Monoblock expandable interbody implant

Information

  • Patent Grant
  • 11730608
  • Patent Number
    11,730,608
  • Date Filed
    Tuesday, July 13, 2021
    3 years ago
  • Date Issued
    Tuesday, August 22, 2023
    a year ago
Abstract
A unibody implant movable between an expanded position and a contracted position is disclosed. The unibody implant may include a unitary expandable body defined by an inferior portion and a superior portion that are connected together. In various embodiments, a set screw may be rotatably supported by the body and configured to move a plug having a first inclined surface facing the distal side. In various embodiments, the set screw may be movable in the longitudinal direction towards the distal side upon rotation of the set screw along the rotation axis, for example. In various embodiments, movement of the set screw urges the plug against the superior portion thereby expanding a vertical distance between the superior and inferior sides of the body. In some embodiments, the plug may include a stabilizing element configured to transfer compressive forces between the superior portion and inferior portion.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application incorporates the entire disclosure of U.S. patent application Ser. No. 17/246,968, titled UNIBODY DUAL EXPANDING INTERBODY IMPLANT, filed May 3, 2021; and U.S. patent application Ser. No. 17/332,284, titled RHOMBOID SHAPED IMPLANTS, filed May 27, 2021 by reference.


FIELD

The present technology is generally related to a unibody expanding interbody implant for use in a medical procedure related to the spine. In some embodiments, disclosed implants may be used in an anterior cervical discectomy and fusion (ACDF) procedure although other uses in other areas of the spine or between two bones are also contemplated.


BACKGROUND

Mechanically operated interbody implants may be used to align and/or realign a patient's spine during a medical procedure. Conventional implants designed for the Thoracic and Lumbar region of the spine often include top and bottom endplates and a mechanical means to separate the top and bottom endplates. The mechanical mechanisms to separate the top and bottom endplates are often cumbersome and require a large footprint that is often unsuitable, for example, for ACDF type surgeries of the cervical portion of the spine.


SUMMARY

The techniques of this disclosure generally relate to a unibody implant that is independently expandable at a first side and a second side opposite the first side.


In one aspect, the present disclosure provides for a unibody implant movable between an expanded position and a contracted position, for example. The unibody implant may extend from a proximal side or end to a distal side or end in a longitudinal direction, extend from a first lateral side to a second lateral side in a lateral direction, and extend from a superior side to an inferior side in a vertical direction, for example. Here, the term longitudinal is used for purposes of defining the direction from the proximal end to the distal end and the term lateral direction is used to define the direction perpendicular to the longitudinal direction. In various embodiments, the unitary expandable body may be defined by an inferior portion, and a superior portion, and the inferior portion may be connected to the superior portion, for example. In various embodiments, a set screw or actuator screw may be rotatably supported by the body and rotatable in a clockwise direction and a counterclockwise direction around a rotation axis. In some embodiments, the rotation axis may extend parallel to the longitudinal direction and in other embodiments the rotation axis may extend in an off angle orientation to the longitudinal direction, for example. For example, the rotation axis may extend in a direction that is angled at about 0 degrees to about 25 degrees with respect to the longitudinal direction, for example. In various embodiments, a plug or wedge may be disposed adjacent to and may be in contact with the set screw, and the plug may further have a first inclined surface facing the distal side, for example. In various embodiments, the set screw may be referred to as an actuating screw and rotation thereof may cause the plug to move, e.g., the set screw may actuate motion of the plug and therefore be referred to as an actuating screw. In various embodiments, the superior portion may comprise a first inclined ramp disposed on an interior surface thereof and facing the first inclined surface of the plug, for example. In various embodiments, the set screw may be movable in the longitudinal direction towards the distal side or end upon rotation of the set screw along the rotation axis, for example. In various embodiments, movement of the set screw in the longitudinal direction towards the distal side urges the first inclined surface of the plug against the first inclined ramp thereby expanding a vertical distance of the body between the superior and inferior sides of the body adjacent the proximal side of the body.


In another aspect, the disclosure provides for a method for expanding and contracting a unibody implant. The method may include the step of providing a unibody implant. In various embodiments, the unibody implant may extend from a proximal side to a distal side in a longitudinal direction, extend from a first lateral side to a second lateral side in a lateral direction, and extend from a superior side to an inferior side in a vertical direction, for example. In various embodiments, the unitary expandable body may be defined by an inferior portion, and a superior portion, and the inferior portion may be connected to the superior portion, for example. In various embodiments, a set screw may be rotatably supported by the body and rotatable in a clockwise direction and a counterclockwise direction around a rotation axis. In some embodiments, the rotation axis may extend parallel to the longitudinal direction and in other embodiments the rotation axis may extend in an off angle orientation to the longitudinal direction, for example. In various embodiments, a plug may be disposed adjacent to and in contact with the set screw, and the plug may have a first inclined surface facing the distal side, for example. In various embodiments, the superior portion may comprise a first inclined ramp disposed on an interior surface thereof and facing the first inclined surface of the plug, for example. In various embodiments, the set screw may be movable in the longitudinal direction towards the distal side upon rotation of the set screw along the rotation axis, for example. In various embodiments, movement of the set screw in the longitudinal direction towards the distal side urges the first inclined surface of the plug against the first inclined ramp thereby expanding a vertical distance of the body between the superior and inferior sides of the body adjacent the proximal side of the body. The method may include the step of rotating the set screw such that it linearly translates from the proximal side towards the distal side and the step of pushing the plug, by the set screw, towards the distal side, for example. The method may further include the step of urging, by the plug, the first inclined ramp of the superior portion up and away from the inferior portion, for example.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a front exploded parts view of an implant.



FIG. 2 is a rear exploded parts view of an implant.



FIG. 3 is a front perspective view of an implant.



FIG. 4 is an alternate front perspective view of an implant.



FIG. 5 is a side perspective view of an implant.



FIG. 6 is an alternate side perspective view of an implant.



FIG. 7 is a top down view of an implant.



FIG. 8 is a side view of an implant in an expanded configuration.



FIG. 9 is a side view of an implant in an expanded configuration.



FIG. 10 is a cross section view of an implant in an expanded configuration.



FIG. 11 is an enlarged view of section Z-Z of FIG. 10.



FIG. 12 is a perspective cross section view of an implant in an expanded configuration with some components removed for ease of understanding.



FIG. 13 is a reference drawing showing the human spine of which various disclosed implant embodiments may be installed in.



FIG. 14 is a reference drawing showing various planes and reference directions of which the various disclosed implant embodiments may move in or act in with respect to a patient.





DETAILED DESCRIPTION

Embodiments of the present disclosure relate generally, for example, to spinal stabilization systems, and more particularly, to a unibody implant having a superior portion and an inferior portion that are connected and expandable and contactable by action of a set screw and a plug. Embodiments of the devices and methods are described below with reference to the Figures.


The following discussion omits or only briefly describes certain components, features and functionality related to medical implants, installation tools, and associated surgical techniques, which are apparent to those of ordinary skill in the art. It is noted that various embodiments are described in detail with reference to the drawings, in which like reference numerals represent like parts and assemblies throughout the several views, where possible. Reference to various embodiments does not limit the scope of the claims appended hereto because the embodiments are examples of the inventive concepts described herein. Additionally, any example(s) set forth in this specification are intended to be non-limiting and set forth some of the many possible embodiments applicable to the appended claims. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations unless the context or other statements clearly indicate otherwise.


Terms such as “same,” “equal,” “planar,” “coplanar,” “parallel,” “perpendicular,” etc. as used herein are intended to encompass a meaning of exactly the same while also including variations that may occur, for example, due to manufacturing processes. The term “substantially” may be used herein to emphasize this meaning, particularly when the described embodiment has the same or nearly the same functionality or characteristic, unless the context or other statements clearly indicate otherwise.


