The present disclosure relates to a monitoring system for a drilling operation, and in particular to a monitoring system that includes an instrumented top sub.
Drilling for oil and gas is costly and complex. The time required to reach the target or potential hydrocarbon source has a direct impact on the cost to extract hydrocarbons. To minimize drilling time, oil company operators, drilling rig contractors, and more recently, measurement-while-drilling (MWD) service companies, must understand, monitor, manage, and effectively control the drilling process and drill string behavior downhole. Drilling complexities are significant and include: 1) a wide spectrum of type and size downhole equipment that comprise the bottom hole assembly (e.g. drill bits, drill pipes, drill collars, MWD and logging-while-drilling (LWD) tools, stabilizers, drilling motors, and steering tools); 2) significant operational variances in parameters (e.g. rate-of-penetration (ROP), weight-on-bit (WOB), drill string torque, and rotary speed); 3) large ranges in drilling fluid conditions (e.g. mud weight, formation pressure, bit and annular hydraulics); 4) borehole conditions (e.g. inclination, doglegs, diameter, tortuosity, formation characteristics); and 5) drill rig capabilities (e.g. input horsepower, torque, pump fluid output, condition of equipment such as drill pipe, etc.). These complexities make the quest to understand and control the drilling operation in order to ultimately improve overall drilling efficiency a difficult task.
Effective drilling process control requires reliable data concerning parameters of interest. Historically, basic measurements of interest include depth, drill string torque, drill string rotational speed, drill string tension (i.e. hookload), drill string compression or WOB, drilling fluid flow rate, drilling fluid density, drilling fluid pressure and temperature, and drill string vibration. Service companies were typically contracted to provide the sensors for measuring and monitoring many of these and other parameters. The sensors evolved from being characterized as rather crude to providing a basic adequacy for general behavioral inferences of the parameter of interest. Sensor data was typically logged at frequencies ranging from as low as 1 sample every 10 seconds (0.1 Hz), to a typical 1 sample every second (1 Hz) and more recent to 10 samples per second (10 Hz). Eventually, sensor data was loaded directly to an electronic data recorder (EDR) systems installed on the rigs. In some cases, satellite-link communications were used to transmit drilling data directly to an oil company office.
Many rigs lack reliable surface data at the expense of drilling operational efficiencies. Poor surface data and unreliable sensors increase drilling downtime and costs. Typical surface-based sensors are not suitable for accurate monitoring of the drilling operation. In some cases, surface rig sensors obtain measurements that are, at best, indirect approximations of the desired parameter. In other cases, the measurements of interest are measured offline or rely on human input. Typical surface sensors require frequent repair, maintenance, calibration, and battery replacement, all of which increase drilling downtime and operational costs. Rigs that operate with the disadvantages associated with inadequate surface sensors and unreliable surface data are unable to achieve operational efficiencies increasingly being demanded by operators and well owners.
There are several examples of unreliable or inaccurate surface data using typical surface sensors or measurement techniques. For example, the measurement of drill string torque has been based on rig torque sensors taking measurements of the rotary table motor, power swivel, or top drive input motor current. While motor current may be related to torque, the measured motor current may reflect draws additional to the motor. In another example, hook-load sensors, which are typically clamp-on sensors attached to the draw-works deadline, are used to approximate weight of the drill string and estimate the weight-on-bit (WOB). But hook-load sensor data tends to drift with changes in clamping force, time, temperature, and weather. Another measurement that is subject to error is that of drill pipe or stand length, which can be used to approximate the depth of the drill bit inside the borehole. Pipe length measurements are typically made by several rig personnel using a hand-held tape measure.
Measurements may be rounded to the nearest tenth of a meter or foot, and recorded in a tally book. As the pipe length numbers are transferred from one source to another, there are many further opportunities to introduce errors.
Drilling fluid dynamics is another area where surface data currently collected is different from the actual parameters or the type of sensors are costly and unreliable. Drilling fluid flow rate and density are two of the more important parameters related to drilling fluid dynamics. Yet density is typically only measured several times a day, off-line, and manually. The measured density is then used as an input into an existing control system, or it may be used by the driller to directly intervene in the drilling operation. Density is simply accepted and assumed to be a parameter that varies slowly when in fact it may change fairly rapidly over the course of a drilling run.
Drilling fluid flow rate affects several aspects in a drilling operation, such as operation of mud-pulse telemetry tools, operation of downhole drilling motors, cleaning of the bit teeth, and cuttings removal. But dedicated surface flow meters are costly and require frequent calibration. Typically, such flow meters measure flow rate along the discharge line or standpipe at a location removed from the drill string dynamics. In other words, flow rate in the passage of the drill string is not measured, rather flow rate is measured somewhere between the drill string and the mud pump. In the absence of dedicated surface flow meters, the flow rate is estimated based on characteristics of mud pumps, such as pump pressure, mechanical “cat whisker” stroke counters, and guesses as to pump volumetric efficiencies. As a consequence, the actual flow rate at the drill string may be considerably different than flow rate estimates described above.
There is a need for a comprehensive suite of high quality drilling data that can be used to efficiently monitor a drilling operation, and adjust and/or control the drilling operation and drill string behavior in an effort to improve drilling efficiency. An embodiment of the present disclosure is a monitoring system including an instrumented sub. The instrumented sub is configured to be coupled to a drill string at or above a rig floor surface of a drilling rig. The instrumented sub includes a body including a top end, a bottom end spaced from the top end in an axial direction, and an internal passage that extends from the top end to the bottom end along the axial direction. The internal passage is configured to receive therethrough a drilling fluid when the body is coupled to the drilling rig. A plurality of sensors are carried by the body, each sensor configured to obtain data indicative of a drilling parameter. The instrumented sub includes a controller electrically connected to the plurality of sensors. The instrumented sub also includes a communication device electrically connected to the controller. The communication device is configured to transmit data obtained by the sensors to a computing device on the drilling rig.
