 1990 A
4964863 Kanshin et al. Oct 1990 A
4965709 Ngo Oct 1990 A
4970656 Lo et al. Nov 1990 A
4973274 Hirukawa Nov 1990 A
4973302 Armour et al. Nov 1990 A
4976173 Yang Dec 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4979952 Kubota et al. Dec 1990 A
4984564 Yuen Jan 1991 A
4986808 Broadwin et al. Jan 1991 A
4987049 Komamura et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
4995877 Ams et al. Feb 1991 A
4995959 Metzner Feb 1991 A
4996975 Nakamura Mar 1991 A
5001649 Lo et al. Mar 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009222 Her Apr 1991 A
5009661 Michelson Apr 1991 A
5012411 Policastro et al. Apr 1991 A
5014898 Heidrich May 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024652 Dumenek et al. Jun 1991 A
5024671 Tu et al. Jun 1991 A
5025559 McCullough Jun 1991 A
5027834 Pruitt Jul 1991 A
5030226 Green et al. Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5033552 Hu Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5037018 Matsuda et al. Aug 1991 A
5038109 Goble et al. Aug 1991 A
5038247 Kelley et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5056953 Marot et al. Oct 1991 A
5060658 Dejter, Jr. et al. Oct 1991 A
5061269 Muller Oct 1991 A
5062491 Takeshima et al. Nov 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5077506 Krause Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5089606 Cole et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5098004 Kerrigan Mar 1992 A
5098360 Hirota Mar 1992 A
5100042 Gravener et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5104400 Berguer et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5109722 Hufnagle et al. May 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
D327323 Hunt Jun 1992 S
5119009 McCaleb et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156151 Imran Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158222 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5164652 Johnson et al. Nov 1992 A
5168605 Bartlett Dec 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman Dec 1992 A
5173053 Swanson et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5176688 Narayan et al. Jan 1993 A
5181514 Solomon et al. Jan 1993 A
5187422 Izenbaard et al. Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5188111 Yates et al. Feb 1993 A
5188126 Fabian et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5190657 Heagle et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5193731 Aranyi Mar 1993 A
5195505 Josefsen Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197970 Green et al. Mar 1993 A
5200280 Karasa Apr 1993 A
5201750 Hocherl et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207672 Roth et al. May 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5209756 Seedhom et al. May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5220269 Chen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222945 Basnight Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
D338729 Sprecklemeier et al. Aug 1993 S
5234447 Kaster et al. Aug 1993 A
5236269 Handy Aug 1993 A
5236424 Imran Aug 1993 A
5236440 Hlavacek Aug 1993 A
5236629 Mahabadi et al. Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5251801 Ruckdeschel et al. Oct 1993 A
5253793 Green et al. Oct 1993 A
5258007 Spetzler et al. Nov 1993 A
5258008 Wilk Nov 1993 A
5258009 Conners Nov 1993 A
5258010 Green et al. Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5261135 Mitchell Nov 1993 A
5261877 Fine et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263937 Shipp Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5269794 Rexroth Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275322 Brinkerhoff et al. Jan 1994 A
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5281400 Berry, Jr. Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5286253 Fucci Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5290310 Makower et al. Mar 1994 A
5291133 Gokhale et al. Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5293024 Sugahara et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5302148 Heinz Apr 1994 A
5303606 Kokinda Apr 1994 A
5304204 Bregen Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308353 Beurrier May 1994 A
5308358 Bond et al. May 1994 A
5308576 Green et al. May 1994 A
5309387 Mori et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5313967 Lieber et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5320627 Sorensen et al. Jun 1994 A
D348930 Olson Jul 1994 S
5326013 Green et al. Jul 1994 A
5329923 Lundquist Jul 1994 A
5330486 Wilk Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336130 Ray Aug 1994 A
5336229 Noda Aug 1994 A
5336232 Green et al. Aug 1994 A
5338317 Hasson et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341807 Nardella Aug 1994 A
5341810 Dardel Aug 1994 A
5342380 Hood Aug 1994 A
5342381 Tidemand Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343382 Hale et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5344059 Green et al. Sep 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5350355 Sklar Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5353798 Sieben Oct 1994 A
5354215 Viracola Oct 1994 A
5354250 Christensen Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5359993 Slater et al. Nov 1994 A
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5361902 Abidin et al. Nov 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5368599 Hirsch et al. Nov 1994 A
5369565 Chen et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5375588 Yoon Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383882 Buess et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5388568 van der Heide Feb 1995 A
5389072 Imran Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389102 Green et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5404106 Matsuda Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5404960 Wada et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5409703 McAnalley et al. Apr 1995 A
D357981 Green et al. May 1995 S
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5419766 Chang et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423835 Green et al. Jun 1995 A
5425355 Kulick Jun 1995 A
5425745 Green et al. Jun 1995 A
5427298 Tegtmeier Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5431645 Smith et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431666 Sauer et al. Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5438997 Sieben et al. Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443197 Malis et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445604 Lang Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5446646 Miyazaki Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454822 Schob et al. Oct 1995 A
5454824 Fontayne et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5456917 Wise et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465819 Weilant et al. Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471129 Mann Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5474570 Kockerling et al. Dec 1995 A
5474738 Nichols et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5476481 Schondorf Dec 1995 A
5478003 Green et al. Dec 1995 A
5478308 Cartmell et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5483952 Aranyi Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487377 Smith et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5489290 Furnish Feb 1996 A
5490819 Nicholas et al. Feb 1996 A
5492671 Krafft Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5498164 Ward et al. Mar 1996 A
5498838 Furman Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507425 Ziglioli Apr 1996 A
5507426 Young et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5509918 Romano Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514149 Green et al. May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520609 Moll et al. May 1996 A
5520634 Fox et al. May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527264 Moll et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5531856 Moll et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542945 Fritzsch Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5543695 Culp et al. Aug 1996 A
5544802 Crainich Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553624 Francese et al. Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556020 Hou Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558533 Hashizawa et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5561881 Klinger et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562694 Sauer et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5571488 Beerstecher et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5582907 Pall Dec 1996 A
5583114 Barrows et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601604 Vincent Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5611813 Lichtman Mar 1997 A
5613499 Palmer et al. Mar 1997 A
5613937 Garrison et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5614887 Buchbinder Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620326 Younker Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5626979 Mitsui et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5631973 Green May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5633374 Humphrey et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638582 Klatt et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
D381077 Hunt Jul 1997 S
5643291 Pier et al. Jul 1997 A
5643293 Kogasaka et al. Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5643319 Green et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5651762 Bridges Jul 1997 A
5651821 Uchida Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5653748 Strecker Aug 1997 A
5655698 Yoon Aug 1997 A
5656917 Theobald Aug 1997 A
5657417 Di Troia Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5664404 Ivanov et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5667864 Landoll Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5672945 Krause Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674184 Hassler, Jr. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5681341 Lunsford et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700276 Benecke Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5704792 Sobhani Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709335 Heck Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5711960 Shikinami Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715604 Lanzoni Feb 1998 A
5715836 Kliegis et al. Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716352 Viola et al. Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Cotellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5724025 Tavori Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728113 Sherts Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732712 Adair Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5736271 Cisar et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738629 Moll et al. Apr 1998 A
5738648 Lands et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5746770 Zeitels et al. May 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5749896 Cook May 1998 A
5749968 Melanson et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5752970 Yoon May 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5755726 Pratt et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5762458 Wang et al. Jun 1998 A
5765565 Adair Jun 1998 A
5766186 Faraz et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772099 Gravener Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5773991 Chen Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782748 Palmer et al. Jul 1998 A
5782749 Riza Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5784934 Izumisawa Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792162 Jolly et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792573 Pitzen et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797637 Ervin Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5798752 Buxton et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5804726 Geib et al. Sep 1998 A
5804936 Brodsky et al. Sep 1998 A
5806676 Wasgien Sep 1998 A
5807241 Heimberger Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810240 Robertson Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5812188 Adair Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830598 Patterson Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839369 Chatterjee et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5841284 Takahashi Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5847566 Marritt et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5865638 Trafton Feb 1999 A
5868361 Rinderer Feb 1999 A
5868664 Speier et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5868790 Vincent et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5881777 Bassi et al. Mar 1999 A
5881943 Heck et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5891558 Bell et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899824 Kurtz et al. May 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906577 Beane et al. May 1999 A
5906625 Bito et al. May 1999 A
5907211 Hall et al. May 1999 A
5907664 Wang et al. May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5909062 Krietzman Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5922003 Anctil et al. Jul 1999 A
5924864 Loge et al. Jul 1999 A
5928137 Green Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5946978 Yamashita Sep 1999 A
5947984 Whipple Sep 1999 A
5947996 Logeman Sep 1999 A
5948030 Miller et al. Sep 1999 A
5948429 Bell et al. Sep 1999 A
5951301 Younker Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5957831 Adair Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976122 Madhani et al. Nov 1999 A
5977746 Hershberger et al. Nov 1999 A
5980248 Kusakabe et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5990379 Gregory Nov 1999 A
5993466 Yoon Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007521 Bidwell et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Tormala et al. Jan 2000 A
6010520 Pattison Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6013991 Philipp Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019745 Gray Feb 2000 A
6019780 Lombardo et al. Feb 2000 A
6022352 Vandewalle Feb 2000 A
6023275 Horvitz et al. Feb 2000 A
6023641 Thompson Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033105 Barker et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6036641 Taylor et al. Mar 2000 A
6036667 Manna et al. Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039126 Hsieh Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6043626 Snyder et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin et al. Apr 2000 A
6050172 Corves et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050989 Fox et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053899 Slanda et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
6054142 Li et al. Apr 2000 A
6055062 Dina et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6059806 Hoegerle May 2000 A
6062360 Shields May 2000 A
6063020 Jones et al. May 2000 A
6063025 Bridges et al. May 2000 A
6063050 Manna et al. May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie et al. May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6072299 Kurle et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6075441 Maloney Jun 2000 A
6077280 Fossum Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6077290 Marini Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083223 Baker Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6093186 Goble Jul 2000 A
6094021 Noro et al. Jul 2000 A
D429252 Haitani et al. Aug 2000 S
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6104162 Sainsbury et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110187 Donlon Aug 2000 A
6113618 Nic Sep 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
RE36923 Hiroi et al. Oct 2000 E
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6134962 Sugitani Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6142149 Steen Nov 2000 A
6142933 Longo et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6151323 O'Connell et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6157169 Lee Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162220 Nezhat Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167185 Smiley et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6173074 Russo Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6185356 Parker et al. Feb 2001 B1
6186142 Schmidt et al. Feb 2001 B1
6186957 Milam Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206894 Thompson et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6209414 Uneme Apr 2001 B1
6210403 Klicek Apr 2001 B1
6211626 Lys et al. Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6221007 Green Apr 2001 B1
6221023 Matsuba et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6228089 Wahrburg May 2001 B1
6228098 Kayan et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6235036 Gardner et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238384 Peer May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6251485 Harris et al. Jun 2001 B1
D445745 Norman Jul 2001 S
6254534 Butler et al. Jul 2001 B1
6254619 Garabet et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6261246 Pantages et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264617 Bales et al. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6270916 Sink et al. Aug 2001 B1
6273252 Mitchell Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6302743 Chiu et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6315184 Whitman Nov 2001 B1
6317616 Glossop Nov 2001 B1
6319510 Yates Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6328498 Mersch Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6349868 Mattingly et al. Feb 2002 B1
D454951 Bon Mar 2002 S
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6358459 Ziegler et al. Mar 2002 B1
6361542 Dimitriu et al. Mar 2002 B1
6364828 Yeung et al. Apr 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6366441 Ozawa et al. Apr 2002 B1
6370981 Watarai Apr 2002 B2
6371114 Schmidt et al. Apr 2002 B1
6373152 Wang et al. Apr 2002 B1
6377011 Ben-Ur Apr 2002 B1
6383201 Dong May 2002 B1
6387092 Burnside et al. May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6394998 Wallace et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6402780 Williamson, IV et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6412639 Hickey Jul 2002 B1
6413274 Pedros Jul 2002 B1
6415542 Bates et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6428487 Burdorff et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436115 Beaupre Aug 2002 B1
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
D462758 Epstein et al. Sep 2002 S
6443973 Whitman Sep 2002 B1
6445530 Baker Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6447799 Ullman Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454656 Brissette et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6457338 Frenken Oct 2002 B1
6457625 Tormala et al. Oct 2002 B1
6458077 Boebel et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6458147 Cruise et al. Oct 2002 B1
6460627 Below et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6468286 Mastri et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482063 Frigard Nov 2002 B1
6482200 Shippert Nov 2002 B2
6482217 Pintor et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6485503 Jacobs et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6486286 McGall et al. Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6488659 Rosenman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491702 Heilbrun et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494882 Lebouitz et al. Dec 2002 B1
6494885 Dhindsa Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500189 Lang et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
D468749 Friedman Jan 2003 S
6503139 Coral Jan 2003 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6506197 Rollero et al. Jan 2003 B1
6506399 Donovan Jan 2003 B2
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6516073 Schulz et al. Feb 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6520971 Perry et al. Feb 2003 B1
6520972 Peters Feb 2003 B2
6522101 Malackowski Feb 2003 B2
6524180 Simms et al. Feb 2003 B1
6525499 Naganuma Feb 2003 B2
D471206 Buzzard et al. Mar 2003 S
6527782 Hogg et al. Mar 2003 B2
6527785 Sancoff et al. Mar 2003 B2
6530942 Fogarty et al. Mar 2003 B2
6532958 Buan et al. Mar 2003 B1
6533157 Whitman Mar 2003 B1
6533723 Lockery et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6539297 Weiberle et al. Mar 2003 B2
D473239 Cockerill Apr 2003 S
6539816 Kogiso et al. Apr 2003 B2
6540737 Bacher et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6558429 Taylor May 2003 B2
6561187 Schmidt et al. May 2003 B2
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6569173 Blatter et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6578751 Hartwick Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6586898 King et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588277 Giordano et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589118 Soma et al. Jul 2003 B1
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592572 Suzuta Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6595914 Kato Jul 2003 B2
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
6599295 Tornier et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6603050 Heaton Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6605911 Klesing Aug 2003 B1
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620111 Stephens et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6625517 Bogdanov et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6626938 Butaric et al. Sep 2003 B1
H2086 Amsler Oct 2003 H
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6648901 Fleischman et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6659940 Adler Dec 2003 B2
6660008 Foerster et al. Dec 2003 B1
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6677687 Ho et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Wursch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6692692 Stetzel Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6695849 Michelson Feb 2004 B2
6696814 Henderson et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6699214 Gellman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716215 David et al. Apr 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6720734 Norris Apr 2004 B2
6722550 Ricordi et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6723106 Charles et al. Apr 2004 B1
6723109 Solingen Apr 2004 B2
6726651 Robinson et al. Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6726705 Peterson et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6731976 Penn et al. May 2004 B2
6736810 Hoey et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743230 Lutze et al. Jun 2004 B2
6744385 Kazuya et al. Jun 2004 B2
6747121 Gogolewski Jun 2004 B2
6747300 Nadd et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749600 Levy Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6754959 Guiette, III et al. Jun 2004 B1
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756705 Pulford, Jr. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6763307 Berg et al. Jul 2004 B2
6764445 Ramans et al. Jul 2004 B2
6766957 Matsuura et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6770078 Bonutti Aug 2004 B2
6773409 Truckai et al. Aug 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6778846 Martinez et al. Aug 2004 B1
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6784775 Mandell et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793669 Nakamura et al. Sep 2004 B2
6796921 Buck et al. Sep 2004 B1
6799669 Fukumura et al. Oct 2004 B2
6801009 Makaran et al. Oct 2004 B2
6802822 Dodge Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6802844 Ferree Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6806867 Arruda et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6810359 Sakaguchi Oct 2004 B2
6814154 Chou Nov 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6836611 Popovic et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6841967 Kim et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6847190 Schaefer et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6852122 Rush Feb 2005 B2
6852330 Bowman et al. Feb 2005 B2
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6859882 Fung Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
D502994 Blake, III Mar 2005 S
6860169 Shinozaki Mar 2005 B2
6861142 Wilkie et al. Mar 2005 B1
6861954 Levin Mar 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863694 Boyce et al. Mar 2005 B1
6863924 Ranganathan et al. Mar 2005 B2
6866178 Adams et al. Mar 2005 B2
6866668 Giannetti et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6876850 Maeshima et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6882127 Konigbauer Apr 2005 B2
6883199 Lundell et al. Apr 2005 B1
6884392 Malkin et al. Apr 2005 B2
6884428 Binette et al. Apr 2005 B2
6886730 Fujisawa et al. May 2005 B2
6887244 Walker et al. May 2005 B1
6887710 Call et al. May 2005 B2
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6894140 Roby May 2005 B2
6895176 Archer et al. May 2005 B2
6899538 Matoba May 2005 B2
6899593 Moeller et al. May 2005 B1
6899705 Niemeyer May 2005 B2
6899915 Yelick et al. May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6923819 Meade et al. Aug 2005 B2
6925849 Jairam Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6928902 Eyssallenne Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
D509297 Wells Sep 2005 S
D509589 Wells Sep 2005 S
6938706 Ng Sep 2005 B2
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6949196 Schmitz et al. Sep 2005 B2
