This disclosure relates to rock (material) grinding mills and more particularly to a roller grinding mill having a single roller therein, where the roller and outer ring (shell) surface cooperate to comminute material, and where the roller “floats” on the material being comminuted within the shell. The roller in one example is not connected to a drive system. The roller in one example does not have a pressure system connected exterior of the roller to increase pressure against the shell.
For many industrial purposes it is necessary to reduce the size of rather large rocks or other material to a smaller particle size (commonly called “comminution”). For example, the larger rocks may be blasted out of an area such as a hillside, pit or mine, and these larger rocks are then directed into a large rock crusher, which is typically the first stage of comminution after blasting. The blasted rock sizes can exceed 1000 mm (>40 inches) in size. The resulting output of the crusher is typically smaller rock that is less than 200 mm (8 inches) in a longest dimension which is then fed to a grinding mill or similar device. Such a grinding mill typically comminutes the crushed rock down to 50 mm (>2 inches) sized rocks or less.
One common grinding mill comprises a large cylindrical grinding section, rotating along its horizontal axis, which in one example has a diameter of ten to fifty feet. One such mill is described in U.S. Pat. No. 7,497,395 incorporated herein by reference. The material (rocks or other material), along with optionally water or air, are directed into one end of the continuously rotating grinding section, which in one example comprises various types of lifting ribs (lifters) positioned axially on the inside surface of the grinding section to carry the material upwardly, on its surface, in a curved upwardly directed path within the grinding chamber so that this partially ground material tumble back onto other material in the lower part of the chamber. Thus, this material impacts other material components, and the inner surface of the grinding mill, optional bars, optional balls, etc., and the material is broken up into smaller fragments. In some examples large iron balls (e.g., two to six inches in diameter) are placed in the grinding chamber to obtain improved results.
It takes a tremendous amount of power to operate many examples of these grinding mills, and also there are other substantial costs involved in maintenance, operation, and repair. There are a number of factors which relate to the effectiveness and the economy of the operation, and the embodiments of the disclosure are directed toward improvements in such grinding mills and the methods employed.
Disclosed herein are several embodiments of a mono roller grinding mill (MRGM). The mono roll grinding mill comprises an outer (anvil) ring, tube, or shell. The outer ring or anvil in one example has a substantially cylindrical structure with a substantially cylindrical inner surface. The shell in one example is supported on bearing pads or rollers beneath the shell. The shell rotates about a horizontal axis in use as the material therein is comminuted. The shell defines a substantially cylindrical chamber where material is placed during comminution. The MRGM in one form has a roller located within the shell, the roller in one example comprising a substantially cylindrical structure forming a substantially cylindrical outer surface. The shell may have openings to allow sized (crushed) rock to be flushed out of the machine during the anvil-roller rotation. In another example, combinable with the openings, a shield is provided with opening(s) therein for passage of material into and out of the mill. Since the centers or axes of the shell and roller are offset, their rotation causes a closing action of their surface distances to a minimum gap, where the highest compression stress is applied to the material. The shell inner surface and roller outer surface create a surface texture that grabs and captures the material during their concurrent rotating motion, forcing the material into a smaller and smaller available gap, as the roller compresses and comminutes the material against the shell, resulting in slow-steady compression fracture of the material.
In some embodiments, the shell and roller each have surface protrusions, such that rock or other materials may be captured between protrusions and then crushed between the shell and roller as they rotate In some embodiments, the roller has one or more circumferential annular ridges that fit within circumferential annular groove(s) of the shell such that material is crushed between the shell and the roller, due to the offset centers of the shell and roller. In this way, the shell and roller may operate at differential speeds with respect to each other to induce shear forces, as well as compression action on the material to be crushed. In this later embodiment, the circumferential ridges may have transverse ridges to restrain the rock which allows a compressive and shear comminution action to be applied to the material captured between ridges when the inner and outer rings rotate out of unison.
In the following disclosure, various aspects of a mono roll grinding mill (MRGM) 20 will be described. Specific details will be set forth in order to provide a thorough understanding of the disclosure. In some instances, well-known features may be omitted or simplified in order not to obscure the disclosed features. Repeated usage of the phrase “in one embodiment” or “in one example” does not necessarily refer to the same embodiment or example, although it may.