Referring to FIGS. 1-12 generally, various spinal implant 100 embodiments are disclosed. The components of spinal implant 100 can be fabricated from biologically acceptable materials suitable for medical applications, including metals, synthetic polymers, ceramics and bone material and/or their composites. For example, the components of spinal implant 100, individually or collectively, can be fabricated from materials such as stainless steel alloys, commercially pure titanium, titanium alloys, Grade 5 titanium, super-elastic titanium alloys, cobalt-chrome alloys, superelastic metallic alloys (e.g., Nitinol, super elasto-plastic metals, such as GUM METAL®), ceramics and composites thereof such as calcium phosphate (e.g., SKELITE™), thermoplastics such as polyaryletherketone (PAEK) including polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and polyetherketone (PEK), carbon-PEEK composites, PEEK-BaSO4 polymeric rubbers, polyethylene terephthalate (PET), fabric, silicone, polyurethane, silicone-polyurethane copolymers, polymeric rubbers, polyolefin rubbers, hydrogels, semi-rigid and rigid materials, elastomers, rubbers, thermoplastic elastomers, thermoset elastomers, elastomeric composites, rigid polymers including polyphenylene, polyamide, polyimide, polyetherimide, polyethylene, epoxy, bone material including autograft, allograft, xenograft or transgenic cortical and/or corticocancellous bone, and tissue growth or differentiation factors, partially resorbable materials, such as, for example, composites of metals and calcium-based ceramics, composites of PEEK and calcium based ceramics, composites of PEEK with resorbable polymers, totally resorbable materials, such as, for example, calcium based ceramics such as calcium phosphate, tri-calcium phosphate (TCP), hydroxyapatite (HA)-TCP, calcium sulfate, or other resorbable polymers such as polyaetide, polyglycolide, polytyrosine carbonate, polycaroplaetohe and their combinations.


Referring generally to FIGS. 1-12 an implant 100 is disclosed. The implant 100 may be used for an ACDF surgery in the cervical area of the spine (see FIG. 13), and expand in various planes of a patient 1 (see FIG. 14). However, other uses within the lumbar and/or thoracic area of the spine or between two bones or bone portions or within the void located in a bone are also contemplated. The present disclosure aims to reduce the complexity of mechanical mechanisms to cause distraction, lordosis, and/or kyphosis while increasing the available interior space of an implant by minimizing the size of the moving mechanism that causes distraction, lordosis, and/or kyphosis. At least one advantage of minimizing the size of the moving mechanism is that a relatively greater volume of a bone growth promoting material may be placed and/or injected inside of the implant for promoting fusion between adjacent vertebrae of a patient.


Implant 100 may be referred to as a monoblock implant, monolithic implant unibody implant, and/or unitary implant in some embodiments. As used herein, the terms monolithic, unitary, and/or unibody shall have their ordinary technical meaning. For example, referring to a component that a person of ordinary skill in the art would consider being formed as a continuous single piece. However, it shall be understood that in various embodiments a continuous single piece may have respective portions that are connected to one another to form the continuous single piece.


Implant 100 may include an inferior portion 10 and a superior portion 20 that define the outside surfaces of implant 100. It shall be understood that although implant 100 is described herein as being composed of an inferior portion 10 and a superior portion 20 that these portions are securely connected to one another to form an implant 100. For example, the inferior portion 10 is connected to the superior portion 20. In various embodiments, the implant 100 is expandable between a contracted position and an expanded position by movement of a set screw 40 which acts against and pushes a plug 50. In various embodiments, plug 50 may also be referred to as a barrel and/or include a hollow center. In various embodiments, set screw 40 may be positioned anteriorly of plug 50 and rotation of set screw 40 may cause set screw 40 to advance and therefore push plug 50.


In various embodiments, the set screw 40 may include a drive feature 42 (may also be referred to as a drive end aperture) including a plurality of peaks and valleys disposed on an interior circumferential surface, and a thread pattern 44 disposed on an exterior circumferential surface. Drive feature 42 may extend through set screw 40 and, in the illustrated embodiment, drive feature 42 may resemble a hexalobular shaped aperture. However, other designs are contemplated, e.g., the drive feature 42 may resemble the geometry of the tip of a torx driver, hex driver, phillips driver, square head driver, polygonal driver, or any combination thereof. In various embodiments, a rear surface 46 of set screw 40 may be configured to directly contact and push against a front surface 56 of plug 50. Various surgical tools may rotate set screw 40, for example the surgical tool 200 disclosed in U.S. application Ser. No. 17/246,968, the entire contents of which are incorporated herein by reference. In the example embodiment, rear surface 46 may have a relatively flat and/or substantially planar smooth surface surrounding the open aperture shape of drive feature 42.


In the example embodiment, plug 50 includes a base portion having a substantially cylindrical shape that transitions into an upper portion including a first inclined surface 52 and a stabilizing element 54. In the example embodiment, first inclined surface 52 may extend between second inclined surface 53 and stabilizing feature 54, for example. In various embodiments, stabilizing feature 54 may be disposed on a superior portion of plug 50 and extend towards a proximal side of implant 100 and/or an anterior side of implant 100 depending on orientation. Stabilizing feature 54 may provide a bearing surface for providing a stabilizing function between the inferior portion 10 and superior portion 20, for example, which will be explained in further detail below. Additionally, first inclined surface 52 may act against a corresponding inclined surface of implant 100 to cause expansion of implant 100, for example, which will be explained in further detail below. Similarly, second inclined surface 53 may act against a corresponding inclined surface of implant 100, and/or act as a bearing surface for a corresponding portion of implant 100 when implant 100 is in an expanded configuration, for example, which will be explained in further detail below.


In various embodiments, the set screw 40 may be rotatably engaged with a first threaded aperture 16 of the inferior portion 10 and the cylindrical base portion of plug 50 may be coaxially aligned with set screw 40. For example, the cylindrical base portion may have a central point positioned approximately in a center of a circle defining, at least partly, front surface 56 and the central point may be coaxially aligned with a central axis of rotation of set screw 40. However, it shall be understood that in other embodiments, such coaxial symmetry is not required as set screw 40 may contact and push against surface 56 of plug 50 and therefore move plug 50 without being coaxially aligned. Additionally, in various embodiments plug 50 may optionally be hollow and/or include an aperture coaxially aligned with the aperture of drive feature 42, for example the cross section drawing of FIG. 11. In various embodiments, the threaded aperture 16 may include a discontinuity at an upper end thereof for accommodating a corresponding portion of superior portion 20 and/or plug 50. For example, a discontinuity in the uppermost surface of inferior portion 10 that may accommodate stabilizing feature 54. As will be explained in further detail below, an interior of the superior portion 20 may include a first inclined ramp 26 (see FIG. 8) of which the first inclined surface 52 of plug 50 may act against. For example, when rotating the set screw 40 it may move forward and backward in a longitudinal direction within the first threaded aperture 16 thereby pushing plug 50 and urging the first inclined surface 52 of plug 50 against the first inclined ramp 26 to expand a vertical height of the implant 100.



FIGS. 3 and 4 are various perspective views of an implant 100, FIGS. 5 and 6 are various perspective views of an implant 100, and FIG. 7 is a top down view of implant 100. In the example embodiment, implant 100 may extend in a longitudinal direction along axis A-A from a proximal side 100p to a distal side 100d. Those with skill in the art will appreciate that proximal side 100p may be referred to as an anterior side and distal side 100d may be referred to as a posterior side (and vice versa) depending on the orientation of implant 100. Implant 100 may extend in a lateral direction along axis B-B from a first lateral side 1001 to a second lateral side 1001, for example. Additionally, implant 100 may include a superior side 100s (top surface) and an inferior side 1001 (bottom surface). In various embodiments, the superior side 100s may be defined by the superior portion 20 and the inferior side 1001 may be defined by the inferior portion. Additionally, in various embodiments, a proximal end of implant 100, for example a front vertical face of implant 100 may be defined by a proximal surface of inferior portion 10 and a proximal surface of superior portion 20. For example, the front face of implant 100 may be defined by both the superior portion 20 and inferior portion 10 as shown in FIG. 3. It shall also be appreciated that a vertical spacing between the superior portion 20 and inferior portion 10 is expandable and contactable at the proximal side 100p of implant 100 because the superior portion 20 and inferior portion 10 may not be rigidly connected at the proximal side 100p. Additionally, in various embodiments a distal end of implant 100, for example a rear surface of implant 100, may be defined by a distal surface of inferior portion 10 and a distal surface of superior portion 20. For example, the rear face of implant 100 may be defined by a region where both the superior portion 20 and inferior portion 10 are connected as shown in FIG. 5. It shall also be appreciated that in various embodiments a vertical spacing between the superior portion 20 and the inferior portion 10, at the distal side 100d of implant 100, may not be adjustable and/or expandable because the superior portion 20 and inferior portion 10 are connected at the distal side 100d. For example still, the distal side 100d of implant 100 may act as a hinge and/or function as a hinge that undergoes an elastic deformation in an expanded configuration.