6951562 Zwirnmann Oct 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6957758 Aranyi Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
D511525 Hernandez et al. Nov 2005 S
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6968908 Tokunaga et al. Nov 2005 B2
6969385 Moreyra Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974435 Daw et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6989034 Hammer et al. Jan 2006 B2
6990731 Haytayan Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6991146 Sinisi et al. Jan 2006 B2
6993200 Tastl et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6996433 Burbank et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997935 Anderson et al. Feb 2006 B2
6998736 Lee et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
6999821 Jenney et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7000911 McCormick et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7005828 Karikomi Feb 2006 B2
7007176 Goodfellow et al. Feb 2006 B2
7008433 Voellmicke et al. Mar 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011213 Clark et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014640 Kemppainen et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021399 Driessen Apr 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7022131 Derowe et al. Apr 2006 B1
7023159 Gorti et al. Apr 2006 B2
7025064 Wang et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7025775 Gadberry et al. Apr 2006 B2
7028570 Ohta et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7030904 Adair et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033378 Smith et al. Apr 2006 B2
7035716 Harris et al. Apr 2006 B2
7035762 Menard et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037314 Armstrong May 2006 B2
7037344 Kagan et al. May 2006 B2
7038421 Trifilo May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7046082 Komiya et al. May 2006 B2
7048165 Haramiishi May 2006 B2
7048687 Reuss et al. May 2006 B1
7048716 Kucharczyk et al. May 2006 B1
7048745 Tierney et al. May 2006 B2
7052454 Taylor May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056123 Gregorio et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7064509 Fu et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075412 Reynolds et al. Jul 2006 B1
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7081318 Lee et al. Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083626 Hart et al. Aug 2006 B2
7086267 Dworak et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7091191 Laredo et al. Aug 2006 B2
7091412 Wang et al. Aug 2006 B2
7093492 Treiber et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7094916 DeLuca et al. Aug 2006 B2
7096972 Orozco, Jr. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101187 Deconinck et al. Sep 2006 B1
7101363 Nishizawa et al. Sep 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
D530339 Hernandez et al. Oct 2006 S
7114642 Whitman Oct 2006 B2
7116100 Mock et al. Oct 2006 B1
7118020 Lee et al. Oct 2006 B2
7118528 Piskun Oct 2006 B1
7118563 Weckwerth et al. Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7119534 Butzmann Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7121773 Mikiya et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134364 Kageler et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7135027 Delmotte Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7146191 Kerner et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147648 Lin Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156846 Dycus et al. Jan 2007 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7160311 Blatter et al. Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162758 Skinner Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166117 Hellenkamp Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7170910 Chen et al. Jan 2007 B2
7171279 Buckingham et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7172615 Morriss et al. Feb 2007 B2
7174202 Bladen et al. Feb 2007 B2
7174636 Lowe Feb 2007 B2
7177533 McFarlin et al. Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7190147 Gileff et al. Mar 2007 B2
7193199 Jang Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7196911 Takano et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7197965 Anderson Apr 2007 B1
7199537 Okamura et al. Apr 2007 B2
7199545 Oleynikov et al. Apr 2007 B2
7202576 Dechene et al. Apr 2007 B1
7202653 Pai Apr 2007 B2
7204404 Nguyen et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7205959 Henriksson Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225959 Patton et al. Jun 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226450 Athanasiou et al. Jun 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7228505 Shimazu et al. Jun 2007 B2
7229408 Douglas et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235072 Sartor et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim et al. Jul 2007 B2
7239657 Gunnarsson Jul 2007 B1
7241288 Braun Jul 2007 B2
7241289 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapuis Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252660 Kunz Aug 2007 B2
7255012 Hedtke Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7272002 Drapeau Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7273488 Nakamura et al. Sep 2007 B2
D552623 Vong et al. Oct 2007 S
7275674 Racenet et al. Oct 2007 B2
7276044 Ferry et al. Oct 2007 B2
7276068 Johnson et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7283096 Geisheimer et al. Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7289139 Amling et al. Oct 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311238 Liu Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314473 Jinno et al. Jan 2008 B2
7320704 Lashinski et al. Jan 2008 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7331343 Schmidt et al. Feb 2008 B2
7331403 Berry et al. Feb 2008 B2
7331406 Wottreng, Jr. et al. Feb 2008 B2
7331969 Inganas et al. Feb 2008 B1
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7335401 Finke et al. Feb 2008 B2
7336045 Clermonts Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336183 Reddy et al. Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7337774 Webb Mar 2008 B2
7338505 Belson Mar 2008 B2
7338513 Lee et al. Mar 2008 B2
7341554 Sekine et al. Mar 2008 B2
7341555 Ootawara et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7346406 Brotto et al. Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
7348875 Hughes et al. Mar 2008 B2
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354398 Kanazawa Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7362062 Schneider et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7367973 Manzo et al. May 2008 B2
7368124 Chun et al. May 2008 B2
7371210 Brock et al. May 2008 B2
7371403 McCarthy et al. May 2008 B2
7375493 Calhoon et al. May 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7378817 Calhoon et al. May 2008 B2
RE40388 Gines Jun 2008 E
D570868 Hosokawa et al. Jun 2008 S
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384403 Sherman Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7394190 Huang Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398707 Morley et al. Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400107 Schneider et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401000 Nakamura Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404449 Bermingham et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
D575793 Ording Aug 2008 S
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7408310 Hong et al. Aug 2008 B2
7410085 Wolf et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419321 Tereschouk Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
D578644 Shumer et al. Oct 2008 S
7430772 Van Es Oct 2008 B2
7430849 Coutts et al. Oct 2008 B1
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431230 McPherson et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
D580942 Oshiro et al. Nov 2008 S
7446131 Liu et al. Nov 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7450010 Gravelle et al. Nov 2008 B1
7450991 Smith et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7455687 Saunders et al. Nov 2008 B2
D582934 Byeon Dec 2008 S
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464845 Chou Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473221 Ewers et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479147 Honeycutt et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7489055 Jeong et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7492261 Cambre et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494460 Haarstad et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7497137 Tellenbach et al. Mar 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barley et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513407 Chang Apr 2009 B1
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7527632 Houghton et al. May 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544197 Kelsch et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547287 Boecker et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7553275 Padget et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7561637 Jonsson et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563269 Hashiguchi Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7572285 Frey et al. Aug 2009 B2
7572298 Roller et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7578825 Huebner Aug 2009 B2
D600712 LaManna et al. Sep 2009 S
7583063 Dooley Sep 2009 B2
7584880 Racenet et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7593766 Faber et al. Sep 2009 B2
7595642 Doyle Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7597699 Rogers Oct 2009 B2
7598972 Tomita Oct 2009 B2
7600663 Green Oct 2009 B2
7604118 Iio et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7604668 Farnsworth et al. Oct 2009 B2
7605826 Sauer Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
D604325 Ebeling et al. Nov 2009 S
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615006 Abe Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7618427 Ortiz et al. Nov 2009 B2
D605201 Lorenz et al. Dec 2009 S
D606992 Liu et al. Dec 2009 S
D607010 Kocmick Dec 2009 S
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7625388 Boukhny et al. Dec 2009 B2
7625662 Vaisnys et al. Dec 2009 B2
7630841 Comisky et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635922 Becker Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644484 Vereschagin Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7648457 Stefanchik et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7655584 Biran et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7658705 Melvin et al. Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7661448 Kim et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666195 Kelleher et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670337 Young Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7678121 Knodel Mar 2010 B1
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682686 Curro et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694864 Okada et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7695493 Saadat et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7699868 Frank et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7705559 Powell et al. Apr 2010 B2
7706853 Hacker et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708182 Viola May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7709136 Touchton et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7713190 Brock et al. May 2010 B2
7713542 Xu et al. May 2010 B2
7714239 Smith May 2010 B2
7714334 Lin May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7717873 Swick May 2010 B2
7717915 Miyazawa May 2010 B2
7717926 Whitfield et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7725214 Diolaiti May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7728553 Carrier et al. Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7735704 Bilotti Jun 2010 B2
7736254 Schena Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7747146 Milano et al. Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7748632 Coleman et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7758594 Lamson et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7758613 Whitman Jul 2010 B2
7762462 Gelbman Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
D622286 Umezawa Aug 2010 S
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770658 Ito et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7772725 Siman-Tov Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7776065 Griffiths et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7779614 McGonagle et al. Aug 2010 B1
7779737 Newman, Jr. et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780309 McMillan et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7782382 Fujimura Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811275 Birk et al. Oct 2010 B2
7814816 Alberti et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819885 Cooper Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7819894 Mitsuishi et al. Oct 2010 B2
7823076 Borovsky et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824422 Benchetrit Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7829416 Kudou et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837425 Saeki et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7839109 Carmen, Jr. et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7843158 Prisco Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7845912 Sung et al. Dec 2010 B2
7846085 Silverman et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7848066 Yanagishima Dec 2010 B2
7850623 Griffin et al. Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7853813 Lee Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862502 Pool et al. Jan 2011 B2
7862546 Conlon et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7871440 Schwartz et al. Jan 2011 B2
7875055 Cichocki, Jr. Jan 2011 B2
7877869 Mehdizadeh et al. Feb 2011 B2
7879063 Khosravi Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7879367 Heublein et al. Feb 2011 B2
7883461 Albrecht et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7883540 Niwa et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7887563 Cummins Feb 2011 B2
7887755 Mingerink et al. Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892200 Birk et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896671 Kim et al. Mar 2011 B2
7896869 DiSilvestro et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7896897 Gresham et al. Mar 2011 B2
7896900 Frank et al. Mar 2011 B2
7898198 Murphree Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7901381 Birk et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914521 Wang et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918845 Saadat et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918861 Brock et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7931877 Steffens et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7934896 Schnier May 2011 B2
7935130 Williams May 2011 B2
7935773 Hadba et al. May 2011 B2
7936142 Otsuka et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7939152 Haskin et al. May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mori et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7945798 Carlson et al. May 2011 B2
7946453 Voegele et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7948381 Lindsay et al. May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7952464 Nikitin et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7954688 Argentine et al. Jun 2011 B2
7955253 Ewers et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955327 Sartor et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7964206 Suokas et al. Jun 2011 B2
7966236 Noriega et al. Jun 2011 B2
7966269 Bauer et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967791 Franer et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7972315 Birk et al. Jul 2011 B2
7976213 Bertolotti et al. Jul 2011 B2
7976508 Hoag Jul 2011 B2
7976563 Summerer Jul 2011 B2
7979137 Tracey et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981025 Pool et al. Jul 2011 B2
7981102 Patel et al. Jul 2011 B2
7981132 Dubrul et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988015 Mason, II et al. Aug 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7988779 Disalvo et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997054 Bertsch et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007370 Hirsch et al. Aug 2011 B2
8007465 Birk et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8010180 Quaid et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016849 Wenchell Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8025896 Malaviya et al. Sep 2011 B2
8028835 Yasuda et al. Oct 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8029510 Hoegerle Oct 2011 B2
8031069 Cohn et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033439 Racenet et al. Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034337 Simard Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038044 Viola Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8044604 Hagino et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052697 Phillips Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062236 Soltz Nov 2011 B2
8062306 Nobis et al. Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066158 Vogel et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
D650789 Arnold Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074861 Ehrenfels et al. Dec 2011 B2
8075476 Vargas Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8084969 David et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087562 Manoux et al. Jan 2012 B1
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8093572 Kuduvalli Jan 2012 B2
8096458 Hessler Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100824 Hegeman et al. Jan 2012 B2
8100872 Patel Jan 2012 B2
8102138 Sekine et al. Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno et al. Jan 2012 B2
8108033 Drew et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114017 Bacher Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8114345 Dlugos, Jr. et al. Feb 2012 B2
8118206 Zand et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8122128 Burke, II et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123523 Carron et al. Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8128662 Altarac et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8133500 Ringeisen et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136711 Beardsley et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8142515 Therin et al. Mar 2012 B2
8143520 Cutler Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147421 Farquhar et al. Apr 2012 B2
8147456 Fisher et al. Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8152756 Webster et al. Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8157834 Conlon Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8162668 Toly Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167622 Zhou May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172004 Ho May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177776 Humayun et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181839 Beetel May 2012 B2
8181840 Milliman May 2012 B2
8182422 Bayer et al. May 2012 B2
8182444 Uber, III et al. May 2012 B2
8183807 Tsai et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186558 Sapienza May 2012 B2
8186560 Hess et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192350 Ortiz et al. Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8192651 Young et al. Jun 2012 B2
8193129 Tagawa et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8197501 Shadeck et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8202549 Stucky et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8207863 Neubauer et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8210721 Chen et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8221433 Lozier et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8226553 Shelton, IV et al. Jul 2012 B2
8226635 Petrie et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228020 Shin et al. Jul 2012 B2
8228048 Spencer Jul 2012 B2
8229549 Whitman et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8236011 Harris et al. Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8237388 Jinno et al. Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246608 Omori et al. Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257386 Lee et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8257634 Scirica Sep 2012 B2
8258745 Smith et al. Sep 2012 B2
8261958 Knodel Sep 2012 B1
8262560 Whitman Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8266232 Piper et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267849 Wazer et al. Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8268344 Ma et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8272918 Lam Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281446 Moskovich Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8285367 Hyde et al. Oct 2012 B2
8286723 Puzio et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8287487 Estes Oct 2012 B2
8287522 Moses et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8288984 Yang Oct 2012 B2
8289403 Dobashi et al. Oct 2012 B2
8290883 Takeuchi et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8292801 Dejima et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292906 Taylor et al. Oct 2012 B2
8294399 Suzuki et al. Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298189 Fisher et al. Oct 2012 B2
8298233 Mueller Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8303621 Miyamoto et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8308725 Bell et al. Nov 2012 B2
8310188 Nakai Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313499 Magnusson et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317437 Merkley et al. Nov 2012 B2
8317744 Kirschenman Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
D672784 Clanton et al. Dec 2012 S
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8322901 Michelotti Dec 2012 B2
8323271 Humayun et al. Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8324585 McBroom et al. Dec 2012 B2
8327514 Kim Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328065 Shah Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333691 Schaaf Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8343150 Artale Jan 2013 B2
8347978 Forster et al. Jan 2013 B2
8348118 Segura Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348837 Wenchell Jan 2013 B2
8348959 Wolford et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8349987 Kapiamba et al. Jan 2013 B2
8352004 Mannheimer et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8359174 Nakashima et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
D676866 Chaudhri Feb 2013 S
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8366719 Markey et al. Feb 2013 B2
8366787 Brown et al. Feb 2013 B2
8368327 Benning et al. Feb 2013 B2
8369056 Senriuchi et al. Feb 2013 B2
8371393 Higuchi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8371494 Racenet et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377029 Nagao et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8382790 Uenohara et al. Feb 2013 B2
D677273 Randall et al. Mar 2013 S
8387848 Johnson et al. Mar 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringeisen et al. Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397832 Blickle et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8397973 Hausen Mar 2013 B1
8398633 Mueller Mar 2013 B2
8398669 Kim Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8398674 Prestel Mar 2013 B2
8400108 Powell et al. Mar 2013 B2
8400851 Byun Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
D680646 Hunt et al. Apr 2013 S
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Okamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409175 Lee et al. Apr 2013 B2
8409211 Baroud Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8409234 Stahler et al. Apr 2013 B2
8411500 Gapihan et al. Apr 2013 B2
8413661 Rousseau et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414469 Diolaiti Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8414598 Brock et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8418909 Kostrzewski Apr 2013 B2
8419635 Shelton, IV et al. Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8419747 Hinman et al. Apr 2013 B2
8419754 Laby et al. Apr 2013 B2
8419755 Deem et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8427430 Lee et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439246 Knodel May 2013 B1
8439830 McKinley et al. May 2013 B2
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444549 Viola et al. May 2013 B2
8449536 Selig May 2013 B2
8449560 Roth et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454495 Kawano et al. Jun 2013 B2
8454551 Allen et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8454640 Johnston et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465475 Isbell, Jr. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8465515 Drew et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8469946 Sugita Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8470355 Skalla et al. Jun 2013 B2
D686240 Lin Jul 2013 S
D686244 Moriya et al. Jul 2013 S
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475454 Alshemari Jul 2013 B1
8475474 Bombard et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8483509 Matsuzaka Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486047 Stopek Jul 2013 B2
8487199 Palmer et al. Jul 2013 B2
8487487 Dietz et al. Jul 2013 B2
8490851 Blier et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8491603 Yeung et al. Jul 2013 B2