An axes system 10 is shown and generally comprises a vertical axis 12, an anvil radial axis 14 extending radially outward from the center of the anvil (outer) ring 22, a roller radial axis 16 extending radially outward from the center of the roller (inner) ring 28, and a lateral axis 18. The lateral axis 18 is generally aligned with the axes of rotation of the shell 22, and the axes of rotation of the roller 28. These axes and directions are included to ease in description of the disclosure and are not intended to limit the disclosure to any particular orientation.
In several examples herein, a reference system is used comprising a numeric identifier and an alphabetic suffix. The numeric identifier labels a general element and an alphabetic suffix is used in some examples to show a specific embodiment of the general element. For example, the general shell is identified in
To ensure clarity, the term “material” is used herein to indicate rock, mineral matter of variable composition, consolidated or unconsolidated, assembled in masses or considerable quantities, as by the action of heat or water and equivalent materials. The material (for example rock) may be unconsolidated, such as a sand, clay, or mud, or consolidated, such as granite, limestone, or coal. While not normally defined as rock, equivalent materials such as hardened concrete may also be used in the disclosed mill and are included in the term “material”.
The outer shell 22 in one example rotates about a first longitudinal center axis 42. This outer shell 22 in in one example has a plurality of pockets or corrugations (not shown in
Material 38 is inserted into the chamber 24 and comminuted between the outer surface 34 of the inner roller 28 and the inner surface 51 of the outer shell 22. The material 38 may be mixed with a fluid (water) to aid in transport down the shell 22 and aid in comminution. In some embodiments, retaining shields 40 are positioned at the shell outer edges to contain material before and during comminution.
As can be seen, there may be a lateral gap 36 between the inner end surface of the shell 22 or retaining shield 40 and the end of the roller 28. Thus, the feeding point 56 of the chute 58 may be inserted laterally 18 inward to form an overlap distance 48 such that material 38 inserted is less likely to be deposited in the gap 36.
The density, size, shape, and weight of the roller may be specifically configured to maximize comminution based on shell configuration, and material to be comminuted.
In
In one example, the shell 22 is supported by hydrodynamic bearing pads 26 exerting lifting/supporting force on the outer surface 66 of the outer shell 22. An embodiment is shown where the motor 44 drives the axle of the shell 22. the outer surface 28 of the roller 28 engages the inner surface 51 of the shell 22 to transmit rotational force to the roller 28.
In another example, a motor may alternatively or cooperatively drive the roller 28 by way of a gearing system on the outer surface thereof, or other apparatus such as a belt, or chain drive.
In some embodiments, the roller 28 may be pressed against the shell 22 by additional force, such as by filling the roller 28 with fluids (e.g. water) or other solids (e.g. sand). In one example it is desired to minimize the circumference of the roller 28 to maximize compression in a small fracture zone 78 where a larger circumference would more evenly distribute this pressure. By utilizing the weight of the roller 28 to comminute material 38 with no external pressure/drive system, power consumption directed toward forcing the roller 28 against the shell 22 can be decreased relative to prior art embodiments. This configuration operates as a constant-pressure system, rather than constant gap mill. As In this configuration, if material 38 is too hard to crush, the gap 49 between the outer surface 34 of the roller 28 and the inner surface 51 of the shell 22 will increase, rather than jamming or damaging the MRGM 20. Thus, the floating embodiment where the roller 28 is allowed to float on the material 38 above the inner surface 51 of the shell 22 increases efficiency of the apparatus in many applications.
In some embodiments, the inner roller 28 has an outer diameter 52 sized between 50% and 80% of the inner diameter 50 of the outer shell 22.