The foregoing summary, as well as the following detailed description of a preferred embodiment, are better understood when read in conjunction with the appended diagrammatic drawings. For the purpose of illustrating the invention, the drawings show an embodiment that is presently preferred. The invention is not limited, however, to the specific instrumentalities disclosed in the drawings. In the drawings:
Embodiments of the present disclosure include a monitoring system used to obtain and process data for use in the monitoring and control of one or more phases of a drilling operation of a drilling system. Referring to
The monitoring system 30 can obtain and process surface data and downhole data for use in the monitoring, control, and operation of the drilling system 1. “Surface data” as used herein means data obtained by sensors that are at or above the surface S of the formation. “Downhole data” as used herein means data obtained by tools that are located downhole in the borehole B during a drilling run. Furthermore, the monitoring system 30 can obtain and process drilling data, and in combination with one or more models (such as a drill string model), monitor drilling parameters or compliance to certain predetermined thresholds. For instance, the monitoring system 30 can also be used to monitor complex dynamics, such as vibration, and alert the operator when measured parameters approach a critical threshold.
Referring to
Continuing with
Continuing with
During the make-up phase of a drilling operation, a stand of drill sting tubulars 28 can be coupled together and added to the drill string 20 as the drill string 20 is advanced into the formation F by the cutting action of the drill bit 15. For example, the make-up operation may include coupling a first stand to a second stand. In this example, each stand can include one tubular or a multiple tubulars connected-end-to-end before presentation to the drill string. When a new tubular or stand is ready to be added to the drill string 20, the driller can take-in drill line 6, elevating the top drive unit 10, instrumented sub 32, and blow out preventer 13 above the rig floor 11. The drill string tubular 28 is then positioned below and coupled to the blow out preventer 13 or instrumented sub 32. The bottom end of the tubular 28 is coupled to the top end (not numbered) of the existing tubular or drill string 20 positioned partly in the borehole B. Drilling is then initiated and as the drill bit 15 cuts and removes formation F, the driller “pays out” the drill line 6, thereby lowering the traveling block 8, top drive unit 10, and the entire drill string 20 further into the borehole B. The process is repeated as additional drill string tubulars are added to the drill string 20.
Continuing with
Components of the monitoring system 30 are described next. As can be seen in
As shown in
The instrumented sub 32 can measure system surface data for a range of parameters for use by rig personnel in a variety of contexts during a drilling operation. For instance, surface data can be used to optimize the drilling operation, for example, by controlling torque during make-up, weight-on-bit (WOB), or monitoring rate-of-penetration (ROP). Analysis of measured surface data and its correlation to downhole data can be help preserve downhole tools 300 by predicting, warning, and where necessary, causing a control operation to intervene in the drilling operation in order to mitigate damage. For example, surface data can be used to help identify damaging downhole vibrations and initiate corrective actions or possibly prevent damaging vibrations from occurring. Furthermore, the surface data acquired by the instrumented top sub 32 can be combined with similar data acquired from downhole tools, e.g. such as tools that monitor drilling dynamics and vibration monitoring tools, to aid in controlling the drilling system 1. Additional examples of surface and downhole data obtained and monitored by the monitoring system 30 will be described further below.
Referring to
Referring to
Alternative instrumented top subs 132a-132g are shown in
In one embodiment of the present disclosure, the instrumented sub 32 carries one or more controllers 60, the power assembly 70, the plurality sensors 80, and the communication device 90. Each component will be described next.
Referring to
As discussed above, the instrumented top sub 32 includes a power assembly 70 that supplies electrical power to the controller 60, sensors 80, and the communication device 90. In accordance with the illustrated embodiment, the power assembly 70 includes a first power source, such as a battery pack, and is configured to supply the power. The power assembly 70 also includes a second power source configured to recharge the first power source. The first power source is a battery pack and the second power source is at least one thermal electric power device. Use of the thermal electric power device considerably reduces the risk of the instrumented sub losing power during operation and significantly alleviates replacement and disposal of batteries. In an alternative embodiment, the first power source is a battery pack and the second power source is an AC supply or mains.
The thermal electric power device is configured to generate power in response to a temperature differential between the drilling fluid passing through the internal passage of the body and air external to the body. The thermal electric power device is a thermal electric generator or a thermal electric cooler. The power assembly comprises a cooling assembly in flow communication with the at least one thermoelectric device. In one example, the second power source is configured to supply at least 70 mW of power to recharge the first power source. In another example, the second power source is configured to supply between about 70 mW and about 100 mW of power to recharge the first power source. The power assembly can include between two sets of thermal electric power devices and eight sets of thermal electric power devices. In one example, the power assembly includes two sets of thermal electric power devices. In another example, the power assembly includes four sets of thermal electric power devices. In another example, the power assembly includes six sets of thermal electric power devices. In another example, the power assembly includes eights sets of thermal electric power devices.
In one example, the controller 60 is configured to determine power assembly information. The power assembly information includes a voltage of the first power source, current, recharging rate, and remaining and charge in the first power source. The communication device can transmit the power assembly information to the surface computing device.
The sensors 80 carried by the instrumented sub 32 can include one or more of the following sensors: a strain sensor assembly 80a, a pressure sensor assembly 80b, one or more flow meters 80c, a gyrometer 80d, accelerometers 80e, a magnetometer 80f, a distance sensor 80g, a pressure sensor 80h, and a temperature sensor 80i. In one embodiment, the sensors 80a-80i can simultaneously measure values for respective drilling parameters, using the same time clock. The sensors 80, controller 60, and/or surface control system 200 can determine block height, top drive unit height, drill string rotational speed, hook-load/WOB, torque, tension, compression, bending moment, bending angle, drilling fluid pressure, drilling fluid temperature, drilling fluid density, drilling fluid pressure flowrate, and drill string vibrations. These obtained drilling parameters can be used to monitor a drilling operation, for automation and drilling optimization, and to identify, mitigate, and/or prevent drill string dysfunctions, such as twist-offs, pipe buckling, washouts, bit bounce, stick slip, etc. The sensors 80 are calibrated and remain well maintained within a sealed, moisture-free environment within the instrumented top sub 32. The word “sealed” means adequate sealing giving normal tolerances and may not be perfectly sealed. The sensor configuration and controller 60 provide accurate, high frequency measurements. Each sensor 80 will be described next.