8496153 Demmy et al. Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8498691 Moll et al. Jul 2013 B2
8499673 Keller Aug 2013 B2
8499966 Palmer et al. Aug 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8499994 D'Arcangelo Aug 2013 B2
8500721 Jinno Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8502091 Palmer et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8517938 Eisenhardt et al. Aug 2013 B2
8518024 Williams et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523787 Ludwin et al. Sep 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529599 Holsten Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8531153 Baarman et al. Sep 2013 B2
8532747 Nock et al. Sep 2013 B2
8534527 Brendel et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8535340 Allen Sep 2013 B2
8539866 Nayak et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540646 Mendez-Coll Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8550984 Takemoto Oct 2013 B2
8551076 Duval et al. Oct 2013 B2
8555660 Takenaka et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8556935 Knodel et al. Oct 2013 B1
8560147 Taylor et al. Oct 2013 B2
8561617 Lindh et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568425 Ross et al. Oct 2013 B2
D692916 Granchi et al. Nov 2013 S
8573459 Smith et al. Nov 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574199 Von Bulow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8575895 Garrastacho et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8584921 Scirica Nov 2013 B2
8585583 Sakaguchi et al. Nov 2013 B2
8585598 Razzaque et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590760 Cummins et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8591400 Sugiyama Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8597745 Farnsworth et al. Dec 2013 B2
8599450 Kubo et al. Dec 2013 B2
8602125 King Dec 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8603110 Maruyama et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617155 Johnson et al. Dec 2013 B2
8620473 Diolaiti et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627994 Zemlok et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8628467 Whitman et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631992 Hausen et al. Jan 2014 B1
8631993 Kostrzewski Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636191 Meagher Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8639936 Hu et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8646674 Schulte et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8656929 Miller et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657175 Sonnenschein et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8657808 McPherson et al. Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8657821 Palermo Feb 2014 B2
D701238 Lai et al. Mar 2014 S
8662370 Takei Mar 2014 B2
8663106 Stivoric et al. Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8663245 Francischelli et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8663270 Donnigan et al. Mar 2014 B2
8664792 Rebsdorf Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672209 Crainich Mar 2014 B2
8672922 Loh et al. Mar 2014 B2
8672935 Okada et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8675820 Baic et al. Mar 2014 B2
8678263 Viola Mar 2014 B2
8678994 Sonnenschein et al. Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679154 Smith et al. Mar 2014 B2
8679156 Smith et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8684962 Kirschenman et al. Apr 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690893 Deitch et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8706316 Hoevenaar Apr 2014 B1
8708210 Zemlok et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708212 Williams Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709012 Muller Apr 2014 B2
8714352 Farascioni et al. May 2014 B2
8714429 Demmy May 2014 B2
8714430 Natarajan et al. May 2014 B2
8715256 Greener May 2014 B2
8715302 Ibrahim et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8727200 Roy May 2014 B2
8727961 Ziv May 2014 B2
8728099 Cohn et al. May 2014 B2
8728119 Cummins May 2014 B2
8733470 Matthias et al. May 2014 B2
8733611 Milliman May 2014 B2
8733612 Ma May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734336 Bonadio et al. May 2014 B2
8734359 Ibanez et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8734831 Kim et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8739417 Tokunaga et al. Jun 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747441 Konieczynski et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753664 Dao et al. Jun 2014 B2
8757287 Mak et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758366 McLean et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763876 Kostrzewski Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8764732 Hartwell Jul 2014 B2
8765942 Feraud et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8770460 Belzer Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8771260 Conlon et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8777082 Scirica Jul 2014 B2
8777083 Racenet et al. Jul 2014 B2
8777898 Suon et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784304 Mikkaichi et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790658 Cigarini et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
D711905 Morrison et al. Aug 2014 S
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795159 Moriyama Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795308 Valin Aug 2014 B2
8795324 Kawai et al. Aug 2014 B2
8796995 Cunanan et al. Aug 2014 B2
8800681 Rousson et al. Aug 2014 B2
8800837 Zemlok Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8801801 Datta et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808161 Gregg et al. Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8808274 Hartwell Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808308 Boukhny et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8808325 Hess et al. Aug 2014 B2
8810197 Juergens Aug 2014 B2
8811017 Fujii et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8814836 Ignon et al. Aug 2014 B2
8815594 Harris et al. Aug 2014 B2
8818523 Olson et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8821514 Aranyi Sep 2014 B2
8822934 Sayeh et al. Sep 2014 B2
8825164 Tweden et al. Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8828046 Stefanchik et al. Sep 2014 B2
8831779 Ortmaier et al. Sep 2014 B2
8833219 Pierce Sep 2014 B2
8833630 Milliman Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8834353 Dejima et al. Sep 2014 B2
8834465 Ramstein et al. Sep 2014 B2
8834498 Byrum et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840004 Holsten et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8840609 Stuebe Sep 2014 B2
8840876 Eemeta et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8844790 Demmy et al. Sep 2014 B2
8845622 Paik et al. Sep 2014 B2
8851215 Goto Oct 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8852174 Burbank Oct 2014 B2
8852185 Twomey Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8852218 Hughett, Sr. et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858538 Belson et al. Oct 2014 B2
8858547 Brogna Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8864010 Williams Oct 2014 B2
8864750 Ross et al. Oct 2014 B2
8869912 Roβkamp et al. Oct 2014 B2
8869913 Matthias et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8870912 Brisson et al. Oct 2014 B2
8871829 Gerold et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876698 Sakamoto et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8876858 Braun Nov 2014 B2
8882660 Phee et al. Nov 2014 B2
8882792 Dietz et al. Nov 2014 B2
8884560 Ito Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8888695 Piskun et al. Nov 2014 B2
8888792 Harris et al. Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899460 Wojcicki Dec 2014 B2
8899461 Farascioni Dec 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8900267 Woolfson et al. Dec 2014 B2
8905287 Racenet et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8910846 Viola Dec 2014 B2
8910847 Nalagatla et al. Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911448 Stein Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8912746 Reid et al. Dec 2014 B2
8915842 Weisenburgh, II et al. Dec 2014 B2
8920368 Sandhu et al. Dec 2014 B2
8920433 Barrier et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8922163 MacDonald Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926506 Widenhouse et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931576 Iwata Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931680 Milliman Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8931692 Sancak Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8937408 Ganem et al. Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8939898 Omoto Jan 2015 B2
8944069 Miller et al. Feb 2015 B2
8945095 Blumenkranz et al. Feb 2015 B2
8945098 Seibold et al. Feb 2015 B2
8945163 Voegele et al. Feb 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8956390 Shah et al. Feb 2015 B2
8958860 Banerjee et al. Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961191 Hanshew Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8961542 Whitfield et al. Feb 2015 B2
8963714 Medhal et al. Feb 2015 B2
D725674 Jung et al. Mar 2015 S
8967443 McCuen Mar 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967448 Carter et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Horner et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8973805 Scirica et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
8974542 Fujimoto et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8984711 Ota et al. Mar 2015 B2
8985240 Winnard Mar 2015 B2
8985429 Balek et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992042 Eichenholz Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
8998059 Smith et al. Apr 2015 B2
8998060 Bruewer et al. Apr 2015 B2
8998061 Williams et al. Apr 2015 B2
8998939 Price et al. Apr 2015 B2
9000720 Stulen et al. Apr 2015 B2
9002518 Manzo et al. Apr 2015 B2
9004339 Park Apr 2015 B1
9004799 Tibbits Apr 2015 B1
9005230 Yates et al. Apr 2015 B2
9005238 DeSantis et al. Apr 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011439 Shalaby et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9014856 Manzo et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017369 Renger et al. Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
9017849 Stulen et al. Apr 2015 B2
9017851 Felder et al. Apr 2015 B2
D729274 Clement et al. May 2015 S
9021684 Lenker et al. May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9023069 Kasvikis et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9026347 Gadh et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028468 Scarfogliero et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028510 Miyamoto et al. May 2015 B2
9028511 Weller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9028529 Fox et al. May 2015 B2
9030166 Kano May 2015 B2
9030169 Christensen et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9034505 Detry et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039694 Ross et al. May 2015 B2
9039720 Madan May 2015 B2
9039736 Scirica et al. May 2015 B2
9040062 Maeda et al. May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044241 Barner et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9044281 Pool et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050089 Orszulak Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9050120 Swarup et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050176 Datta et al. Jun 2015 B2
9050192 Mansmann Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055942 Balbierz et al. Jun 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060794 Kang et al. Jun 2015 B2
9060894 Wubbeling Jun 2015 B2
9061392 Forgues et al. Jun 2015 B2
9070068 Coveley et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9078654 Whitman et al. Jul 2015 B2
9084586 Hafner et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Gleiman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9089338 Smith et al. Jul 2015 B2
9089352 Jeong Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9091588 Lefler Jul 2015 B2
D736792 Brinda et al. Aug 2015 S
9095339 Moore et al. Aug 2015 B2
9095346 Houser et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9095642 Harder et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9098153 Shen et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9099877 Banos et al. Aug 2015 B2
9099922 Toosky et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101359 Smith et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9101475 Wei et al. Aug 2015 B2
9101621 Zeldis Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9110587 Kim et al. Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113868 Felder et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113879 Felder et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113881 Scirica Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9113887 Behnke, II et al. Aug 2015 B2
9119615 Felder et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119898 Bayon et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9124097 Cruz Sep 2015 B2
9125651 Mandakolathur Vasudevan et al. Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9126317 Lawton et al. Sep 2015 B2
9131835 Widenhouse et al. Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131950 Matthew Sep 2015 B2
9131957 Skarbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9138226 Racenet et al. Sep 2015 B2
9144455 Kennedy et al. Sep 2015 B2
D740414 Katsura Oct 2015 S
D741882 Shmilov et al. Oct 2015 S
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9153994 Wood et al. Oct 2015 B2
9154189 Von Novak et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161769 Stoddard et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9161807 Garrison Oct 2015 B2
9161855 Rousseau et al. Oct 2015 B2
9164271 Ebata et al. Oct 2015 B2
9167960 Yamaguchi et al. Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168039 Knodel Oct 2015 B1
9168042 Milliman Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9171244 Endou et al. Oct 2015 B2
9179832 Diolaiti Nov 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9180223 Yu et al. Nov 2015 B2
9182244 Luke et al. Nov 2015 B2
9186046 Ramamurthy et al. Nov 2015 B2
9186137 Farascioni et al. Nov 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186142 Fanelli et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9186221 Burbank Nov 2015 B2
9192376 Almodovar Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9192430 Rachlin et al. Nov 2015 B2
9192434 Twomey et al. Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9197079 Yip et al. Nov 2015 B2
D744528 Agrawal Dec 2015 S
D746459 Kaercher et al. Dec 2015 S
9198642 Storz Dec 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9204830 Zand et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9204881 Penna Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9204924 Marczyk et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216013 Scirica et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9216030 Fan et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9220508 Dannaher Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9220570 Kim et al. Dec 2015 B2
D746854 Shardlow et al. Jan 2016 S
9226686 Blair Jan 2016 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226754 D'Agostino et al. Jan 2016 B2
9226760 Shelton, IV Jan 2016 B2
9226761 Burbank Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9226799 Lightcap et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9233610 Kim et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237895 McCarthy et al. Jan 2016 B2
9237900 Boudreaux et al. Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9239064 Helbig et al. Jan 2016 B2
9240740 Zeng et al. Jan 2016 B2
9241711 Ivanko Jan 2016 B2
9241712 Zemlok et al. Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9241716 Whitman Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241758 Franer et al. Jan 2016 B2
9244524 Inoue et al. Jan 2016 B2
D748668 Kim et al. Feb 2016 S
D749128 Perez et al. Feb 2016 S
D749623 Gray et al. Feb 2016 S
D750122 Shardlow et al. Feb 2016 S
D750129 Kwon Feb 2016 S
9254131 Soltz et al. Feb 2016 B2
9254170 Parihar et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9259268 Behnke, II et al. Feb 2016 B2
9259274 Prisco Feb 2016 B2
9259275 Burbank Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265500 Sorrentino et al. Feb 2016 B2
9265510 Dietzel et al. Feb 2016 B2
9265516 Casey et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271718 Milad et al. Mar 2016 B2
9271727 McGuckin, Jr. et al. Mar 2016 B2
9271753 Butler et al. Mar 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9274095 Humayun et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9277969 Brannan et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283028 Johnson Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9283334 Mantell et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289211 Williams et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9293757 Toussaint et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9295467 Scirica Mar 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9295565 McLean Mar 2016 B2
9295784 Eggert et al. Mar 2016 B2
D753167 Yu et al. Apr 2016 S
9301691 Hufnagel et al. Apr 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9301811 Goldberg et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307987 Swensgard et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9308646 Lim et al. Apr 2016 B2
9313915 Niu et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314247 Shelton, IV et al. Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314291 Schall et al. Apr 2016 B2
9314339 Mansmann Apr 2016 B2
9314908 Tanimoto et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9325516 Pera et al. Apr 2016 B2
D755196 Meyers et al. May 2016 S
D756373 Raskin et al. May 2016 S
D756377 Connolly et al. May 2016 S
D757028 Goldenberg et al. May 2016 S
9326767 Koch, Jr. et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9326824 Inoue et al. May 2016 B2
9327061 Govil et al. May 2016 B2
9331721 Martinez Nuevo et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9333040 Shellenberger et al. May 2016 B2
9333082 Wei et al. May 2016 B2
9337668 Yip May 2016 B2
9339226 van der Walt et al. May 2016 B2
9339342 Prisco et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9345480 Hessler et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345503 Ishida et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351728 Sniffin et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9352071 Landgrebe et al. May 2016 B2
D758433 Lee et al. Jun 2016 S
D759063 Chen Jun 2016 S
9358003 Hail et al. Jun 2016 B2
9358004 Sniffin et al. Jun 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9358031 Manzo Jun 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364223 Scirica Jun 2016 B2
9364226 Zemlok et al. Jun 2016 B2
9364228 Straehnz et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364231 Wenchell Jun 2016 B2
9364233 Alexander et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9368991 Qahouq Jun 2016 B2
9370341 Ceniccola et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370361 Viola et al. Jun 2016 B2
9370362 Petty et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9375206 Vidal et al. Jun 2016 B2
9375218 Wheeler et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375255 Houser et al. Jun 2016 B2
D761309 Lee et al. Jul 2016 S
9381058 Houser et al. Jul 2016 B2
9383881 Day et al. Jul 2016 B2
9385640 Sun et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386985 Koch, Jr. et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9387003 Kaercher et al. Jul 2016 B2
9392885 Vogler et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9393354 Freedman et al. Jul 2016 B2
9396369 Whitehurst et al. Jul 2016 B1
9396669 Karkanias et al. Jul 2016 B2
9398905 Martin Jul 2016 B2
9398911 Auld Jul 2016 B2
D763277 Ahmed et al. Aug 2016 S
D764498 Capela et al. Aug 2016 S
9402604 Williams et al. Aug 2016 B2
9402625 Coleman et al. Aug 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9402679 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9402688 Min et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408605 Knodel et al. Aug 2016 B1
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9411370 Benni et al. Aug 2016 B2
9413128 Tien et al. Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9414849 Nagashimada Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9420967 Zand et al. Aug 2016 B2
9421003 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9421030 Cole et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9421062 Houser et al. Aug 2016 B2
9421682 McClaskey et al. Aug 2016 B2
9427223 Park et al. Aug 2016 B2
9427231 Racenet et al. Aug 2016 B2
9429204 Stefan et al. Aug 2016 B2
D767624 Lee et al. Sep 2016 S
9433411 Racenet et al. Sep 2016 B2
9433414 Chen et al. Sep 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439650 McGuckin, Jr. et al. Sep 2016 B2
9439651 Smith et al. Sep 2016 B2
9439668 Timm et al. Sep 2016 B2
9445808 Woodard, Jr. et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9445816 Swayze et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9446226 Zilberman Sep 2016 B2
9451938 Overes et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
9452020 Griffiths et al. Sep 2016 B2
D768152 Gutierrez et al. Oct 2016 S
D768156 Frincke Oct 2016 S
D768167 Jones et al. Oct 2016 S
D769315 Scotti Oct 2016 S
D769930 Agrawal Oct 2016 S
9461340 Li et al. Oct 2016 B2
9463012 Bonutti et al. Oct 2016 B2
9463040 Jeong et al. Oct 2016 B2
9463260 Stopek Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9468447 Aman et al. Oct 2016 B2
9470297 Aranyi et al. Oct 2016 B2
9471969 Zeng et al. Oct 2016 B2
9474506 Magnin et al. Oct 2016 B2
9474513 Ishida et al. Oct 2016 B2
9474523 Meade et al. Oct 2016 B2
9474540 Stokes et al. Oct 2016 B2
9475180 Eshleman et al. Oct 2016 B2
9477649 Davidson et al. Oct 2016 B1
D770476 Jitkoff et al. Nov 2016 S
D770515 Cho et al. Nov 2016 S
D771116 Dellinger et al. Nov 2016 S
D772905 Ingenlath Nov 2016 S
9480476 Aldridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9483095 Tran et al. Nov 2016 B2
9486186 Fiebig et al. Nov 2016 B2
9486213 Altman et al. Nov 2016 B2
9486214 Shelton, IV Nov 2016 B2
9486215 Olson et al. Nov 2016 B2
9486302 Boey et al. Nov 2016 B2
9488197 Wi Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492167 Shelton, IV et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9492172 Weisshaupt et al. Nov 2016 B2
9492189 Williams et al. Nov 2016 B2
9492192 To et al. Nov 2016 B2
9492237 Kang et al. Nov 2016 B2
9498213 Marczyk et al. Nov 2016 B2
9498219 Moore et al. Nov 2016 B2
9498231 Haider et al. Nov 2016 B2
9504455 Whitman et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504521 Deutmeyer et al. Nov 2016 B2
9504528 Ivinson et al. Nov 2016 B2
9507399 Chien Nov 2016 B2
D774547 Capela et al. Dec 2016 S
D775336 Shelton, IV et al. Dec 2016 S
9510827 Kostrzewski Dec 2016 B2
9510828 Yates et al. Dec 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9510846 Sholev et al. Dec 2016 B2
9510895 Houser et al. Dec 2016 B2
9510925 Hotter et al. Dec 2016 B2
9515366 Herbsommer et al. Dec 2016 B2
9517063 Swayze et al. Dec 2016 B2
9517065 Simms et al. Dec 2016 B2
9517068 Shelton, IV et al. Dec 2016 B2
9517326 Hinman et al. Dec 2016 B2
9521996 Armstrong Dec 2016 B2
9522003 Weir et al. Dec 2016 B2
9522014 Nishizawa et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526481 Storz et al. Dec 2016 B2
9526499 Kostrzewski et al. Dec 2016 B2
9526563 Twomey Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526921 Kimball et al. Dec 2016 B2
D776683 Gobinski et al. Jan 2017 S
D777773 Shi Jan 2017 S
9532783 Swayze et al. Jan 2017 B2
9539060 Lightcap et al. Jan 2017 B2
9539726 Simaan et al. Jan 2017 B2
9545253 Worrell et al. Jan 2017 B2
9545258 Smith et al. Jan 2017 B2
9549732 Yates et al. Jan 2017 B2
9549733 Knodel Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9549750 Shelton, IV et al. Jan 2017 B2
9554794 Baber et al. Jan 2017 B2
9554796 Kostrzewski Jan 2017 B2
9554803 Smith et al. Jan 2017 B2
9554812 Inkpen et al. Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9559624 Philipp Jan 2017 B2
9561013 Tsuchiya Feb 2017 B2
9561029 Scheib et al. Feb 2017 B2
9561030 Zhang et al. Feb 2017 B2
9561031 Heinrich et al. Feb 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9561045 Hinman et al. Feb 2017 B2
9561072 Ko Feb 2017 B2
9566061 Aronhalt et al. Feb 2017 B2
9566062 Boudreaux Feb 2017 B2
9566064 Williams et al. Feb 2017 B2
9566065 Knodel Feb 2017 B2
9566067 Milliman et al. Feb 2017 B2
9572552 Bodor et al. Feb 2017 B1
9572574 Shelton, IV et al. Feb 2017 B2
9572576 Hodgkinson et al. Feb 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9579088 Farritor et al. Feb 2017 B2
9579143 Ullrich et al. Feb 2017 B2
9579158 Brianza et al. Feb 2017 B2
D780803 Gill et al. Mar 2017 S
D781879 Butcher et al. Mar 2017 S
D782530 Paek et al. Mar 2017 S
9585550 Abel et al. Mar 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9585658 Shelton, IV Mar 2017 B2
9585659 Viola et al. Mar 2017 B2
9585660 Laurent et al. Mar 2017 B2
9585662 Shelton, IV et al. Mar 2017 B2
9585663 Shelton, IV et al. Mar 2017 B2
9585672 Bastia Mar 2017 B2
9590433 Li Mar 2017 B2
9592050 Schmid et al. Mar 2017 B2
9592052 Shelton, IV Mar 2017 B2
9592053 Shelton, IV et al. Mar 2017 B2
9592054 Schmid et al. Mar 2017 B2
9597073 Sorrentino et al. Mar 2017 B2
9597075 Shelton, IV et al. Mar 2017 B2
9597078 Scirica et al. Mar 2017 B2
9597080 Milliman et al. Mar 2017 B2