Referring to FIGS. 3-7, implant 100 may include a plurality of slotted apertures 15a, 15b, 25a, and 25b to facilitate fusion of adjacent vertebrae, for example. In various embodiments, slotted apertures 15a, 15b, 25a, and 25b may be vertically aligned (see top down view of FIG. 7). Additionally, slotted apertures 15a, 15b, 25a, 25b may be packed with a bone growth promoting material to facilitate a fusion process. In various embodiments, implant 100 may include at least one bone screw aperture 14, 24. For example, the proximal side 100p of implant 100 may include a first bone screw aperture 14 that extends through a vertical face of inferior portion 10 on the proximal side 100p through a slotted aperture 15b of the inferior side 1001. In various embodiments, a portion of first bone screw aperture 14 may be formed in the inferior portion 10 and/or have at least a portion thereof formed in the inferior surface 1001. Additionally, the proximal side of implant 100 may include a second bone screw aperture 24 that extends through a vertical face of superior portion 20 on the proximal side 100p through a slotted aperture 25a of the superior side 100s. In various embodiments, a portion of second bone screw aperture 24 may be formed in the superior portion 20 and/or have at a least a portion thereof formed in the superior surface 100s. In various embodiments, bone screw apertures 14, 24 may be conically shaped and include various lip portions for retaining a head portion of a bone screw (not illustrated). In other embodiments, bone screw apertures 14, 24 may comprise an aperture maintaining substantially the same internal diameter, i.e., not tapering and/or conical. Additionally, in various embodiments bone screw apertures 14, 24 may allow for some freedom of movement when installing a bonescrew therein by accommodating about +/−5 degrees in any direction relative to a target alignment, for example.


Implant 100 may include at least one slit 12, 22 on each lateral side 1001. For example, a first slit 12 may take the form of a discontinuity extending in the longitudinal direction along the first lateral surface 1001 between the inferior portion 10 and the superior portion 20, for example. The first slit 12 may follow an undulating curved path and include a generally teardrop-shaped cutout 11 proximate the distal side 100d to facilitate the expansion of implant 100, for example. In various embodiments, and as illustrated, the undulating curved path of first slit 12 may be configured to facilitate an elastic deformation of implant 100 by allowing enough of a void space for the superior portion 20 to expand away from and relative to the inferior portion 10, for example. Similarly, a second slit 22 may take the form of a discontinuity extending in the longitudinal direction along the second lateral surface 1001 between the inferior portion 10 and the superior portion 20, for example. The second slit 22 may include a generally teardrop-shaped cutout 21 proximate the distal side 100d. In various embodiments, and as illustrated, the undulating curved path of first slit 12 may be configured to facilitate an elastic deformation of implant 100 by allowing enough of a void space for the superior portion 20 to expand away from and relative to the inferior portion 10, for example.


In the example embodiment, first slit 12 may extend along an undulating path along lateral side 1001 from tear drop cutout 11 towards a proximal side of implant 100 and adjoin the proximal end of implant 100 adjacent the inferior side 1001. For example, first slit 12 may extend from tear drop cutout 11 to the front face of implant 100 and transition into proximal slit 23. Similarly, in the example embodiment second slit 22 may extend along an undulating path along lateral side 1001 from tear drop cutout 21 to the front face of implant 100 and adjoin the proximal end of implant 100 adjacent the superior side 100s. For example, second slit 22 may extend from tear drop cutout 21 to the front face of implant 100 and transition into proximal slit 23. Proximal slit 23 may extend laterally along the proximal face of implant 100 between the first lateral end 1001 and second lateral end 1001. In the example embodiment, proximal slit 23 adjoins first slit 12 adjacent the inferior side 1001 of implant 100 and adjoins second slit 22 adjacent the superior side 100s. In this way, implant 100 may be disconnected and/or substantially disconnected on the first lateral side 1001, second lateral side 1001, and proximal side 100p yet remain connected at the distal side 100d.


With reference to FIGS. 8 and 9, in various embodiments slits 12, 22 and teardrop-shaped cutouts 11, 21 may be featured on both lateral sides 1001 of implant 100. The slits 12, 22 and teardrop-shaped cutouts 11, 21 may be configured to facilitate the expansion and contraction of implant 100 while the inferior portion 10 and superior portion 20 remain connected together at the distal side. For example, in an expanded configuration the slits 12, 22 and teardrop-shaped cutouts 11, 21 facilitate the pivoting of the superior portion 20 relative to the inferior portion 10 while slit 23 is enlarged (relative to a contracted configuration), for example. For example, by rotating set screw 40 such that it linearly translates from a proximal side 100p towards the distal side 100d and pushes plug 50 from the proximal side 100p towards the distal side 100d. In moving plug 50 towards the distal side 100d of implant 100 the first inclined surface 52 acts against the interior ramped surface 26 and pushes the superior portion 20 up and away from the inferior portion 10 while the distal side 100d of implant 100 is elastically deformed to allow the expansion. As seen best in the side profile of FIG. 9, first inclined surface 52 may act against inclined ramp 26 and second inclined surface 53 may act against and/or support a lower most surface of inclined ramp 26. In various embodiments, first inclined surface 52 may be inclined by a greater degree than second inclined surface 53 and each may be inclined by a degree corresponding to the inclination of inclined ramp 26, for example.


Consistent with the above disclosure, actuation of set screw 40 and linear translation of plug 50 may cause a lordotic angle of implant 100 to be adjusted and slits 12, 22, 23, and tear drop cutouts 11, 21 may facilitate the elastic deformation of implant 100 at the distal side 100d. As seen best in FIG. 8, stabilizing feature 54 of plug 50 may prevent plug 50 from rotating while also providing a bearing surface. For example, in various embodiments a bottom planar surface of support feature 54 may contact and/or slide across planar upper surface 13 of inferior portion 10. In some embodiments, not illustrated, planar upper surface 13 of inferior portion 10 may include a groove and/or recess for nesting and/or mating with support feature 54.



FIG. 10 illustrates a first cross section illustration through the center of implant 100 in the longitudinal direction and/or through longitudinal axis A-A. FIG. 11 illustrates an enlarged view of region Z-Z of FIG. 10. In the example illustration, it is shown that set screw 40 has pushed plug 50 all the way to a maximum expanded configuration. For example, rotating set screw 40 may cause threads of thread pattern 44 to rotate within threaded aperture 16 such that set screw 40 advances and pushes plug 50. In the maximum expanded configuration, a rear surface 57 of plug 50 has abutted against a stop feature 18 of inferior portion 10. Stop feature 18 may be a surface or wall extending in a vertical direction, for example. Stop feature 18 may prevent the accidental over expansion of implant 100 such that the only type of deformation that can occur is an elastic deformation, i.e., stop feature 18 may prevent the accidental occurrence of a plastic deformation be preventing plug 50 from advancing too far. Additionally, it is shown that support feature 54 provides a bearing surface whereby forces from superior portion 20 may be transferred to inferior portion 10 where an underside of support feature 54 contacts upper surface 13 of inferior portion 10, for example. Additionally, ramped surface 26 may directly contact and bear down against first inclined surface 52 and/or second inclined surface 53, for example. In this way, compressive forces from adjacent vertebrae of a patient may be transferred between the inferior portion 10 and superior portion 20.



FIG. 12 is a perspective cross section drawing with set screw 40 and plug 50 removed for ease of understanding of the internal geometry of implant 100. In the example embodiment, threaded aperture 16 may include a thread pattern that extends a portion of the distance between the proximal face of implant 100 and stop feature 18. For example, the thread pattern of threaded aperture 16 may terminate where the threads adjoin plug cavity 19. Plug cavity 19 may be a smooth arcuate surface corresponding to the outside diameter of the lower cylindrical portion of plug 50, for example. Plug cavity 19 may be closed, at least partially, at a distal side thereof by stop feature 18, as explained above. In various embodiments, and as illustrated in FIG. 12, the geometry of plug cavity 19 may correspond to an arc of a circle having a radius that approximates the minimum diameter portion of the threads of threaded aperture 16. For example, in a lateral cross section, plug cavity 19 may be considered a portion of a circle having a diameter that corresponds to the minimum diameter of the thread pattern of threaded aperture 16, for example. This arrangement may facilitate plug 50 being able to pass through threaded aperture 16 during assembly, for example.


Consistent with the disclosure herein, various embodiments of implant 100 may include three distinct and unitary components, an implant body formed of a superior portion 20 and inferior portion 10, a set screw 40, and a plug 50. Additionally, in various embodiments, implant 100 may be pre-assembled. For example, the plug 50 may be insert through threaded aperture 16 and into plug cavity 19 and set screw 40 may be threadably engaged with threads of threaded aperture 16 keeping plug 50 within the interior of implant 100. In some embodiments, not illustrated, a locking feature may be added to prevent the set screw 40 from backing out. For example, a locking feature may include a pivoting arm disposed on the proximal face of implant 100 that may rotate between a locked and unlocked position. In the locked position, the pivoting arm may block set screw 40 from backing out and in the unlocked position the pivoting arm may be pivoted away from threaded aperture 16 such that set screw 40 may be removed. In other embodiments, a second set screw (not illustrated) may be installed behind the first set screw 40 to cause jamming.