The instrumented top sub 32 includes one or more strain sensor assemblies 80a configured to measure axial forces (tension and compression), torsional forces, and bending parameters (bending moment and bending angle) along the instrumented sub 32. Each strain sensor assembly 80a includes a set of strain gauges that are attached to walls of the pocket 57 of the base component 36 (
The strain sensor assemblies can measure axial forces, torsional forces, and bending parameters. Specifically, the strain gauges in each strain sensor assembly 80a can be oriented to align with the axial direction, a transverse direction that is perpendicular the axial direction, and an angular direction that is angularly offset with respect to the axial direction. Strain gauges aligned with the axial direction and transverse directions are used to determine axial forces (such as tension and compression). The measured axial forces, along with forces measured along the angular direction can be used to determine torsional forces. In accordance with the illustrated embodiment, the strain sensor assemblies 80a includes a first bridge of strain gauges, a second bridge of strain gauges, and a third bridge of strain gauges, each of which are disposed in respective pockets 57 positioned at 120 degree intervals around the central axis 33 of the instrumented sub 32. This arrangement permits measurement of bending parameters, such as bending moment, bending load, and bending angle, by obtaining strain readings with the three different strain sensor assemblies located in each pocket 57. The surface control system 200, in particular, the processor, can analyze bending moment, bending load, bending angles for use in a monitoring protocol to assess potential fatigue or other damage to the top drive unit, the top drive quill, and/or pipe connections in proximity to the top of a drill string 20 or connected to the instrumented sub 32. In instances, where axial forces are of interest and bending parameters are not, the strain sensor assemblies 80a may include a first bridge of strain gauges and a second bridge of strain gauges disposed 180 degrees opposite the first bridge of strain gauges with respect to the central axis 33.
The strain sensor assemblies as used herein can be constructed in accordance with the U.S. Patent App. Pub. No. 2015/02195080, the disclosure of which in incorporated by reference into this application. The strain gauges can determine axial and torsional forces as described in U.S. Pat. No. 6,547,016 (the “016 patent”), assigned to APS Technology Inc. (“APS Technology”). Bending forces can be obtained in accordance with U.S. Pat. No. 8,397,562 (the “562 patent”), also assigned to APS Technology. The contents of the 016 patent and the 562 patent are both hereby incorporated by reference into this application.
The strain sensor assembly 80a is configured to obtain data indicative of axial forces applied to the instrumented sub 32, which can be used to determine WOB. The axial force data may include a measure of hookload. Hookload, in turn, can be used to determine an approximate WOB. In accordance with an embodiment the present disclosure, the driller can elevate the top drive unit 10 and pick up the drill string 20 and drill bit 15 off the bottom of the borehole B. The instrumented sub 32 can measure the weight of the drill string 20 suspended from the mast by measuring tension along the instrumented sub 32 with the strain sensor assembly. The initial data is also referred to as initial or first hookload measurement. The driller can then lower the drill string 20 and drill bit 15 back to the bottom of the borehole B. Application of weight at the bit 15 to promote cutting and forward advancement in the formation decreases the actual hookload. The strain sensor assembly 80a measures tension along the instrumented sub 32 again, which is related to hookload. The second measurement of tension may be referred to as the final or second hookload measurement. The control system, in particular, the processor, can determine WOB based on the difference between the first hookload measurement and the second hookload measurement. The obtained WOB is a fairly direct measurement made at the instrumented sub 32.
In an alternative embodiment of the present disclosure, the strain sensor assemblies 80a are configured to obtain vibration data. Vibration data may include one or more of a mode shape, an amplitude and frequency. Furthermore, the vibration data may include a) axial vibration of the instrumented sub, b) torsional vibration of the instrumented sub, c) lateral vibration of the instrumented sub, d) radial vibration of the instrumented sub, and/or e) tangential vibration of the instrumented sub. Specifically, strain gauges can be arranged in any manner to determine vibration data as described above.
As described above, the strain sensor assembly 80a can make a direct measurement of forces such as tension, compression, torsion, bending moment, bending load, and bending angle along the instrumented sub 32. Such forces are can be used to determine hook-load, WOB, and drill string torque, and possibly drag forces when combined with a drill string model. In other examples, bending parameters can be used to determine tool fatigue. In other examples, the strain sensor assembly 80a can be used to determine vibration data. The strain sensor assembly measurements may be corrected for changes in temperature and pressure, and when calibrated against known standard forces, may provide accuracies at 1 to 2%. Data accuracy at 1 to 2% is believed to far exceed the data accuracy of most, if not all rig surface sensors typically used to measure hook-load, WOB, and drill string torque.
As best shown in
Continuing with
Continuing with
In one example, the processor can determine fluid gain or loss based on a measured flow rate at the instrumented sub 32 and a measured flow rate of the fluid exiting at least one of a drill bit and the borehole.
In another example, the pressure sensor assembly can be used to monitor the drilling fluid dynamics. The processor is configured determine if the measured pressure is outside of a predetermined range. If the measured pressure is outside of the predetermined range, the processor can cause a message to be displayed via a user interface 208 of the surface control system 200, indicating that a detrimental drilling event is possible. The detrimental drilling event may include one or more of the following: a washout; a loss of pump motor power; a decrease in mud motor efficiency; a decrease in mud motor torque; a mechanical failure of a drill string tubular; and/or a mechanical failure of connections between the instrumented sub and a top drive unit. The processor is further configured to determine which one of the detrimental drilling events is likely to occur based on the measured pressure of fluid in instrumented sub 32, a measured pressure of the fluid in the borehole B, a measured pressure of the fluid between the pump and the instrumented sub 32, and a measured flow rate of the fluid.
The instrumented top sub 32 includes a sensor configured as a gyrometer 80d. The gyrometer 80d is carried by the base component 36. As shown in
The gyrometer 80d can be used to determine turns of the instrumented top sub 32. The processor (of controller 60 or surface control system 200) can determine the number of turns of the instrumented top sub 32 based on the integration of measured rotational speed over the duration that the measurements are obtained. The number of turns can be used to help monitor and control the make-up operation, as will be further described below.