9597104 Nicholas et al. Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9603599 Miller et al. Mar 2017 B2
9603991 Shelton, IV et al. Mar 2017 B2
D783658 Hurst et al. Apr 2017 S
9610068 Kappel et al. Apr 2017 B2
9610079 Kamei et al. Apr 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9610412 Zemlok et al. Apr 2017 B2
9614258 Takahashi et al. Apr 2017 B2
9615826 Shelton, IV et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9622746 Simms et al. Apr 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9629627 Kostrzewski et al. Apr 2017 B2
9629628 Aranyi Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9629631 Nicholas et al. Apr 2017 B2
9629632 Linder et al. Apr 2017 B2
9629652 Mumaw et al. Apr 2017 B2
9629814 Widenhouse et al. Apr 2017 B2
D785794 Magno, Jr. May 2017 S
D786280 Ma May 2017 S
D786896 Kim et al. May 2017 S
D787547 Basargin et al. May 2017 S
D788123 Shan et al. May 2017 S
D788140 Hemsley et al. May 2017 S
9636091 Beardsley et al. May 2017 B2
9636111 Wenchell May 2017 B2
9636112 Penna et al. May 2017 B2
9636113 Wenchell May 2017 B2
9636850 Stopek et al. May 2017 B2
9641122 Romanowich et al. May 2017 B2
9642620 Baxter, III et al. May 2017 B2
9642642 Lim May 2017 B2
9649096 Sholev May 2017 B2
9649110 Parihar et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649190 Mathies May 2017 B2
9651032 Weaver et al. May 2017 B2
9655613 Schaller May 2017 B2
9655614 Swensgard et al. May 2017 B2
9655615 Knodel et al. May 2017 B2
9655616 Aranyi May 2017 B2
9655624 Shelton, IV et al. May 2017 B2
9661991 Glossop May 2017 B2
9662108 Williams May 2017 B2
9662110 Huang et al. May 2017 B2
9662111 Holsten et al. May 2017 B2
9662116 Smith et al. May 2017 B2
9662131 Omori et al. May 2017 B2
D788792 Alessandri et al. Jun 2017 S
D789384 Lin et al. Jun 2017 S
D790570 Butcher et al. Jun 2017 S
9668728 Williams et al. Jun 2017 B2
9668729 Williams et al. Jun 2017 B2
9668732 Patel et al. Jun 2017 B2
9668733 Williams Jun 2017 B2
9668734 Kostrzewski et al. Jun 2017 B2
9668735 Beetel Jun 2017 B2
9675344 Combrowski et al. Jun 2017 B2
9675348 Smith et al. Jun 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9675354 Weir et al. Jun 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9675368 Guo et al. Jun 2017 B2
9675372 Laurent et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9675405 Trees et al. Jun 2017 B2
9675819 Dunbar et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9681884 Clem et al. Jun 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9687231 Baxter, III et al. Jun 2017 B2
9687232 Shelton, IV et al. Jun 2017 B2
9687233 Fernandez et al. Jun 2017 B2
9687236 Leimbach et al. Jun 2017 B2
9687237 Schmid et al. Jun 2017 B2
9687253 Detry et al. Jun 2017 B2
9689466 Kanai et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9693774 Gettinger et al. Jul 2017 B2
9693775 Agarwal et al. Jul 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700310 Morgan et al. Jul 2017 B2
9700312 Kostrzewski et al. Jul 2017 B2
9700314 Marczyk Jul 2017 B2
9700315 Chen et al. Jul 2017 B2
9700317 Aronhalt et al. Jul 2017 B2
9700318 Scirica et al. Jul 2017 B2
9700319 Motooka et al. Jul 2017 B2
9700320 Dinardo et al. Jul 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9700334 Hinman et al. Jul 2017 B2
9700381 Amat Girbau Jul 2017 B2
9702823 Maher et al. Jul 2017 B2
9706674 Collins et al. Jul 2017 B2
9706981 Nicholas et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9706993 Hessler et al. Jul 2017 B2
9707003 Hoell, Jr. et al. Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707026 Malackowski et al. Jul 2017 B2
9707033 Parihar et al. Jul 2017 B2
9707043 Bozung Jul 2017 B2
9707684 Ruiz Morales et al. Jul 2017 B2
9713466 Kostrzewski Jul 2017 B2
9713468 Harris et al. Jul 2017 B2
9713470 Scirica et al. Jul 2017 B2
9713474 Lorenz Jul 2017 B2
D795919 Bischoff et al. Aug 2017 S
9717497 Zerkle et al. Aug 2017 B2
9717498 Aranyi et al. Aug 2017 B2
9718190 Larkin et al. Aug 2017 B2
9722236 Sathrum Aug 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724092 Baxter, III et al. Aug 2017 B2
9724094 Baber et al. Aug 2017 B2
9724095 Gupta et al. Aug 2017 B2
9724096 Thompson et al. Aug 2017 B2
9724098 Baxter, III et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724163 Orban Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9730697 Morgan et al. Aug 2017 B2
9730717 Katsuki et al. Aug 2017 B2
9730757 Brudniok Aug 2017 B2
9731410 Hirabayashi et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737297 Racenet et al. Aug 2017 B2
9737298 Isbell, Jr. Aug 2017 B2
9737299 Yan Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9737323 Thapliyal et al. Aug 2017 B2
9737365 Hegeman et al. Aug 2017 B2
9743927 Whitman Aug 2017 B2
9743928 Shelton, IV et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
D798319 Bergstrand et al. Sep 2017 S
9750498 Timm et al. Sep 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9750501 Shelton, IV et al. Sep 2017 B2
9750502 Scirica et al. Sep 2017 B2
9750503 Milliman Sep 2017 B2
9750639 Barnes et al. Sep 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757126 Cappola Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9757129 Williams Sep 2017 B2
9757130 Shelton, IV Sep 2017 B2
9763662 Shelton, IV et al. Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9770245 Swayze et al. Sep 2017 B2
9770274 Pool et al. Sep 2017 B2
D798886 Prophete et al. Oct 2017 S
D800742 Rhodes Oct 2017 S
D800744 Jitkoff et al. Oct 2017 S
D800766 Park et al. Oct 2017 S
D800904 Leimbach et al. Oct 2017 S
9775608 Aronhalt et al. Oct 2017 B2
9775609 Shelton, IV et al. Oct 2017 B2
9775610 Nicholas et al. Oct 2017 B2
9775611 Kostrzewski Oct 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9775614 Shelton, IV et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9775635 Takei Oct 2017 B2
9775678 Lohmeier Oct 2017 B2
9782169 Kimsey et al. Oct 2017 B2
9782170 Zemlok et al. Oct 2017 B2
9782180 Smith et al. Oct 2017 B2
9782187 Zergiebel et al. Oct 2017 B2
9782193 Thistle Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9788834 Schmid et al. Oct 2017 B2
9788835 Morgan et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9788847 Jinno Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9788902 Inoue et al. Oct 2017 B2
9795379 Leimbach et al. Oct 2017 B2
9795380 Shelton, IV et al. Oct 2017 B2
9795381 Shelton, IV Oct 2017 B2
9795382 Shelton, IV Oct 2017 B2
9795383 Aldridge et al. Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801628 Harris et al. Oct 2017 B2
9801634 Shelton, IV et al. Oct 2017 B2
9801679 Trees et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
D803234 Day et al. Nov 2017 S
D803235 Markson et al. Nov 2017 S
D803850 Chang et al. Nov 2017 S
9808244 Leimbach et al. Nov 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808247 Shelton, IV et al. Nov 2017 B2
9808248 Hoffman Nov 2017 B2
9808249 Shelton, IV Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9814463 Williams et al. Nov 2017 B2
9814530 Weir et al. Nov 2017 B2
9814561 Forsell Nov 2017 B2
9815118 Schmitt et al. Nov 2017 B1
9820445 Simpson et al. Nov 2017 B2
9820737 Beardsley et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9820741 Kostrzewski Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9825455 Sandhu et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9826978 Shelton, IV et al. Nov 2017 B2
9829698 Haraguchi et al. Nov 2017 B2
D806108 Day Dec 2017 S
9833235 Penna et al. Dec 2017 B2
9833236 Shelton, IV et al. Dec 2017 B2
9833238 Baxter, III et al. Dec 2017 B2
9833239 Yates et al. Dec 2017 B2
9833241 Huitema et al. Dec 2017 B2
9833242 Baxter, III et al. Dec 2017 B2
9839420 Shelton, IV et al. Dec 2017 B2
9839421 Zerkle et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9839427 Swayze et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9839429 Weisenburgh, II et al. Dec 2017 B2
9839480 Pribanic et al. Dec 2017 B2
9839481 Blumenkranz et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844372 Shelton, IV et al. Dec 2017 B2
9844373 Swayze et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9844376 Baxter, III et al. Dec 2017 B2
9844379 Shelton, IV et al. Dec 2017 B2
9848871 Harris et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9848877 Shelton, IV et al. Dec 2017 B2
9850994 Schena Dec 2017 B2
D808989 Ayvazian et al. Jan 2018 S
9855039 Racenet et al. Jan 2018 B2
9855040 Kostrzewski Jan 2018 B2
9855662 Ruiz Morales et al. Jan 2018 B2
9861261 Shahinian Jan 2018 B2
9861359 Shelton, IV et al. Jan 2018 B2
9861361 Aronhalt et al. Jan 2018 B2
9861362 Whitman et al. Jan 2018 B2
9861366 Aranyi Jan 2018 B2
9861382 Smith et al. Jan 2018 B2
9861446 Lang Jan 2018 B2
9867612 Parihar et al. Jan 2018 B2
9867613 Marczyk et al. Jan 2018 B2
9867615 Fanelli et al. Jan 2018 B2
9867617 Ma Jan 2018 B2
9867618 Hall et al. Jan 2018 B2
9867620 Fischvogt et al. Jan 2018 B2
9868198 Nicholas et al. Jan 2018 B2
9872682 Hess et al. Jan 2018 B2
9872683 Hopkins et al. Jan 2018 B2
9872684 Hall et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9877722 Schellin et al. Jan 2018 B2
9877723 Hall et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
D810099 Riedel Feb 2018 S
9883843 Garlow Feb 2018 B2
9883860 Leimbach et al. Feb 2018 B2
9883861 Shelton, IV et al. Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888914 Martin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888921 Williams et al. Feb 2018 B2
9888924 Ebersole et al. Feb 2018 B2
9889230 Bennett et al. Feb 2018 B2
9895147 Shelton, IV Feb 2018 B2
9895148 Shelton, IV et al. Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901339 Farascioni Feb 2018 B2
9901341 Kostrzewski Feb 2018 B2
9901342 Shelton, IV et al. Feb 2018 B2
9901344 Moore et al. Feb 2018 B2
9901345 Moore et al. Feb 2018 B2
9901346 Moore et al. Feb 2018 B2
9901358 Faller et al. Feb 2018 B2
9901406 State et al. Feb 2018 B2
9901412 Lathrop et al. Feb 2018 B2
D813899 Erant et al. Mar 2018 S
9907456 Miyoshi Mar 2018 B2
9907552 Measamer et al. Mar 2018 B2
9907553 Cole et al. Mar 2018 B2
9907600 Stulen et al. Mar 2018 B2
9907620 Shelton, IV et al. Mar 2018 B2
9913641 Takemoto et al. Mar 2018 B2
9913642 Leimbach et al. Mar 2018 B2
9913644 McCuen Mar 2018 B2
9913646 Shelton, IV Mar 2018 B2
9913647 Weisenburgh, II et al. Mar 2018 B2
9913648 Shelton, IV et al. Mar 2018 B2
9913694 Brisson Mar 2018 B2
9913733 Piron et al. Mar 2018 B2
9918704 Shelton, IV et al. Mar 2018 B2
9918714 Gibbons, Jr. Mar 2018 B2
9918715 Menn Mar 2018 B2
9918716 Baxter, III et al. Mar 2018 B2
9918717 Czernik Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9924941 Burbank Mar 2018 B2
9924942 Swayze et al. Mar 2018 B2
9924943 Mohan Pinjala et al. Mar 2018 B2
9924944 Shelton, IV et al. Mar 2018 B2
9924945 Zheng et al. Mar 2018 B2
9924946 Vendely et al. Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9924961 Shelton, IV et al. Mar 2018 B2
9931106 Au et al. Apr 2018 B2
9931116 Racenet et al. Apr 2018 B2
9931117 Hathaway et al. Apr 2018 B2
9931118 Shelton, IV et al. Apr 2018 B2
9931120 Chen et al. Apr 2018 B2
9936949 Measamer et al. Apr 2018 B2
9936950 Shelton, IV et al. Apr 2018 B2
9936951 Hufnagel et al. Apr 2018 B2
9936952 Demmy Apr 2018 B2
9936954 Shelton, IV et al. Apr 2018 B2
9937626 Rockrohr Apr 2018 B2
9943309 Shelton, IV et al. Apr 2018 B2
9943310 Harris et al. Apr 2018 B2
9943312 Posada et al. Apr 2018 B2
9949754 Newhauser et al. Apr 2018 B2
9953193 Butler et al. Apr 2018 B2
D819072 Clediere May 2018 S
9955954 Destoumieux et al. May 2018 B2
9955965 Chen et al. May 2018 B2
9955966 Zergiebel May 2018 B2
9956677 Baskar et al. May 2018 B2
9962129 Jerebko et al. May 2018 B2
9962157 Sapre May 2018 B2
9962158 Hall et al. May 2018 B2
9962159 Heinrich et al. May 2018 B2
9962161 Scheib et al. May 2018 B2
9968354 Shelton, IV et al. May 2018 B2
9968355 Shelton, IV et al. May 2018 B2
9968356 Shelton, IV et al. May 2018 B2
9968397 Taylor et al. May 2018 B2
9974529 Shelton, IV et al. May 2018 B2
9974538 Baxter, III et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9974541 Calderoni May 2018 B2
9974542 Hodgkinson May 2018 B2
9980713 Aronhalt et al. May 2018 B2
9980724 Farascioni et al. May 2018 B2
9980729 Moore et al. May 2018 B2
9980740 Krause et al. May 2018 B2
9980769 Trees et al. May 2018 B2
D819680 Nguyen Jun 2018 S
D819682 Howard et al. Jun 2018 S
D819684 Dart Jun 2018 S
D820307 Jian et al. Jun 2018 S
D820867 Dickens et al. Jun 2018 S
9987000 Shelton, IV et al. Jun 2018 B2
9987003 Timm et al. Jun 2018 B2
9987006 Morgan et al. Jun 2018 B2
9987008 Scirica et al. Jun 2018 B2
9987095 Chowaniec et al. Jun 2018 B2
9987097 van Der Weide et al. Jun 2018 B2
9987099 Chen et al. Jun 2018 B2
9993248 Shelton, IV et al. Jun 2018 B2
9993258 Shelton, IV et al. Jun 2018 B2
9993284 Boudreaux Jun 2018 B2
9999408 Boudreaux et al. Jun 2018 B2
9999423 Schuckmann et al. Jun 2018 B2
9999426 Moore et al. Jun 2018 B2
9999431 Shelton, IV et al. Jun 2018 B2
9999472 Weir et al. Jun 2018 B2
10004497 Overmyer et al. Jun 2018 B2
10004498 Morgan et al. Jun 2018 B2
10004500 Shelton, IV et al. Jun 2018 B2
10004501 Shelton, IV et al. Jun 2018 B2
10004505 Moore et al. Jun 2018 B2
10004506 Shelton, IV et al. Jun 2018 B2
10004552 Kleyman et al. Jun 2018 B1
D822206 Shelton, IV et al. Jul 2018 S
10010322 Shelton, IV et al. Jul 2018 B2
10010324 Huitema et al. Jul 2018 B2
10010395 Puckett et al. Jul 2018 B2
10013049 Leimbach et al. Jul 2018 B2
10016199 Baber et al. Jul 2018 B2
10016656 Devor et al. Jul 2018 B2
10022120 Martin et al. Jul 2018 B2
10022123 Williams et al. Jul 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10024407 Aranyi et al. Jul 2018 B2
10028742 Shelton, IV et al. Jul 2018 B2
10028743 Shelton, IV et al. Jul 2018 B2
10028744 Shelton, IV et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10029108 Powers et al. Jul 2018 B2
10029125 Shapiro et al. Jul 2018 B2
10034344 Yoshida Jul 2018 B2
10034668 Ebner Jul 2018 B2
D826405 Shelton, IV et al. Aug 2018 S
10039440 Fenech et al. Aug 2018 B2
10039529 Kerr et al. Aug 2018 B2
10039532 Srinivas et al. Aug 2018 B2
10039545 Sadowski et al. Aug 2018 B2
10041822 Zemlok Aug 2018 B2
10045769 Aronhalt et al. Aug 2018 B2
10045776 Shelton, IV et al. Aug 2018 B2
10045778 Yates et al. Aug 2018 B2
10045779 Savage et al. Aug 2018 B2
10045781 Cropper et al. Aug 2018 B2
10045782 Murthy Aravalli Aug 2018 B2
10045869 Forsell Aug 2018 B2
10046904 Evans et al. Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10052099 Morgan et al. Aug 2018 B2
10052100 Morgan et al. Aug 2018 B2
10052102 Baxter, III et al. Aug 2018 B2
10052104 Shelton, IV et al. Aug 2018 B2
10052164 Overmyer Aug 2018 B2
10058317 Fan et al. Aug 2018 B2
10058327 Weisenburgh, II et al. Aug 2018 B2
10058373 Takashino et al. Aug 2018 B2
10058395 Devengenzo et al. Aug 2018 B2
10058963 Shelton, IV et al. Aug 2018 B2
10064620 Gettinger et al. Sep 2018 B2
10064621 Kerr et al. Sep 2018 B2
10064622 Murthy Aravalli Sep 2018 B2
10064624 Shelton, IV et al. Sep 2018 B2
10064639 Ishida et al. Sep 2018 B2
10064642 Marczyk et al. Sep 2018 B2
10064649 Golebieski et al. Sep 2018 B2
10064688 Shelton, IV et al. Sep 2018 B2
10070861 Spivey et al. Sep 2018 B2
10070863 Swayze et al. Sep 2018 B2
10071452 Shelton, IV et al. Sep 2018 B2
10076325 Huang et al. Sep 2018 B2
10076326 Yates et al. Sep 2018 B2
10076340 Belagali et al. Sep 2018 B2
10080552 Nicholas et al. Sep 2018 B2
D830550 Miller et al. Oct 2018 S
D831209 Huitema et al. Oct 2018 S
D831676 Park et al. Oct 2018 S
D832301 Smith Oct 2018 S
10085624 Isoda et al. Oct 2018 B2
10085643 Bandic et al. Oct 2018 B2
10085728 Jogasaki et al. Oct 2018 B2
10085746 Fischvogt Oct 2018 B2
10085748 Morgan et al. Oct 2018 B2
10085749 Cappola et al. Oct 2018 B2
10085750 Zergiebel et al. Oct 2018 B2
10085751 Overmyer et al. Oct 2018 B2
10085754 Sniffin et al. Oct 2018 B2
10085806 Hagn et al. Oct 2018 B2
10092290 Yigit et al. Oct 2018 B2
10092292 Boudreaux et al. Oct 2018 B2
10098635 Burbank Oct 2018 B2
10098636 Shelton, IV et al. Oct 2018 B2
10098640 Bertolero et al. Oct 2018 B2
10098642 Baxter, III et al. Oct 2018 B2
10099303 Yoshida et al. Oct 2018 B2
10101861 Kiyoto Oct 2018 B2
10105126 Sauer Oct 2018 B2
10105128 Cooper et al. Oct 2018 B2
10105136 Yates et al. Oct 2018 B2
10105139 Yates et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10105142 Baxter, III et al. Oct 2018 B2
10105149 Haider et al. Oct 2018 B2
10106932 Anderson et al. Oct 2018 B2
10111657 McCuen Oct 2018 B2
10111658 Chowaniec et al. Oct 2018 B2
10111660 Hemmann Oct 2018 B2
10111665 Aranyi et al. Oct 2018 B2
10111679 Baber et al. Oct 2018 B2
10111698 Scheib et al. Oct 2018 B2
10111702 Kostrzewski Oct 2018 B2
D833608 Miller et al. Nov 2018 S
10117649 Baxter, III et al. Nov 2018 B2
10117650 Nicholas et al. Nov 2018 B2
10117652 Schmid et al. Nov 2018 B2
10117653 Leimbach et al. Nov 2018 B2
10117654 Ingmanson et al. Nov 2018 B2
10123798 Baxter, III et al. Nov 2018 B2
10123845 Yeung Nov 2018 B2
10124493 Rothfuss et al. Nov 2018 B2
10130352 Widenhouse et al. Nov 2018 B2
10130359 Hess et al. Nov 2018 B2
10130360 Olson et al. Nov 2018 B2
10130361 Yates et al. Nov 2018 B2
10130363 Huitema et al. Nov 2018 B2
10130366 Shelton, IV et al. Nov 2018 B2
10130367 Cappola et al. Nov 2018 B2
10130382 Gladstone Nov 2018 B2
10130738 Shelton, IV et al. Nov 2018 B2
10130830 Miret Carceller et al. Nov 2018 B2
10133248 Fitzsimmons et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10136879 Ross et al. Nov 2018 B2
10136887 Shelton, IV et al. Nov 2018 B2
10136889 Shelton, IV et al. Nov 2018 B2
10136890 Shelton, IV et al. Nov 2018 B2
10136891 Shelton, IV et al. Nov 2018 B2
D835659 Anzures et al. Dec 2018 S
D836124 Fan Dec 2018 S
10143474 Bucciaglia et al. Dec 2018 B2
10146423 Reed et al. Dec 2018 B1
10149679 Shelton, IV et al. Dec 2018 B2
10149680 Parihar et al. Dec 2018 B2
10149682 Shelton, IV et al. Dec 2018 B2
10149683 Smith et al. Dec 2018 B2
10149712 Manwaring et al. Dec 2018 B2
10152789 Carnes et al. Dec 2018 B2
10154841 Weaner et al. Dec 2018 B2
10159481 Whitman et al. Dec 2018 B2
10159482 Swayze et al. Dec 2018 B2
10159483 Beckman et al. Dec 2018 B2
10159506 Boudreaux et al. Dec 2018 B2
10161816 Jackson et al. Dec 2018 B2
10163065 Koski et al. Dec 2018 B1
10163589 Zergiebel et al. Dec 2018 B2
10164466 Calderoni Dec 2018 B2
D837244 Kuo et al. Jan 2019 S
D837245 Kuo et al. Jan 2019 S
10166023 Vendely et al. Jan 2019 B2
10166025 Leimbach et al. Jan 2019 B2
10166026 Shelton, IV et al. Jan 2019 B2
10172611 Shelton, IV et al. Jan 2019 B2
10172615 Marczyk et al. Jan 2019 B2
10172616 Murray et al. Jan 2019 B2
10172617 Shelton, IV et al. Jan 2019 B2
10172618 Shelton, IV et al. Jan 2019 B2
10172619 Harris et al. Jan 2019 B2
10172620 Harris et al. Jan 2019 B2
10172636 Stulen et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10175127 Collins et al. Jan 2019 B2
10178992 Wise et al. Jan 2019 B2
10180463 Beckman et al. Jan 2019 B2
10182813 Leimbach et al. Jan 2019 B2
10182815 Williams et al. Jan 2019 B2
10182816 Shelton, IV et al. Jan 2019 B2
10182818 Hensel et al. Jan 2019 B2
10182819 Shelton, IV Jan 2019 B2
10182868 Meier et al. Jan 2019 B2
10188385 Kerr et al. Jan 2019 B2
10188389 Vendely et al. Jan 2019 B2
10188393 Smith et al. Jan 2019 B2
10188394 Shelton, IV et al. Jan 2019 B2
10190888 Hryb et al. Jan 2019 B2
D839900 Gan Feb 2019 S
D841667 Coren Feb 2019 S
10194801 Elhawary et al. Feb 2019 B2
10194904 Viola et al. Feb 2019 B2
10194907 Marczyk et al. Feb 2019 B2
10194908 Duque et al. Feb 2019 B2
10194910 Shelton, IV et al. Feb 2019 B2
10194911 Miller et al. Feb 2019 B2
10194912 Scheib et al. Feb 2019 B2
10194913 Nalagatla et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194992 Robinson Feb 2019 B2
10201348 Scheib et al. Feb 2019 B2
10201349 Leimbach et al. Feb 2019 B2
10201363 Shelton, IV Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201381 Zergiebel et al. Feb 2019 B2
10206605 Shelton, IV et al. Feb 2019 B2
10206676 Shelton, IV Feb 2019 B2
10206677 Harris et al. Feb 2019 B2
10206678 Shelton, IV et al. Feb 2019 B2
10206748 Burbank Feb 2019 B2
10210244 Branavan et al. Feb 2019 B1
10211586 Adams et al. Feb 2019 B2
10213198 Aronhalt et al. Feb 2019 B2
10213201 Shelton, IV et al. Feb 2019 B2
10213202 Flanagan et al. Feb 2019 B2
10213203 Swayze et al. Feb 2019 B2
10213204 Aranyi et al. Feb 2019 B2
10213262 Shelton, IV et al. Feb 2019 B2
D842328 Jian et al. Mar 2019 S
10219811 Haider et al. Mar 2019 B2
10219832 Bagwell et al. Mar 2019 B2
10220522 Rockrohr Mar 2019 B2
10226239 Nicholas et al. Mar 2019 B2
10226249 Jaworek et al. Mar 2019 B2
10226250 Beckman et al. Mar 2019 B2
10226251 Scheib et al. Mar 2019 B2
10226274 Worrell et al. Mar 2019 B2
10231634 Zand et al. Mar 2019 B2
10231653 Bohm et al. Mar 2019 B2
10231734 Thompson et al. Mar 2019 B2
10231794 Shelton, IV et al. Mar 2019 B2
10238385 Yates et al. Mar 2019 B2
10238386 Overmyer et al. Mar 2019 B2
10238387 Yates et al. Mar 2019 B2
10238389 Yates et al. Mar 2019 B2
10238390 Harris et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
D844666 Espeleta et al. Apr 2019 S
D844667 Espeleta et al. Apr 2019 S
D845342 Espeleta et al. Apr 2019 S
D847199 Whitmore Apr 2019 S
10244991 Shademan et al. Apr 2019 B2
10245027 Shelton, IV et al. Apr 2019 B2
10245028 Shelton, IV et al. Apr 2019 B2
10245029 Hunter et al. Apr 2019 B2
10245030 Hunter et al. Apr 2019 B2
10245032 Shelton, IV Apr 2019 B2
10245033 Overmyer et al. Apr 2019 B2
10245034 Shelton, IV et al. Apr 2019 B2
10245035 Swayze et al. Apr 2019 B2
10245038 Hopkins et al. Apr 2019 B2
10245058 Omori et al. Apr 2019 B2
10251645 Kostrzewski Apr 2019 B2
10251648 Harris et al. Apr 2019 B2
10251649 Schellin et al. Apr 2019 B2
10251725 Valentine et al. Apr 2019 B2
10258322 Fanton et al. Apr 2019 B2
10258330 Shelton, IV et al. Apr 2019 B2
10258331 Shelton, IV et al. Apr 2019 B2
10258332 Schmid et al. Apr 2019 B2
10258333 Shelton, IV et al. Apr 2019 B2
10258336 Baxter, III et al. Apr 2019 B2
10258363 Worrell et al. Apr 2019 B2
10258418 Shelton, IV et al. Apr 2019 B2
10264797 Zhang et al. Apr 2019 B2
10265065 Shelton, IV et al. Apr 2019 B2
10265067 Yates et al. Apr 2019 B2
10265068 Harris et al. Apr 2019 B2
10265072 Shelton, IV et al. Apr 2019 B2
10265073 Scheib et al. Apr 2019 B2
10265074 Shelton, IV et al. Apr 2019 B2
10265090 Ingmanson et al. Apr 2019 B2
10271840 Sapre Apr 2019 B2
10271844 Valentine et al. Apr 2019 B2
10271845 Shelton, IV Apr 2019 B2
10271846 Shelton, IV et al. Apr 2019 B2
10271847 Racenet et al. Apr 2019 B2
10271849 Vendely et al. Apr 2019 B2
10271851 Shelton, IV et al. Apr 2019 B2
D847989 Shelton, IV et al. May 2019 S
D848473 Zhu et al. May 2019 S
D849046 Kuo et al. May 2019 S
10278696 Gurumurthy et al. May 2019 B2
10278697 Shelton, IV et al. May 2019 B2
10278702 Shelton, IV et al. May 2019 B2
10278703 Nativ et al. May 2019 B2
10278707 Thompson et al. May 2019 B2
10278722 Shelton, IV et al. May 2019 B2
10278780 Shelton, IV May 2019 B2
10285694 Viola et al. May 2019 B2
10285695 Jaworek et al. May 2019 B2
10285699 Vendely et al. May 2019 B2
10285700 Scheib May 2019 B2
10285705 Shelton, IV et al. May 2019 B2
10285724 Faller et al. May 2019 B2
10285750 Coulson et al. May 2019 B2
10292701 Scheib et al. May 2019 B2
10292704 Harris et al. May 2019 B2
10292707 Shelton, IV et al. May 2019 B2
10293100 Shelton, IV et al. May 2019 B2
10293553 Racenet et al. May 2019 B2
10299787 Shelton, IV May 2019 B2
10299788 Heinrich et al. May 2019 B2
10299789 Marczyk et al. May 2019 B2
10299790 Beardsley May 2019 B2
10299792 Huitema et al. May 2019 B2
10299817 Shelton, IV et al. May 2019 B2
10299818 Riva May 2019 B2
10299878 Shelton, IV et al. May 2019 B2
10303851 Nguyen et al. May 2019 B2
D850617 Shelton, IV et al. Jun 2019 S
D851676 Foss et al. Jun 2019 S
D851762 Shelton, IV et al. Jun 2019 S
10307159 Harris et al. Jun 2019 B2
10307160 Vendely et al. Jun 2019 B2
10307161 Jankowski Jun 2019 B2
10307163 Moore et al. Jun 2019 B2
10307170 Parfett et al. Jun 2019 B2
10307202 Smith et al. Jun 2019 B2
10314559 Razzaque et al. Jun 2019 B2
10314577 Laurent et al. Jun 2019 B2
10314578 Leimbach et al. Jun 2019 B2
10314579 Chowaniec et al. Jun 2019 B2
10314580 Scheib et al. Jun 2019 B2
10314582 Shelton, IV et al. Jun 2019 B2
10314584 Scirica et al. Jun 2019 B2
10314587 Harris et al. Jun 2019 B2
10314588 Turner et al. Jun 2019 B2
10314589 Shelton, IV et al. Jun 2019 B2
10314590 Shelton, IV et al. Jun 2019 B2
10315566 Choi et al. Jun 2019 B2
10321907 Shelton, IV et al. Jun 2019 B2
10321909 Shelton, IV et al. Jun 2019 B2
10321927 Hinman Jun 2019 B2
10327743 St. Goar et al. Jun 2019 B2
10327764 Harris et al. Jun 2019 B2
10327765 Timm et al. Jun 2019 B2
10327767 Shelton, IV et al. Jun 2019 B2
10327769 Overmyer et al. Jun 2019 B2
10327776 Harris et al. Jun 2019 B2
10327777 Harris et al. Jun 2019 B2
D854032 Jones et al. Jul 2019 S
D854151 Shelton, IV et al. Jul 2019 S
10335144 Shelton, IV et al. Jul 2019 B2
10335145 Harris et al. Jul 2019 B2
10335147 Rector et al. Jul 2019 B2
10335148 Shelton, IV et al. Jul 2019 B2
10335149 Baxter, III et al. Jul 2019 B2
10335150 Shelton, IV Jul 2019 B2
10335151 Shelton, IV et al. Jul 2019 B2
10337148 Rouse et al. Jul 2019 B2
10342533 Shelton, IV et al. Jul 2019 B2
10342535 Scheib et al. Jul 2019 B2
10342541 Shelton, IV et al. Jul 2019 B2
10342543 Shelton, IV et al. Jul 2019 B2
10342623 Huelman et al. Jul 2019 B2
10349937 Williams Jul 2019 B2
10349939 Shelton, IV et al. Jul 2019 B2
10349941 Marczyk et al. Jul 2019 B2
10349963 Fiksen et al. Jul 2019 B2
10350016 Burbank et al. Jul 2019 B2
10357246 Shelton, IV et al. Jul 2019 B2
10357247 Shelton, IV et al. Jul 2019 B2
10357248 Dalessandro et al. Jul 2019 B2
10357252 Harris et al. Jul 2019 B2
10363031 Alexander, III et al. Jul 2019 B2
10363033 Timm et al. Jul 2019 B2
10363036 Yates et al. Jul 2019 B2
10363037 Aronhalt et al. Jul 2019 B2
D855634 Kim Aug 2019 S
D856359 Huang et al. Aug 2019 S
10368838 Williams et al. Aug 2019 B2