One example uses an inner roller 28 with an outer diameter 52 which is 0.2 (20%) of the inner diameter 50 of the outer shell 22. Another ratio between outer diameter 52 of roller 28 and inner diameter 50 of the shell 22 may be between 0.65 and 0.7. This ratio represents a trade-off between (a) a larger inner roller 28 to improve the mechanical crushing advantage and longer wear life of the shell 22 to comminute material, and (b) a smaller shell 22 can comminute lighter throughput and be able to crush larger material due to the clearance 54 at the feeding point 56 as shown in the top of
In one example, the roller 28 diameter is no less than 0.2 of the shell 22 inner diameter to ensure that pressure between the roller and the shell are adequate for breakage (comminution) of the material.
Looking to
This torque and associated inefficiency can be further reduced where the center 43 of the roller 28 is very near the lateral position of the center 42 of the shell 22 and the speed of the shell 22 is set such that the material 38 does not build up at any location. In such an arrangement, the speed of the shell 22 in cooperation with the depth of the protruding elements 33 on the shell 22, size/mass/density of the material 38, inner diameter 50 of the shell 22 such that the material 38 is centrifugally forced toward the shell 22 and in each rotation of the shell 22 passes around the roller 28. Combined with lateral 18 movement of the material 38, this results in a helical transport 82 of the material down the shell 22 to an ejection port 96 laterally in opposition to the chute 58.
Operation of one embodiment of the MRGM 20 will now be explained. Rock to be comminuted is fed into the mill in one example from a chute 58 that guides the material (rock) 38 into the chamber 24 between the outer shell 22 and inner roller 28. Rotation of the shell 22 conveys the material 38, by rotation and gravity to the comminution gap 49 between the shell 22 and the roller 28, as the roller 28 applies pressure, and impacts with other material in the MRGM 20, comminuting the material 38 within the shell 22 by way of compression fracture of the material (rock). In this embodiment, the material 38 then passes through an grate or opening or equivalent exit 96 or may be further comminuted by the rotating action of the shell 22 and roller 28 in a following rotation. In the examples shown in
In some embodiments, the textured surfaces 62 of the shell 22 and/or textured surfaces 63 of the roller 28 as shown by way of example in
In one example (G) as shown by way of example in
Looking to the example of
Looking to the example shown in
Looking to
In the example shown in
In the example shown in
In the example shown in
In the example shown in
In the example shown in
In the example shown in
During initial startup of the MRGM 20, an initial buildup of material 38 is anticipated at a loading end location 88. This may result in tilting of the roller 28 as shown in
In one example this tilting is temporary, as the material 38 begins to exit at the ejection port 96 the system is more balanced. In other examples, the MRGM 20 is configured to maintain such a tilt, so as to improve efficient movement of material 38 from the chute 58 to the ejection port 96.
In at least one example, the shell 22 may not have an even inner diameter 50 down the lateral length thereof but may be a frusta-conic shape to improve material movement. Similarly, the roller 28 may not have an even outer diameter 52 down the lateral length thereof, but may be a frusta-conic shape to improve material movement.
The roller 28 in one example is preferably positioned by gravity to achieve the desired gap 72 between shell 22 and roller 28. One preferable position is achieved when broken material surface area is maximized for a given shell 22.
In one example, material 38 is contained in the chamber 24 by the moving shell 22 and a shield 40. In one example the feed chute 58 passes through or around the shield 40 chamber 24. The shield(s) withhold the material from escaping the mill 20 at undesired positions during comminution.
In some embodiments, once the material 38 is crushed and rotates counterclockwise past a 6 o'clock position 76 (the 6 o'clock position being the position of minimum gap 49 between the two rings as shown in
Additionally, some embodiments allow material 30 to re-enter the compression fracture zone 78 as shown in
In some embodiments, the shell 22 may be mechanically driven by a motor 44 or equivalent device. For example, the shell 22 may rest on a ring and pinion gear system that drives the shell by the motor 40 or engine. The roller 28 is not connected to any control or drive apparatus, and thus floats on the material 38 during comminution. This makes modification of existing mills easy as the roller 28 may simply be inserted to replace multiple rods, balls, driven rollers, etc. No control or drive mechanism need be provided to the roller 28. The control is the design of the outer surface of the roller 28 relative to the inner surface 51 of the shell, and the size, weight, density of the roller 28.
