The present disclosure relates to subject matter contained in priority Korean Application No. 10-2006-0080419, filed on 24 Aug. 2006 which is herein expressly incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates, in general, to a monitoring system and method for a trunk gateway and, more particularly, to a monitoring system and method for a trunk gateway, which periodically monitor the service status of each channel of the trunk gateway, which operates between an IP network and a PSTN.
2. Description of the Related Art
As is well known to those skilled in the art, an Internet protocol phone (hereinafter referred to as an ‘IP phone’) is a phone that uses technology for transmitting voice over the Internet, that is, the Internet based on packet switching (IP network), rather than a Public Switched Telephone Network (PSTN) based on circuit switching, as in the case of a typical telephone system. Further, IP phones can be classified into a Voice over Internet Protocol (VoIP) phone and a Wireless Fidelity (Wi-Fi) phone depending on whether they are connected in a wired or wireless manner. For such an IP phone, it is predicted that the use thereof will rapidly increase in the future due to the reduction in the amount of network equipment investment caused by the integration of a telephone network with a data network, the reduction of management costs and the improvement of efficiency caused by the construction of an integrated network, or the facilitation of integration with Internet-based multimedia services (for example, video conferencing, etc.). Meanwhile, since the Internet phone uses a dynamic line, unlike a PSTN, which uses a dedicated line, there is a probability that the loss of a great number of packets and delay will occur according to the network traffic of the Internet, so that Quality of Service (QoS) is decreased compared to the PSTN, and thus the precise measurement of service quality is urgently required.
Meanwhile, a trunk gateway, which is equipment that operates between the Internet (IP network) and the PSTN, is important equipment for performing the function of packetizing the Time Division Multiplexing (TDM) trunk line signal of a Private Branch Exchange (PBX) into packets and transmitting the packets over the Internet, or performing the reverse procedure, that is, the function of transmitting media between the IP phone and an existing circuit network telephone. A single trunk gateway can support multiple channels, for example, 32 channels.
Therefore, when the trunk gateway cannot be smoothly operated, a problem may occur in that media are inevitably transmitted only in one direction even if call connection is established, so that there is a need to periodically monitor the service status of each channel of the trunk gateway. However, in the prior art, no system capable of monitoring channel status has been constructed.
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a monitoring system and method for a trunk gateway, which periodically monitor the service status of each channel of the trunk gateway that operates between an IP network and a PSTN, thus contributing to the improvement of the performance of a VoIP service system.
In order to accomplish the above object, the present invention provides a monitoring system for a trunk gateway, the trunk gateway being interposed between the Internet and a Packet Switched Telephone Network (PSTN) and being adapted to packetize a trunk line into packets and to transmit the packets to the Internet, or to perform a reverse procedure, comprising a Voice over Internet Protocol (VoIP) agent connected to the Internet and adapted to originate and terminate a VoIP call and to generate a Mean Opinion Score (MOS) value using a voice file received from a counterpart; a circuit network agent connected to the PSTN and adapted to originate and terminate a call and to generate a MOS value using a voice file received from a counterpart; a center server for performing various types of control operations related to measurement of service quality of the trunk gateway, including establishment and termination of a call between the VoIP agent and the circuit network agent, and for collecting the MOS values generated by the VoIP agent and the circuit network agent; a manager Personal Computer (PC) for setting in the center server a test scenario, required for measurement of service quality of the trunk gateway, and a threshold value, required for evaluation of the MOS values; and an Integrated Services digital network (IDSN) User Part (ISUP) probe for analyzing a packet on an ISUP node of the trunk gateway, extracting information about a channel of the trunk gateway to which a current call is connected, and providing the extracted channel information to the center server.
Preferably, the VoIP agent may originate and terminate a VoIP call using a Session Initiation Protocol (SIP) and an H.323 protocol.
In addition, the present invention provides a monitoring method for a trunk gateway, the monitoring method being performed by a center server for controlling a VoIP agent and a circuit network agent, respectively connected to the Internet and a PSTN so that the VoIP agent and the circuit network agent are connected via the trunk gateway, the trunk gateway being interposed between the Internet and the PSTN and being adapted to packetize a trunk line into packets and to transmit the packets to the Internet, or to perform a reverse procedure, the method comprising the steps of (a) transmitting a test start command, required for measurement of service quality, to the VoIP agent or the circuit network agent; (b) receiving information required to identify a channel of the trunk gateway, to which a call is connected; (c) receiving a MOS value, calculated by the VoIP agent or circuit network agent, and storing the MOS value together with the channel identification information; and (d) comparing the received MOS value with a preset threshold value, thus determining whether service quality is excellent or bad.