10368861 Baxter, III et al. Aug 2019 B2
10368863 Timm et al. Aug 2019 B2
10368864 Harris et al. Aug 2019 B2
10368865 Harris et al. Aug 2019 B2
10368866 Wang et al. Aug 2019 B2
10368867 Harris et al. Aug 2019 B2
10368892 Stulen et al. Aug 2019 B2
10376263 Morgan et al. Aug 2019 B2
10383626 Soltz Aug 2019 B2
10383628 Kang et al. Aug 2019 B2
10383629 Ross et al. Aug 2019 B2
10383630 Shelton, IV et al. Aug 2019 B2
10383633 Shelton, IV et al. Aug 2019 B2
10383634 Shelton, IV et al. Aug 2019 B2
10390823 Shelton, IV et al. Aug 2019 B2
10390825 Shelton, IV et al. Aug 2019 B2
10390828 Vendely et al. Aug 2019 B2
10390829 Eckert et al. Aug 2019 B2
10390830 Schulz Aug 2019 B2
10390841 Shelton, IV et al. Aug 2019 B2
10390897 Kostrzewski Aug 2019 B2
D859466 Okada et al. Sep 2019 S
D860219 Rasmussen et al. Sep 2019 S
D861035 Park et al. Sep 2019 S
10398433 Boudreaux et al. Sep 2019 B2
10398434 Shelton, IV et al. Sep 2019 B2
10398436 Shelton, IV et al. Sep 2019 B2
10398460 Overmyer Sep 2019 B2
10404136 Oktavec et al. Sep 2019 B2
10405854 Schmid et al. Sep 2019 B2
10405857 Shelton, IV et al. Sep 2019 B2
10405859 Harris et al. Sep 2019 B2
10405863 Wise et al. Sep 2019 B2
10405914 Manwaring et al. Sep 2019 B2
10405932 Overmyer Sep 2019 B2
10405937 Black et al. Sep 2019 B2
10413155 Inoue Sep 2019 B2
10413291 Worthington et al. Sep 2019 B2
10413293 Shelton, IV et al. Sep 2019 B2
10413294 Shelton, IV et al. Sep 2019 B2
10413297 Harris et al. Sep 2019 B2
10413370 Yates et al. Sep 2019 B2
10413373 Yates et al. Sep 2019 B2
10420548 Whitman et al. Sep 2019 B2
10420549 Yates et al. Sep 2019 B2
10420550 Shelton, IV Sep 2019 B2
10420551 Calderoni Sep 2019 B2
10420552 Shelton, IV et al. Sep 2019 B2
10420553 Shelton, IV et al. Sep 2019 B2
10420554 Collings et al. Sep 2019 B2
10420555 Shelton, IV et al. Sep 2019 B2
10420558 Nalagatla et al. Sep 2019 B2
10420559 Marczyk et al. Sep 2019 B2
10420560 Shelton, IV et al. Sep 2019 B2
10420561 Shelton, IV et al. Sep 2019 B2
10420577 Chowaniec et al. Sep 2019 B2
D861707 Yang Oct 2019 S
D862518 Niven et al. Oct 2019 S
D863343 Mazlish et al. Oct 2019 S
D864388 Barber Oct 2019 S
D865174 Auld et al. Oct 2019 S
D865175 Widenhouse et al. Oct 2019 S
10426463 Shelton, IV et al. Oct 2019 B2
10426466 Contini et al. Oct 2019 B2
10426467 Miller et al. Oct 2019 B2
10426468 Contini et al. Oct 2019 B2
10426469 Shelton, IV et al. Oct 2019 B2
10426471 Shelton, IV et al. Oct 2019 B2
10426476 Harris et al. Oct 2019 B2
10426477 Harris et al. Oct 2019 B2
10426478 Shelton, IV et al. Oct 2019 B2
10426481 Aronhalt et al. Oct 2019 B2
10426555 Crowley et al. Oct 2019 B2
10433837 Worthington et al. Oct 2019 B2
10433839 Scheib et al. Oct 2019 B2
10433840 Shelton, IV et al. Oct 2019 B2
10433842 Amariglio et al. Oct 2019 B2
10433844 Shelton, IV et al. Oct 2019 B2
10433845 Baxter, III et al. Oct 2019 B2
10433846 Vendely et al. Oct 2019 B2
10433849 Shelton, IV et al. Oct 2019 B2
10433918 Shelton, IV et al. Oct 2019 B2
10441279 Shelton, IV et al. Oct 2019 B2
10441280 Timm et al. Oct 2019 B2
10441281 Shelton, IV et al. Oct 2019 B2
10441285 Shelton, IV et al. Oct 2019 B2
10441286 Shelton, IV et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10441369 Shelton, IV et al. Oct 2019 B2
10448948 Shelton, IV et al. Oct 2019 B2
10448950 Shelton, IV et al. Oct 2019 B2
10448952 Shelton, IV et al. Oct 2019 B2
10456122 Koltz et al. Oct 2019 B2
10456132 Gettinger et al. Oct 2019 B2
10456133 Yates et al. Oct 2019 B2
10456137 Vendely et al. Oct 2019 B2
10456140 Shelton, IV et al. Oct 2019 B2
D865796 Xu et al. Nov 2019 S
10463367 Kostrzewski et al. Nov 2019 B2
10463369 Shelton, IV et al. Nov 2019 B2
10463370 Yates et al. Nov 2019 B2
10463371 Kostrzewski Nov 2019 B2
10463372 Shelton, IV et al. Nov 2019 B2
10463373 Mozdzierz et al. Nov 2019 B2
10463382 Ingmanson et al. Nov 2019 B2
10463383 Shelton, IV et al. Nov 2019 B2
10463384 Shelton, IV et al. Nov 2019 B2
10470762 Leimbach et al. Nov 2019 B2
10470763 Yates et al. Nov 2019 B2
10470764 Baxter, III et al. Nov 2019 B2
10470767 Gleiman et al. Nov 2019 B2
10470768 Harris et al. Nov 2019 B2
10470769 Shelton, IV et al. Nov 2019 B2
10471282 Kirk et al. Nov 2019 B2
10471576 Totsu Nov 2019 B2
10471607 Butt et al. Nov 2019 B2
10478181 Shelton, IV et al. Nov 2019 B2
10478182 Taylor Nov 2019 B2
10478185 Nicholas Nov 2019 B2
10478187 Shelton, IV et al. Nov 2019 B2
10478188 Harris et al. Nov 2019 B2
10478189 Bear et al. Nov 2019 B2
10478190 Miller et al. Nov 2019 B2
10478207 Lathrop Nov 2019 B2
10482292 Clouser et al. Nov 2019 B2
10485536 Ming et al. Nov 2019 B2
10485537 Yates et al. Nov 2019 B2
10485539 Shelton, IV et al. Nov 2019 B2
10485541 Shelton, IV et al. Nov 2019 B2
10485542 Shelton, IV et al. Nov 2019 B2
10485543 Shelton, IV et al. Nov 2019 B2
10485546 Shelton, IV et al. Nov 2019 B2
10485547 Shelton, IV et al. Nov 2019 B2
D869655 Shelton, IV et al. Dec 2019 S
D870742 Cornell Dec 2019 S
10492783 Shelton, IV et al. Dec 2019 B2
10492785 Overmyer et al. Dec 2019 B2
10492787 Smith et al. Dec 2019 B2
10492814 Snow et al. Dec 2019 B2
10492847 Godara et al. Dec 2019 B2
10492851 Hughett, Sr. et al. Dec 2019 B2
10498269 Zemlok et al. Dec 2019 B2
10499890 Shelton, IV et al. Dec 2019 B2
10499914 Huang et al. Dec 2019 B2
10499917 Scheib et al. Dec 2019 B2
10499918 Schellin et al. Dec 2019 B2
10500000 Swayze et al. Dec 2019 B2
10500004 Hanuschik et al. Dec 2019 B2
10500309 Shah et al. Dec 2019 B2
10507034 Timm Dec 2019 B2
10508720 Nicholas Dec 2019 B2
10512461 Gupta et al. Dec 2019 B2
10512462 Felder et al. Dec 2019 B2
10512464 Park et al. Dec 2019 B2
10517590 Giordano et al. Dec 2019 B2
10517592 Shelton, IV et al. Dec 2019 B2
10517594 Shelton, IV et al. Dec 2019 B2
10517595 Hunter et al. Dec 2019 B2
10517596 Hunter et al. Dec 2019 B2
10517599 Baxter, III et al. Dec 2019 B2
10517682 Giordano et al. Dec 2019 B2
10524784 Kostrzewski Jan 2020 B2
10524787 Shelton, IV et al. Jan 2020 B2
10524788 Vendely et al. Jan 2020 B2
10524789 Swayze et al. Jan 2020 B2
10524790 Shelton, IV et al. Jan 2020 B2
10524795 Nalagatla et al. Jan 2020 B2
10524870 Saraliev et al. Jan 2020 B2
10531874 Morgan et al. Jan 2020 B2
10531887 Shelton, IV et al. Jan 2020 B2
10537324 Shelton, IV et al. Jan 2020 B2
10537325 Bakos et al. Jan 2020 B2
10537351 Shelton, IV et al. Jan 2020 B2
10542908 Mei et al. Jan 2020 B2
10542974 Yates et al. Jan 2020 B2
10542976 Calderoni et al. Jan 2020 B2
10542978 Chowaniec et al. Jan 2020 B2
10542979 Shelton, IV et al. Jan 2020 B2
10542982 Beckman et al. Jan 2020 B2
10542985 Zhan et al. Jan 2020 B2
10542988 Schellin et al. Jan 2020 B2
10542991 Shelton, IV et al. Jan 2020 B2
10548504 Shelton, IV et al. Feb 2020 B2
10548593 Shelton, IV et al. Feb 2020 B2
10548600 Shelton, IV et al. Feb 2020 B2
10548673 Harris et al. Feb 2020 B2
10561418 Richard et al. Feb 2020 B2
10561419 Beardsley Feb 2020 B2
10561420 Harris et al. Feb 2020 B2
10561422 Schellin et al. Feb 2020 B2
10561432 Estrella et al. Feb 2020 B2
10561474 Adams et al. Feb 2020 B2
10562160 Iwata et al. Feb 2020 B2
10568493 Blase et al. Feb 2020 B2
10568621 Shelton, IV et al. Feb 2020 B2
10568624 Shelton, IV et al. Feb 2020 B2
10568625 Harris et al. Feb 2020 B2
10568626 Shelton, IV et al. Feb 2020 B2
10568629 Shelton, IV et al. Feb 2020 B2
10568632 Miller et al. Feb 2020 B2
10568652 Hess et al. Feb 2020 B2
10569071 Harris et al. Feb 2020 B2
D879808 Harris et al. Mar 2020 S
D879809 Harris et al. Mar 2020 S
10575868 Hall et al. Mar 2020 B2
10580320 Kamiguchi et al. Mar 2020 B2
10582928 Hunter et al. Mar 2020 B2
10588231 Sgroi, Jr. et al. Mar 2020 B2
10588623 Schmid et al. Mar 2020 B2
10588625 Weaner et al. Mar 2020 B2
10588626 Overmyer et al. Mar 2020 B2
10588629 Malinouskas et al. Mar 2020 B2
10588630 Shelton, IV et al. Mar 2020 B2
10588631 Shelton, IV et al. Mar 2020 B2
10588632 Shelton, IV et al. Mar 2020 B2
10588633 Shelton, IV et al. Mar 2020 B2
10595835 Kerr et al. Mar 2020 B2
10595862 Shelton, IV et al. Mar 2020 B2
10595882 Parfett et al. Mar 2020 B2
10595887 Shelton, IV et al. Mar 2020 B2
10595929 Boudreaux et al. Mar 2020 B2
10603036 Hunter et al. Mar 2020 B2
10603039 Vendely et al. Mar 2020 B2
10603041 Miller et al. Mar 2020 B2
10603117 Schings et al. Mar 2020 B2
10603128 Zergiebel et al. Mar 2020 B2
D882783 Shelton, IV et al. Apr 2020 S
10610224 Shelton, IV et al. Apr 2020 B2
10610225 Reed et al. Apr 2020 B2
10610236 Baril Apr 2020 B2
10610313 Bailey et al. Apr 2020 B2
10610346 Schwartz Apr 2020 B2
10617411 Williams Apr 2020 B2
10617412 Shelton, IV et al. Apr 2020 B2
10617413 Shelton, IV et al. Apr 2020 B2
10617414 Shelton, IV et al. Apr 2020 B2
10617416 Leimbach et al. Apr 2020 B2
10617417 Baxter, III et al. Apr 2020 B2
10617418 Barton et al. Apr 2020 B2
10617420 Shelton, IV et al. Apr 2020 B2
10617438 O'Keefe et al. Apr 2020 B2
10624616 Mukherjee et al. Apr 2020 B2
10624630 Deville et al. Apr 2020 B2
10624633 Shelton, IV et al. Apr 2020 B2
10624634 Shelton, IV et al. Apr 2020 B2
10624635 Harris et al. Apr 2020 B2
10624709 Remm Apr 2020 B2
10624861 Widenhouse et al. Apr 2020 B2
10625062 Matlock et al. Apr 2020 B2
10631857 Kostrzewski Apr 2020 B2
10631858 Burbank Apr 2020 B2
10631859 Shelton, IV et al. Apr 2020 B2
10631860 Bakos et al. Apr 2020 B2
10636104 Mazar et al. Apr 2020 B2
10639018 Shelton, IV et al. May 2020 B2
10639034 Harris et al. May 2020 B2
10639035 Shelton, IV et al. May 2020 B2
10639036 Yates et al. May 2020 B2
10639037 Shelton, IV et al. May 2020 B2
10639089 Manwaring et al. May 2020 B2
10639115 Shelton, IV et al. May 2020 B2
10642633 Chopra et al. May 2020 B1
10645905 Gandola et al. May 2020 B2
10646220 Shelton, IV et al. May 2020 B2
10646292 Solomon et al. May 2020 B2
10653413 Worthington et al. May 2020 B2
10653417 Shelton, IV et al. May 2020 B2
10653435 Shelton, IV et al. May 2020 B2
10660640 Yates et al. May 2020 B2
10667408 Sgroi, Jr. et al. May 2020 B2
D888953 Baxter, III et al. Jun 2020 S
10667808 Baxter, III et al. Jun 2020 B2
10667809 Bakos et al. Jun 2020 B2
10667810 Shelton, IV et al. Jun 2020 B2
10667811 Harris et al. Jun 2020 B2
10667818 McLain et al. Jun 2020 B2
10674895 Yeung et al. Jun 2020 B2
10675021 Harris et al. Jun 2020 B2
10675024 Shelton, IV et al. Jun 2020 B2
10675025 Swayze et al. Jun 2020 B2
10675026 Harris et al. Jun 2020 B2
10675028 Shelton, IV et al. Jun 2020 B2
10675035 Zingman Jun 2020 B2
10675080 Woloszko et al. Jun 2020 B2
10675102 Forgione et al. Jun 2020 B2
10677035 Balan et al. Jun 2020 B2
10682134 Shelton, IV et al. Jun 2020 B2
10682136 Harris et al. Jun 2020 B2
10682137 Stokes et al. Jun 2020 B2
10682138 Shelton, IV et al. Jun 2020 B2
10682141 Moore et al. Jun 2020 B2
10682142 Shelton, IV et al. Jun 2020 B2
10687806 Shelton, IV et al. Jun 2020 B2
10687809 Shelton, IV et al. Jun 2020 B2
10687810 Shelton, IV et al. Jun 2020 B2
10687812 Shelton, IV et al. Jun 2020 B2
10687813 Shelton, IV et al. Jun 2020 B2
10687817 Shelton, IV et al. Jun 2020 B2
10687819 Stokes et al. Jun 2020 B2
10687904 Harris et al. Jun 2020 B2
10695053 Hess et al. Jun 2020 B2
10695055 Shelton, IV et al. Jun 2020 B2
10695057 Shelton, IV et al. Jun 2020 B2
10695058 Lytle, IV et al. Jun 2020 B2
10695062 Leimbach et al. Jun 2020 B2
10695063 Morgan et al. Jun 2020 B2
10695074 Carusillo Jun 2020 B2
10695119 Smith Jun 2020 B2
10695123 Allen, IV Jun 2020 B2
10695187 Moskowitz et al. Jun 2020 B2
D890784 Shelton, IV et al. Jul 2020 S
10702266 Parihar et al. Jul 2020 B2
10702267 Hess et al. Jul 2020 B2
10702270 Shelton, IV et al. Jul 2020 B2
10702271 Aranyi et al. Jul 2020 B2
10705660 Xiao Jul 2020 B2
10709446 Harris et al. Jul 2020 B2
10709468 Shelton, IV et al. Jul 2020 B2
10709469 Shelton, IV et al. Jul 2020 B2
10709496 Moua et al. Jul 2020 B2
10716563 Shelton, IV et al. Jul 2020 B2
10716565 Shelton, IV et al. Jul 2020 B2
10716568 Hall et al. Jul 2020 B2
10716614 Yates et al. Jul 2020 B2
10717179 Koenig et al. Jul 2020 B2
10722232 Yates et al. Jul 2020 B2
10722233 Wellman Jul 2020 B2
10722292 Arya et al. Jul 2020 B2
10722293 Arya et al. Jul 2020 B2
10722317 Ward et al. Jul 2020 B2
D893717 Messerly et al. Aug 2020 S
10729432 Shelton, IV et al. Aug 2020 B2
10729434 Harris et al. Aug 2020 B2
10729435 Richard Aug 2020 B2
10729436 Shelton, IV et al. Aug 2020 B2
10729443 Cabrera et al. Aug 2020 B2
10729458 Stoddard et al. Aug 2020 B2
10729501 Leimbach et al. Aug 2020 B2
10729509 Shelton, IV et al. Aug 2020 B2
10736616 Scheib et al. Aug 2020 B2
10736628 Yates et al. Aug 2020 B2
10736629 Shelton, IV et al. Aug 2020 B2
10736630 Huang et al. Aug 2020 B2
10736633 Vendely et al. Aug 2020 B2
10736634 Shelton, IV et al. Aug 2020 B2
10736636 Baxter, III et al. Aug 2020 B2
10736644 Windolf et al. Aug 2020 B2
10736702 Harris et al. Aug 2020 B2
10737398 Remirez et al. Aug 2020 B2
10743849 Shelton, IV et al. Aug 2020 B2
10743850 Hibner et al. Aug 2020 B2
10743851 Swayze et al. Aug 2020 B2
10743868 Shelton, IV et al. Aug 2020 B2
10743870 Hall et al. Aug 2020 B2
10743872 Leimbach et al. Aug 2020 B2
10743873 Overmyer et al. Aug 2020 B2
10743874 Shelton, IV et al. Aug 2020 B2
10743875 Shelton, IV et al. Aug 2020 B2
10743877 Shelton, IV et al. Aug 2020 B2
10743930 Nagtegaal Aug 2020 B2
10751048 Whitman et al. Aug 2020 B2
10751053 Harris et al. Aug 2020 B2
10751076 Laurent et al. Aug 2020 B2
10751138 Giordano et al. Aug 2020 B2
10758229 Shelton, IV et al. Sep 2020 B2
10758230 Shelton, IV et al. Sep 2020 B2
10758232 Shelton, IV et al. Sep 2020 B2
10758233 Scheib et al. Sep 2020 B2
10758259 Demmy et al. Sep 2020 B2
10765425 Yates et al. Sep 2020 B2
10765427 Shelton, IV et al. Sep 2020 B2
10765429 Leimbach et al. Sep 2020 B2
10765430 Wixey Sep 2020 B2
10765432 Moore et al. Sep 2020 B2
10765442 Strobl Sep 2020 B2
10772625 Shelton, IV et al. Sep 2020 B2
10772628 Chen et al. Sep 2020 B2
10772629 Shelton, IV et al. Sep 2020 B2
10772630 Wixey Sep 2020 B2
10772631 Zergiebel et al. Sep 2020 B2
10772632 Kostrzewski Sep 2020 B2
10772651 Shelton, IV et al. Sep 2020 B2
10779818 Zemlok et al. Sep 2020 B2
10779820 Harris et al. Sep 2020 B2
10779821 Harris et al. Sep 2020 B2
10779822 Yates et al. Sep 2020 B2
10779823 Shelton, IV et al. Sep 2020 B2
10779824 Shelton, IV et al. Sep 2020 B2
10779825 Shelton, IV et al. Sep 2020 B2
10779903 Wise et al. Sep 2020 B2
10780539 Shelton, IV et al. Sep 2020 B2
10786248 Rousseau et al. Sep 2020 B2
10786253 Shelton, IV et al. Sep 2020 B2
10786255 Hodgkinson et al. Sep 2020 B2
10792038 Becerra et al. Oct 2020 B2
10796471 Leimbach et al. Oct 2020 B2
10799240 Shelton, IV et al. Oct 2020 B2
10799306 Robinson et al. Oct 2020 B2
10806448 Shelton, IV et al. Oct 2020 B2
10806449 Shelton, IV et al. Oct 2020 B2
10806450 Yates et al. Oct 2020 B2
10806451 Harris et al. Oct 2020 B2
10806453 Chen et al. Oct 2020 B2
10806479 Shelton, IV et al. Oct 2020 B2
10813638 Shelton, IV et al. Oct 2020 B2
10813639 Shelton, IV et al. Oct 2020 B2
10813640 Adams et al. Oct 2020 B2
10813641 Setser et al. Oct 2020 B2
10813683 Baxter, III et al. Oct 2020 B2
10813705 Hares et al. Oct 2020 B2
10813710 Grubbs Oct 2020 B2
10820939 Sartor Nov 2020 B2
10828028 Harris et al. Nov 2020 B2
10828030 Weir et al. Nov 2020 B2
10828032 Leimbach et al. Nov 2020 B2
10828033 Shelton, IV et al. Nov 2020 B2
10828089 Clark et al. Nov 2020 B2
10835245 Swayze et al. Nov 2020 B2
10835246 Shelton, IV et al. Nov 2020 B2
10835247 Shelton, IV et al. Nov 2020 B2
10835249 Schellin et al. Nov 2020 B2
10835251 Shelton, IV et al. Nov 2020 B2
10835330 Shelton, IV et al. Nov 2020 B2
10842357 Moskowitz et al. Nov 2020 B2
10842473 Scheib et al. Nov 2020 B2
10842488 Swayze et al. Nov 2020 B2
10842489 Shelton, IV Nov 2020 B2
10842490 DiNardo et al. Nov 2020 B2
10842491 Shelton, IV et al. Nov 2020 B2
10842492 Shelton, IV et al. Nov 2020 B2
D904612 Wynn et al. Dec 2020 S
D904613 Wynn et al. Dec 2020 S
D906355 Messerly et al. Dec 2020 S
10849621 Whitfield et al. Dec 2020 B2
10849623 Dunki-Jacobs et al. Dec 2020 B2
10856866 Shelton, IV et al. Dec 2020 B2
10856867 Shelton, IV et al. Dec 2020 B2
10856868 Shelton, IV et al. Dec 2020 B2
10856869 Shelton, IV et al. Dec 2020 B2
10856870 Harris et al. Dec 2020 B2
10863981 Overmyer et al. Dec 2020 B2
10863984 Shelton, IV et al. Dec 2020 B2
10863986 Yates et al. Dec 2020 B2
10869663 Shelton, IV et al. Dec 2020 B2
10869664 Shelton, IV Dec 2020 B2
10869665 Shelton, IV et al. Dec 2020 B2
10869666 Shelton, IV et al. Dec 2020 B2
10869669 Shelton, IV et al. Dec 2020 B2
10874290 Walen et al. Dec 2020 B2
10874391 Shelton, IV et al. Dec 2020 B2
10874392 Scirica et al. Dec 2020 B2
10874393 Satti, III et al. Dec 2020 B2
10874396 Moore et al. Dec 2020 B2
10874399 Zhang Dec 2020 B2
10879275 Li et al. Dec 2020 B2
D907647 Siebel et al. Jan 2021 S
D907648 Siebel et al. Jan 2021 S
D908216 Messerly et al. Jan 2021 S
10881395 Merchant et al. Jan 2021 B2
10881396 Shelton, IV et al. Jan 2021 B2
10881399 Shelton, IV et al. Jan 2021 B2
10881401 Baber et al. Jan 2021 B2
10881446 Strobl Jan 2021 B2
10888318 Parihar et al. Jan 2021 B2
10888321 Shelton, IV et al. Jan 2021 B2
10888322 Morgan et al. Jan 2021 B2
10888323 Chen et al. Jan 2021 B2
10888325 Harris et al. Jan 2021 B2
10888328 Shelton, IV et al. Jan 2021 B2
10888329 Moore et al. Jan 2021 B2
10888330 Moore et al. Jan 2021 B2
10888369 Messerly et al. Jan 2021 B2
10892899 Shelton, IV et al. Jan 2021 B2
10893853 Shelton, IV et al. Jan 2021 B2
10893863 Shelton, IV et al. Jan 2021 B2
10893864 Harris et al. Jan 2021 B2
10893867 Leimbach et al. Jan 2021 B2
10898183 Shelton, IV et al. Jan 2021 B2
10898184 Yates et al. Jan 2021 B2
10898185 Overmyer et al. Jan 2021 B2
10898186 Bakos et al. Jan 2021 B2
10898190 Yates et al. Jan 2021 B2
10898193 Shelton, IV et al. Jan 2021 B2
10898194 Moore et al. Jan 2021 B2
10898195 Moore et al. Jan 2021 B2
10903685 Yates et al. Jan 2021 B2
D910847 Shelton, IV et al. Feb 2021 S
10905415 DiNardo et al. Feb 2021 B2
10905418 Shelton, IV et al. Feb 2021 B2
10905420 Jasemian et al. Feb 2021 B2
10905422 Bakos et al. Feb 2021 B2
10905423 Baber et al. Feb 2021 B2
10905426 Moore et al. Feb 2021 B2
10905427 Moore et al. Feb 2021 B2
10911515 Biasi et al. Feb 2021 B2
10912559 Harris et al. Feb 2021 B2
10912562 Dunki-Jacobs et al. Feb 2021 B2
10912575 Shelton, IV et al. Feb 2021 B2
10918364 Applegate et al. Feb 2021 B2
10918380 Morgan et al. Feb 2021 B2
10918385 Overmyer et al. Feb 2021 B2
10918386 Shelton, IV et al. Feb 2021 B2
10919156 Roberts et al. Feb 2021 B2
10925600 McCuen Feb 2021 B2
10925605 Moore et al. Feb 2021 B2
D914878 Shelton, IV et al. Mar 2021 S
10932772 Shelton, IV et al. Mar 2021 B2
10932774 Shelton, IV Mar 2021 B2
10932775 Shelton, IV et al. Mar 2021 B2
10932778 Smith et al. Mar 2021 B2
10932779 Vendely et al. Mar 2021 B2
10932784 Mozdzierz et al. Mar 2021 B2
10932804 Scheib et al. Mar 2021 B2
10932806 Shelton, IV et al. Mar 2021 B2
10932872 Shelton, IV et al. Mar 2021 B2
10944728 Wiener et al. Mar 2021 B2
10945727 Shelton, IV et al. Mar 2021 B2
10945728 Morgan et al. Mar 2021 B2
10945729 Shelton, IV et al. Mar 2021 B2
10945731 Baxter, III et al. Mar 2021 B2
10952708 Scheib et al. Mar 2021 B2
10952726 Chowaniec Mar 2021 B2
10952727 Giordano et al. Mar 2021 B2
10952728 Shelton, IV et al. Mar 2021 B2
10952759 Messerly et al. Mar 2021 B2
10952767 Kostrzewski et al. Mar 2021 B2
10959722 Morgan et al. Mar 2021 B2
10959725 Kerr et al. Mar 2021 B2
10959726 Williams et al. Mar 2021 B2
10959727 Hunter et al. Mar 2021 B2
10959731 Casasanta, Jr. et al. Mar 2021 B2
10959744 Shelton, IV et al. Mar 2021 B2
10959797 Licht et al. Mar 2021 B2
D917500 Siebel et al. Apr 2021 S
10966627 Shelton, IV et al. Apr 2021 B2
10966717 Shah et al. Apr 2021 B2
10966718 Shelton, IV et al. Apr 2021 B2
10966791 Harris et al. Apr 2021 B2
10973515 Harris et al. Apr 2021 B2
10973516 Shelton, IV et al. Apr 2021 B2
10973517 Wixey Apr 2021 B2
10973519 Weir et al. Apr 2021 B2
10973520 Shelton, IV et al. Apr 2021 B2
10980534 Yates et al. Apr 2021 B2
10980535 Yates et al. Apr 2021 B2
10980536 Weaner et al. Apr 2021 B2
10980537 Shelton, IV et al. Apr 2021 B2
10980538 Nalagatla et al. Apr 2021 B2
10980539 Harris et al. Apr 2021 B2
10980560 Shelton, IV et al. Apr 2021 B2
10983646 Yoon et al. Apr 2021 B2
10987102 Gonzalez et al. Apr 2021 B2
10987178 Shelton, IV et al. Apr 2021 B2
10993713 Shelton, IV et al. May 2021 B2
10993715 Shelton, IV et al. May 2021 B2
10993716 Shelton, IV et al. May 2021 B2
10993717 Shelton, IV et al. May 2021 B2
11000274 Shelton, IV et al. May 2021 B2
11000275 Shelton, IV et al. May 2021 B2
11000277 Giordano et al. May 2021 B2
11000278 Shelton, IV et al. May 2021 B2
11000279 Shelton, IV et al. May 2021 B2
11005291 Calderoni May 2021 B2
11006951 Giordano et al. May 2021 B2
11006955 Shelton, IV et al. May 2021 B2
11007004 Shelton, IV et al. May 2021 B2
11007022 Shelton, IV et al. May 2021 B2
11013511 Huang et al. May 2021 B2
11013552 Widenhouse et al. May 2021 B2
11013563 Shelton, IV et al. May 2021 B2
11020016 Wallace et al. Jun 2021 B2
11020112 Shelton, IV et al. Jun 2021 B2
11020113 Shelton, IV et al. Jun 2021 B2
11020114 Shelton, IV et al. Jun 2021 B2
11020115 Scheib et al. Jun 2021 B2
11026678 Overmyer et al. Jun 2021 B2
11026680 Shelton, IV et al. Jun 2021 B2
11026684 Shelton, IV et al. Jun 2021 B2
11026687 Shelton, IV et al. Jun 2021 B2
11026712 Shelton, IV et al. Jun 2021 B2
11026713 Stokes et al. Jun 2021 B2
11026751 Shelton, IV et al. Jun 2021 B2
11033267 Shelton, IV et al. Jun 2021 B2
11039834 Harris et al. Jun 2021 B2
11039836 Shelton, IV et al. Jun 2021 B2
11039837 Shelton, IV et al. Jun 2021 B2
11039849 Bucciaglia et al. Jun 2021 B2
11045189 Yates et al. Jun 2021 B2
11045191 Shelton, IV et al. Jun 2021 B2
11045192 Harris et al. Jun 2021 B2
11045196 Olson et al. Jun 2021 B2
11045197 Shelton, IV et al. Jun 2021 B2
11045199 Mozdzierz et al. Jun 2021 B2
11045270 Shelton, IV et al. Jun 2021 B2
11051807 Shelton, IV et al. Jul 2021 B2
11051810 Harris et al. Jul 2021 B2
11051811 Shelton, IV et al. Jul 2021 B2
11051813 Shelton, IV et al. Jul 2021 B2
11051836 Shelton, IV et al. Jul 2021 B2
11051840 Shelton, IV et al. Jul 2021 B2
11051873 Wiener et al. Jul 2021 B2
11058418 Shelton, IV et al. Jul 2021 B2
11058420 Shelton, IV et al. Jul 2021 B2
11058422 Harris et al. Jul 2021 B2
11058423 Shelton, IV et al. Jul 2021 B2
11058424 Shelton, IV et al. Jul 2021 B2
11058425 Widenhouse et al. Jul 2021 B2
11058426 Nalagatla et al. Jul 2021 B2
11058498 Shelton, IV et al. Jul 2021 B2
11064997 Shelton, IV et al. Jul 2021 B2
11064998 Shelton, IV Jul 2021 B2
11065048 Messerly et al. Jul 2021 B2
11069012 Shelton, IV et al. Jul 2021 B2
11071542 Chen et al. Jul 2021 B2
11071543 Shelton, IV et al. Jul 2021 B2
11071545 Baber et al. Jul 2021 B2
11071554 Parfett et al. Jul 2021 B2
11071560 Deck et al. Jul 2021 B2
11076853 Parfett et al. Aug 2021 B2
11076854 Baber et al. Aug 2021 B2
11076921 Shelton, IV et al. Aug 2021 B2
11076929 Shelton, IV et al. Aug 2021 B2
11083452 Schmid et al. Aug 2021 B2
11083453 Shelton, IV et al. Aug 2021 B2
11083454 Harris et al. Aug 2021 B2
11083455 Shelton, IV et al. Aug 2021 B2
11083456 Shelton, IV et al. Aug 2021 B2
11083457 Shelton, IV et al. Aug 2021 B2
11083458 Harris et al. Aug 2021 B2
11090045 Shelton, IV Aug 2021 B2
11090046 Shelton, IV et al. Aug 2021 B2
11090047 Shelton, IV et al. Aug 2021 B2
11090048 Fanelli et al. Aug 2021 B2
11090049 Bakos et al. Aug 2021 B2
11090075 Hunter et al. Aug 2021 B2
11096688 Shelton, IV et al. Aug 2021 B2
11096689 Overmyer et al. Aug 2021 B2
11100631 Yates et al. Aug 2021 B2
11103241 Yates et al. Aug 2021 B2
11103248 Shelton, IV et al. Aug 2021 B2
11103268 Shelton, IV et al. Aug 2021 B2
11103269 Shelton, IV et al. Aug 2021 B2
11109858 Shelton, IV et al. Sep 2021 B2
11109859 Overmyer et al. Sep 2021 B2
11109860 Shelton, IV et al. Sep 2021 B2
11109866 Shelton, IV et al. Sep 2021 B2
11109878 Shelton, IV et al. Sep 2021 B2
11109925 Cooper et al. Sep 2021 B2
11116485 Scheib et al. Sep 2021 B2
11116502 Shelton, IV et al. Sep 2021 B2
11116594 Beardsley Sep 2021 B2
11123069 Baxter, III et al. Sep 2021 B2
11123070 Shelton, IV et al. Sep 2021 B2
11129611 Shelton, IV et al. Sep 2021 B2
11129613 Harris et al. Sep 2021 B2
11129615 Scheib et al. Sep 2021 B2
11129616 Shelton, IV et al. Sep 2021 B2
11129634 Scheib et al. Sep 2021 B2
11129636 Shelton, IV et al. Sep 2021 B2
11129666 Messerly et al. Sep 2021 B2
11129680 Shelton, IV et al. Sep 2021 B2
11132462 Shelton, IV et al. Sep 2021 B2
11133106 Shelton, IV et al. Sep 2021 B2
11134938 Timm et al. Oct 2021 B2
11134940 Shelton, IV et al. Oct 2021 B2
11134942 Harris et al. Oct 2021 B2
11134943 Giordano et al. Oct 2021 B2
11134944 Wise et al. Oct 2021 B2
11134947 Shelton, IV et al. Oct 2021 B2
11135352 Shelton, IV et al. Oct 2021 B2
11141153 Shelton, IV et al. Oct 2021 B2
11141154 Shelton, IV et al. Oct 2021 B2
11141155 Shelton, IV Oct 2021 B2
11141156 Shelton, IV Oct 2021 B2
11141159 Scheib et al. Oct 2021 B2
11141160 Shelton, IV et al. Oct 2021 B2
11147547 Shelton, IV et al. Oct 2021 B2
11147549 Timm et al. Oct 2021 B2
11147551 Shelton, IV Oct 2021 B2
11147553 Shelton, IV Oct 2021 B2
11147554 Aronhalt et al. Oct 2021 B2
11154296 Aronhalt et al. Oct 2021 B2
11154297 Swayze et al. Oct 2021 B2
11154298 Timm et al. Oct 2021 B2
11154299 Shelton, IV et al. Oct 2021 B2
11154300 Nalagatla et al. Oct 2021 B2
11154301 Beckman et al. Oct 2021 B2
11160551 Shelton, IV et al. Nov 2021 B2
11160553 Simms et al. Nov 2021 B2
11160601 Worrell et al. Nov 2021 B2
11166716 Shelton, IV et al. Nov 2021 B2
11166717 Shelton, IV et al. Nov 2021 B2
11166720 Giordano et al. Nov 2021 B2
11166772 Shelton, IV et al. Nov 2021 B2
11166773 Ragosta et al. Nov 2021 B2
11172580 Gaertner, II Nov 2021 B2
11172927 Shelton, IV Nov 2021 B2
11172929 Shelton, IV Nov 2021 B2
11179150 Yates et al. Nov 2021 B2
11179151 Shelton, IV et al. Nov 2021 B2
11179152 Morgan et al. Nov 2021 B2
11179153 Shelton, IV Nov 2021 B2
11179155 Shelton, IV et al. Nov 2021 B2
11179208 Yates et al. Nov 2021 B2
11185325 Shelton, IV et al. Nov 2021 B2