The instrumented top sub 32 include sensors configured as a set of accelerometers 80e and magnetometers 80f that can be used to obtain vibration data. Vibration data may include one or more of a mode shape, an amplitude and frequency. Furthermore, the vibration data may include a) axial vibration of the instrumented sub, b) torsional vibration of the instrumented sub, c) lateral vibration of the instrumented sub, d) radial vibration of the instrumented sub, and/or e) tangential vibration of the instrumented sub. Specifically, accelerometers and magnetometers can be used to determine vibration data. In one example, vibration data, such as amplitude, mode shape and frequency can be obtained according to the Vibration Memory Module™ as described in U.S. Pat. No. 8,453,764 (the “764 patent”), assigned to APS Technology. The disclosure in the 764 patent related the Vibration Memory Module™ is hereby incorporated by reference into this application. For example, the Vibration Memory Module™ utilizes accelerometers and magnetometers to determine the amplitudes of axial vibration, and of lateral vibration due to forward and backward whirl, at the location of these sensors. The Vibration Memory Module™ also determines torsional vibration due to stick-slip by measuring and recording the maximum and minimum instantaneous rotational speed (RPM) over a given period of time, based on the output of the magnetometers. The amplitude of torsional vibration due to stick-slip is then determined by determining the difference between and maximum and minimum instantaneous rotary speeds of the drill string over the given period of time. The frequency of the vibration can be determined based on obtain vibration data. The data can be used to identify dysfunctions, such as stick-slip, bit whirl, bit bounce, etc.
The magnetometer 80f can also be used to obtain data indicative of rotational speed of the instrumented sub 32 and thus the drill string. The magnetometer 80f can also obtain data that can be useful for detecting drill string dysfunctions such a stick-slip, bit whirl, bit bounce, etc.
Turning to
Referring to
The instrumented sub 32 also includes a pressure sensor 80h and a switch connected the pressure sensor and the power assembly 70. The switch is configured to, upon detection of a decrease in pressure below a predetermined threshold, automatically shut off power supplied by the power assembly 70 such that the instrumented sub 32 conserves power.
The instrumented sub 32 also includes a set of temperature sensors 80i that are electrically coupled to the controller 60. The temperature sensors 80i can reside in the chamber 58c of the base component 36 proximate the controller 60. The controller 60 is configured to, in response to receiving data from the set of temperature sensors 80i indicative of temperatures above a predetermined threshold, automatically shut off power supplied by the power assembly. Thus, if the temperature exceeds a threshold, power to the sensors, communication device, etc., is shut off.
In one embodiment, the instrumented sub 32 includes sensors in table 1 below. At least one processor in the surface control system 200 is configured to determine the associated measurement.
Turning now to
The surface communication system 100 is configured to permit communications between the instrumented sub 32 and the surface control system 200 located on the rig floor 11. The surface communication system 100 includes the communication device 90 housed in the instrumented sub 32. The communication device 90 can be a radio frequency component, such as a transceiver 92. The communication system 100 may be a wireless system. The surface communication system 100 may include the radio transceiver 92 housed within the instrumented sub 32. The transceiver 92 can be referred to as a “top drive sub radio transceiver.” The surface communication system 100 also includes a first radio transceiver 110 (also referred to as “a first routing transceiver”) located in proximity to the instrumented sub 32 above the rig floor 11, a second radio transceiver 120 (or “second routing transceiver”), and a third radio transceiver 130 (or a “coordinating transceiver”) located in a cabin 12 or other enclosure. The coordinating transceiver 130 is in electronic communication with the surface control system 200 on the rig floor 11. The Zigbee protocol may be used for wireless communications technology. In the Zigbee protocol, the top drive sub radio transceiver 92 communicates with the coordinating transceiver 130 via one or more of the routing transceivers 110 and 120. The surface communication system 100 may be similar to that described in U.S. Pat. No. 8,525,690 (the “690 patent”), assigned to APS Technology. The entire disclosure of the 690 patent is incorporated by reference into this application.
In accordance with another embodiment of the present disclosure, the surface communication system 100 may include another transceiver disposed on the mast 4 or in proximal location on the top drive unit 10. The additional transceiver may be used to provide an additional communications link between the surface control system 200 and the instrumented sub 32. In one example, the additional transceiver operates at higher frequencies compared to the communication device 90, and may be utilized to provide fast transmittal and reception of large volumes of data and large numbers of messages. Yet another, additional, lower frequency transceiver may be utilized when a smaller volume of data or fewer messages are required. In an event, such as communications interference, caused by other local radios, the driller may switch from one transceiver to the other transceiver to ensure a low bit error rate.
Continuing with
The surface control system 200 can include one or more computing devices 201 that can host a software programs configured to process, monitor, analyze, and display obtained surface data and/or downhole data. The computing devices 201 are further configured to initiate control operations or instructions to one or more components of the drilling system 1, such as the top drive unit 10, stand handling equipment, etc. It will be understood that the surface control system 200 can include any appropriate computing device, examples of which include a desktop computing device, a server computing device, or a portable computing device, such as a laptop, tablet or smart phone. In an exemplary configuration illustrated in
The processing portion 202 may include one or more computer processors configured to execute one or more software programs hosted by the surface control system 200. The processing portion 202 can include a number of different types of processors as needed, such as microprocessors, digital signal processor, coprocessors, networking processors, multi-core processors, and/or front end processor, and the like.
The input/output portion 206 includes input and output channels through which data is received and transmitted. The input/output portion 206 may include a receiver of the surface control system 200, a transmitter (or transceiver) (not to be confused with components of the surface communication system 100 and downhole communication system 400 described below) of the surface control system 200, and/or electronic connectors for wired connection, or a combination thereof. The input/output portion 206 is capable of receiving and/or providing information pertaining to communication with the surface communication system 100, the downhole communication system 400, or other networks, such as a LAN, WAN, or the Internet. As should be appreciated, transmit and receive functionality may also be provided by one or more devices external to the surface control system 200. For instance, the input/output portion 206 can be in electronic communication with the transceiver 110.