Preferably, the monitoring method may further comprise the step of (e) notifying a manager PC of both the channel identification information and the MOS value if it determined in the step (d) that service quality is bad. Further, the test start command in the step (a) may be created according to a scenario previously set by the manager PC, the scenario including a phone number of a counterpart agent, information about whether to perform one-way measurement or two-way measurement, a type of voice file to be reproduced, or measurement cycle information.
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, a monitoring system and method for a trunk gateway according to embodiments of the present invention will be described in detail with reference to the attached drawings.
In the above construction, the VoIP agent 100 functions to originate and terminate a VoIP call using a Session Initiation Protocol (SIP) and an H.323 protocol, which are two types of protocols for VoIP call control and signaling, under the control of the center server 500, to generate a Mean Opinion Score (MOS) value using received voice files, and to additionally analyze a Real-time Transport Protocol (RTP) packet. For this function, the VoIP agent 100 has software installed therein, such as one or more voice files, which are transmitted to the circuit network agent 200 and are used for MOS measurement, MOS calculation algorithms, and various types of scenario programs for MOS measurement, and also has hardware installed therein, such as a telephone circuit unit, a network interface card, and a microprocessor for collectively controlling these components. The telephone circuit unit can be omitted by adopting a structure in which a wired telephone is directly connected to the outside of the system.
Next, the circuit network agent 200 is connected to the PBX 400, and functions to originate and terminate a call under the control of the center server 500, and to calculate a MOS value using received voice files. In order to perform this function, the circuit network agent 200 has software installed therein, such as one or more voice files, which are transmitted to the VoIP agent 100 and are used for MOS measurement, MOS calculation algorithms, and various types of scenario programs for MOS measurement, and also has hardware installed therein, such as a telephone circuit unit, a network interface card, and a microprocessor for collectively controlling these components. The telephone circuit unit can be omitted by adopting a structure in which a wired telephone is directly connected to the outside of the system, as in the case of the VoIP agent 100. The VoIP agent 100 and the circuit network agent 200 must be installed to provide services through the trunk gateway 300 to be monitored.
The center server 500 functions to control the establishment and termination of a call between the terminal equipment, that is, the VoIP agent 100 and the circuit network agent 200, to store the data measured by them in its own database, to analyze the stored data, and to notify the manager PC 600 that a measured MOS value exceeds various types of threshold values set by the manager PC 600 when the MOS value exceeds the threshold values.
The manager PC 600 functions to remotely set in the center server 500 various test scenarios required for the establishment of a call between the VoIP agent 100 and the circuit network agent 200, which are terminal equipment, and the measurement of the service quality therebetween, in order to monitor the trunk gateway 300, to analyze the service status of the trunk gateway 300 using the measured MOS value and RTP session information, and to set a threshold value in the center server 500 so as to apply the threshold value to the measured data and indicate that the measured data is less than the threshold value when the measured data is less than the threshold value. Further, the manager PC 600 can be implemented using an arbitrary PC connected to the Internet 10 and assigned the account of a manager.
First, the ISUP probe 700 functions to analyze the packet on the ISUP node of the trunk gateway 300 and extract a CIC value from the packet, thus providing information required to identify each channel of the trunk gateway 300 to the center server 500. For this function, the ISUP probe 700 includes therein a network interface card capable of communicating with the center server 500 over the Internet. The term ‘ISUP’ means an ISDN user part, which is one of the components of a Signaling System No. 7 (SS7) protocol, and defines signaling functions, such as line interface control, which is the basis of communication, line monitoring control, and additional service control related to line interfacing.
Meanwhile, the Mean Opinion Score (MOS), which is a speech quality measurement method, is a subjective audio quality measurement method of giving satisfaction levels, decided by users, as scores after making the users listen to actual speech sounds, and thereafter obtaining the average of the scores, thus evaluating speech quality as one of five grades, as shown in the following Table 1.