11185330 Huitema et al. Nov 2021 B2
11191539 Overmyer et al. Dec 2021 B2
11191540 Aronhalt et al. Dec 2021 B2
11191543 Overmyer et al. Dec 2021 B2
11191545 Vendely et al. Dec 2021 B2
11197668 Shelton, IV et al. Dec 2021 B2
11197670 Shelton, IV et al. Dec 2021 B2
11197671 Shelton, IV et al. Dec 2021 B2
11197672 Dunki-Jacobs et al. Dec 2021 B2
11202570 Shelton, IV et al. Dec 2021 B2
11202631 Shelton, IV et al. Dec 2021 B2
11202633 Harris et al. Dec 2021 B2
11207064 Shelton, IV et al. Dec 2021 B2
11207065 Harris et al. Dec 2021 B2
11207067 Shelton, IV et al. Dec 2021 B2
11207089 Kostrzewski et al. Dec 2021 B2
11207090 Shelton, IV et al. Dec 2021 B2
11207146 Shelton, IV et al. Dec 2021 B2
11213293 Worthington et al. Jan 2022 B2
11213294 Shelton, IV et al. Jan 2022 B2
11213302 Parfett et al. Jan 2022 B2
11213359 Shelton, IV et al. Jan 2022 B2
11219453 Shelton, IV et al. Jan 2022 B2
11219455 Shelton, IV et al. Jan 2022 B2
11224423 Shelton, IV et al. Jan 2022 B2
11224426 Shelton, IV et al. Jan 2022 B2
11224427 Shelton, IV et al. Jan 2022 B2
11224428 Scott et al. Jan 2022 B2
11224454 Shelton, IV et al. Jan 2022 B2
11224497 Shelton, IV et al. Jan 2022 B2
11229436 Shelton, IV et al. Jan 2022 B2
11229437 Shelton, IV et al. Jan 2022 B2
11234698 Shelton, IV et al. Feb 2022 B2
11234700 Ragosta et al. Feb 2022 B2
11241229 Shelton, IV et al. Feb 2022 B2
11241230 Shelton, IV et al. Feb 2022 B2
11241235 Shelton, IV et al. Feb 2022 B2
11246590 Swayze et al. Feb 2022 B2
11246592 Shelton, IV et al. Feb 2022 B2
11246616 Shelton, IV et al. Feb 2022 B2
11246618 Hall et al. Feb 2022 B2
11246678 Shelton, IV et al. Feb 2022 B2
11253254 Kimball et al. Feb 2022 B2
11253256 Harris et al. Feb 2022 B2
11259799 Overmyer et al. Mar 2022 B2
11259803 Shelton, IV et al. Mar 2022 B2
11259805 Shelton, IV et al. Mar 2022 B2
11259806 Shelton, IV et al. Mar 2022 B2
11259807 Shelton, IV et al. Mar 2022 B2
11266405 Shelton, IV et al. Mar 2022 B2
11266406 Leimbach et al. Mar 2022 B2
11266409 Huitema et al. Mar 2022 B2
11266410 Shelton, IV et al. Mar 2022 B2
11266468 Shelton, IV et al. Mar 2022 B2
11272927 Swayze et al. Mar 2022 B2
11272928 Shelton, IV Mar 2022 B2
11272931 Boudreaux et al. Mar 2022 B2
11272938 Shelton, IV et al. Mar 2022 B2
11278279 Morgan et al. Mar 2022 B2
11278280 Shelton, IV et al. Mar 2022 B2
11278284 Shelton, IV et al. Mar 2022 B2
11284890 Nalagatla et al. Mar 2022 B2
11284891 Shelton, IV et al. Mar 2022 B2
11284898 Baxter, III et al. Mar 2022 B2
11284953 Shelton, IV et al. Mar 2022 B2
11291440 Harris et al. Apr 2022 B2
11291441 Giordano et al. Apr 2022 B2
11291444 Boudreaux et al. Apr 2022 B2
11291445 Shelton, IV et al. Apr 2022 B2
11291447 Shelton, IV et al. Apr 2022 B2
11291449 Swensgard et al. Apr 2022 B2
11291451 Shelton, IV Apr 2022 B2
11291465 Parihar et al. Apr 2022 B2
11291510 Shelton, IV et al. Apr 2022 B2
11298125 Ming et al. Apr 2022 B2
11298127 Shelton, IV Apr 2022 B2
11298128 Messerly et al. Apr 2022 B2
11298129 Bakos et al. Apr 2022 B2
11298130 Bakos et al. Apr 2022 B2
11298132 Shelton, IV et al. Apr 2022 B2
11298134 Huitema et al. Apr 2022 B2
11304695 Shelton, IV et al. Apr 2022 B2
11304696 Shelton, IV et al. Apr 2022 B2
11304697 Fanelli et al. Apr 2022 B2
11304699 Shelton, IV et al. Apr 2022 B2
11304704 Thomas et al. Apr 2022 B2
11311290 Shelton, IV et al. Apr 2022 B2
11311292 Shelton, IV et al. Apr 2022 B2
11311294 Swayze et al. Apr 2022 B2
11311295 Wingardner et al. Apr 2022 B2
11311342 Parihar et al. Apr 2022 B2
D950728 Bakos et al. May 2022 S
D952144 Boudreaux May 2022 S
11317910 Miller et al. May 2022 B2
11317912 Jenkins et al. May 2022 B2
11317913 Shelton, IV et al. May 2022 B2
11317915 Boudreaux et al. May 2022 B2
11317917 Shelton, IV et al. May 2022 B2
11317919 Shelton, IV et al. May 2022 B2
11317978 Cameron et al. May 2022 B2
11324501 Shelton, IV et al. May 2022 B2
11324503 Shelton, IV et al. May 2022 B2
11324506 Beckman et al. May 2022 B2
11324557 Shelton, IV et al. May 2022 B2
11331100 Boudreaux et al. May 2022 B2
11331101 Harris et al. May 2022 B2
11337691 Widenhouse et al. May 2022 B2
11337693 Hess et al. May 2022 B2
11337698 Baxter, III et al. May 2022 B2
11344299 Yates et al. May 2022 B2
11344303 Shelton, IV et al. May 2022 B2
11350843 Shelton, IV et al. Jun 2022 B2
11350916 Shelton, IV et al. Jun 2022 B2
11350928 Shelton, IV et al. Jun 2022 B2
11350929 Giordano et al. Jun 2022 B2
11350932 Shelton, IV et al. Jun 2022 B2
11350934 Bakos et al. Jun 2022 B2
11350935 Shelton, IV et al. Jun 2022 B2
11350938 Shelton, IV et al. Jun 2022 B2
11357503 Bakos et al. Jun 2022 B2
11361176 Shelton, IV et al. Jun 2022 B2
11364027 Harris et al. Jun 2022 B2
11364046 Shelton, IV et al. Jun 2022 B2
11369368 Shelton, IV et al. Jun 2022 B2
11369376 Simms et al. Jun 2022 B2
11369377 Boudreaux et al. Jun 2022 B2
11373755 Shelton, IV et al. Jun 2022 B2
11376001 Shelton, IV et al. Jul 2022 B2
11376082 Shelton, IV et al. Jul 2022 B2
11376098 Shelton, IV et al. Jul 2022 B2
11382625 Huitema et al. Jul 2022 B2
11382626 Shelton, IV et al. Jul 2022 B2
11382627 Huitema et al. Jul 2022 B2
11382628 Baxter, III et al. Jul 2022 B2
11382638 Harris et al. Jul 2022 B2
11382697 Shelton, IV et al. Jul 2022 B2
11389160 Shelton, IV et al. Jul 2022 B2
11389161 Shelton, IV et al. Jul 2022 B2
11389162 Baber et al. Jul 2022 B2
11389164 Yates et al. Jul 2022 B2
11395651 Shelton, IV et al. Jul 2022 B2
11395652 Parihar et al. Jul 2022 B2
11399828 Swayze et al. Aug 2022 B2
11399829 Leimbach et al. Aug 2022 B2
11399831 Overmyer et al. Aug 2022 B2
11399837 Shelton, IV et al. Aug 2022 B2
11406377 Schmid et al. Aug 2022 B2
11406378 Baxter, III et al. Aug 2022 B2
11406380 Yates et al. Aug 2022 B2
11406381 Parihar et al. Aug 2022 B2
11406382 Shelton, IV et al. Aug 2022 B2
11406386 Baber et al. Aug 2022 B2
11406390 Shelton, IV et al. Aug 2022 B2
11410259 Harris et al. Aug 2022 B2
11413042 Shelton, IV et al. Aug 2022 B2
11413102 Shelton, IV et al. Aug 2022 B2
11419606 Overmyer et al. Aug 2022 B2
11419630 Yates et al. Aug 2022 B2
11424027 Shelton, IV Aug 2022 B2
11426160 Shelton, IV et al. Aug 2022 B2
11426167 Shelton, IV et al. Aug 2022 B2
11426251 Kimball et al. Aug 2022 B2
11432816 Leimbach et al. Sep 2022 B2
11432885 Shelton, IV et al. Sep 2022 B2
11439391 Bruns et al. Sep 2022 B2
11439470 Spivey et al. Sep 2022 B2
11446029 Shelton, IV et al. Sep 2022 B2
11446034 Shelton, IV et al. Sep 2022 B2
11452528 Leimbach et al. Sep 2022 B2
D966512 Shelton, IV et al. Oct 2022 S
D967421 Shelton, IV et al. Oct 2022 S
11457918 Shelton, IV et al. Oct 2022 B2
11464511 Timm et al. Oct 2022 B2
11464512 Shelton, IV et al. Oct 2022 B2
11464513 Shelton, IV et al. Oct 2022 B2
11464514 Yates et al. Oct 2022 B2
11464601 Shelton, IV et al. Oct 2022 B2
11471155 Shelton, IV et al. Oct 2022 B2
11471156 Shelton, IV et al. Oct 2022 B2
11471157 Baxter, III et al. Oct 2022 B2
11478241 Shelton, IV et al. Oct 2022 B2
11478242 Shelton, IV et al. Oct 2022 B2
11478244 Dinardo et al. Oct 2022 B2
D971232 Siebel et al. Nov 2022 S
11484307 Hall et al. Nov 2022 B2
11484309 Harris et al. Nov 2022 B2
11484310 Shelton, IV et al. Nov 2022 B2
11484311 Shelton, IV et al. Nov 2022 B2
11484312 Shelton, IV et al. Nov 2022 B2
11490889 Overmyer et al. Nov 2022 B2
11497488 Leimbach et al. Nov 2022 B2
11497489 Baxter, III et al. Nov 2022 B2
11497492 Shelton, IV Nov 2022 B2
11497499 Shelton, IV et al. Nov 2022 B2
11504116 Schmid et al. Nov 2022 B2
11504119 Shelton, IV et al. Nov 2022 B2
11504122 Shelton, IV et al. Nov 2022 B2
11504192 Shelton, IV et al. Nov 2022 B2
11510671 Shelton, IV et al. Nov 2022 B2
11510741 Shelton, IV et al. Nov 2022 B2
11517304 Yates et al. Dec 2022 B2
11517306 Miller et al. Dec 2022 B2
11517309 Bakos et al. Dec 2022 B2
11517311 Lytle, IV et al. Dec 2022 B2
11517315 Huitema et al. Dec 2022 B2
11517325 Shelton, IV et al. Dec 2022 B2
11517390 Baxter, III Dec 2022 B2
11523821 Harris et al. Dec 2022 B2
11523822 Shelton, IV et al. Dec 2022 B2
11523823 Hunter et al. Dec 2022 B2
11529137 Shelton, IV et al. Dec 2022 B2
11529138 Jaworek et al. Dec 2022 B2
11529139 Shelton, IV et al. Dec 2022 B2
11529140 Shelton, IV et al. Dec 2022 B2
11529142 Leimbach et al. Dec 2022 B2
11534162 Shelton, IV Dec 2022 B2
11534259 Leimbach et al. Dec 2022 B2
D974560 Shelton, IV et al. Jan 2023 S
D975278 Shelton, IV et al. Jan 2023 S
11540824 Shelton, IV et al. Jan 2023 B2
11540829 Shelton, IV et al. Jan 2023 B2
11547403 Shelton, IV et al. Jan 2023 B2
11547404 Shelton, IV et al. Jan 2023 B2
20010000531 Casscells et al. Apr 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010030219 Green et al. Oct 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010045442 Whitman Nov 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022810 Urich Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020023126 Flavin Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020042620 Julian et al. Apr 2002 A1
20020054158 Asami May 2002 A1
20020082612 Moll et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020091374 Cooper Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020111621 Wallace et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020116063 Giannetti et al. Aug 2002 A1
20020117533 Milliman et al. Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020138086 Sixto et al. Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020151770 Noll et al. Oct 2002 A1
20020158593 Henderson et al. Oct 2002 A1
20020161277 Boone et al. Oct 2002 A1
20020177848 Truckai et al. Nov 2002 A1
20020185514 Adams et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020188287 Zvuloni et al. Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030011245 Fiebig Jan 2003 A1
20030012805 Chen et al. Jan 2003 A1
20030018323 Wallace et al. Jan 2003 A1
20030028236 Gillick et al. Feb 2003 A1
20030040670 Govari Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030047230 Kim Mar 2003 A1
20030047582 Sonnenschein et al. Mar 2003 A1
20030050628 Whitman et al. Mar 2003 A1
20030050654 Whitman et al. Mar 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030083648 Wang et al. May 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030094356 Waldron May 2003 A1
20030096158 Takano et al. May 2003 A1
20030105475 Sancoff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030121586 Mitra et al. Jul 2003 A1
20030135204 Lee et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144660 Mollenauer Jul 2003 A1
20030149406 Martineau et al. Aug 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163029 Sonnenschein et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030164172 Chumas et al. Sep 2003 A1
20030181800 Bonutti Sep 2003 A1
20030181900 Long Sep 2003 A1
20030190584 Heasley Oct 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030212005 Petito et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040007608 Ehrenfels et al. Jan 2004 A1
20040024457 Boyce et al. Feb 2004 A1
20040028502 Cummins Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040034287 Hickle Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044295 Reinert et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049172 Root et al. Mar 2004 A1
20040059362 Knodel et al. Mar 2004 A1
20040068161 Couvillon Apr 2004 A1
20040068224 Couvillon et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakakibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040085180 Juang May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093020 Sinton May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Wiesner et al. May 2004 A1
20040102783 Sutterlin et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040119185 Chen Jun 2004 A1
20040122419 Neuberger Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040133189 Sakurai Jul 2004 A1
20040143297 Ramsey Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040197367 Rezania et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040204735 Shiroff et al. Oct 2004 A1
20040218451 Said et al. Nov 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne et al. Nov 2004 A1
20040231870 McCormick et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040239582 Seymour Dec 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040247415 Mangone Dec 2004 A1
20040249366 Kunz Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040254680 Sunaoshi Dec 2004 A1
20040260315 Deli et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050023325 Gresham et al. Feb 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zepf et al. Feb 2005 A1
20050044489 Yamagami et al. Feb 2005 A1
20050051163 Deem et al. Mar 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050057225 Marquet Mar 2005 A1
20050058890 Brazell et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050067548 Inoue Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050079088 Wirth et al. Apr 2005 A1
20050080342 Gilreath et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050090709 Okada et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050120836 Anderson Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050129735 Cook et al. Jun 2005 A1
20050130682 Takara et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145671 Viola Jul 2005 A1
20050145672 Schwemberger et al. Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050177249 Kladakis et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050182443 Jonn et al. Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050186240 Ringeisen et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050191936 Marine et al. Sep 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050209614 Fenter et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050222587 Jinno et al. Oct 2005 A1
20050222611 Weitkamp Oct 2005 A1
20050222616 Rethy et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050230453 Viola Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050242950 Lindsay et al. Nov 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050246881 Kelly et al. Nov 2005 A1
20050251063 Basude Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050256546 Vaisnys et al. Nov 2005 A1
20050258963 Rodriguez et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050274034 Hayashida et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20050283226 Haverkost Dec 2005 A1
20060008787 Hayman et al. Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020272 Gildenberg Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025812 Shelton Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052824 Ransick et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060097699 Kamenoff May 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100649 Hart May 2006 A1
20060106369 Desai et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060144898 Bilotti et al. Jul 2006 A1
20060154546 Murphy et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173290 Lavallee et al. Aug 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060176242 Jaramaz et al. Aug 2006 A1
20060178556 Hasser et al. Aug 2006 A1
20060180633 Emmons Aug 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060199999 Ikeda et al. Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060226957 Miller et al. Oct 2006 A1
20060235368 Oz Oct 2006 A1
20060241666 Briggs et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060247584 Sheetz et al. Nov 2006 A1
20060252981 Matsuda et al. Nov 2006 A1
20060252990 Kubach Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060261763 Iott et al. Nov 2006 A1
20060263444 Ming et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289600 Wales et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070005045 Mintz et al. Jan 2007 A1
20070009570 Kim et al. Jan 2007 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton et al. Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070018958 Tavakoli et al. Jan 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070043338 Moll et al. Feb 2007 A1
20070043387 Vargas et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070055305 Schnyder et al. Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070073389 Bolduc et al. Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070088376 Zacharias Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070103437 Rosenberg May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070134251 Ashkenazi et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070152612 Chen et al. Jul 2007 A1
20070152829 Lindsay et al. Jul 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070162056 Gerbi et al. Jul 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179477 Danger Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070187857 Riley et al. Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070191915 Strother et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194081 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070207010 Caspi Sep 2007 A1
20070208359 Hoffman Sep 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070213750 Weadock Sep 2007 A1
20070221701 Ortiz et al. Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070244496 Hellenkamp Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070260132 Sterling Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070262592 Hwang et al. Nov 2007 A1
20070270660 Caylor et al. Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070290027 Maatta et al. Dec 2007 A1
20070296286 Avenell Dec 2007 A1
20080000941 Sonnenschein et al. Jan 2008 A1
20080003196 Jonn et al. Jan 2008 A1
20080007237 Nagashima et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080021486 Oyola et al. Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080042861 Dacquay et al. Feb 2008 A1
20080046000 Lee et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080064920 Bakos et al. Mar 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080069736 Mingerink et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080077158 Haider et al. Mar 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080081948 Weisenburgh et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080083811 Marczyk Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080125749 Olson May 2008 A1
20080126984 Fleishman et al. May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080149682 Uhm Jun 2008 A1
20080154299 Livneh Jun 2008 A1
20080154335 Thrope et al. Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080177392 Williams et al. Jul 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080196253 Ezra et al. Aug 2008 A1
20080196419 Dube Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080206186 Butler et al. Aug 2008 A1
20080208058 Sabata et al. Aug 2008 A1
20080216704 Eisenbeis et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080234866 Kishi et al. Sep 2008 A1
20080242939 Johnston Oct 2008 A1
20080243088 Evans Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255420 Lee et al. Oct 2008 A1
20080255421 Hegeman et al. Oct 2008 A1
20080255663 Akpek et al. Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080281332 Taylor Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080293910 Kapiamba et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080296347 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080298784 Kastner Dec 2008 A1
20080308504 Hallan et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20080308807 Yamazaki et al. Dec 2008 A1
20080312686 Ellingwood Dec 2008 A1
20080312687 Blier Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090007014 Coomer et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090048583 Williams et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090081313 Aghion et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090110533 Jinno Apr 2009 A1
20090112234 Crainich et al. Apr 2009 A1
20090114701 Zemlok et al. May 2009 A1
20090118762 Crainch et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090120994 Murray et al. May 2009 A1
20090131819 Ritchie et al. May 2009 A1
20090132400 Conway May 2009 A1
20090135280 Johnston et al. May 2009 A1
20090138003 Deville et al. May 2009 A1
20090143797 Smith et al. Jun 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090167548 Sugahara Jul 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090177218 Young et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090181290 Baldwin et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090204126 Le Aug 2009 A1
20090204925 Bhat et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090221993 Sohi et al. Sep 2009 A1
20090227834 Nakamoto et al. Sep 2009 A1
20090234273 Lntoccia et al. Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090246873 Yamamoto et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248100 Vaisnys et al. Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090261141 Stratton et al. Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090273353 Kroh et al. Nov 2009 A1
20090277288 Doepker et al. Nov 2009 A1
20090278406 Hoffman Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20090318557 Stockel Dec 2009 A1
20090325859 Ameer et al. Dec 2009 A1
20100002013 Kagaya Jan 2010 A1
20100005035 Carpenter et al. Jan 2010 A1
20100012703 Calabrese et al. Jan 2010 A1
20100015104 Fraser et al. Jan 2010 A1
20100016853 Burbank Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100017715 Balassanian Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100030239 Viola et al. Feb 2010 A1
20100032179 Hanspers et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100036441 Procter Feb 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100065604 Weng Mar 2010 A1
20100069833 Wenderow et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094312 Ruiz Morales et al. Apr 2010 A1
20100094340 Stopek et al. Apr 2010 A1
20100094400 Bolduc et al. Apr 2010 A1
20100100123 Bennett Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100116519 Gareis May 2010 A1
20100122339 Boccacci May 2010 A1
20100125786 Ozawa et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100137990 Apatsidis et al. Jun 2010 A1
20100138659 Carmichael et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100159435 Mueller et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100191262 Harris et al. Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100194541 Stevenson et al. Aug 2010 A1
20100198159 Voss et al. Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100204721 Young et al. Aug 2010 A1
20100217281 Matsuoka et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234687 Azarbarzin et al. Sep 2010 A1
20100241137 Doyle et al. Sep 2010 A1
20100245102 Yokoi Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249947 Lesh et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100258327 Esenwein et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100291184 Clark et al. Nov 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100298636 Castro et al. Nov 2010 A1
20100301097 Scirica et al. Dec 2010 A1
20100310623 Laurencin et al. Dec 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100318085 Austin et al. Dec 2010 A1
20100325568 Pedersen et al. Dec 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110009694 Schultz et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110028991 Ikeda et al. Feb 2011 A1
20110029270 Mueglitz Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110052660 Yang et al. Mar 2011 A1
20110056717 Herisse Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110066156 McGahan et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110091515 Zilberman et al. Apr 2011 A1
20110095064 Taylor et al. Apr 2011 A1
20110095067 Ohdaira Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110101794 Schroeder et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110112530 Keller May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110118708 Burbank et al. May 2011 A1
20110118754 Dachs, II et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110127945 Yoneda Jun 2011 A1
20110129706 Takahashi et al. Jun 2011 A1
20110144764 Bagga et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110172495 Armstrong Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110199225 Touchberry et al. Aug 2011 A1
20110218400 Ma et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110220381 Friese et al. Sep 2011 A1
20110224543 Johnson et al. Sep 2011 A1
20110225105 Scholer et al. Sep 2011 A1
20110230713 Kleemann et al. Sep 2011 A1
20110235168 Sander Sep 2011 A1
20110238044 Main et al. Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110251606 Kerr Oct 2011 A1
20110256266 Orme et al. Oct 2011 A1
20110271186 Owens Nov 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278035 Chen Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110285507 Nelson Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110290858 Whitman et al. Dec 2011 A1
20110292258 Adler et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110295299 Braithwaite et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120007442 Rhodes et al. Jan 2012 A1
20120008880 Toth Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120016467 Chen et al. Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120029550 Forsell Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080491 Shelton, IV et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120086276 Sawyers Apr 2012 A1
20120095458 Cybulski et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116261 Mumaw et al. May 2012 A1
20120116262 Houser et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120118595 Pellenc May 2012 A1
20120123463 Jacobs May 2012 A1
20120125792 Cassivi May 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120132286 Lim et al. May 2012 A1
20120143175 Hermann et al. Jun 2012 A1
20120171539 Rejman et al. Jul 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120190964 Hyde et al. Jul 2012 A1
20120197239 Smith et al. Aug 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120203213 Kimball et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120220990 McKenzie et al. Aug 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120239068 Morris et al. Sep 2012 A1