The memory portion 204 can be volatile (such as some types of RAM), non-volatile (such as ROM, flash memory, etc.), or a combination thereof, depending upon the exact configuration and type of processor. The surface control system 200 can include additional storage (e.g., removable storage and/or non-removable storage) including, but not limited to, tape, flash memory, smart cards, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, universal serial bus (USB) compatible memory, or any other medium which can be used to store information and which can be accessed by the surface control system 200.
The surface control system 200 includes a user interface portion 208. The user interface portion 208 can include an input device and/or display (input device and display not shown) that allows a user to communicate with the surface control system 200. The user interface 208 can include input features that provide the ability to control the surface control system 200 and thus components of the drilling system 1, via, for example, buttons, soft keys, a mouse, voice actuated controls, a touch screen, movement of the surface control system 200, visual cues (e.g., moving a hand in front of a camera on the surface control system 200), or the like. The user interface 208 can provide outputs, including visual information, such as the visual indication of the plurality of operating ranges for one or more parameters via the display (not shown). Other outputs can include audio information (e.g., via speaker), mechanically (e.g., via a vibrating mechanism), or a combination thereof. In various configurations, the user interface 208 can include a display, a touch screen, a keyboard, a mouse, an accelerometer, a motion detector, a speaker, a microphone, a camera, or any combination thereof. The user interface 208 can further include any suitable device for inputting biometric information, such as, for example, fingerprint information, retinal information, voice information, and/or facial characteristic information, for instance, so as to require specific biometric information for access to the surface control system 200.
An exemplary architecture can include one or more computing devices of the surface control system 200, each of which can be in electronic communication with a database (not shown), the surface communication system 100, and the downhole communications systems 400 via a communications network. The database can be separate from the surface control system 200 or could also be a component of the memory portion 204 of the surface control system 200. It should be appreciated that numerous suitable alternative communication architectures are envisioned. The surface control system 200 may be operated in whole or in part by, for example, a rig operator at the drill site, a drill site owner, oil services drilling company, and/or any manufacturer or supplier of drilling system components, or other service provider. As should be appreciated, each of the parties set forth above and/or other relevant parties may operate any number of respective computing device and may communicate internally and externally using any number of networks including, for example, wide area networks (WAN's) such as the Internet or local area networks (LAN's).
The surface control system 200 can host one or more software programs that can initiate desired decoding or signal processing, and perform various methods for monitoring and analyzing the drilling data obtained during the drilling operation. In use, the user interface 208 of the surface control system 200 runs on a display device, such as a console and is the interface between the drilling operator (and other end users) and the instrumented sub 32. The driller may input a range of commands via the user interface 208 regarding operation of the instrumented sub 32. The operator may also input data for initializing depth tracking, well name, etc. During a drilling operation, the sensors 80 obtain the data and that data is transmitted to the surface control system 200 via the surface communication system 100. The computer processor 202 is configured to execute software program that processes data obtained by the sensors 80, parses the data, timestamps that data, and records the data in job files in the computer memory 204. The user interface 208 can cause the obtained data to be displayed on the display device. For example, the obtained data can be arranged into current and historical data logs (time or depth-based logs) and displayed on a display device. Other software programs can process and analyze the obtained data and create informative meta-data, such as WOB derived from hookload. The stored data and related data files are available for export via standard wired or wireless connections with other components of the drilling system, such as the electronic data recorder. The surface control system 200 also enables for example, WITS data transfer, serial input of MWD downhole data, etc.
Continuing with
The mud-pulse telemetry system comprises the controller 426, a transmission device 428 in the form of a rotary pulser, a receiver 410 in the form of a pressure pulsation sensor, and a flow switch or switching device. The pulser 428 is used to transmit signals through the drilling mud to the surface receiver 410. The switching device senses whether drilling mud is being pumped through the drill string 20. The switching device is communicatively coupled to the controller 426. The controller 426 can store data when drilling mud is not being pumped, as indicated by the output of the switching device. A suitable switching device can be obtained from APS Technology as the FlowStat™ Electronically Activated Flow Switch. The controller 60 can encode the information it receives from the controller of an MWD tool or direction tool as a sequence of pressure pulses. The controller 426, in response to inputs received, can cause the pulser 428 to generate the sequence of pulses in the drilling mud. Pressure pulsation sensor can be a strain-gage pressure transducer (not shown) located at the surface S that can sense the pressure pulses in the column of drilling mud, and can generate an electrical output representative of the pulses received from the downhole pulser. The electrical output of the transducer at the surface can be transmitted to the surface control system 200, which can decode and analyze the data originally encoded in the mud pulses.
A processor can increase the signal-to-noise ratio of mud pulse signals transmitted by a mud pulser located downhole based at least partially on a measurement of the pressure of the fluid obtained by the pressure sensor assembly 80b. The monitoring system 30 may include an input pressure sensor assembly positioned on an input line of the mud system between a pump 16 and the instrumented sub 32. The input pressure sensor assembly can measure pressure of the fluid at the input line. The processor is configured to increase the signal-to-noise ratio of mud pulse signals transmitted by a mud pulser located downhole based at least partially on a measurement of the pressure of the fluid obtained by the pressure sensor assemblies on the instrumented sub and the input line.
The monitoring system 30 is configured so that the driller can select and/or create operating instructions for the instrumented top sub 32 based on current rig activity, such as drilling, circulating, tripping, etc. The set of operating instructions may include a selection of sensor measurement, sampling frequency, data processing protocols, power saving instructions, data types to return the computing devices, such as value of a parameter, units, etc. The surface control system 200 communicates the set of operating instructions to the communication device 90 of the instrumented sub 32. The communication device 90 conveys the operating instructions to the controller 60. The controller 60 (or processor) executes the set of operating instructions to obtain the data indicative of the desired drilling parameters. For example, the set of operating instructions may include protocols for the supply and subsequent removal power to certain sensors that measure particular drilling parameters, such as hookload. The instructions, when executed, can remove power from the sensors after the intended data acquisition is complete. Other protocols may include the time and duration that each sensors will operate to simultaneously acquire their respective measurements.