FIG. 13 is a reference drawing showing the human spine of which various disclosed implant embodiments may be installed in. FIG. 14 is a reference drawing showing various planes and reference directions of which the various disclosed implant embodiments may move in or act in. In operation, an end user such as a surgeon may place implant 100 between two adjacent vertebrae. Thereafter, the surgeon may lordotically expand implant 100 by rotating set screw 40 thereby pushing plug 50 distally and pushing superior portion 20 away from inferior portion 10. The surgeon may stop the set screw 40 at any appropriate position and the implant 100 may be continuously adjustable between a non-expanded position and the maximum expanded position. In some embodiments, implant 100 may have about 2 degrees to about 6 degrees of lordosis in a fully collapsed position and in other embodiments implant 100 may have about 4 degrees of lordosis in the fully collapsed position. Similarly, in some embodiments implant 100 may have about 12 degrees to about 18 degrees of lordosis in a fully expanded position and in other embodiments implant 100 may have about 15 degrees or lordosis in the fully expanded position.


In various embodiments, it is contemplated that the implant 100 may be filled with a bone growth promoting material that is either solid or fluid and flowable. In at least one embodiment, a flowable bone growth promoting material may be injected through the hollow set screw 40 and through a hollow embodiment of plug 50 such that the flowable graft material enters into the interior of implant 100. For example, as described in detail in U.S. patent application Ser. No. 17/246,968, the entire contents of which are incorporated herein by reference.


It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. For example, features, functionality, and components from one embodiment may be combined with another embodiment and vice versa unless the context clearly indicates otherwise. Similarly, features, functionality, and components may be omitted unless the context clearly indicates otherwise. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques).


Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc. It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless otherwise specified, and that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.