20120241494 Marczyk Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120251861 Liang et al. Oct 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120256494 Kesler et al. Oct 2012 A1
20120271327 West et al. Oct 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120286019 Hueil et al. Nov 2012 A1
20120289811 Viola et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120296316 Imuta Nov 2012 A1
20120296342 Haglund Wendelschafer Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120301498 Altreuter et al. Nov 2012 A1
20120310254 Manzo et al. Dec 2012 A1
20120316424 Stopek Dec 2012 A1
20120330329 Harris et al. Dec 2012 A1
20130006227 Takashino Jan 2013 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130018400 Milton et al. Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130023910 Solomon et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130030462 Keating et al. Jan 2013 A1
20130041292 Cunningham Feb 2013 A1
20130057162 Pollischansky Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130069088 Speck et al. Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130096568 Justis Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130106352 Nagamine May 2013 A1
20130112729 Beardsley et al. May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130126202 Oomori et al. May 2013 A1
20130131476 Siu et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130136969 Yasui et al. May 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130158390 Tan et al. Jun 2013 A1
20130162198 Yokota et al. Jun 2013 A1
20130169217 Watanabe et al. Jul 2013 A1
20130172713 Kirschenman Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130175315 Milliman Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130183769 Tajima Jul 2013 A1
20130211244 Nathaniel Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130215449 Yamasaki Aug 2013 A1
20130231681 Robinson et al. Sep 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130248578 Arteaga Gonzalez Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130267950 Rosa et al. Oct 2013 A1
20130267978 Trissel Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130289565 Hassler, Jr. Oct 2013 A1
20130293353 McPherson et al. Nov 2013 A1
20130303845 Skula et al. Nov 2013 A1
20130306704 Balbierz et al. Nov 2013 A1
20130327552 Lovelass et al. Dec 2013 A1
20130333910 Tanimoto et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140002322 Kanome et al. Jan 2014 A1
20140005550 Lu et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140008289 Williams et al. Jan 2014 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140022283 Chan et al. Jan 2014 A1
20140039549 Belsky et al. Feb 2014 A1
20140041191 Knodel Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140069240 Dauvin et al. Mar 2014 A1
20140078715 Pickard et al. Mar 2014 A1
20140081176 Hassan Mar 2014 A1
20140088614 Blumenkranz Mar 2014 A1
20140094681 Valentine et al. Apr 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140107697 Patani et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140115229 Kothamasu et al. Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140155916 Hodgkinson et al. Jun 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140166723 Beardsley et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140175147 Manoux et al. Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140181710 Baalu et al. Jun 2014 A1
20140183244 Duque et al. Jul 2014 A1
20140188091 Vidal et al. Jul 2014 A1
20140188101 Bales, Jr. et al. Jul 2014 A1
20140188159 Steege Jul 2014 A1
20140207124 Aldridge et al. Jul 2014 A1
20140209658 Skalla et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140228632 Sholev et al. Aug 2014 A1
20140228867 Thomas et al. Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140248167 Sugimoto et al. Sep 2014 A1
20140249557 Koch, Jr. et al. Sep 2014 A1
20140249573 Arav Sep 2014 A1
20140262408 Woodard Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140276730 Boudreaux et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140287703 Herbsommer et al. Sep 2014 A1
20140288460 Ouyang et al. Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140330298 Arshonsky et al. Nov 2014 A1
20140330579 Cashman et al. Nov 2014 A1
20140358163 Farin et al. Dec 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140374130 Nakamura et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150001272 Sniffin et al. Jan 2015 A1
20150002089 Rejman et al. Jan 2015 A1
20150022012 Kim et al. Jan 2015 A1
20150025549 Kilroy et al. Jan 2015 A1
20150025571 Suzuki et al. Jan 2015 A1
20150034697 Mastri et al. Feb 2015 A1
20150039010 Beardsley et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060516 Collings et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150066000 An et al. Mar 2015 A1
20150067582 Donnelly et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076211 Irka et al. Mar 2015 A1
20150080883 Haverkost et al. Mar 2015 A1
20150082624 Craig et al. Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150087952 Albert et al. Mar 2015 A1
20150088127 Craig et al. Mar 2015 A1
20150088547 Balram et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150127021 Harris et al. May 2015 A1
20150134077 Shelton, IV et al. May 2015 A1
20150150620 Miyamoto et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150201918 Kumar et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150216605 Baldwin Aug 2015 A1
20150222212 Iwata Aug 2015 A1
20150223868 Brandt et al. Aug 2015 A1
20150230697 Phee et al. Aug 2015 A1
20150230794 Wellman et al. Aug 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150238118 Legassey et al. Aug 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150297200 Fitzsimmons et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297824 Cabiri et al. Oct 2015 A1
20150303417 Koeder et al. Oct 2015 A1
20150305743 Casasanta et al. Oct 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150324317 Collins et al. Nov 2015 A1
20150352699 Sakai et al. Dec 2015 A1
20150366585 Lemay et al. Dec 2015 A1
20150367497 Ito et al. Dec 2015 A1
20150372265 Morisaku et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20160000437 Giordano et al. Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160029998 Brister et al. Feb 2016 A1
20160030042 Heinrich et al. Feb 2016 A1
20160030043 Fanelli et al. Feb 2016 A1
20160030076 Faller et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160074035 Whitman et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160082161 Zilberman et al. Mar 2016 A1
20160118201 Nicholas et al. Apr 2016 A1
20160132026 Wingardner et al. May 2016 A1
20160135835 Onuma May 2016 A1
20160135895 Faasse et al. May 2016 A1
20160139666 Rubin et al. May 2016 A1
20160174969 Kerr et al. Jun 2016 A1
20160174983 Shelton, IV et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160192927 Kostrzewski Jul 2016 A1
20160192960 Bueno et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160220150 Sharonov Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160242855 Fichtinger et al. Aug 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160249929 Cappola et al. Sep 2016 A1
20160256159 Pinjala et al. Sep 2016 A1
20160256184 Shelton, IV et al. Sep 2016 A1
20160256221 Smith Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262921 Balbierz et al. Sep 2016 A1
20160270781 Scirica Sep 2016 A1
20160287265 MacDonald et al. Oct 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160302820 Hibner et al. Oct 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160314716 Grubbs Oct 2016 A1
20160314717 Grubbs Oct 2016 A1
20160345972 Beardsley et al. Dec 2016 A1
20160367122 Ichimura et al. Dec 2016 A1
20160374669 Overmyer et al. Dec 2016 A1
20160374716 Kessler Dec 2016 A1
20170007234 Chin et al. Jan 2017 A1
20170007244 Shelton, IV et al. Jan 2017 A1
20170007245 Shelton, IV et al. Jan 2017 A1
20170007347 Jaworek et al. Jan 2017 A1
20170020616 Vale et al. Jan 2017 A1
20170055819 Hansen et al. Mar 2017 A1
20170055980 Vendely et al. Mar 2017 A1
20170056008 Shelton, IV et al. Mar 2017 A1
20170056016 Barton et al. Mar 2017 A1
20170056018 Zeiner et al. Mar 2017 A1
20170066054 Birky Mar 2017 A1
20170079642 Overmyer et al. Mar 2017 A1
20170086829 Vendely et al. Mar 2017 A1
20170086830 Yates et al. Mar 2017 A1
20170086842 Shelton, IV et al. Mar 2017 A1
20170086930 Thompson et al. Mar 2017 A1
20170086932 Auld et al. Mar 2017 A1
20170095922 Licht et al. Apr 2017 A1
20170105727 Scheib et al. Apr 2017 A1
20170105733 Scheib et al. Apr 2017 A1
20170105786 Scheib et al. Apr 2017 A1
20170106302 Cummings et al. Apr 2017 A1
20170135711 Overmyer et al. May 2017 A1
20170135717 Boudreaux et al. May 2017 A1
20170135747 Broderick et al. May 2017 A1
20170168187 Calderoni et al. Jun 2017 A1
20170172382 Nir et al. Jun 2017 A1
20170172549 Smaby et al. Jun 2017 A1
20170172662 Panescu et al. Jun 2017 A1
20170182195 Wagner Jun 2017 A1
20170182211 Raxworthy et al. Jun 2017 A1
20170196558 Morgan et al. Jul 2017 A1
20170196649 Yates et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202770 Friedrich et al. Jul 2017 A1
20170224332 Hunter et al. Aug 2017 A1
20170231628 Shelton, IV et al. Aug 2017 A1
20170231629 Stopek et al. Aug 2017 A1
20170238962 Hansen et al. Aug 2017 A1
20170242455 Dickens Aug 2017 A1
20170245949 Randle Aug 2017 A1
20170249431 Shelton, IV et al. Aug 2017 A1
20170252060 Ellingson et al. Sep 2017 A1
20170255799 Zhao et al. Sep 2017 A1
20170262110 Polishchuk et al. Sep 2017 A1
20170265774 Johnson et al. Sep 2017 A1
20170281186 Shelton, IV et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20170296185 Swensgard et al. Oct 2017 A1
20170296213 Swensgard et al. Oct 2017 A1
20170303984 Malackowski Oct 2017 A1
20170312042 Giordano et al. Nov 2017 A1
20170319047 Poulsen et al. Nov 2017 A1
20170319201 Morgan et al. Nov 2017 A1
20170333034 Morgan et al. Nov 2017 A1
20170333035 Morgan et al. Nov 2017 A1
20170348010 Chiang Dec 2017 A1
20170348043 Wang et al. Dec 2017 A1
20170354413 Chen et al. Dec 2017 A1
20170358052 Yuan Dec 2017 A1
20170360441 Sgroi Dec 2017 A1
20180042610 Sgroi, Jr. Feb 2018 A1
20180042689 Mozdzierz et al. Feb 2018 A1
20180049738 Meloul et al. Feb 2018 A1
20180049794 Swayze et al. Feb 2018 A1
20180051780 Shelton, IV et al. Feb 2018 A1
20180055501 Zemlok et al. Mar 2018 A1
20180067004 Sgroi, Jr. Mar 2018 A1
20180085117 Shelton, IV et al. Mar 2018 A1
20180085120 Viola Mar 2018 A1
20180092710 Bosisio et al. Apr 2018 A1
20180114591 Pribanic et al. Apr 2018 A1
20180116658 Aronhalt, IV et al. May 2018 A1
20180125481 Yates et al. May 2018 A1
20180125487 Beardsley May 2018 A1
20180125488 Morgan et al. May 2018 A1
20180125594 Beardsley May 2018 A1
20180132849 Miller et al. May 2018 A1
20180132850 Leimbach et al. May 2018 A1
20180132926 Asher et al. May 2018 A1
20180132952 Spivey et al. May 2018 A1
20180133521 Frushour et al. May 2018 A1
20180140299 Weaner et al. May 2018 A1
20180146960 Shelton, IV et al. May 2018 A1
20180153542 Shelton, IV et al. Jun 2018 A1
20180153634 Zemlok et al. Jun 2018 A1
20180161034 Scheib et al. Jun 2018 A1
20180168572 Burbank Jun 2018 A1
20180168574 Robinson et al. Jun 2018 A1
20180168575 Simms et al. Jun 2018 A1
20180168577 Aronhalt et al. Jun 2018 A1
20180168579 Aronhalt et al. Jun 2018 A1
20180168598 Shelton, IV et al. Jun 2018 A1
20180168608 Shelton, IV et al. Jun 2018 A1
20180168609 Fanelli et al. Jun 2018 A1
20180168610 Shelton, IV et al. Jun 2018 A1
20180168615 Shelton, IV et al. Jun 2018 A1
20180168618 Scott et al. Jun 2018 A1
20180168619 Scott et al. Jun 2018 A1
20180168623 Simms et al. Jun 2018 A1
20180168625 Posada et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180168647 Shelton, IV et al. Jun 2018 A1
20180168648 Shelton, IV et al. Jun 2018 A1
20180168650 Shelton, IV et al. Jun 2018 A1
20180168754 Overmyer Jun 2018 A1
20180228490 Richard et al. Aug 2018 A1
20180231475 Brown et al. Aug 2018 A1
20180235609 Harris et al. Aug 2018 A1
20180235617 Shelton, IV et al. Aug 2018 A1
20180235618 Kostrzewski Aug 2018 A1
20180235626 Shelton, IV et al. Aug 2018 A1
20180236181 Marlin et al. Aug 2018 A1
20180242970 Mozdzierz Aug 2018 A1
20180250002 Eschbach Sep 2018 A1
20180271604 Grout et al. Sep 2018 A1
20180273597 Stimson Sep 2018 A1
20180280073 Sanai et al. Oct 2018 A1
20180289371 Wang et al. Oct 2018 A1
20180296216 Shelton, IV et al. Oct 2018 A1
20180296290 Namiki et al. Oct 2018 A1
20180317905 Olson et al. Nov 2018 A1
20180317915 McDonald, II Nov 2018 A1
20180325514 Harris et al. Nov 2018 A1
20180333169 Leimbach et al. Nov 2018 A1
20180360446 Shelton, IV et al. Dec 2018 A1
20180360456 Shelton, IV et al. Dec 2018 A1
20180368066 Howell et al. Dec 2018 A1
20180368844 Bakos et al. Dec 2018 A1
20180372806 Laughery et al. Dec 2018 A1
20180375165 Shelton, IV et al. Dec 2018 A1
20190000459 Shelton, IV et al. Jan 2019 A1
20190000461 Shelton, IV et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000475 Shelton, IV et al. Jan 2019 A1
20190000477 Shelton, IV et al. Jan 2019 A1
20190000481 Harris et al. Jan 2019 A1
20190000535 Messerly et al. Jan 2019 A1
20190000536 Yates et al. Jan 2019 A1
20190008515 Beardsley et al. Jan 2019 A1
20190015102 Baber et al. Jan 2019 A1
20190015165 Giordano et al. Jan 2019 A1
20190017311 McGettrick et al. Jan 2019 A1
20190021733 Burbank Jan 2019 A1
20190029682 Huitema et al. Jan 2019 A1
20190029701 Shelton, IV et al. Jan 2019 A1
20190038281 Shelton, IV et al. Feb 2019 A1
20190038283 Shelton, IV et al. Feb 2019 A1
20190038285 Mozdzierz Feb 2019 A1
20190059986 Shelton, IV et al. Feb 2019 A1
20190076143 Smith Mar 2019 A1
20190090871 Shelton, IV et al. Mar 2019 A1
20190091183 Tomat et al. Mar 2019 A1
20190104919 Shelton, IV et al. Apr 2019 A1
20190105035 Shelton, IV et al. Apr 2019 A1
20190105036 Morgan et al. Apr 2019 A1
20190105037 Morgan et al. Apr 2019 A1
20190105039 Morgan et al. Apr 2019 A1
20190105044 Shelton, IV et al. Apr 2019 A1
20190110779 Gardner et al. Apr 2019 A1
20190110791 Shelton, IV et al. Apr 2019 A1
20190117224 Setser et al. Apr 2019 A1
20190125320 Shelton, IV et al. May 2019 A1
20190125335 Shelton, IV et al. May 2019 A1
20190125336 Deck et al. May 2019 A1
20190125338 Shelton, IV et al. May 2019 A1
20190125342 Beardsley et al. May 2019 A1
20190125344 DiNardo et al. May 2019 A1
20190125361 Shelton, IV et al. May 2019 A1
20190125377 Shelton, IV May 2019 A1
20190125378 Shelton, IV et al. May 2019 A1
20190125388 Shelton, IV et al. May 2019 A1
20190125430 Shelton, IV et al. May 2019 A1
20190125431 Shelton, IV et al. May 2019 A1
20190125432 Shelton, IV et al. May 2019 A1
20190125454 Stokes et al. May 2019 A1
20190125455 Shelton, IV et al. May 2019 A1
20190125476 Shelton, IV et al. May 2019 A1
20190133422 Nakamura May 2019 A1
20190133577 Weadock et al. May 2019 A1
20190138770 Compaijen et al. May 2019 A1
20190150925 Marczyk et al. May 2019 A1
20190151029 Robinson May 2019 A1
20190175847 Pocreva, III et al. Jun 2019 A1
20190183502 Shelton, IV et al. Jun 2019 A1
20190183503 Shelton, IV Jun 2019 A1
20190192141 Shelton, IV et al. Jun 2019 A1
20190192146 Widenhouse et al. Jun 2019 A1
20190192147 Shelton, IV et al. Jun 2019 A1
20190192148 Shelton, IV et al. Jun 2019 A1
20190192151 Shelton, IV et al. Jun 2019 A1
20190192153 Shelton, IV et al. Jun 2019 A1
20190192155 Shelton, IV et al. Jun 2019 A1
20190192157 Scott et al. Jun 2019 A1
20190200844 Shelton, IV et al. Jul 2019 A1
20190200905 Shelton, IV et al. Jul 2019 A1
20190200906 Shelton, IV et al. Jul 2019 A1
20190200977 Shelton, IV et al. Jul 2019 A1
20190200981 Harris Jul 2019 A1
20190200986 Shelton, IV et al. Jul 2019 A1
20190200987 Shelton, IV et al. Jul 2019 A1
20190200988 Shelton, IV Jul 2019 A1
20190200989 Burbank et al. Jul 2019 A1
20190200998 Shelton, IV et al. Jul 2019 A1
20190201018 Shelton, IV Jul 2019 A1
20190201020 Shelton, IV et al. Jul 2019 A1
20190201024 Shelton, IV et al. Jul 2019 A1
20190201025 Shelton, IV et al. Jul 2019 A1
20190201026 Shelton, IV et al. Jul 2019 A1
20190201027 Shelton, IV et al. Jul 2019 A1
20190201029 Shelton, IV et al. Jul 2019 A1
20190201030 Shelton, IV et al. Jul 2019 A1
20190201034 Shelton, IV et al. Jul 2019 A1
20190201045 Yates et al. Jul 2019 A1
20190201046 Shelton, IV et al. Jul 2019 A1
20190201047 Yates et al. Jul 2019 A1
20190201079 Shelton, IV et al. Jul 2019 A1
20190201104 Shelton, IV et al. Jul 2019 A1
20190201112 Wiener et al. Jul 2019 A1
20190201113 Shelton, IV et al. Jul 2019 A1
20190201115 Shelton, IV et al. Jul 2019 A1
20190201117 Yates Jul 2019 A1
20190201118 Shelton, IV et al. Jul 2019 A1
20190201136 Shelton, IV et al. Jul 2019 A1
20190201137 Shelton, IV et al. Jul 2019 A1
20190201139 Shelton, IV et al. Jul 2019 A1
20190201140 Yates et al. Jul 2019 A1
20190201142 Shelton, IV et al. Jul 2019 A1
20190201594 Shelton, IV et al. Jul 2019 A1
20190205001 Messerly et al. Jul 2019 A1
20190205567 Shelton, IV et al. Jul 2019 A1
20190206551 Yates et al. Jul 2019 A1
20190206555 Morgan et al. Jul 2019 A1
20190206561 Shelton, IV et al. Jul 2019 A1
20190206562 Shelton, IV et al. Jul 2019 A1
20190206564 Shelton, IV et al. Jul 2019 A1
20190206569 Shelton, IV et al. Jul 2019 A1
20190209172 Shelton, IV et al. Jul 2019 A1
20190209247 Giordano et al. Jul 2019 A1
20190209248 Giordano et al. Jul 2019 A1
20190209249 Giordano et al. Jul 2019 A1
20190209250 Giordano et al. Jul 2019 A1
20190216558 Giordano et al. Jul 2019 A1
20190261982 Holsten Aug 2019 A1
20190261983 Granger et al. Aug 2019 A1
20190261984 Nelson et al. Aug 2019 A1
20190261987 Viola et al. Aug 2019 A1
20190269400 Mandakolathur Vasudevan et al. Sep 2019 A1
20190269402 Murray et al. Sep 2019 A1
20190269428 Allen et al. Sep 2019 A1
20190274685 Olson et al. Sep 2019 A1
20190282233 Burbank et al. Sep 2019 A1
20190290264 Morgan et al. Sep 2019 A1
20190290266 Scheib et al. Sep 2019 A1
20190290267 Baxter, III et al. Sep 2019 A1
20190290297 Haider et al. Sep 2019 A1
20190298350 Shelton, IV et al. Oct 2019 A1
20190298353 Shelton, IV et al. Oct 2019 A1
20190298360 Shelton, IV et al. Oct 2019 A1
20190298361 Shelton, IV et al. Oct 2019 A1
20190298362 Shelton, IV et al. Oct 2019 A1
20190298381 Kreidler et al. Oct 2019 A1
20190307452 Shelton, IV et al. Oct 2019 A1
20190307453 Shelton, IV et al. Oct 2019 A1
20190307454 Shelton, IV et al. Oct 2019 A1
20190307456 Shelton, IV et al. Oct 2019 A1
20190314015 Shelton, IV et al. Oct 2019 A1
20190321040 Shelton, IV Oct 2019 A1
20190321062 Williams Oct 2019 A1
20190328387 Overmyer et al. Oct 2019 A1
20190343515 Morgan et al. Nov 2019 A1
20190357909 Huitema et al. Nov 2019 A1
20190388091 Eschbach et al. Dec 2019 A1
20200000531 Giordano et al. Jan 2020 A1
20200008802 Aronhalt et al. Jan 2020 A1
20200008809 Shelton, IV et al. Jan 2020 A1
20200008827 Dearden et al. Jan 2020 A1
20200015817 Harris et al. Jan 2020 A1
20200015819 Shelton, IV et al. Jan 2020 A1
20200015915 Swayze et al. Jan 2020 A1
20200037939 Castagna et al. Feb 2020 A1
20200038016 Shelton, IV et al. Feb 2020 A1
20200038018 Shelton, IV et al. Feb 2020 A1
20200038020 Yates et al. Feb 2020 A1
20200046355 Harris et al. Feb 2020 A1
20200046356 Baxter, III et al. Feb 2020 A1
20200054320 Harris et al. Feb 2020 A1
20200054321 Harris et al. Feb 2020 A1
20200054329 Shelton, IV et al. Feb 2020 A1
20200054332 Shelton, IV et al. Feb 2020 A1
20200054333 Shelton, IV et al. Feb 2020 A1
20200054334 Shelton, IV et al. Feb 2020 A1
20200054355 Laurent et al. Feb 2020 A1
20200060523 Matsuda et al. Feb 2020 A1
20200060713 Leimbach et al. Feb 2020 A1
20200061385 Schwarz et al. Feb 2020 A1
20200085431 Swayze et al. Mar 2020 A1
20200085435 Shelton, IV et al. Mar 2020 A1
20200085518 Giordano et al. Mar 2020 A1
20200093484 Shelton, IV et al. Mar 2020 A1
20200093506 Leimbach et al. Mar 2020 A1
20200093550 Spivey et al. Mar 2020 A1
20200100783 Yates et al. Apr 2020 A1
20200107829 Shelton, IV et al. Apr 2020 A1
20200114505 Kikuchi Apr 2020 A1
20200138436 Yates et al. May 2020 A1
20200138534 Garcia Kilroy et al. May 2020 A1
20200146741 Long et al. May 2020 A1
20200187943 Shelton, IV et al. Jun 2020 A1
20200197027 Hershberger et al. Jun 2020 A1
20200205810 Posey et al. Jul 2020 A1
20200205811 Posey et al. Jul 2020 A1
20200205823 Vendely et al. Jul 2020 A1
20200214706 Vendely et al. Jul 2020 A1
20200214731 Shelton, IV et al. Jul 2020 A1
20200229814 Amariglio et al. Jul 2020 A1
20200237371 Huitema et al. Jul 2020 A1
20200253605 Swayze et al. Aug 2020 A1
20200261086 Zeiner et al. Aug 2020 A1
20200261106 Hess et al. Aug 2020 A1
20200268377 Schmid et al. Aug 2020 A1
20200275927 Shelton, IV et al. Sep 2020 A1
20200275930 Harris et al. Sep 2020 A1
20200280219 Laughery et al. Sep 2020 A1
20200281585 Timm et al. Sep 2020 A1
20200289112 Whitfield et al. Sep 2020 A1
20200297341 Yates et al. Sep 2020 A1
20200297346 Shelton, IV et al. Sep 2020 A1
20200305862 Yates et al. Oct 2020 A1
20200305863 Yates et al. Oct 2020 A1
20200305864 Yates et al. Oct 2020 A1
20200305870 Shelton, IV Oct 2020 A1
20200305872 Weidner et al. Oct 2020 A1
20200305874 Huitema et al. Oct 2020 A1
20200315612 Shelton, IV et al. Oct 2020 A1
20200315623 Eisinger et al. Oct 2020 A1
20200315983 Widenhouse et al. Oct 2020 A1
20200323526 Huang et al. Oct 2020 A1
20200330092 Shelton, IV et al. Oct 2020 A1
20200330093 Shelton, IV et al. Oct 2020 A1
20200330096 Shelton, IV et al. Oct 2020 A1
20200330181 Junger et al. Oct 2020 A1
20200337693 Shelton, IV et al. Oct 2020 A1
20200337791 Shelton, IV et al. Oct 2020 A1
20200345346 Shelton, IV et al. Nov 2020 A1
20200345349 Kimball et al. Nov 2020 A1
20200345352 Shelton, IV et al. Nov 2020 A1
20200345353 Leimbach et al. Nov 2020 A1
20200345356 Leimbach et al. Nov 2020 A1
20200345357 Leimbach et al. Nov 2020 A1
20200345358 Jenkins Nov 2020 A1
20200345359 Baxter, III et al. Nov 2020 A1
20200345363 Shelton, IV et al. Nov 2020 A1
20200345435 Traina Nov 2020 A1
20200352562 Timm et al. Nov 2020 A1
20200367886 Shelton, IV et al. Nov 2020 A1
20200375585 Swayze et al. Dec 2020 A1
20200375597 Shelton, IV et al. Dec 2020 A1
20200390444 Harris et al. Dec 2020 A1
20200397430 Patel et al. Dec 2020 A1
20200405292 Shelton, IV et al. Dec 2020 A1
20200405293 Shelton, IV et al. Dec 2020 A1
20200405296 Shelton, IV et al. Dec 2020 A1
20200405302 Shelton, IV et al. Dec 2020 A1
20200405304 Mozdzierz et al. Dec 2020 A1
20200405306 Shelton, IV et al. Dec 2020 A1
20200405307 Shelton, IV et al. Dec 2020 A1
20200405308 Shelton, IV Dec 2020 A1
20200405316 Shelton, IV et al. Dec 2020 A1
20200405341 Hess et al. Dec 2020 A1
20200405403 Shelton, IV et al. Dec 2020 A1
20200405404 Shelton, IV et al. Dec 2020 A1
20200405409 Shelton, IV et al. Dec 2020 A1
20200405410 Shelton, IV Dec 2020 A1
20200405439 Shelton, IV et al. Dec 2020 A1
20200410177 Shelton, IV Dec 2020 A1
20210000466 Leimbach et al. Jan 2021 A1
20210000467 Shelton, IV et al. Jan 2021 A1
20210015480 Shelton, IV et al. Jan 2021 A1
20210030416 Shelton, IV et al. Feb 2021 A1
20210045742 Shelton, IV et al. Feb 2021 A1
20210052271 Harris et al. Feb 2021 A1
20210059661 Schmid et al. Mar 2021 A1
20210059662 Shelton, IV Mar 2021 A1
20210059664 Hensel et al. Mar 2021 A1
20210059670 Overmyer et al. Mar 2021 A1
20210059672 Giordano et al. Mar 2021 A1
20210059673 Shelton, IV et al. Mar 2021 A1
20210068820 Parihar et al. Mar 2021 A1
20210068829 Miller et al. Mar 2021 A1
20210068832 Yates et al. Mar 2021 A1
20210068835 Shelton, IV et al. Mar 2021 A1
20210077099 Shelton, IV et al. Mar 2021 A1
20210077100 Shelton, IV et al. Mar 2021 A1
20210077109 Harris et al. Mar 2021 A1
20210085313 Morgan et al. Mar 2021 A1
20210085314 Schmid et al. Mar 2021 A1
20210085315 Aronhalt et al. Mar 2021 A1
20210085316 Harris et al. Mar 2021 A1
20210085318 Swayze et al. Mar 2021 A1
20210085320 Leimbach et al. Mar 2021 A1
20210085321 Shelton, IV et al. Mar 2021 A1
20210085325 Shelton, IV et al. Mar 2021 A1
20210085326 Vendely et al. Mar 2021 A1
20210093321 Auld et al. Apr 2021 A1
20210093323 Scirica et al. Apr 2021 A1
20210100541 Shelton, IV et al. Apr 2021 A1
20210100982 Laby et al. Apr 2021 A1
20210106333 Shelton, IV et al. Apr 2021 A1
20210107031 Bales, Jr. et al. Apr 2021 A1
20210121175 Yates et al. Apr 2021 A1
20210128146 Shelton, IV et al. May 2021 A1
20210128153 Sgroi May 2021 A1
20210137522 Shelton, IV et al. May 2021 A1
20210153866 Knapp et al. May 2021 A1
20210177401 Abramek et al. Jun 2021 A1
20210186492 Shelton, IV et al. Jun 2021 A1
20210186493 Shelton, IV et al. Jun 2021 A1
20210186495 Shelton, IV et al. Jun 2021 A1
20210186497 Shelton, IV et al. Jun 2021 A1
20210186498 Boudreaux et al. Jun 2021 A1
20210186499 Shelton, IV et al. Jun 2021 A1
20210186501 Shelton, IV et al. Jun 2021 A1
20210186502 Shelton, IV et al. Jun 2021 A1
20210204941 Dewaele et al. Jul 2021 A1
20210204951 Sgroi et al. Jul 2021 A1
20210212671 Ramadan et al. Jul 2021 A1
20210212691 Smith et al. Jul 2021 A1
20210212776 Schmitt et al. Jul 2021 A1
20210228209 Shelton, IV et al. Jul 2021 A1
20210236117 Morgan et al. Aug 2021 A1
20210236124 Shelton, IV et al. Aug 2021 A1
20210244406 Kerr et al. Aug 2021 A1
20210244407 Shelton, IV et al. Aug 2021 A1
20210244410 Swayze et al. Aug 2021 A1
20210244411 Smith et al. Aug 2021 A1
20210244412 Vendely et al. Aug 2021 A1
20210259681 Shelton, IV et al. Aug 2021 A1
20210259687 Gonzalez et al. Aug 2021 A1
20210259986 Widenhouse et al. Aug 2021 A1
20210259987 Widenhouse et al. Aug 2021 A1
20210267589 Swayze et al. Sep 2021 A1
20210267594 Morgan et al. Sep 2021 A1
20210267595 Posada et al. Sep 2021 A1
20210267596 Fanelli et al. Sep 2021 A1
20210275053 Shelton, IV et al. Sep 2021 A1
20210275172 Harris et al. Sep 2021 A1
20210275173 Shelton, IV et al. Sep 2021 A1
20210275175 Vadali et al. Sep 2021 A1
20210275176 Beckman et al. Sep 2021 A1
20210282767 Shelton, IV et al. Sep 2021 A1
20210282769 Baxter, III et al. Sep 2021 A1
20210282774 Shelton, IV et al. Sep 2021 A1
20210282776 Overmyer et al. Sep 2021 A1