As described above, since the MOS measurement method is a method based on the users' subjective assessment, it not only has low objectivity, but also has high measurement costs, and thus automated and objective methods have recently been favored. In detail, there are Perceptual Speech Quality Measurement (PSQM), defined in ITU-T Recommendation P.861, and Perceptual Evaluation of Speech Quality (PESQ), which is the algorithm defined in P.862 on the basis of PSQM to cope with packet loss, etc.
Reference numerals 14, 17, and 18, not described, denote routers located on the Internet 10.
Next, in step S12, the VoIP agent 100, having received the start command, originates a call to the counterpart terminal equipment, that is, the circuit network agent 200. In this case, both the VoIP agent 100 and the circuit network agent 200 are allocated phone numbers corresponding to the trunk gateway 300 to be monitored, in advance as static numbers.
Next, in step S14, the center server 300 receives a CIC value, which is the channel ID of the trunk gateway 300 extracted from the trunk gateway 300 by the ISUP probe 700, from the ISUP probe 700, and stores the CIC value. At this time, the center server 500 also receives and stores a current time value, together with the CIC value, so as to realize temporal synchronization with the currently connected call. After the call has been connected in this way, the VoIP agent 100 reproduces a voice file, selected through the scenario, and transmits the reproduced voice file to the circuit network agent 200. Accordingly, the circuit network agent 200 determines whether a voice signal transmitted from the counterpart has been received in step S16, that is, analyzes the transmission/reception of RTP, and calculates an MOS value on the basis of the received voice signal if the voice signal is determined to have been received.
Next, in step S18, the circuit network agent 200 transmits both the results of RTP analysis and the MOS value to the center server 500. The center server 500 receives the RTP analysis results and the MOS value, stores them in its own database, and thereafter performs step S20, where the currently measured MOS value is compared to a preset threshold value. When the currently measured MOS value is equal to or greater than the threshold value, this case corresponds to the case where the service quality of the trunk gateway 300 to be monitored is excellent. Accordingly, the center server 500 proceeds to step S24, where both the CIC value and the MOS value are immediately stored in the database thereof. In contrast, when the currently measured MOS value is less than the preset threshold value, this case corresponds to the case where the service quality of the trunk gateway 300 to be monitored is bad. Accordingly, the center server 500 proceeds to step S22 where the center server notifies the manager PC 600 of the results of measurement, and thereafter performs step S24.
Meanwhile, when two-way measurement is selected according to the scenario (typically, two-way measurement is selected), the circuit network agent 200 transmits a voice file, selected through the scenario, to the VoIP agent 100 immediately after step S24 is terminated. Thereafter, the VoIP agent 100 performs steps S16 and S18, and the center server 500 performs steps S20 to S24 to correspond to steps S16 and S18, terminates the test for the currently connected call, and thereafter repeats the program when the subsequent program cycle returns.
The monitoring system and method for the trunk gateway according to the present invention are not limited to the above-described embodiments, but can be variously modified and implemented within the allowable range of the technical spirit of the present invention. For example, when service quality is measured, the ISUP probe may be omitted if only part of an arbitrary channel of the trunk gateway, having fallen into an operation-disabled state, is intended to be measured. Further, items other than a MOS value can be added as factors for evaluating service quality. Furthermore, the circuit network agent can originate a call to the VoIP agent. Meanwhile, the internal construction of the VoIP agent or the circuit network agent, MOS measurement scenarios, etc. are described in detail in the prior patents, which are disclosed in Korean Patent Application No. 10-2005-116362 (filed on Dec. 1, 2005 and entitled “Remote Control Method for MOS Measurement Equipment”), and Korean Patent Application No. 10-2006-25262 (filed on Mar. 20, 2006 and entitled “Remote Control Method for MOS Measurement Equipment”), which were filed by the present applicant, and thus a detailed description thereof is omitted.
As described above, the present invention provides a monitoring system and method for a trunk gateway, which can monitor the connection quality of each channel of the trunk gateway through the origination of continuous and periodic calls, so that monitoring results can be used as an index for comparing the quality of respective channels in a single trunk gateway, thus detecting a channel having deteriorated quality in advance, and utilizing the detection of the channel as the basis for providing excellent quality. Furthermore, when this process is implemented over all trunk gateways, the results of measurement can be used as data for comparing the quality of respective trunk gateways, as well as the quality of channels within a single trunk gateway.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0080419 | Aug 2006 | KR | national |