Claims
  • 1. A unibody intervertebral implant movable between a contracted position and an expanded position, comprising: a unitary expandable body extending from a proximal side to a distal side in a longitudinal direction, extending from a first lateral side to a second lateral side in a lateral direction, and extending from a superior side to an inferior side in a vertical direction;the unitary expandable body being defined by an inferior portion comprising an inferior endplate configured to contact an inferior vertebrae, and a superior portion comprising a superior endplate configured to contact a superior vertebrae, the inferior portion being connected to the superior portion adjacent the distal side of the body at a connection region;a set screw rotatably supported by a threaded aperture formed within the proximal side of the body and rotatable in a clockwise direction and counterclockwise direction around a rotation axis; anda plug disposed adjacent to and in contact with the set screw, the plug having a first inclined surface facing the distal side of the body,wherein:the superior portion comprises a first inclined ramp disposed on an interior surface thereof and facing the first inclined surface of the plug,the set screw is movable in the longitudinal direction towards the distal side of the body upon rotation of the set screw along the rotation axis, andmovement of the set screw in the longitudinal direction towards the distal side of the body urges the first inclined surface of the plug against the first inclined ramp thereby moving the body into an expanded position by increasing a vertical distance between the superior portion and inferior portion of the body.
  • 2. The unibody implant of claim 1, wherein the connection region is configured to function as a hinge that undergoes an elastic deformation in the expanded position.
  • 3. The unibody implant of claim 1, wherein the inferior portion comprises the threaded aperture rotatably supporting the set screw and a plug cavity housing the plug.
  • 4. The unibody implant of claim 1, wherein the first inclined surface is a planar surface.
  • 5. The unibody implant of claim 1, wherein: the inferior portion is connected to the superior portion at the distal side and the distal side is elastically deformable,the first lateral side comprises a first slit formed as a first discontinuity between the inferior portion and the superior portion, andthe second lateral side comprises a second slit formed as a second discontinuity between the inferior portion and the superior portion.
  • 6. The unibody implant of claim 5, wherein the first discontinuity comprises a first generally teardrop-shaped cutout proximate the distal side and the second discontinuity comprises a second generally teardrop-shaped cutout proximate the distal side.
  • 7. The unibody implant of claim 5, wherein: the proximal side comprises a third slit formed as a third discontinuity between the inferior portion and the superior portion,the first slit intersects with the third slit adjacent an inferior surface of the inferior portion, andthe second slit intersects with the third slit adjacent a superior surface of the superior portion.
  • 8. The unibody implant of claim 7, wherein the first slit and second slit comprise an undulating pattern, respectively.
  • 9. The unibody implant of claim 1, wherein: the inferior portion is connected to the superior portion at the distal side and the distal side is elastically deformable,the first lateral side comprises a first slit formed as a first discontinuity between the inferior portion and the superior portion,the second lateral side comprises a second slit formed as a second discontinuity between the inferior portion and the superior portion,the proximal side comprises a third slit formed as a third discontinuity between the inferior portion and the superior portion,the first slit connects to the third slit adjacent an inferior surface of the inferior portion, andthe second slit connects to the third slit adjacent a superior surface of the superior portion.
  • 10. The unibody implant of claim 1, wherein: the plug comprises a stabilizing element extending from an upper portion of the plug towards the proximal side of the body, andan underside of the stabilizing element directly contacts an upper surface of the inferior portion.
  • 11. The unibody implant of claim 10, wherein in an expanded position compressive forces applied to the superior portion are transferred to the inferior portion via the first inclined surface of the plug and the stabilizing element of the plug.
  • 12. The unibody implant of claim 10, wherein: the inferior portion comprises the threaded aperture rotatably supporting the set screw, an upper portion of the threaded aperture is discontinuous, and the plug extends through the upper portion of the threaded aperture.
  • 13. The unibody implant of claim 12, wherein the stabilizing element comprises a planar surface that extends over the upper portion of the threaded aperture.
  • 14. The unibody implant of claim 1, wherein the inferior portion comprises a first bone screw aperture extending from a first vertical surface of the inferior portion and through a bottom surface of the inferior portion, the first bone screw aperture defining a first bone screw trajectory projecting towards the distal side that is inclined with respect to the bottom surface of the inferior portion.
  • 15. The unibody implant of claim 14, wherein the superior portion comprises a second bone screw aperture extending from a second vertical surface of the superior portion and through a top surface of the superior portion, the second bone screw aperture defining a second bone screw trajectory projecting towards the distal side that is inclined with respect to the top surface of the superior portion.
  • 16. The unibody implant of claim 1, wherein the set screw comprises a first hollow interior and the plug comprises a second hollow interior.
  • 17. The unibody implant of claim 1, wherein the plug comprises a cylindrical portion having a center point and the rotation axis of the set screw is coaxially aligned with the center point of the plug.
  • 18. The unibody implant of claim 1, wherein the plug comprises a cylindrical portion having a hollow center and the rotation axis of the set screw is coaxially aligned with the hollow center of the plug.
  • 19. A method for expanding a unibody implant, comprising: providing a unibody implant movable between a contracted position and an expanded position, comprising:a unitary expandable body extending from a proximal side to a distal side in a longitudinal direction, extending from a first lateral side to a second lateral side in a lateral direction, and extending from a superior side to an inferior side in a vertical direction;the unitary expandable body being defined by an inferior portion comprising an inferior endplate configured to contact an inferior vertebrae and a superior portion comprising a superior endplate configured to contact a superior vertebrae, the inferior portion being connected to the superior portion adjacent the distal side of the body at a connection region;a set screw rotatably supported by a threaded aperture formed within the proximal side of the body and rotatable in a clockwise direction and counterclockwise direction around a rotation axis; anda plug disposed adjacent to and in contact with the set screw, the plug having a first inclined surface facing the distal side of the body,wherein:the superior portion comprises a first inclined ramp disposed on an interior surface thereof and facing the first inclined surface of the plug,the set screw is movable in the longitudinal direction towards the distal side of the body upon rotation of the set screw along the rotation axis,movement of the set screw in the longitudinal direction towards the distal side of the body urges the first inclined surface of the plug against the first inclined ramp thereby increasing a vertical distance of the body between the superior portion and inferior portion of the body, androtating the set screw such that it linearly translates from the proximal side towards the distal side of the body;pushing the plug, by the set screw, towards the distal side of the body; andurging, by the plug, the first inclined ramp of the superior portion up and away from the inferior portion such that the connection region undergoes an elastic deformation and the unibody implant moves from the contracted position to the expanded position.