The set of operating instructions may also include, for individual sensors, sampling frequencies, processing means, and values for the obtained data to return to the surface control system 200. The sensors 80 can be operated selectively according to the set of operating instructions based one or more operating modes. The operating modes include, but or not limited to: A) drilling mode that includes drilling, washing and reaming activities; B) a burst mode that emphasizes a longer duration for vibration measurements; C) a short trip mode that corresponds to removal of a portion of drill pipe; D) a pulling mode that corresponds to removal of the drill string from the borehole; E) a fluid circulation mode where drill string is stationary and drilling fluid is flowing through for a period of time; F) a casing running mode that corresponds to installation of casing pipe into the borehole and may not require operation of any sensor (Table 2, “F.Run Csg”); and G) rig repair mode where activities do not require operation of any sensor (Table 2, “G.Rig Repair”). Other mode types can be devised based on particular sub operations of drilling. Table 2 is a tasking table that includes the circumstances in which power is supplied (or not supplied) to the sensors 80 for the drilling operating modes described above. For example, during a drilling mode A) that includes drilling, washing and reaming activities, all of the sensors are powered and making measurements (Table 2, “A. Drilling/Wash&Ream”) Table 3 is tasking table that summarizes sensor cycle times for each sensor, for each drilling operating mode.
Furthermore, the operator can also select or create instructions regarding when and how often obtained data streams are transmitted to the surface control system 200. The controller 60 causes the communication device 90 to transmit the obtained data streams wirelessly to the transceivers 110, 120, 130 and to the surface control system 200 at predefined intervals, such as every 1 second, 10 second, 1 minute, 10 minutes, etc. The data streams can be processed, analyzed, stored in the computer memory (e.g. as time stamped records), and displayed by the user interface 208 on the display device.
The instrumented top sub 32 enables a number methods related to drilling operations. Referring to
Referring to
In step 516, a new stand 610 is positioned between the top end 26 of the drill string 20 and the lower end (not numbered) of the top drive assembly 600. The joint handling equipment aligns a top threaded connector 612 of the stand 610 with a threaded connector of the top drive assembly 600. In step 520, the top threaded connector 612 is threadably coupled to the threaded connector of the top drive assembly 600. In step 524, top drive assembly 600 rotates the stand 610 to threadably connect the stand 610 to the top end of the drill string 20. It should be appreciated that the top end of the drill string is the top end of the previously added stand.
In step 528, while the stand 610 is being threadably coupled to the top drive assembly 600, the plurality of sensors obtain data that is indicative of the threaded connection. Data indicative of the threaded connection may include A) a number turns of the first stand until full connection, B) torque applied to the instrumented sub 32, C) a drag forces along the drill string. As discussed above, the instrumented top sub 32 includes a strain sensor assembly 80a that can measure axial forces, torsion forces, compression forces. The axial, torsion, and bending forces can be used to determine torque applied the instrument sub and thus the stand. The gyrometer 80d is configured to obtain data that is indicative of a rotational speed of the instrumented sub 32 of the instrumented sub. The rotational speed and measure time clock can be used to determine the number of turns the stand was subjected to before full or specified torque is reached. In an alternative embodiment, a gyroscope can be used to determine rotation speed and number of turns of the stands.
In step 532, the instrumented sub 32 and surface control system 200 can monitor connection parameters for the first thread connection 600 between the first stand 610 and the end of the drill string 20. In step 532, the threaded connection between the bottom end 614 of the first stand 610 and the top end of the drill string 20 is monitored until the desire torque is obtained and “connection” is made, as illustrated in
Embodiments of the present disclosure include several methods for monitoring and control of different aspects of a drilling operation. In accordance with an embodiment, one method includes monitoring a drilling system and utilizing a predicative model. The method includes drilling a borehole into an earthen formation with a drill bit. During drilling, surface data is obtained via a plurality of surface sensors carried by an instrumented sub 32. In one example, the method of obtaining surface data also include obtaining vibration data, such as a mode shape, an amplitude and a frequency of vibration. Furthermore, the obtaining step may also include obtaining surface data that is indicative axial vibration, torsional vibration, and lateral vibration. Other surface data includes at least one of: 1) a change in a distance X over a period of time; 2) a measurement of weight on bit; 3) a measurement of torque applied to the drill string; and 4) a rotational speed of the drill string.
The method includes obtaining downhole data with a plurality of downhole sensors disposed along the drill string and positioned near a drill bit. The downhole data may include: a) a measurement of downhole weight-on-bit; b) a downhole measurement of torque-on-bit; c) a rotational speed of the drill bit; d) axial vibration of a bottom hole assembly; e) a torsional vibration of a bottom hole assembly; and f) a lateral vibration of a bottom hole assembly.
Then, the method also includes adjusting a drill string component model based on the obtained surface data and the obtained downhole data. The drill string component model is configured to predict one or more operating parameters of the drilling system. The surface data obtained with the surface sensors can be correlated with the downhole data obtained with the downhole sensors. The drill string model can be further developed based on the correlated drilling data.
Another embodiment of the present disclosure is method for monitoring a drilling system. Here, the method includes drilling a borehole into an earthen formation, and obtaining surface data with the plurality of surface sensors carried by an instrumented sub 32. The surface data is then transmitted to a computer processor. The computer processor determines a torque applied to the instrumented sub based on the surface data. In one example, the method includes determining a variance between the torque applied to the instrumented sub and a predicted torque applied to the instrumented sub. The predicted torque is based on a drilling model that includes drill string data, formation characteristics, drilling fluid data, and estimated coefficients of the friction for components of the drill string and a borehole wall. The method may also include the step of predicting drag forces along the drill string based on the drilling model.
