1. Field of the Invention
The present invention relates generally to plumbing systems and methods of inspecting and monitoring clogging in drain pipes and plumbing fixtures.
2. Description of the Related Art
Several techniques exist for determining the presence of a liquid within a closed body, such as a tank or plumbing pipe. Sensor devices are commonly used in industrial applications to maintain or control fluid levels in pipes, tanks, and the like. These devices typically use either acoustic or capacitive sensors and appropriate circuitry and power supply to accomplish this task. These devices are used routinely to activate alarms and/or valves controlling the liquid flow within the industrial process.
New plumbing systems are normally inspected to check for leaks and to ensure system integrity. The inspection process normally includes capping the drain system to prevent drainage and filling the drain pipes with water. The inspector then monitors the level of the liquid within the system, usually at the highest point in the vent used for the system. However, the inspector has no positive means to ensure that all of the drain pipes in the drain system are completely filled, thereby making it difficult to ensure the integrity of the system. Thus, there is a need for a handheld device that can be used by plumbing inspectors to check whether a drain pipe is full of water.
Sewer pipes and other drain pipes often become blocked during usage. In many cases, it is difficult to locate the blockage so that an appropriate method for removing the blockage can be determined. In these cases, a plumber often must resort to a trial-and-error approach until the blockage is located and eliminated. Thus, there is a need for a handheld device that can be used by plumbers to precisely locate a blockage in a drain pipe.
There is also a need for a system that monitors clogging in a drain pipe and emits a warning when clogging occurs, particularly in multi-level plumbing systems. In multi-level drain systems, such as those used in residential and commercial dwellings, clogs can go undetected for a substantial period of time, allowing the system to flood and cause extensive damage.
It is an object of the present invention to provide a handheld device that can be used to determine whether a drain pipe is full of water and/or to locate a blockage in a drain pipe.
It is a further object of the present invention to provide a monitoring system that monitors clogging in a drain pipe and emits a warning or control signal when clogging occurs.
It is a further object of the present invention to provide a monitoring system for plumbing systems that uses a noninvasive attaching means for securing a monitoring unit to a drain pipe.
It is a further object of the present invention to provide a monitoring system for monitoring clogging in a drain pipe, which can be retrofitted easily to existing plumbing systems or plumbing fixtures such as sinks or toilet bowls, and that can be used to signal or control a shut-off valve, a remote alarm, a PC, and/or a central alarm system.
To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, the present invention provides a handheld sensor device for inspecting a plumbing system. The handheld device has a handheld case, a detection circuit within the case, an acoustic or capacitive sensor, a display, and an audible alarm. The sensor communicates with the detection circuit and is connected to the case by a flexible connector so that the sensor can be positioned easily and held on the exterior surface of a drain pipe. The handheld device can be used during a plumbing inspection to provide a visual and/or audible indication of the presence of liquid within the drain pipe, and to precisely locate a blockage within the drain pipe.
The present invention also provides a monitoring system for monitoring drain pipe or plumbing fixture clogging in a plumbing system. The monitoring system includes a monitoring unit that attaches to a drain pipe or plumbing fixture using a noninvasive attaching system, such as a hook and loop material. The monitoring system can be arranged to provide an audible and/or visual warning and/or to control a shut-off valve when a blockage is detected in the drain pipe.
According to another broad aspect of the present invention, a system for monitoring a drain pipe in a plumbing system is provided, comprising: a monitoring unit having a sensor, a detection circuit, and a means for attaching the monitoring unit to a drain pipe or plumbing fixture to be monitored; and an alarm means in communication with the detection circuit for giving a visual and/or audible warning when the monitoring unit detects a blockage in the drain pipe.
According to another broad aspect of the present invention, a plumbing system is provided, comprising: at least one plumbing fixture connected to a drain pipe; a monitoring unit having a sensor placed against or near an exterior surface of the drain pipe or plumbing fixture for monitoring a presence of liquid within the drain pipe indicative of a blockage; and an alarm means associated with the monitoring unit for giving a visual and/or audible warning when the monitoring unit detects a blockage in the drain pipe.
Additional objects, advantages, and novel features of the invention will be set forth in the following description, and will become apparent to those skilled in the art upon reading this description or practicing the invention. The objects and advantages of the invention may be realized and attained by the appended claims.
The present invention will become more clearly appreciated as the disclosure of the present invention is made with reference to the accompanying drawings. In the drawings:
A handheld sensor device 10 for inspecting a plumbing system according to the present invention will be described in detail hereinafter with reference to
The handheld device 10 includes a handheld case 11, a detection circuit 12 contained within the handheld case 11, a battery 13 that provides a power supply for the detection circuit 12, a sensor 14, and an indicator means 15, 16. The handheld case 11 is preferably sized to fit comfortably in a user's hand 17. A variety of shapes, sizes, and configurations can be used to give the case 11 a desired look and feel. The case 11 is preferably made of a plastic material, but other suitable materials could be used instead.
The sensor 14 can be an acoustic sensor or a capacitive sensor, both of which are known in the art. The sensor 14 is preferably connected to the handheld case 11 by a flexible connector member 18 that allows the sensor 14 to be moved relative to the handheld case 11. A conductor 19 is contained within the flexible connector member 18 for communicating with the detection circuit 12. The sensor 14 can be placed against or near an exterior surface of a drain pipe 20 at a selected location by holding the handheld case 11 at a comfortable position and moving the sensor 14 to the desired location.