  • 20. The method of claim 19, comprising: maintaining the unibody implant in the expanded position; andtransferring compressive forces of adjacent vertebrae between the superior portion and inferior portion via the first inclined ramp of the superior portion through the first inclined surface of the plug and a stabilizing feature of the plug that directly contacts an upper surface of the inferior portion.
US Referenced Citations (751)
Number Name Date Kind
4401112 Rezaian Aug 1983 A
4553273 Wu Nov 1985 A
4636217 Ogilvie et al. Jan 1987 A
4759769 Hedman et al. Jul 1988 A
5059193 Kuslich Oct 1991 A
5171278 Pisharodi Dec 1992 A
5336223 Rogers Aug 1994 A
5390683 Pisharodi Feb 1995 A
5522899 Michelson Jun 1996 A
5554191 Lahille et al. Sep 1996 A
5575790 Chen et al. Nov 1996 A
5609635 Michelson Mar 1997 A
5653762 Pisharodi Aug 1997 A
5658336 Pisharodi Aug 1997 A
5665122 Kambin Sep 1997 A
5693100 Pisharodi Dec 1997 A
5697977 Pisharodi Dec 1997 A
5702391 Lin Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5800550 Sertich Sep 1998 A
5865848 Baker Feb 1999 A
5893890 Pisharodi Apr 1999 A
5931777 Sava Aug 1999 A
5980522 Koros et al. Nov 1999 A
6045579 Hochshuler et al. Apr 2000 A
6074343 Nathanson et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6099531 Bonutti Aug 2000 A
6102949 Biedermann et al. Aug 2000 A
6102950 Vaccaro Aug 2000 A
6106557 Robioneck et al. Aug 2000 A
6113638 Williams et al. Sep 2000 A
6117174 Nolan Sep 2000 A
6132465 Ray et al. Oct 2000 A
6159211 Boriani et al. Dec 2000 A
6159244 Suddaby Dec 2000 A
6176882 Biedermann et al. Jan 2001 B1
6179873 Zientek Jan 2001 B1
6190414 Young et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6217579 Koros Apr 2001 B1
6245108 Biscup Jun 2001 B1
6309421 Pisharodi Oct 2001 B1
6342074 Simpson Jan 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6395031 Foley et al. May 2002 B1
6423063 Bonutti Jul 2002 B1
6432106 Fraser Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6443989 Jackson Sep 2002 B1
6443990 Aebi et al. Sep 2002 B1
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6461359 Tribus et al. Oct 2002 B1
6471724 Zdeblick Oct 2002 B2
6491724 Ferree Dec 2002 B1
6520991 Huene Feb 2003 B2
6520993 James et al. Feb 2003 B2
6527803 Crozet et al. Mar 2003 B1
6562074 Gerbec et al. May 2003 B2
6576016 Hochshuler et al. Jun 2003 B1
6623525 Ralph et al. Sep 2003 B2
6629998 Lin Oct 2003 B1
6635086 Lin Oct 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6676703 Biscup Jan 2004 B2
6685742 Jackson Feb 2004 B1
6723126 Berry Apr 2004 B1
6770096 Bolger et al. Aug 2004 B2
6773460 Jackson Aug 2004 B2
6821298 Jackson Nov 2004 B1
6835206 Jackson Dec 2004 B2
6849093 Michelson Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6923814 Hildebrand et al. Aug 2005 B1
6926737 Jackson Aug 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae Oct 2005 B2
6964687 Bernard et al. Nov 2005 B1
6974480 Messerli et al. Dec 2005 B2
6984234 Bray Jan 2006 B2
7112222 Fraser et al. Sep 2006 B2
7135043 Nakahara et al. Nov 2006 B2
7137997 Paul Nov 2006 B2
7172627 Fiere et al. Feb 2007 B2
7204853 Gordon et al. Apr 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7238203 Bagga et al. Jul 2007 B2
7316714 Gordon et al. Jan 2008 B2
7407483 Perez-Cruet et al. Aug 2008 B2
7481766 Lee et al. Jan 2009 B2
7491168 Raymond et al. Feb 2009 B2
7537565 Bass May 2009 B2
7618456 Mathieu et al. Nov 2009 B2
7625394 Molz, IV et al. Dec 2009 B2
7655046 Dryer et al. Feb 2010 B2
7678148 Peterman Mar 2010 B2
7703727 Selness Apr 2010 B2
7708778 Gordon et al. May 2010 B2
7708779 Edie et al. May 2010 B2
7727280 McLuen Jun 2010 B2
7753958 Gordon et al. Jul 2010 B2
7780594 Hutton Aug 2010 B2
7806932 Webb et al. Oct 2010 B2
7815682 Peterson et al. Oct 2010 B1
7819801 Miles et al. Oct 2010 B2
7828849 Lim Nov 2010 B2
7846167 Garcia et al. Dec 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7850731 Brittan et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7862616 Lechmann et al. Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
7892173 Miles et al. Feb 2011 B2
7909869 Gordon et al. Mar 2011 B2
7914559 Carls et al. Mar 2011 B2
7967821 Sicvol et al. Jun 2011 B2
7981031 Frasier et al. Jul 2011 B2
8016836 Corrao et al. Sep 2011 B2
8062375 Glerum et al. Nov 2011 B2
8105382 Olmos et al. Jan 2012 B2
8118870 Gordon et al. Feb 2012 B2
8118871 Gordon et al. Feb 2012 B2
8123810 Gordon et al. Feb 2012 B2
8147550 Gordon et al. Apr 2012 B2
8172903 Gordon et al. May 2012 B2
8182539 Tyber et al. May 2012 B2
8257442 Edie et al. Sep 2012 B2
8262570 White et al. Sep 2012 B2
8262662 Beardsley et al. Sep 2012 B2
8287597 Pimenta et al. Oct 2012 B1
8303498 Miles et al. Nov 2012 B2
8303658 Peterman Nov 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8317866 Palmatier et al. Nov 2012 B2
8323185 Perez-Cruet et al. Dec 2012 B2
8328872 Duffield et al. Dec 2012 B2
8343048 Warren, Jr. Jan 2013 B2
8353826 Weiman Jan 2013 B2
8355780 Miles et al. Jan 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8388527 Miles et al. Mar 2013 B2
8398713 Weiman Mar 2013 B2
8403990 Dryer et al. Mar 2013 B2
8419797 Biedermann et al. Apr 2013 B2
8425528 Berry et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8480576 Sandhu Jul 2013 B2
8496706 Ragab et al. Jul 2013 B2
8500634 Miles et al. Aug 2013 B2
8506635 Palmatier et al. Aug 2013 B2
8517935 Marchek et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8550994 Miles et al. Oct 2013 B2
8556808 Miles et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8579809 Parker Nov 2013 B2
8579979 Edie et al. Nov 2013 B2
8579981 Lim et al. Nov 2013 B2
8602984 Raymond et al. Dec 2013 B2
8628576 Triplett et al. Jan 2014 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8641768 Duffield et al. Feb 2014 B2
8647386 Gordon et al. Feb 2014 B2
8663329 Ernst Mar 2014 B2
8668715 Sandhu Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685095 Miller et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8696559 Miles et al. Apr 2014 B2
8709083 Duffield et al. Apr 2014 B2
8709085 Lechmann et al. Apr 2014 B2
8709086 Glerum Apr 2014 B2
8715353 Bagga et al. May 2014 B2
8740983 Arnold et al. Jun 2014 B1
8753271 Miles et al. Jun 2014 B1
8753396 Hockett et al. Jun 2014 B1
8764649 Miles et al. Jul 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8778025 Ragab et al. Jul 2014 B2
8778027 Medina Jul 2014 B2
8795366 Varela Aug 2014 B2
8808305 Kleiner Aug 2014 B2
8827902 Dietze, Jr. et al. Sep 2014 B2
8828085 Jensen Sep 2014 B1
8840668 Donahoe et al. Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852282 Farley et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8894708 Thalgott et al. Nov 2014 B2
8894711 Varela Nov 2014 B2
8894712 Varela Nov 2014 B2
8906095 Christensen et al. Dec 2014 B2
8920500 Pimenta et al. Dec 2014 B1
8926704 Glerum et al. Jan 2015 B2
8936641 Cain Jan 2015 B2
8940049 Jimenez et al. Jan 2015 B1
8968363 Weiman et al. Mar 2015 B2
8986344 Sandhu Mar 2015 B2
8992425 Karpowicz et al. Mar 2015 B2
8992544 Sasing Mar 2015 B2
9005292 Melamed Apr 2015 B2
9005293 Moskowitz et al. Apr 2015 B2
9005295 Kueenzi et al. Apr 2015 B2
9017412 Wolters et al. Apr 2015 B2
9034045 Davenport et al. May 2015 B2
9050146 Woolley et al. Jun 2015 B2
9050194 Thibodeau Jun 2015 B2
9060877 Kleiner Jun 2015 B2
9072563 Garcia et al. Jul 2015 B2
9084591 Reglos et al. Jul 2015 B2
9113854 Ellman Aug 2015 B2
9119730 Glerum et al. Sep 2015 B2
9125757 Weiman Sep 2015 B2
9132021 Mermuys et al. Sep 2015 B2
9138217 Smith et al. Sep 2015 B2
9138330 Hansell et al. Sep 2015 B2
9138331 Aferzon Sep 2015 B2
9149367 Davenport et al. Oct 2015 B2
9155628 Glerum et al. Oct 2015 B2
9155631 Seifert et al. Oct 2015 B2
9179903 Cianfrani et al. Nov 2015 B2
9179952 Biedermann et al. Nov 2015 B2
9186193 Kleiner et al. Nov 2015 B2
9186258 Davenport et al. Nov 2015 B2
9192482 Pimenta et al. Nov 2015 B1
9192483 Radcliffe et al. Nov 2015 B1
9198772 Weiman Dec 2015 B2
9204972 Weiman et al. Dec 2015 B2
9204974 Glerum et al. Dec 2015 B2
9211194 Bagga et al. Dec 2015 B2