Yet another embodiment of the present disclosure a method for monitoring a top drive unit 10 of a drilling system. Such method includes obtaining surface data with the plurality of sensors carried by the instrumented sub. However, in accordance with the present embodiment, the surface data is indicative of a bending moment and a bending angle applied the instrumented sub. Based at least on the bending moment and the bending angle applied to the instrumented sub, the method permits monitoring one or more operational parameters of the top drive unit during a drilling operation. One of the operational parameters is an alignment between the top drive unit and a centerline of a hole in the rig floor. Accordingly, the method includes determining an offset between a central axis of the top drive unit and the centerline of the hole in the rig floor. An alert can be initiated if the offset falls outside of the predetermined threshold. A second alert different from the first alert can be initiated if the offset is within the predetermined threshold. The method also includes a step of initiating a third alert different from the first and second alert if there is substantially no offset such that the top drive unit and the centerline of the hole are substantially aligned.
Another embodiment of the present disclosure a method for controlling a drilling system. The method includes drilling a borehole into the earthen formation with a drill bit at an end of the drill string and obtaining surface data with the plurality of surface sensors of the instrumented sub 32. The method can include obtaining downhole data with a plurality of downhole sensors positioned along a portion of the drill string located inside the borehole. Then, the surface data and the downhole data are analyzed with a drilling model. The drilling model includes one or more characteristics of the earthen formation, drilling fluid information, and drill bit data. The drilling model my also include offset well data.
In response to the analyzing step, the method can adjust at least one of A) a weight-on-bit, B) a flow rate of the fluid, and C) a rotational speed of the drill string to control a rate-of-penetration (ROP) of the drill bit. The ROP can be adjusted based on at least one of an inclination, an azimuth, a tool face angle of the drill bit, and a parameter for the formation in proximity to the drill bit. Furthermore, ROP can be adjusted based on a model of the bottomhole assembly. The method also includes controlling operation of a brake on a rig line based on a measured hook load. The method also includes controlling a differential pressure across a downhole motor configured to rotate the drill bit.
In accordance with present embodiment, it should be appreciated that the surface data includes at least one of: 1) a change in a distance over a period of time, wherein the distance extends from a first reference location on the instrumented top sub above a rig floor to a second reference location on the rig floor that is aligned with the first reference location; 2) data indicative of weight-on-bit (WOB), 3) a data indicative of torque applied to the drill string, and 4) a rotational speed of the drill string. The downhole data includes at least one parameter indicative of the formation in proximity to the drill bit, a measurement of downhole weight-on-bit, a measurement of torque-on-bit, and a rotational speed of the drill bit.
Another embodiment of the present disclosure is method for controlling the trajectory of drilling a borehole based on measured depth data of a drill bit. The control of trajectory is based on a measured depth of the bit using the instrumented top sub. The method initiates by drilling a borehole into the earthen formation toward a predetermined target location. Next, a determination is made regarding a change in a depth of the drill bit into the earthen formation along the borehole over a period of time. As used herein, the depth extends from a surface of the earthen formation along the borehole to a terminal portion of the drill bit. The method also includes transmitting the data indicative the change in depth over the period of time to the surface using one of a mud pulse telemetry system, an acoustic telemetry system, an electromagnetic telemetry system, or a wired pipe telemetry system. Then, depth data over time is transmitted to a directional drilling tool. In response to receiving the change in the depth over the period of time, the direction tool can adjust the trajectory of the drill bit with so as to minimize fluctuations in a path of the borehole toward the predetermined target location. The change in depth over the period of time can be transmitted at predetermined time intervals to the directional tool. The change in depth over the period of time can be referred to as a depth change rate.
The direction tool can adjust the direction of drilling by obtaining data indicative of an inclination and azimuth of the drill bit. The method further includes determining if the depth change rate, the obtained inclination data, and the obtained azimuth data are within their respective predetermined thresholds. If one or more of these data values are outside of their predetermined thresholds, the trajectory of the drill bit is adjusted to toward the correct source. Furthermore, the adjusting step occurs automatically in response to receiving data indicative of depth of the drill bit.
One way to measure depth is based a distance an instrumented top sub travels toward a rig floor surface as the drill string is advanced into the earthen formation. As described above, the distance X extends from a first reference location on the instrumented sub 32 and a second reference location at the rig floor 11 and aligned with the first reference location. The methods related to depth measurement including moving the top drive unit between A) an elevated position where the instrumented sub 32s positioned above the rig floor surface the first distance so as to receive a top end of a drill string tubular, and B) a lowered position where the instrumented sub is positioned a second distance smaller than the first distance. The depth of the drill bit into the earthen formation is based on a) a difference between the first distance and the second distance, and b) the number of drill string tubulars added to the drill string. The change in depth over the period of time can be used to accurately determine rate-of-penetration (ROP) of the drill bit.
In one example, the method includes transmitting a target ROP to the directional drilling tool before the drill bit drills a predetermined short section of the borehole. Then, the method includes controlling the actual ROP while the drill bit drills the short section of the borehole, and determining a depth of the drill bit while drilling the short section of the borehole by integrating the actual ROP over the period of time.
In another example, the method includes the step of determining a rate-of-penetration for the drill bit is based on A) surface data with a plurality of surface sensors carried by an instrumented sub, B) downhole data obtained with a plurality of downhole sensors carried by the drill string at a location proximate the directional tool, C) a model of the drill string, and D) actual operating values for weight-on-bit, a fluid flow rate, and a rotational speed of the drill string.
Another embodiment of the present disclosure relates to monitoring a downhole motor, such as a mud motor. In accordance the such an embodiment, the method obtaining surface data with a plurality of surface sensors carried by the instrumented sub 32. In accordance with the present embodiment, the surface data is indicative of a pressure and a flow rate of a fluid circulating through the instrumented sub 32. The drilling fluid data is then sent to surface computing device. The method includes determining, via the at least one computer processor, an efficiency of the downhole motor. The efficiency is based on the pressure of the fluid, the flow rate of the fluid, and an operational model of the downhole motor. In addition, the efficiency of the downhole motor is monitored over a period of time.