In one example, the roller 28 has a first diameter at a first end, and a second diameter at other positions there along to control lateral 18 movement of material 38 along the mill 20. In one example the roller is tapered along the lateral length to accomplish this. The protrusions on the roller, and on the shell may be configured to maximize the benefits of this geometry.
In one example the core of the roller 28 may be made of a different material than the outer surface. For example, the core may be made of lead, while the outer surface is steel, to maximize density, comminution efficiency, and life of the roller 28.
In one example the ratio of the protrusions on the roller 28 is configured to maximize efficiency. In the example shown in
In some embodiments, one or both of the shell 22 and roller 28 may have ridges 84 and/or grooves 86 as shown in
In one embodiment as shown in
Additionally, the holes 70 in the grates of the shell 22 or laterally inward of the ejection port 96 may be sized according to the degree of comminution desired. For example, if it is desired that the largest resultant crushed material 38 have a maximum diameter of 50 mm then the grates 70 of the apparatus would have an inner diameter (width/length) of 50 mm. Additionally, the grates 70 may have different dimensions in other directions, for example, a hole may have a 50 mm width and a 150 mm length, where the length may be in the direction circumferentially around the inner surface of the outer ring. The size of the hole 70 may also be selected to reduce power consumption (as there is a pronounced increase in power consumption for a relatively small percentage change in hole size).
One significant disadvantage of prior art high pressure grinding roll (HPGR) and other crushing mills is that material would often jam between the shield and one or both rollers. In many prior art applications, the shield is static, and does not rotate with the shell 22, further causing material to jam between the shield and the other components. This problem has been at least partially alleviated herein a where the shield 40 of one example is attached to the shell 22 either permanently or removably and rotates therewith. Thus, the shield(s) 40 will generally hold material 38 within the chamber 24, and any material that would lie against the shield 40 in the compression zone 78, will be compressed therein.
A mono roll grinding mill using a roller with no external pressure device substantially reduces capital cost, complexity and operating costs. Further, an un-driven roller in such an arrangement also substantially reduces capital cost, complexity and operating costs. Despite this no such mono roll grinding mill with floating roller exists in the prior art, despite numerous benefits outlined herein.
While the present disclosure is illustrated by description of several embodiments and while the illustrative embodiments are described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications within the scope of the appended claims will readily appear to those sufficed in the art. The disclosed apparatus and method in their broader aspects are therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general concept.
This application claims priority benefit of U.S. Ser. No. 62/723,841 filed Aug. 28, 2018, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
244316 | Sample | Jul 1881 | A |
303125 | Corcoran | Aug 1884 | A |
438633 | Marshall | Oct 1890 | A |
760010 | Montgomery | May 1904 | A |
851013 | Loehnert | Apr 1907 | A |
971153 | Sherrerd | Sep 1910 | A |
987850 | Braddock | Mar 1911 | A |
1092185 | Thomas | Apr 1914 | A |
1130644 | Steinbach | Mar 1915 | A |