The indicator means includes an audible alarm 15 built into the handheld case 11, and a visual display 16 on the handheld case 11. The visual display 16 can be, for example, a liquid crystal display (LCD). Both the audible alarm 15 and the visual display 16 are connected to and activated by the detection circuit 12. The alarm 15 and display 16 are used to give an audible and visual indication to the user of the presence of liquid within the drain pipe 20.
In use, the sensor 14 is placed against or near an exterior surface of a drain pipe 20 at a selected location. The output from the sensor 14 is processed by the detection circuit 12 to determine whether the output is consistent with a drain pipe containing liquid or a drain pipe containing air. If the drain pipe 20 contains liquid, the detection circuit 12 communicates a signal to the visual display 16 and the audible alarm 15, which are activated to alert the user that liquid is present within the drain pipe 20 at the selected location. The user can either listen for an output from the audible alarm 15, or observe the message on the visual display 16.
The handheld device 10 can be used to perform a variety of useful functions. For example, the handheld device 10 can be used to pinpoint the location of a blockage in a clogged drain pipe 20. This can be accomplished by placing the sensor 14 against or near the exterior surface of the drain pipe 20 at multiple locations until the blockage is precisely located (the drain pipe 20 will be full of liquid upstream of the blockage and will contain air immediately downstream of the blockage).
The handheld device 10 is also useful for inspecting new plumbing systems. The drain pipes of the plumbing system can be filled with water according to normal inspection procedures. The sensor 14 of the handheld device 10 can then be placed against or near the exterior surface of the drain pipes at multiple locations to ensure that water is present at all desired points within the plumbing system during the inspection.
A monitoring system 40 for monitoring clogging in a drain pipe or plumbing fixture of a plumbing system 30 according to the present invention will now be described with reference to FIGS. 4 to 6 of the accompanying drawings. The same reference numerals are used in
The monitoring system 40 includes a monitoring unit 41 having a sensor 42, a detection circuit 43, a battery 44 for a power supply for the detection circuit 43, an attaching means 45, and an alarm means 46-49. As with the handheld sensor device 10 described above, the sensor 42 of the monitoring unit 41 can be, for example, an acoustic sensor or a capacitive sensor.
The attaching means 45 is used to attach the monitoring unit 41 to a drain pipe 31 to be monitored, such as a sewer/drain pipe in a multi-level plumbing system 30, or a plumbing fixture 33 . In the preferred embodiment, the attaching means 45 is a fabric strap 50 secured to the housing 51 of the monitoring unit 41. The fabric strap 50 preferably has a hook and loop fastening material fastened to its respective ends. The fabric strap 50 can be wrapped around the drain pipe 31 and the hook and loop fastening material on the respective ends of the fabric strap 50 mated together to attach the monitoring unit 41 to the drain pipe 31.
Other attaching systems can also be used to attach the monitoring unit 41 to the drain pipe 31 or plumbing fixture 33. For example, an adhesive can be used to bond the monitoring unit 41 to the drain pipe 31, or a hook and loop fastening material can be secured directly to the external surface of the drain pipe 31 or plumbing fixture 33 and the housing 51 of the monitoring unit 41. The attaching means used will preferably be a non-invasive attaching system that does not penetrate into the wall of the drain pipe 31 or plumbing fixture 33.
The alarm means 46-49 of the monitoring unit 41 is connected to the detection circuit 43 for giving a visual and/or audible warning when the monitoring unit 41 detects a blockage 32 in the drain pipe 31. In the preferred embodiment, the alarm means includes an audible alarm 47 and a visual display 46 on the monitoring unit 41. The alarm means also includes a remote alarm 48 in the form of an audible alarm and/or a visual display positioned at a remote location from the monitoring unit 41. The remote alarm 48 can be connected by a wire to the detection circuit, or a wireless transmitter can be used to communicate control signals to the remote alarm 48.
A wireless transmitter 49 can also be used to communicate control signals to a wireless receiver 52 connected to a water shut-off valve 53 for the plumbing system, or to a wireless receiver 54 connected to a PC 55 for sending warnings, e.g., by E-mail, to alert an appropriate party of the clogged drain pipe 31, or to a wireless receiver 54 connected to a central alarm/monitoring system 56.
In a preferred embodiment of the monitoring system 40, the detection circuit 43 will provide intermittent monitoring of the output of the sensor 42 (e.g., one reading every 1 to 3 minutes). Such intermittent monitoring will conserve power and thereby increase the life of the battery 44. The detection circuit 43 can also incorporate some basic control logic to reduce the possibility of false alarms. For example, the control logic of the detection circuit 43 can be set to require more than one (e.g., three) consecutive positive readings indicating the drain pipe is full before the alarm means 46-49 is activated to warn of a plugged pipe. Such control logic will help eliminate false readings caused by a full drain pipe during normal functioning of the plumbing system (e.g., while flushing a toilet or draining a bathtub).
In an alternative embodiment, the detection circuit 43 can be made to provide a continuous monitoring of the output of the sensor 42, and a timer can be used to limit activation of the alarm means 46-49 to those instances when the sensor detects a full drain pipe for more than a predetermined time period (e.g., 5 to 10 minutes).
The detection circuit 43 can also be equipped with a sensor to detect when the charge in the battery 44 falls below a predetermined level. When a low battery is detected, the detection circuit 43 can then activate the alarm means 46-49 to provide a suitable warning to the user to ensure that the battery 44 is replaced before it loses its charge completely. Similar low battery alarms are used, for example, on smoke detectors.
In use, the monitoring unit 41 can be attached to a drain pipe 31 or plumbing fixture 33 of a plumbing system 30, as shown in
While the invention has been specifically described in connection with specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.