9211196 Glerum et al. Dec 2015 B2
9216095 Glerum et al. Dec 2015 B2
9226836 Glerum Jan 2016 B2
9233007 Sungarian et al. Jan 2016 B2
9233009 Gray et al. Jan 2016 B2
9233010 Thalgott et al. Jan 2016 B2
9259327 Niemiec et al. Feb 2016 B2
9271846 Lim et al. Mar 2016 B2
9308099 Triplett et al. Apr 2016 B2
9320610 Alheidt et al. Apr 2016 B2
9351845 Pimenta et al. May 2016 B1
9351848 Glerum et al. May 2016 B2
9357909 Perez-Cruet et al. Jun 2016 B2
9358126 Glerum et al. Jun 2016 B2
9358127 Duffield et al. Jun 2016 B2
9358128 Glerum et al. Jun 2016 B2
9358129 Weiman Jun 2016 B2
9364343 Duffield et al. Jun 2016 B2
9370434 Weiman Jun 2016 B2
9370435 Walkenhorst et al. Jun 2016 B2
9381008 Thornburg Jul 2016 B2
9386916 Predick et al. Jul 2016 B2
9387092 Mermuys et al. Jul 2016 B2
9402673 Cormier et al. Aug 2016 B2
9402739 Weiman et al. Aug 2016 B2
9408596 Blain Aug 2016 B2
9408708 Greenhalgh Aug 2016 B2
9414828 Abidin et al. Aug 2016 B2
9414934 Cain Aug 2016 B2
9414937 Carlson et al. Aug 2016 B2
9421110 Masson et al. Aug 2016 B2
9427331 Arnin Aug 2016 B2
9445919 Palmatier et al. Sep 2016 B2
9452063 Glerum et al. Sep 2016 B2
9456903 Glerum et al. Oct 2016 B2
9456906 Gray et al. Oct 2016 B2
9468405 Miles et al. Oct 2016 B2
9474622 McLaughlin et al. Oct 2016 B2
9474625 Weiman Oct 2016 B2
9480573 Perloff et al. Nov 2016 B2
9480576 Pepper et al. Nov 2016 B2
9480579 Davenport et al. Nov 2016 B2
9486133 Lee et al. Nov 2016 B2
9486325 Davenport et al. Nov 2016 B2
9486327 Martynova et al. Nov 2016 B2
9486328 Jimenez et al. Nov 2016 B2
9492287 Glerum et al. Nov 2016 B2
9492288 Wagner et al. Nov 2016 B2
9492289 Davenport et al. Nov 2016 B2
9498349 Patterson et al. Nov 2016 B2
9510954 Glerum et al. Dec 2016 B2
9522070 Flower et al. Dec 2016 B2
9526620 Slivka et al. Dec 2016 B2
9526625 Cain Dec 2016 B2
9532821 Moskowitz et al. Jan 2017 B2
9539103 McLaughlin et al. Jan 2017 B2
9539108 Glerum et al. Jan 2017 B2
9545320 Padovani et al. Jan 2017 B2
9549723 Hynes et al. Jan 2017 B2
9549824 McAfee Jan 2017 B2
9561116 Weiman et al. Feb 2017 B2
9566163 Suddaby et al. Feb 2017 B2
9566166 Parry et al. Feb 2017 B2
9566168 Glerum et al. Feb 2017 B2
9572560 Mast et al. Feb 2017 B2
9572677 Davenport et al. Feb 2017 B2
9572681 Mathieu et al. Feb 2017 B2
9579124 Gordon et al. Feb 2017 B2
9579139 Cormier et al. Feb 2017 B2
9579213 Bal et al. Feb 2017 B2
9585649 Blain et al. Mar 2017 B2
9585762 Suddaby et al. Mar 2017 B2
9585766 Robinson Mar 2017 B2
9585767 Robinson Mar 2017 B2
9592129 Slivka et al. Mar 2017 B2
9597195 Cain Mar 2017 B2
9603713 Moskowitz et al. Mar 2017 B2
9603717 Ibarra et al. Mar 2017 B2
9615818 Baudouin et al. Apr 2017 B2
9615936 Duffield et al. Apr 2017 B2
9622732 Martinelli et al. Apr 2017 B2
9622875 Moskowitz et al. Apr 2017 B2
9622876 Greenhalgh et al. Apr 2017 B1
9629729 Grimberg, Jr. et al. Apr 2017 B2
9636097 Bass May 2017 B2
9642720 Radcliffe et al. May 2017 B2
9649198 Wolters et al. May 2017 B2
9655746 Seifert May 2017 B2
9655747 Glerum et al. May 2017 B2
9662224 Weiman et al. May 2017 B2
9668784 Brumfield et al. Jun 2017 B2
9668876 Blain et al. Jun 2017 B2
9668879 Jimenez et al. Jun 2017 B2
9675465 Padovani et al. Jun 2017 B2
9675467 Duffield et al. Jun 2017 B2
9675468 Jensen Jun 2017 B1
9693871 Richerme et al. Jul 2017 B2
9700428 Niemiec et al. Jul 2017 B2
9707092 Davenport et al. Jul 2017 B2
9713536 Foley et al. Jul 2017 B2
9717601 Miller Aug 2017 B2
9730684 Beale et al. Aug 2017 B2
9730806 Capote Aug 2017 B2
9737288 Karpowicz et al. Aug 2017 B2
9750617 Lim et al. Sep 2017 B2
9750618 Daffinson et al. Sep 2017 B1
9757249 Radcliffe et al. Sep 2017 B2
9770343 Weiman Sep 2017 B2
9782265 Weiman et al. Oct 2017 B2
9788971 Stein Oct 2017 B1
9795370 O'Connell et al. Oct 2017 B2
9795371 Miles et al. Oct 2017 B2
9801733 Wolters et al. Oct 2017 B2
9801734 Stein et al. Oct 2017 B1
9808352 Suddaby et al. Nov 2017 B2
9826966 Mast et al. Nov 2017 B2
9827024 Cormier et al. Nov 2017 B2
9827107 Arnin Nov 2017 B1
9833333 Duffield et al. Dec 2017 B2
9833336 Davenport et al. Dec 2017 B2
9839527 Robinson Dec 2017 B2
9839528 Weiman et al. Dec 2017 B2
9848993 Moskowitz et al. Dec 2017 B2
9848996 Faulhaber Dec 2017 B2
9855151 Weiman Jan 2018 B2
9867715 McLaughlin et al. Jan 2018 B2
9872779 Miller et al. Jan 2018 B2
9889019 Rogers et al. Feb 2018 B2
9907671 Fessler Mar 2018 B2
9907673 Weiman et al. Mar 2018 B2
9918709 Sandhu Mar 2018 B2
9924859 Lee et al. Mar 2018 B2
9924940 Moskowitz et al. Mar 2018 B2
9925062 Glerum et al. Mar 2018 B2
9925064 Duffield et al. Mar 2018 B2
9931223 Cain Apr 2018 B2
9937053 Melkent et al. Apr 2018 B2
9943342 Tanaka et al. Apr 2018 B2
9943418 Davenport et al. Apr 2018 B2
9949841 Glerum et al. Apr 2018 B2
9956087 Seifert et al. May 2018 B2
9962270 Alheidt et al. May 2018 B2
9962271 Glerum May 2018 B2
9962272 Daffinson et al. May 2018 B1
9968461 Zappacosta et al. May 2018 B2
9968462 Weiman May 2018 B2
9974531 Miles et al. May 2018 B2
9974662 Hessler et al. May 2018 B2
9974664 Emerick et al. May 2018 B2
9980825 Nichols et al. May 2018 B2
9980826 Martynova et al. May 2018 B2
9987141 Duffield et al. Jun 2018 B2
9987143 Robinson et al. Jun 2018 B2
9987144 Seifert et al. Jun 2018 B2
9987146 Lentner et al. Jun 2018 B1
9993239 Karpowicz et al. Jun 2018 B2
9993350 Cain Jun 2018 B2
10004607 Weiman et al. Jun 2018 B2
10016282 Seifert et al. Jul 2018 B2
10016284 Moskowitz et al. Jul 2018 B2
10022239 Lentner et al. Jul 2018 B1
10028842 Gray et al. Jul 2018 B2
10034765 Blain et al. Jul 2018 B2
10034769 Baynham Jul 2018 B2
10034772 Glerum et al. Jul 2018 B2
10034773 McLaughlin et al. Jul 2018 B2
10039539 Friedrich et al. Aug 2018 B2
10039650 Lamborne et al. Aug 2018 B2
10052214 Jimenez et al. Aug 2018 B2
10060469 Jimenez et al. Aug 2018 B2
10070852 Mast et al. Sep 2018 B2
10076320 Mast et al. Sep 2018 B2
10076423 Miller et al. Sep 2018 B2
10080666 Suddaby et al. Sep 2018 B2
10080669 Davenport et al. Sep 2018 B2
10085846 Grotz Oct 2018 B2
10085849 Weiman et al. Oct 2018 B2
10092417 Weiman et al. Oct 2018 B2
10098758 Matthews et al. Oct 2018 B2
10098759 Weiman Oct 2018 B2
10111755 Foley et al. Oct 2018 B2
10111758 Robinson Oct 2018 B2
10117754 Davenport et al. Nov 2018 B2
10117755 Emerick et al. Nov 2018 B2
10137002 Padovani et al. Nov 2018 B2
10137006 Dewey et al. Nov 2018 B2
10137007 Dewey et al. Nov 2018 B2
10137009 Weiman et al. Nov 2018 B2
10149671 Predick et al. Dec 2018 B2
10149710 Tanaka et al. Dec 2018 B2
10154781 Weiman Dec 2018 B2
10154912 Glerum Dec 2018 B2
10154914 Robinson Dec 2018 B2
10159584 Carnes et al. Dec 2018 B2
10166117 Daffinson et al. Jan 2019 B1
10172515 Lee et al. Jan 2019 B2
10172652 Woolley et al. Jan 2019 B2
10178987 Predick et al. Jan 2019 B2
10179053 Zappacosta et al. Jan 2019 B2
10182922 Nichols et al. Jan 2019 B2
10188527 Rogers et al. Jan 2019 B2
10195050 Palmatier et al. Feb 2019 B2
10201431 Slater et al. Feb 2019 B2
10213192 Capote Feb 2019 B2
10213193 Karpowicz et al. Feb 2019 B2
10219798 Capote Mar 2019 B2
10219913 Matthews et al. Mar 2019 B2
10219914 Faulhaber Mar 2019 B2
10219915 Stein Mar 2019 B1
10226356 Grotz Mar 2019 B2
10226359 Glerum et al. Mar 2019 B2
10238375 O'Connell et al. Mar 2019 B2
10238383 Moskowitz et al. Mar 2019 B2
10238503 Branch et al. Mar 2019 B2
10245015 Predick et al. Apr 2019 B2
10251643 Moskowitz et al. Apr 2019 B2
10265191 Lim et al. Apr 2019 B2
10278686 Baudouin et al. May 2019 B2
10278786 Friedrich et al. May 2019 B2
10278830 Walker et al. May 2019 B1
10278831 Sandul May 2019 B2
10278832 Nichols et al. May 2019 B2
10285680 Friedrich et al. May 2019 B2
10285819 Greenhalgh May 2019 B2
10285824 Robinson May 2019 B2
10292828 Greenhalgh May 2019 B2
10299777 Mast et al. May 2019 B2
10299934 Seifert et al. May 2019 B2
10299937 McAfee May 2019 B2
10307268 Moskowitz et al. Jun 2019 B2
10314719 Hessler et al. Jun 2019 B2
10322007 Masson et al. Jun 2019 B2
10322009 Aghayev et al. Jun 2019 B2
10327909 Baynham Jun 2019 B2
10327912 Suddaby Jun 2019 B1
10327917 Glerum et al. Jun 2019 B2
10342675 Alheidt Jul 2019 B2
10350085 Glerum et al. Jul 2019 B2
10357233 Miles et al. Jul 2019 B2
10363142 McClintock et al. Jul 2019 B2
10363144 Overes et al. Jul 2019 B2
10369004 Faulhaber Aug 2019 B2
10369008 Jimenez et al. Aug 2019 B2
10369010 Robinson et al. Aug 2019 B2
10369012 Fessler Aug 2019 B2