The method also includes obtaining downhole data with a plurality of downhole sensors positioned along a bottomhole assembly. In accordance with present embodiment, the downhole data is indicative of a pressure of the fluid inside an internal passage of the bottomhole assembly, and a pressure of the fluid in an annular passage disposed between the drill string and the formation. The obtained downhole data is sent to the surface computing device. Then, the computing device determine a second efficiency of the downhole motor based on a downhole data. Specifically, the second efficiency is based on a) the pressure of the fluid inside the internal passage of the bottomhole assembly, b) the pressure of the fluid in the annular passage, and c) the operational model of the downhole motor. The second efficiency of the downhole motor is monitored over a period of time. Furthermore, the method then includes obtaining vibration data that is indicative of actual vibration of the instrumented sub 32. A speed of a rotor in the downhole motor can be determined based on the vibration data. The method can include monitoring performance of the downhole motor based on the speed of the rotor, the pressure of the fluid, and the flow rate of the fluid.
Another embodiment of the present disclosure relates to monitoring certain types of drilling operations, such as presence of an influx, etc. The method includes drilling a borehole into the earthen formation and circulating a drilling fluid trough the drill string and the drill bit and out of the borehole. During the circulating step, surface data is obtained by the surface sensors in the instrumented sub 32. In accordance with present embodiment, the surface data is indicative of A) a weight on bit, B) a torque applied to a drill string, C) a rate of penetration, D) a flow rate of the drilling fluid, and E) a pressure of the drilling fluid. The obtained surface data is then displayed on a display unit.
The method may also determine, or facilitate an identification, if a drilling break in the drilling operation has occurred. A drilling break is a sudden large variance in a measured drilling parameter. For instance, a drilling break may be a sudden large increase in the rate of penetration, usually accompanied with a sudden large change in hookload/weight on bit and drill string torsion. In response to the determining step, if a drilling break has occurred, the computing device can causes an alert to be displayed on the display unit of the computing device. In this example, the alert includes a warning of a possible influx. An influx as used herein is an undesirable, uncontrolled, entry of formation fluids into the borehole and is also termed a kick. Kicks are often forewarned by a drilling break. In presence of a possible break, the method continues by verifying if there has been an influx into the borehole. If there has been an influx, circulation of the fluid into and out of the borehole is stopped. Next, the annular blowout preventers are closed. After fluid circulation has stopped, a pressure of the fluid in the instrumented sub 32 is measured and displayed on a display unit. Here, the method includes determining a density of a kill fluid based on the pressure in the instrumented sub. Next, the annular blowout preventers are opened and the influx is circulated out of the borehole annulus, via the prescribed slow circulation, constant pressure manner.
Another embodiment of the present disclosure is a method for monitoring a kill operation. The method includes a step of obtaining a first data set with the surface sensors. The first date set concerns a first fluid passing through the instrumented sub. The first data set, however, is indicative of a pressure of the first fluid, a temperature of the first fluid, a flow rate of the first fluid, a density of the first fluid. A computing device can cause the display of the first data set. Next, the method includes causing a second fluid to flow through the instrumented sub that is different from the first fluid so as to displace the first fluid out of the borehole. Using the surface sensors in the instrumented top sub, a second data set concerning the second fluid is obtained. The second data set is indicative of one or more parameters of the second fluid. The method can include transmitting to the computer processor the first data set concerning the first fluid and the second data set concerning the second fluid. The transmitting steps continue until the kill operation is complete.
The foregoing description is provided for the purpose of explanation and is not to be construed as limiting the invention. While the invention has been described with reference to preferred embodiments or preferred methods, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Furthermore, although the invention has been described herein with reference to particular structure, methods, and embodiments, the invention is not intended to be limited to the particulars disclosed herein, as the invention extends to all structures, methods and uses that are within the scope of the appended claims. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the invention as described herein, and changes may be made without departing from the scope and spirit of the invention as defined by the appended claims.
The present application is the National Stage Application of International Patent Application No. PCT/US2016/019996, filed Feb. 28, 2016, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/133,157, filed Mar. 13, 2015, entitled “MONITORING SYSTEM WITH AN INSTRUMENTED TOP SUB,” the entire contents each application listed in this paragraph is incorporated by reference in this application.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/019996 | 2/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/148880 | 9/22/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5819848 | Rasmuson | Oct 1998 | A |
6967589 | Peters | Nov 2005 | B1 |
7108081 | Boyadjieff | Sep 2006 | B2 |
7477161 | Macpherson et al. | Jan 2009 | B2 |
7784565 | Wells et al. | Aug 2010 | B2 |
7814988 | Peter | Oct 2010 | B2 |
8210268 | Heidecke et al. | Jul 2012 | B2 |
8281856 | Jahn et al. | Oct 2012 | B2 |
8462013 | Hawthorn et al. | Jun 2013 | B2 |
8544564 | Moore et al. | Oct 2013 | B2 |
20070030167 | Li et al. | Feb 2007 | A1 |
20080202810 | Gomez | Aug 2008 | A1 |
20100224409 | Sarhad et al. | Sep 2010 | A1 |
20110016964 | Strom | Jan 2011 | A1 |
20110083845 | McLaughlin | Apr 2011 | A1 |
20110153225 | Mangal | Jun 2011 | A1 |
20110186353 | Turner | Aug 2011 | A1 |
20120031628 | Jahn | Feb 2012 | A1 |
20120056751 | Field | Mar 2012 | A1 |
20120080227 | Cardellini et al. | Apr 2012 | A1 |
20120222492 | Quin | Sep 2012 | A1 |
20130186685 | Martin | Jul 2013 | A1 |
20140102796 | Veneruso | Apr 2014 | A1 |
20150021016 | Deng | Jan 2015 | A1 |
20150308253 | Clark | Oct 2015 | A1 |
Entry |
---|
International Search Report and Written Opinion of PCT/US2016/019996 dated Aug. 1, 2016. 20 pages. |
International Preliminary Report on Patentability of PCT/US2016/019996 dated Sep. 19, 2017. 13 pages. |
Number | Date | Country | |
---|---|---|---|
20190128114 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62133157 | Mar 2015 | US |