1174160 | Jensen | Mar 1916 | A |
1291008 | Jensen | Jan 1919 | A |
1315025 | Lawler | Sep 1919 | A |
1351793 | Schmidt | Sep 1920 | A |
1470420 | Askin et al. | Oct 1923 | A |
1539237 | Borcherdt | May 1925 | A |
1591938 | Harrison | Jul 1926 | A |
1607404 | Archibald | Nov 1926 | A |
1741604 | Frederick | Dec 1929 | A |
1947505 | Pelt | Feb 1934 | A |
2045687 | Armstrong | Jun 1936 | A |
2189711 | Eigenbrot | Feb 1940 | A |
2261257 | Kiesskalt et al. | Nov 1941 | A |
2406904 | Roberts | Sep 1946 | A |
2698144 | Reiffen | Dec 1954 | A |
2875955 | Wendshuh | Mar 1959 | A |
2993656 | Ratkowski | Jul 1961 | A |
3061205 | Wilfrid | Oct 1962 | A |
3078049 | Hardinge | Feb 1963 | A |
3184171 | Daman | May 1965 | A |
3204878 | Peacock | Sep 1965 | A |
3206128 | MacPherson et al. | Sep 1965 | A |
3404846 | MacPherson et al. | Oct 1968 | A |
3580520 | Leroy | May 1971 | A |
3596841 | Perry | Aug 1971 | A |
3610542 | Takashi | Oct 1971 | A |
3865541 | Burwell et al. | Feb 1975 | A |
4009634 | Barmore | Mar 1977 | A |
4136832 | Morita et al. | Jan 1979 | A |
4176799 | Clin et al. | Dec 1979 | A |
4194710 | Ebner | Mar 1980 | A |
4200242 | Ueda | Apr 1980 | A |
4211369 | Eigner | Jul 1980 | A |
4243182 | Dugger, Jr. | Jan 1981 | A |
4265408 | Voelskow | May 1981 | A |
4289279 | Brandt | Sep 1981 | A |
4373675 | Kaufman | Feb 1983 | A |
4389020 | Clin et al. | Jun 1983 | A |
4424938 | Day | Jan 1984 | A |
4448357 | Harlow et al. | May 1984 | A |
4580734 | Eroskey et al. | Apr 1986 | A |
4635860 | Kruyer | Jan 1987 | A |
4919344 | Mckie | Apr 1990 | A |
5205494 | Durinck | Apr 1993 | A |
5269471 | Yamagishi | Dec 1993 | A |
5393000 | Lagache | Feb 1995 | A |
5743475 | Catani | Apr 1998 | A |
5752665 | Wason | May 1998 | A |
5839490 | Kiedaisch et al. | Nov 1998 | A |
5845855 | Yamada et al. | Dec 1998 | A |
5884856 | Isaji | Mar 1999 | A |
5899394 | Folsberg | May 1999 | A |
6179233 | Cordonnier | Jan 2001 | B1 |
6193177 | Chevalier | Feb 2001 | B1 |
6206310 | Schneider | Mar 2001 | B1 |
6630277 | Naka et al. | Oct 2003 | B2 |
7497395 | Nordell | Mar 2009 | B2 |
8955778 | Nordell | Feb 2015 | B2 |
9140295 | Romero | Sep 2015 | B2 |
9675977 | Cordonnier | Jun 2017 | B2 |
9687853 | Nordell | Jun 2017 | B2 |
10343174 | Nordell | Jul 2019 | B2 |
20140326810 | Cordonnier | Nov 2014 | A1 |
20160310952 | Nordell | Oct 2016 | A1 |
20190329262 | Nordell | Oct 2019 | A1 |
20200070175 | Nordell | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
1189109 | Jul 1998 | CN |
1222099 | Jul 1999 | CN |
0486371 | May 1992 | EP |
2065771 | Aug 1996 | RU |
2198030 | Oct 2003 | RU |
727225 | Apr 1980 | SU |
995877 | Feb 1983 | SU |
1002081 | Mar 1983 | SU |
1138006 | Jan 1985 | SU |
2009050723 | Apr 2009 | WO |
2012125834 | Sep 2012 | WO |
2016172338 | Oct 2016 | WO |
2020047160 | Mar 2020 | WO |
Entry |
---|
International Searching Authority, ISR and Written Opinion, PCT/US 0770472, dated May 15, 2008, 9 pages. |
International Searching Authority, ISR and Written Opinion, PCT/US 2012029237, dated Jun. 7, 2012, 4 pages. |
International Searching Authority, ISR and Written Opinion, PCT/US 2016/028640, dated Sep. 8, 2016, 6 pages. |
International Searching Authority, ISR and Written Opinion, PCT/US2019/048656, dated Dec. 12, 2019, 8 pages. |
EAPO, Office Action for Eurasian Patent Organization Application No. 202190636 dated Sep. 27, 2021. |
CNIPA, Office Action and Search Report for CN Application No. 2019800567677 dated Mar. 29, 2022. |
INAPI, Office Action and Search Report for Chilean patent application No. 498-2021 dated Apr. 7, 2022. |
Number | Date | Country | |
---|---|---|---|
20200070175 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62723841 | Aug 2018 | US |