20210290226 Mandakolathur Vasudevan et al. Sep 2021 A1
20210290231 Baxter, III et al. Sep 2021 A1
20210290232 Harris et al. Sep 2021 A1
20210290233 Shelton, IV et al. Sep 2021 A1
20210290236 Moore et al. Sep 2021 A1
20210290322 Traina Sep 2021 A1
20210298745 Leimbach et al. Sep 2021 A1
20210298746 Leimbach et al. Sep 2021 A1
20210307744 Walcott et al. Oct 2021 A1
20210307748 Harris et al. Oct 2021 A1
20210307754 Shelton, IV et al. Oct 2021 A1
20210315566 Yates et al. Oct 2021 A1
20210315570 Shelton, IV Oct 2021 A1
20210315571 Swayze et al. Oct 2021 A1
20210315573 Shelton, IV et al. Oct 2021 A1
20210315574 Shelton, IV et al. Oct 2021 A1
20210315576 Shelton, IV et al. Oct 2021 A1
20210315577 Shelton, IV et al. Oct 2021 A1
20210322009 Huang et al. Oct 2021 A1
20210330321 Leimbach et al. Oct 2021 A1
20210338233 Shelton, IV et al. Nov 2021 A1
20210338234 Shelton, IV et al. Nov 2021 A1
20210338260 Le Rolland et al. Nov 2021 A1
20210353284 Yang et al. Nov 2021 A1
20210369271 Schings et al. Dec 2021 A1
20210369273 Yates et al. Dec 2021 A1
20210378669 Shelton, IV et al. Dec 2021 A1
20210393260 Shelton, IV et al. Dec 2021 A1
20210393261 Harris et al. Dec 2021 A1
20210393262 Shelton, IV et al. Dec 2021 A1
20210393268 Shelton, IV et al. Dec 2021 A1
20210393366 Shelton, IV et al. Dec 2021 A1
20220000478 Shelton, IV et al. Jan 2022 A1
20220000479 Shelton, IV et al. Jan 2022 A1
20220015760 Beardsley et al. Jan 2022 A1
20220031313 Bakos et al. Feb 2022 A1
20220031314 Bakos et al. Feb 2022 A1
20220031315 Bakos et al. Feb 2022 A1
20220031319 Witte et al. Feb 2022 A1
20220031320 Hall et al. Feb 2022 A1
20220031322 Parks Feb 2022 A1
20220031323 Witte Feb 2022 A1
20220031324 Hall et al. Feb 2022 A1
20220031345 Witte Feb 2022 A1
20220031346 Parks Feb 2022 A1
20220031350 Witte Feb 2022 A1
20220031351 Moubarak et al. Feb 2022 A1
20220049593 Groover et al. Feb 2022 A1
20220054125 Ji et al. Feb 2022 A1
20220054130 Overmyer et al. Feb 2022 A1
20220061836 Parihar et al. Mar 2022 A1
20220061843 Vendely et al. Mar 2022 A1
20220061845 Shelton, IV et al. Mar 2022 A1
20220061862 Shelton, IV et al. Mar 2022 A1
20220071630 Swayze et al. Mar 2022 A1
20220071631 Harris et al. Mar 2022 A1
20220071632 Patel et al. Mar 2022 A1
20220071635 Shelton, IV et al. Mar 2022 A1
20220079580 Vendely et al. Mar 2022 A1
20220079586 Shelton, IV et al. Mar 2022 A1
20220079588 Harris et al. Mar 2022 A1
20220079589 Harris et al. Mar 2022 A1
20220079590 Harris et al. Mar 2022 A1
20220079595 Huitema et al. Mar 2022 A1
20220079596 Huitema et al. Mar 2022 A1
20220087676 Shelton, IV et al. Mar 2022 A1
20220104816 Fernandes et al. Apr 2022 A1
20220117602 Wise et al. Apr 2022 A1
20220133299 Baxter, III May 2022 A1
20220133300 Leimbach et al. May 2022 A1
20220133301 Leimbach May 2022 A1
20220133302 Zerkle et al. May 2022 A1
20220133303 Huang May 2022 A1
20220133304 Leimbach et al. May 2022 A1
20220133310 Ross May 2022 A1
20220133311 Huang May 2022 A1
20220133312 Huang May 2022 A1
20220142643 Shelton, IV et al. May 2022 A1
20220151611 Shelton, IV et al. May 2022 A1
20220151613 Vendely et al. May 2022 A1
20220151614 Vendely et al. May 2022 A1
20220151615 Shelton, IV et al. May 2022 A1
20220151616 Shelton, IV et al. May 2022 A1
20220160358 Wixey May 2022 A1
20220167968 Worthington et al. Jun 2022 A1
20220167970 Aronhalt et al. Jun 2022 A1
20220167971 Shelton, IV et al. Jun 2022 A1
20220167972 Shelton, IV et al. Jun 2022 A1
20220167973 Shelton, IV et al. Jun 2022 A1
20220167974 Shelton, IV et al. Jun 2022 A1
20220167975 Shelton, IV et al. Jun 2022 A1
20220167977 Shelton, IV et al. Jun 2022 A1
20220167979 Yates et al. Jun 2022 A1
20220167980 Shelton, IV et al. Jun 2022 A1
20220167981 Shelton, IV et al. Jun 2022 A1
20220167982 Shelton, IV et al. Jun 2022 A1
20220167983 Shelton, IV et al. Jun 2022 A1
20220167984 Shelton, IV et al. Jun 2022 A1
20220167995 Parfett et al. Jun 2022 A1
20220168038 Shelton, IV et al. Jun 2022 A1
20220175370 Shelton, IV et al. Jun 2022 A1
20220175371 Hess et al. Jun 2022 A1
20220175372 Shelton, IV et al. Jun 2022 A1
20220175375 Harris et al. Jun 2022 A1
20220175378 Leimbach et al. Jun 2022 A1
20220175381 Scheib et al. Jun 2022 A1
20220183685 Shelton, IV et al. Jun 2022 A1
20220211367 Schmid et al. Jul 2022 A1
20220218332 Shelton, IV et al. Jul 2022 A1
20220218333 Parihar et al. Jul 2022 A1
20220218334 Parihar et al. Jul 2022 A1
20220218336 Timm et al. Jul 2022 A1
20220218337 Timm et al. Jul 2022 A1
20220218338 Shelton, IV et al. Jul 2022 A1
20220218340 Harris et al. Jul 2022 A1
20220218344 Leimbach et al. Jul 2022 A1
20220218345 Shelton, IV et al. Jul 2022 A1
20220218346 Shelton, IV et al. Jul 2022 A1
20220218347 Shelton, IV et al. Jul 2022 A1
20220218348 Swensgard et al. Jul 2022 A1
20220218349 Shelton, IV et al. Jul 2022 A1
20220218350 Shelton, IV et al. Jul 2022 A1
20220218351 Shelton, IV et al. Jul 2022 A1
20220218376 Shelton, IV et al. Jul 2022 A1
20220218378 Shelton, IV et al. Jul 2022 A1
20220218381 Leimbach et al. Jul 2022 A1
20220218382 Leimbach et al. Jul 2022 A1
20220225980 Shelton, IV et al. Jul 2022 A1
20220225981 Shelton, IV et al. Jul 2022 A1
20220225982 Yates et al. Jul 2022 A1
20220225986 Shelton, IV et al. Jul 2022 A1
20220225992 Smith et al. Jul 2022 A1
20220225993 Huitema et al. Jul 2022 A1
20220225994 Setser et al. Jul 2022 A1
20220226012 Shelton, IV et al. Jul 2022 A1
20220226013 Hall et al. Jul 2022 A1
20220233184 Parihar et al. Jul 2022 A1
20220233185 Parihar et al. Jul 2022 A1
20220233186 Timm et al. Jul 2022 A1
20220233187 Timm et al. Jul 2022 A1
20220233188 Timm et al. Jul 2022 A1
20220233194 Baxter, III et al. Jul 2022 A1
20220233195 Shelton, IV et al. Jul 2022 A1
20220233257 Shelton, IV et al. Jul 2022 A1
20220240927 Timm et al. Aug 2022 A1
20220240928 Timm et al. Aug 2022 A1
20220240929 Timm et al. Aug 2022 A1
20220240930 Yates et al. Aug 2022 A1
20220240936 Huitema et al. Aug 2022 A1
20220240937 Shelton, IV et al. Aug 2022 A1
20220249095 Shelton, IV et al. Aug 2022 A1
20220265272 Li et al. Aug 2022 A1
20220273291 Shelton, IV et al. Sep 2022 A1
20220273292 Shelton, IV et al. Sep 2022 A1
20220273293 Shelton, IV et al. Sep 2022 A1
20220273294 Creamer et al. Sep 2022 A1
20220273299 Shelton, IV et al. Sep 2022 A1
20220273300 Shelton, IV et al. Sep 2022 A1
20220273301 Creamer et al. Sep 2022 A1
20220273303 Creamer et al. Sep 2022 A1
20220273304 Shelton, IV et al. Sep 2022 A1
20220273305 Shelton, IV et al. Sep 2022 A1
20220273306 Shelton, IV et al. Sep 2022 A1
20220273307 Shelton, IV et al. Sep 2022 A1
20220273308 Shelton, IV et al. Sep 2022 A1
20220278438 Shelton, IV et al. Sep 2022 A1
20220287711 Ming et al. Sep 2022 A1
20220296230 Adams et al. Sep 2022 A1
20220296231 Adams et al. Sep 2022 A1
20220296232 Adams et al. Sep 2022 A1
20220296233 Morgan et al. Sep 2022 A1
20220296234 Shelton, IV et al. Sep 2022 A1
20220296235 Morgan et al. Sep 2022 A1
20220296236 Bakos et al. Sep 2022 A1
20220296237 Bakos et al. Sep 2022 A1
20220304679 Bakos et al. Sep 2022 A1
20220304680 Shelton, IV et al. Sep 2022 A1
20220304681 Shelton, IV et al. Sep 2022 A1
20220304682 Shelton, IV et al. Sep 2022 A1
20220304683 Shelton, IV et al. Sep 2022 A1
20220304684 Bakos et al. Sep 2022 A1
20220304685 Bakos et al. Sep 2022 A1
20220304686 Shelton, IV et al. Sep 2022 A1
20220304687 Shelton, IV et al. Sep 2022 A1
20220304688 Shelton, IV et al. Sep 2022 A1
20220304689 Shelton, IV Sep 2022 A1
20220304690 Baxter, III et al. Sep 2022 A1
20220304714 Shelton, IV et al. Sep 2022 A1
20220304715 Shelton, IV Sep 2022 A1
20220313253 Shelton, IV et al. Oct 2022 A1
20220313263 Huitema et al. Oct 2022 A1
20220313619 Schmid et al. Oct 2022 A1
20220323067 Overmyer et al. Oct 2022 A1
20220323070 Ross et al. Oct 2022 A1
20220330940 Shelton, IV et al. Oct 2022 A1
20220338870 Swayze et al. Oct 2022 A1
Foreign Referenced Citations (521)
Number Date Country
2012200594 Feb 2012 AU
2012203035 Jun 2012 AU
2012268848 Jan 2013 AU
2011218702 Jun 2013 AU
2012200178 Jul 2013 AU
112013007744 Jun 2016 BR
112013027777 Jan 2017 BR
1015829 Aug 1977 CA
1125615 Jun 1982 CA
2520413 Mar 2007 CA
2725181 Nov 2007 CA
2851239 Nov 2007 CA
2664874 Nov 2009 CA
2813230 Apr 2012 CA
2940510 Aug 2015 CA
2698728 Aug 2016 CA
1163558 Oct 1997 CN
2488482 May 2002 CN
1634601 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1777406 May 2006 CN
2785249 May 2006 CN
2796654 Jul 2006 CN
2868212 Feb 2007 CN
200942099 Sep 2007 CN
200984209 Dec 2007 CN
200991269 Dec 2007 CN
201001747 Jan 2008 CN
101143105 Mar 2008 CN
201029899 Mar 2008 CN
101188900 May 2008 CN
101203085 Jun 2008 CN
101273908 Oct 2008 CN
101378791 Mar 2009 CN
101507635 Aug 2009 CN
101522120 Sep 2009 CN
101669833 Mar 2010 CN
101716090 Jun 2010 CN
101721236 Jun 2010 CN
101756727 Jun 2010 CN
101828940 Sep 2010 CN
101856250 Oct 2010 CN
101873834 Oct 2010 CN
201719298 Jan 2011 CN
102038532 May 2011 CN
201879759 Jun 2011 CN
201949071 Aug 2011 CN
102217961 Oct 2011 CN
102217963 Oct 2011 CN
102243850 Nov 2011 CN
102247182 Nov 2011 CN
102247183 Nov 2011 CN
101779977 Dec 2011 CN
102309352 Jan 2012 CN
101912284 Jul 2012 CN
102125450 Jul 2012 CN
202313537 Jul 2012 CN
202397539 Aug 2012 CN
202426586 Sep 2012 CN
102743201 Oct 2012 CN
202489990 Oct 2012 CN
102228387 Nov 2012 CN
102835977 Dec 2012 CN
202568350 Dec 2012 CN
103037781 Apr 2013 CN
103083053 May 2013 CN
103391037 Nov 2013 CN
203328751 Dec 2013 CN
103505264 Jan 2014 CN
103584893 Feb 2014 CN
103635150 Mar 2014 CN
103690212 Apr 2014 CN
203564285 Apr 2014 CN
203564287 Apr 2014 CN
203597997 May 2014 CN
103829981 Jun 2014 CN
103829983 Jun 2014 CN
103860221 Jun 2014 CN
103908313 Jul 2014 CN
203693685 Jul 2014 CN
203736251 Jul 2014 CN
103981635 Aug 2014 CN
104027145 Sep 2014 CN
203815517 Sep 2014 CN
102783741 Oct 2014 CN
102973300 Oct 2014 CN
204092074 Jan 2015 CN
104337556 Feb 2015 CN
204158440 Feb 2015 CN
204158441 Feb 2015 CN
102469995 Mar 2015 CN
104422849 Mar 2015 CN
104586463 May 2015 CN
204520822 Aug 2015 CN
204636451 Sep 2015 CN
103860225 Mar 2016 CN
103750872 May 2016 CN
105919642 Sep 2016 CN
103648410 Oct 2016 CN
105997173 Oct 2016 CN
106344091 Jan 2017 CN
104921730 Sep 2017 CN
104349800 Nov 2017 CN
107635483 Jan 2018 CN
208625784 Mar 2019 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
19534043 Mar 1997 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
20016423 Feb 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
202004012389 Sep 2004 DE
10314072 Oct 2004 DE
102004014011 Oct 2005 DE
102004041871 Mar 2006 DE
102004063606 Jul 2006 DE
202007003114 Jun 2007 DE
102010013150 Sep 2011 DE
102012213322 Jan 2014 DE
102013101158 Aug 2014 DE
002220467-0008 Apr 2013 EM
0000756 Feb 1979 EP
0122046 Oct 1984 EP
0129442 Nov 1987 EP
0251444 Jan 1988 EP
0255631 Feb 1988 EP
0169044 Jun 1991 EP
0541950 May 1993 EP
0548998 Jun 1993 EP
0594148 Apr 1994 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0669104 Aug 1995 EP
0516544 Mar 1996 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0770355 May 1997 EP
0625335 Nov 1997 EP
0879742 Nov 1998 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0484677 Jul 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0726632 Oct 2000 EP
1053719 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1064882 Jan 2001 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
1234587 Aug 2002 EP
1284120 Feb 2003 EP
0717967 May 2003 EP
0869742 May 2003 EP
1374788 Jan 2004 EP
1407719 Apr 2004 EP
0996378 Jun 2004 EP
1558161 Aug 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
1330989 Dec 2005 EP
1632191 Mar 2006 EP
1082944 May 2006 EP
1253866 Jul 2006 EP
1723914 Nov 2006 EP
1285633 Dec 2006 EP
1011494 Jan 2007 EP
1767163 Mar 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1599146 Oct 2007 EP
1330201 Jun 2008 EP
2039302 Mar 2009 EP
1719461 Jun 2009 EP
2116196 Nov 2009 EP
2153793 Feb 2010 EP
1769754 Jun 2010 EP
1627605 Dec 2010 EP
2316345 May 2011 EP
1962711 Feb 2012 EP
2486862 Aug 2012 EP
2486868 Aug 2012 EP
2517638 Oct 2012 EP
2529671 Dec 2012 EP
2606812 Jun 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
2668910 Dec 2013 EP
2687164 Jan 2014 EP
2713902 Apr 2014 EP
2743042 Jun 2014 EP
2764827 Aug 2014 EP
2777524 Sep 2014 EP
2789299 Oct 2014 EP
2842500 Mar 2015 EP
2853220 Apr 2015 EP
2878274 Jun 2015 EP
2298220 Jun 2016 EP
2510891 Jun 2016 EP
3031404 Jun 2016 EP
3047806 Jul 2016 EP
3078334 Oct 2016 EP
2364651 Nov 2016 EP
2747235 Nov 2016 EP
3095399 Nov 2016 EP
3120781 Jan 2017 EP
3135225 Mar 2017 EP
2789299 May 2017 EP
3225190 Oct 2017 EP
3235445 Oct 2017 EP
3326548 May 2018 EP
3363378 Aug 2018 EP
3409216 Dec 2018 EP
3476334 May 2019 EP
3275378 Jul 2019 EP
3505095 Jul 2019 EP
3791810 Mar 2021 EP
1070456 Sep 2009 ES
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 May 2002 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2090534 Jun 1984 GB
2272159 May 1994 GB
2336214 Oct 1999 GB
2509523 Jul 2014 GB
930100110 Nov 1993 GR
S4711908 May 1972 JP
S5033988 Apr 1975 JP
S5367286 Jun 1978 JP
S56112235 Sep 1981 JP
S60113007 Jun 1985 JP
S62170011 Oct 1987 JP
S6333137 Feb 1988 JP
S63270040 Nov 1988 JP
S63318824 Dec 1988 JP
H0129503 Jun 1989 JP
H02106189 Apr 1990 JP
H0378514 Aug 1991 JP
H0385009 Aug 1991 JP
H0489041 Mar 1992 JP
H04215747 Aug 1992 JP
H04131860 Dec 1992 JP
H0584252 Apr 1993 JP
H05123325 May 1993 JP
H05226945 Sep 1993 JP
H0630945 Feb 1994 JP
H0636757 Feb 1994 JP
H06237937 Aug 1994 JP
H06304176 Nov 1994 JP
H06327684 Nov 1994 JP
H079622 Feb 1995 JP
H07124166 May 1995 JP
H07163573 Jun 1995 JP
H07255735 Oct 1995 JP
H07285089 Oct 1995 JP
H0833642 Feb 1996 JP
H08164141 Jun 1996 JP
H08182684 Jul 1996 JP
H08507708 Aug 1996 JP
H08229050 Sep 1996 JP
H08289895 Nov 1996 JP
H0950795 Feb 1997 JP
H09-323068 Dec 1997 JP
H10118090 May 1998 JP
H10-200699 Jul 1998 JP
H10296660 Nov 1998 JP
2000014632 Jan 2000 JP
2000033071 Feb 2000 JP
2000112002 Apr 2000 JP
2000166932 Jun 2000 JP
2000171730 Jun 2000 JP
2000210299 Aug 2000 JP
2000271141 Oct 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001-69758 Mar 2001 JP
2001087272 Apr 2001 JP
2001208655 Aug 2001 JP
2001514541 Sep 2001 JP
2001276091 Oct 2001 JP
2002051974 Feb 2002 JP
2002054903 Feb 2002 JP
2002085415 Mar 2002 JP
2002143078 May 2002 JP
2002153481 May 2002 JP
2002528161 Sep 2002 JP
2002314298 Oct 2002 JP
2003135473 May 2003 JP
2003521301 Jul 2003 JP
3442423 Sep 2003 JP
2003300416 Oct 2003 JP
2004147701 May 2004 JP
2004162035 Jun 2004 JP
2004229976 Aug 2004 JP
2005013573 Jan 2005 JP
2005080702 Mar 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005137423 Jun 2005 JP
2005187954 Jul 2005 JP
2005211455 Aug 2005 JP
2005328882 Dec 2005 JP
2005335432 Dec 2005 JP
2005342267 Dec 2005 JP
3791856 Jun 2006 JP
2006187649 Jul 2006 JP
2006218228 Aug 2006 JP
2006281405 Oct 2006 JP
2006291180 Oct 2006 JP
2006346445 Dec 2006 JP
2007-97252 Apr 2007 JP
2007289715 Nov 2007 JP
2007304057 Nov 2007 JP
2007306710 Nov 2007 JP
D1322057 Feb 2008 JP
2008154804 Jul 2008 JP
2008220032 Sep 2008 JP
2009507526 Feb 2009 JP
2009189838 Aug 2009 JP
2009189846 Aug 2009 JP
2009207260 Sep 2009 JP
2009226028 Oct 2009 JP
2009538684 Nov 2009 JP
2009539420 Nov 2009 JP
D1383743 Feb 2010 JP
2010065594 Mar 2010 JP
2010069307 Apr 2010 JP
2010069310 Apr 2010 JP
2010098844 Apr 2010 JP
2010214128 Sep 2010 JP
2011072574 Apr 2011 JP
4722849 Jul 2011 JP
4728996 Jul 2011 JP
2011524199 Sep 2011 JP
2011200665 Oct 2011 JP
D1432094 Dec 2011 JP
1433631 Feb 2012 JP
2012115542 Jun 2012 JP
2012143283 Aug 2012 JP
5154710 Feb 2013 JP
2013099551 May 2013 JP
2013126430 Jun 2013 JP
D1481426 Sep 2013 JP
2013541982 Nov 2013 JP
2013541983 Nov 2013 JP
2013541997 Nov 2013 JP
2014018667 Feb 2014 JP
D1492363 Feb 2014 JP
2014121599 Jul 2014 JP
2014171879 Sep 2014 JP
1517663 Feb 2015 JP
2015512725 Apr 2015 JP
2015513956 May 2015 JP
2015513958 May 2015 JP
2015514471 May 2015 JP
2015516838 Jun 2015 JP
2015521524 Jul 2015 JP
2015521525 Jul 2015 JP
2016007800 Jan 2016 JP
2016508792 Mar 2016 JP
2016512057 Apr 2016 JP
2016530949 Oct 2016 JP
2017513563 Jun 2017 JP
1601498 Apr 2018 JP
2019513530 May 2019 JP
2020501797 Jan 2020 JP
D1677030 Jan 2021 JP
D1696539 Oct 2021 JP
20100110134 Oct 2010 KR
20110003229 Jan 2011 KR
300631507 Mar 2012 KR
300747646 Jun 2014 KR
20180053811 May 2018 KR
1814161 May 1993 RU
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2066128 Sep 1996 RU
2069981 Dec 1996 RU
2098025 Dec 1997 RU
2104671 Feb 1998 RU
2110965 May 1998 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2161450 Jan 2001 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
61122 Feb 2007 RU
2430692 Oct 2011 RU
189517 Jan 1967 SU
297156 May 1971 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
728848 Apr 1980 SU
1009439 Apr 1983 SU
1042742 Sep 1983 SU
1271497 Nov 1986 SU
1333319 Aug 1987 SU
1377052 Feb 1988 SU
1377053 Feb 1988 SU
1443874 Dec 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO-9308754 May 1993 WO
WO-9315648 Aug 1993 WO
WO-9420030 Sep 1994 WO
WO-9517855 Jul 1995 WO
WO-9520360 Aug 1995 WO
WO-9623448 Aug 1996 WO
WO-9635464 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9639088 Dec 1996 WO
WO-9724073 Jul 1997 WO
WO-9734533 Sep 1997 WO
WO-9827870 Jul 1998 WO
WO-9903407 Jan 1999 WO
WO-9903409 Jan 1999 WO
WO-9948430 Sep 1999 WO
WO-0024322 May 2000 WO
WO-0024330 May 2000 WO
WO-0036690 Jun 2000 WO
WO-0053112 Sep 2000 WO
WO-0024448 Oct 2000 WO
WO-0057796 Oct 2000 WO
WO-0105702 Jan 2001 WO
WO-0154594 Aug 2001 WO
WO-0158371 Aug 2001 WO
WO-0162164 Aug 2001 WO
WO-0162169 Aug 2001 WO
WO-0191646 Dec 2001 WO
WO-0219932 Mar 2002 WO
WO-0226143 Apr 2002 WO
WO-0236028 May 2002 WO
WO-02065933 Aug 2002 WO
WO-03055402 Jul 2003 WO
WO-03094747 Nov 2003 WO
WO-03079909 Mar 2004 WO
WO-2004019803 Mar 2004 WO
WO-2004032783 Apr 2004 WO
WO-2004047626 Jun 2004 WO
WO-2004047653 Jun 2004 WO
WO-2004056277 Jul 2004 WO
WO-2004078050 Sep 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004096015 Nov 2004 WO
WO-2006044581 Apr 2006 WO
WO-2006051252 May 2006 WO
WO-2006059067 Jun 2006 WO
WO-2006073581 Jul 2006 WO
WO-2006085389 Aug 2006 WO
WO-2007015971 Feb 2007 WO
WO-2007074430 Jul 2007 WO
WO-2007129121 Nov 2007 WO
WO-2007137304 Nov 2007 WO
WO-2007142625 Dec 2007 WO
WO-2008021969 Feb 2008 WO
WO-2008061566 May 2008 WO
WO-2008089404 Jul 2008 WO
WO-2009005969 Jan 2009 WO
WO-2009067649 May 2009 WO
WO-2009091497 Jul 2009 WO
WO-2010126129 Nov 2010 WO
WO-2010134913 Nov 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2012006306 Jan 2012 WO
WO-2012013577 Feb 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012061725 May 2012 WO
WO-2012072133 Jun 2012 WO
WO-2012166503 Dec 2012 WO
WO-2013087092 Jun 2013 WO
WO-2013151888 Oct 2013 WO
WO-2014004209 Jan 2014 WO
WO-2014113438 Jul 2014 WO
WO-2014175894 Oct 2014 WO
WO-2015032797 Mar 2015 WO
WO-2015076780 May 2015 WO
WO-2015137040 Sep 2015 WO
WO-2015138760 Sep 2015 WO
WO-2015187107 Dec 2015 WO
WO-2016100682 Jun 2016 WO
WO-2016107448 Jul 2016 WO
WO-2018011664 Jan 2018 WO
WO-2019036490 Feb 2019 WO
WO-2019130087 Jul 2019 WO
WO-2019130089 Jul 2019 WO
WO-2019208902 Oct 2019 WO
WO-2021189234 Sep 2021 WO
Non-Patent Literature Citations (92)
Entry
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, on Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001), Mar. 1, 2001.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Data Sheet of LM4F230H5QR, 2007.
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012.
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000.
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016].
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8.
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9.
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013).
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al-2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages.
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517.
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341.
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages.
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95.
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages.
Qiu Li Loh et al.: “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B—Reviews, vol. 19, No. 6, Dec. 1, 2013, pp. 485-502.
Gao et al., “Mechanical Signature Enhancement of Response Vibrations in the Time Lag Domain,” Fifth International Congress on Sound and Vibration, Dec. 15-18, 1997, pp. 1-8.
Trendafilova et al., “Vibration-based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,” In: Fault Diagnosis in Robotic and Industrial Systems, IConcept Press Ltd, 2012, pp. 1-29.
Youtube.com; video by Fibran (retrieved from URL https://www.youtube.com/watch?v=vN2Qjt51gFQ); (Year: 2018).
Foot and Ankle: Core Knowledge in Orthopaedics; by DiGiovanni MD, Elsevier; (p. 27, left column, heading “Materials for Soft Orthoses”, 7th bullet point); (Year: 2007).
Lee, Youbok, “Antenna Circuit Design for RFID Applications,” 2003, pp. 1-50, DS00710C, Microchip Technology Inc., Available: http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf.
Kawamura, Atsuo, et al. “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications,” Journal, May/Jun. 1996, pp. 503-508, vol. 32, No. 3, IEEE Transactions on Industry Applications.
Honda HS1332AT and ATD Model Info, powerequipment.honda.com [online], published on or before Mar. 22, 2016, [retrieved on May 31, 2019], retrieved from the Internet [URL: https://powerequipment.honda.com/snowblowers/models/hss1332at-hss1332atd] {Year: 2016).
Slow Safety Sign, shutterstock.com [online], published on or before May 9, 2017, [retrieved on May 31, 2019], retrieved from the https://www.shutterstock.com/image-victor/slow-safety-sign-twodimensional-turtle-symbolizing- . . . see PDF in file for full URL] (Year: 2017).
Warning Sign Beveled Buttons, by Peter, flarestock.com [online], published on or before Jan. 1, 2017, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.flarestock.com/stock-images/warning-sign-beveled-buttons/70257] (Year: 2017).
Arrow Sign Icon Next Button, by Blan-k, shutterstock.com [online], published on or before Aug. 6, 2014, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL:https://www.shutterstock.com/de/image-vector/arrow-sign-icon-next-button-navigation-207700303?irgwc=1&utm . . . see PDF in file for full URL] (Year: 2014).
Elite Icons, by smart/icons, iconfinder.com [online], published on Aug. 18, 2016, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.iconfinder.com/iconsets/elite] (Year: 2016).
Tutorial overview of inductively coupled RFID Systems, UPM, May 2003, pp. 1-7, UPM Rafsec <http://cdn.mobiusconsulting.com/oapers/rfidsystems.pdf>.
Schroeter, John, “Demystifying UHF Gen 2 RFID, HF RFID,” Online Article, Jun. 2, 2008, pp. 1-3, <https://www.edn.com/design/industrial-control/4019123/Demystifying-UHF-Gen-2-RFID-HF-RFID>.
Adeeb, et al., “An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications,” Research Article, Nov. 14, 2011, pp. 1-12, vol. 2012, Article ID 879294, Hindawi Publishing Corporation.
Pushing Pixels (GIF), published on dribble.com, 2013.
Sodium stearate C18H35NaO2, Chemspider Search and Share Chemistry, Royal Society of Chemistry, pp. 1-3, 2015, http://www.chemspider.com/Chemical-Structure.12639.html, accessed May 23, 2016.
NF Monographs: Sodium Stearate, U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_m77360.html, accessed May 23, 2016.
Fischer, Martin H, “Colloid-Chemical Studies on Soaps”, The Chemical Engineer, pp. 184-193, Aug. 1919.
V.K. Ahluwalia and Madhuri Goyal, A Textbook of Organic Chemistry, Section 19.11.3, p. 356, 2000.
A.V. Kasture and S.G. Wadodkar, Pharmaceutical Chemistry—II: Second Year Diploma in Pharmacy, Nirali Prakashan, p. 339, 2007.
Forum discussion regarding “Speed Is Faster”, published on Oct 1, 2014 and retrieved on Nov. 8, 2019 from URL https://english.stackexchange.com/questions/199018/how-is-that-correct-speed-is-faster-or-prices-are-cheaper (Year: 2014).
“Understanding the Requirements of ISO/IEC 14443 for Type B Proximity Contactless Identification Cards,” retrieved from https://www.digchip.com/application-notes/22/15746.php on Mar. 2, 2020, pp. 1-28 (Nov. 2005).
Jauchem, J.R., “Effects of low-level radio-frequency (3 kHz to 300 GHz) enery on human cardiovascular, reproductive, immune, and other systems: A review of the recent literatured,” Int. J. Hyg. Environ. Health 211 (2008) 1-29.
Sandvik, “Welding Handbook,” https://www.meting.rs/wp-content/uploads/2018/05/welding-handbook.pdf, retrieved on Jun. 22, 2020. pp. 5-6.
Ludois, Daniel C., “Capacitive Power Transfer for Rotor Field Current in Synchronous Machines,” IEEE Transactions on Power Electronics, Institute of Electrical and Electronics Engineers, USA, vol. 27, No. 11, Nov. 1, 2012, pp. 4638-4645.
Rotary Systems: Sealed Slip Ring Categories, Rotary Systems, May 22, 2017, retrieved from the internet: http://web.archive.org/we/20170522174710/http:/rotarysystems.com: 80/slip-rings/sealed/, retrieved on Aug. 12, 2020, pp. 1-2.
IEEE Std 802.Mar. 2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012.
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, the ATM Forum Technical Committee, published Aug. 2003.
Yang et al.; “4D printing reconfigurable, deployable and mechanically tunable metamaterials,” Material Horizions, vol. 6, pp. 1244-1250 (2019).
“Council Directive 93/42/EEC of 14/06/1993 Concerning Medical Devices,” Official Journal of the European Communities, L&C. Ligislation and Competition, S, No. L 169, Jun. 14, 1993, pp. 1-43.
Arjo Loeve et al., Scopes Too Flexible . . . and Too Stiff, 2010, IEEE Pulse, Nov./Dec. 2010 (Year: 2010), 16 pages.
Molina, “Low Level Reader Protocol (LLRP),” Oct. 13, 2010, pp. 1-198.
Makerbot, 10 Advantages of 3D Printing, 2020 (retrieved via the wayback machine), Makerbot.com (Year: 2020).
U.S. Appl. No. 62/798,651, filed Jan. 30, 2019.
U.S. Appl. No. 62/840,602, filed Apr. 30, 2019.
Related Publications (1)
Number Date Country
20220273302 A1 Sep 2022 US