10376377 Seifert et al. Aug 2019 B2
10390962 Weiman Aug 2019 B2
10390964 Faulhaber Aug 2019 B2
10398563 Engstrom Sep 2019 B2
10398566 Olmos et al. Sep 2019 B2
10413419 Thibodeau Sep 2019 B2
10413422 Flower et al. Sep 2019 B2
10413423 Overes et al. Sep 2019 B2
10426450 Vogel et al. Oct 2019 B2
10426633 Moskowitz et al. Oct 2019 B2
10426634 Al-Jazaeri et al. Oct 2019 B1
10441430 Ludwig et al. Oct 2019 B2
10449056 Cain Oct 2019 B2
10456122 Koltz et al. Oct 2019 B2
10470894 Foley et al. Nov 2019 B2
10478319 Moskowitz et al. Nov 2019 B2
10492912 Gregersen et al. Dec 2019 B2
10492922 Mathieu et al. Dec 2019 B2
10492924 Stein et al. Dec 2019 B2
10500064 Robinson Dec 2019 B2
10512550 Bechtel et al. Dec 2019 B2
10517645 van der Pol Dec 2019 B2
10524924 Davenport et al. Jan 2020 B2
10531903 Daly et al. Jan 2020 B2
10537436 Maguire et al. Jan 2020 B2
10537438 Martynova et al. Jan 2020 B2
10555729 Cole et al. Feb 2020 B1
10561411 Cole et al. Feb 2020 B1
10575960 Duffield et al. Mar 2020 B2
10583015 Olmos et al. Mar 2020 B2
10603078 Simpson et al. Mar 2020 B2
10610376 Kuyler et al. Apr 2020 B2
10624757 Bost et al. Apr 2020 B2
10624758 Slivka et al. Apr 2020 B2
10624761 Davenport et al. Apr 2020 B2
10639166 Weiman et al. May 2020 B2
10667925 Emerick et al. Jun 2020 B2
10667927 Lamborne et al. Jun 2020 B2
10675157 Zakelj et al. Jun 2020 B2
10682241 Glerum et al. Jun 2020 B2
10687963 Jimenez et al. Jun 2020 B2
10702393 Davenport et al. Jul 2020 B2
10709569 McLaughlin et al. Jul 2020 B2
10709571 Iott et al. Jul 2020 B2
10709572 Daffinson et al. Jul 2020 B2
10709575 Robinson Jul 2020 B2
10722377 Glerum et al. Jul 2020 B2
10722379 McLaughlin et al. Jul 2020 B2
10729561 Glerum Aug 2020 B2
10743858 Cole et al. Aug 2020 B1
10744002 Glerum et al. Aug 2020 B2
10758366 Daffinson et al. Sep 2020 B2
10758367 Weiman et al. Sep 2020 B2
10758369 Rogers et al. Sep 2020 B2
10765528 Weiman et al. Sep 2020 B2
10772737 Gray et al. Sep 2020 B2
10779955 Kuyler et al. Sep 2020 B2
10779957 Weiman et al. Sep 2020 B2
10786364 Davenport et al. Sep 2020 B2
10786369 Carnes et al. Sep 2020 B2
10799368 Glerum et al. Oct 2020 B2
10835387 Weiman et al. Nov 2020 B2
10842640 Weiman et al. Nov 2020 B2
10842644 Weiman et al. Nov 2020 B2
10856997 Cowan et al. Dec 2020 B2
10869769 Eisen et al. Dec 2020 B2
10874523 Weiman et al. Dec 2020 B2
10874524 Bjork Dec 2020 B2
11510788 Eisen Nov 2022 B2
20020045943 Uk Apr 2002 A1
20020045945 Liu Apr 2002 A1
20020116066 Chauvin et al. Aug 2002 A1
20020128713 Ferree Sep 2002 A1
20020151976 Foley et al. Oct 2002 A1
20030050701 Michelson Mar 2003 A1
20030130739 Gerbec et al. Jul 2003 A1
20040172134 Berry Sep 2004 A1
20040186570 Rapp Sep 2004 A1
20040193158 Lim et al. Sep 2004 A1
20040249461 Ferree Dec 2004 A1
20040254643 Jackson Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20050015149 Michelson Jan 2005 A1
20050033429 Kuo Feb 2005 A1
20050033439 Gordon et al. Feb 2005 A1
20060122701 Kiester Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20090024158 Viker Jan 2009 A1
20090292361 Lopez Nov 2009 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20110118843 Mathieu et al. May 2011 A1
20110130838 Morgenstern Lopez Jun 2011 A1
20110218572 Lechmann et al. Sep 2011 A1
20110282396 Shimko Nov 2011 A1
20120101581 Mathieu et al. Apr 2012 A1
20120109309 Mathieu et al. May 2012 A1
20120109310 Mathieu et al. May 2012 A1
20120109312 Mathieu et al. May 2012 A1
20120109313 Mathieu et al. May 2012 A1
20120123546 Medina May 2012 A1
20120197401 Duncan et al. Aug 2012 A1
20120209385 Aferzon Aug 2012 A1
20120215316 Mohr et al. Aug 2012 A1
20130013070 McCormack Jan 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130231747 Olmos et al. Sep 2013 A1
20130317312 Eastlack et al. Nov 2013 A1
20140107790 Combrowski Apr 2014 A1
20140114420 Robinson Apr 2014 A1
20140148904 Robinson May 2014 A1
20140163682 Iott et al. Jun 2014 A1
20140180419 Dmuschewsky Jun 2014 A1
20140194992 Medina Jul 2014 A1
20140277500 Logan et al. Sep 2014 A1
20150142114 Pisharodi May 2015 A1
20150223945 Weiman et al. Aug 2015 A1
20150230931 Greenhalgh Aug 2015 A1
20160008924 Canourgues et al. Jan 2016 A1
20160022434 Robinson Jan 2016 A1
20160081681 Waugh et al. Mar 2016 A1
20160089247 Nichols et al. Mar 2016 A1
20160095710 Juszczyk et al. Apr 2016 A1
20160242930 Duffield et al. Aug 2016 A1
20160256291 Miller Sep 2016 A1
20160296340 Gordon et al. Oct 2016 A1
20160310291 Greenhalgh Oct 2016 A1
20160345952 Kucharzyk et al. Dec 2016 A1
20160367377 Faulhaber Dec 2016 A1
20170010025 Mayershofer Jan 2017 A1
20170029635 Doll et al. Feb 2017 A1
20170035406 Abidin et al. Feb 2017 A1
20170049651 Lim et al. Feb 2017 A1
20170049653 Lim et al. Feb 2017 A1
20170095345 Davenport et al. Apr 2017 A1
20170100255 Hleihil et al. Apr 2017 A1
20170100257 Weiman et al. Apr 2017 A1
20170105844 Kuyler et al. Apr 2017 A1
20170151065 Warren et al. Jun 2017 A1
20170156882 Rathbun et al. Jun 2017 A1
20170156884 Rathbun et al. Jun 2017 A1
20170202678 Duffield et al. Jul 2017 A1
20170215856 Martinelli et al. Aug 2017 A1
20170224502 Wolters et al. Aug 2017 A1
20170246006 Carnes et al. Aug 2017 A1
20170290677 Olmos et al. Oct 2017 A1
20170296352 Richerme et al. Oct 2017 A1
20170367842 Predick et al. Dec 2017 A1
20170367843 Eisen et al. Dec 2017 A1
20170367844 Eisen et al. Dec 2017 A1
20170367845 Eisen et al. Dec 2017 A1
20180030362 Kosler et al. Feb 2018 A1
20180031810 Hsu et al. Feb 2018 A1
20180036136 Duffield et al. Feb 2018 A1
20180036138 Robinson Feb 2018 A1
20180116891 Beale et al. May 2018 A1
20180193164 Shoshtaev Jul 2018 A1
20180206999 Suddaby Jul 2018 A1
20180256356 Robinson et al. Sep 2018 A1
20180256359 Greenhalgh Sep 2018 A1
20180256360 Cain Sep 2018 A1
20180256362 Slivka et al. Sep 2018 A1
20180263784 Bechtel et al. Sep 2018 A1
20180280142 Schultz et al. Oct 2018 A1
20180303473 Spann et al. Oct 2018 A1
20180303621 Brotman et al. Oct 2018 A1
20180303625 Alheidt et al. Oct 2018 A1
20180311048 Glerum et al. Nov 2018 A1
20180318101 Engstrom Nov 2018 A1
20180318102 Seifert et al. Nov 2018 A1
20180338838 Cryder et al. Nov 2018 A1
20180338841 Miller et al. Nov 2018 A1
20180344307 Hynes et al. Dec 2018 A1
20180360616 Luu Dec 2018 A1
20190000640 Weiman Jan 2019 A1
20190000702 Lim et al. Jan 2019 A1
20190000707 Lim et al. Jan 2019 A1
20190020121 Paulotto et al. Jan 2019 A1
20190021716 Waugh et al. Jan 2019 A1
20190021873 Dmuschewsky Jan 2019 A1
20190046329 Padovani et al. Feb 2019 A1
20190046381 Lim et al. Feb 2019 A1
20190046383 Lim et al. Feb 2019 A1
20190060083 Weiman et al. Feb 2019 A1
20190082949 Weiman Mar 2019 A1
20190083081 Ortiz et al. Mar 2019 A1
20190091033 Dewey et al. Mar 2019 A1
20190105175 Zappacosta et al. Apr 2019 A1
20190125328 Blain May 2019 A1
20190133434 Lee et al. May 2019 A1
20190133645 Gordon et al. May 2019 A1
20190133780 Matthews et al. May 2019 A1
20190133784 Gunn et al. May 2019 A1
20190133788 Weiman et al. May 2019 A1
20190142480 Woolley et al. May 2019 A1
20190151115 Nichols et al. May 2019 A1
20190183656 Stein Jun 2019 A1
20190201209 Branch et al. Jul 2019 A1
20190201210 Besaw et al. Jul 2019 A1
20190209155 Mast et al. Jul 2019 A1
20190216453 Predick et al. Jul 2019 A1
20190231552 Sandul Aug 2019 A1
20190240039 Walker et al. Aug 2019 A1
20190240043 Greenhalgh Aug 2019 A1
20190254650 Martinelli et al. Aug 2019 A1
20190254838 Miller et al. Aug 2019 A1
20190254839 Nichols et al. Aug 2019 A1
20190262139 Wolters Aug 2019 A1
20190269521 Shoshtaev Sep 2019 A1
20190274670 O'Connell et al. Sep 2019 A1
20190274671 Lauf et al. Sep 2019 A1
20190274836 Eisen et al. Sep 2019 A1
20190282373 Alheidt Sep 2019 A1
20190290446 Masson et al. Sep 2019 A1
20190290447 Stein Sep 2019 A1
20190298524 Lauf et al. Oct 2019 A1
20190298540 Aghayev et al. Oct 2019 A1
20190321022 Karpowicz et al. Oct 2019 A1
20190321190 Wagner et al. Oct 2019 A1
20190328540 Seifert et al. Oct 2019 A1
20190336301 Engstrom Nov 2019 A1
20190336304 Burkhardt et al. Nov 2019 A1
20190350573 Vogel et al. Nov 2019 A1
20190358049 Faulhaber Nov 2019 A1
20190358050 Fessler Nov 2019 A1
20190358051 Flower et al. Nov 2019 A1
20190388232 Purcell et al. Dec 2019 A1
20200008951 McClintock et al. Jan 2020 A1
20200030114 Cain Jan 2020 A1
20200030116 Jimenez et al. Jan 2020 A1
20200038200 Foley et al. Feb 2020 A1
20200054461 Marrocco et al. Feb 2020 A1
20200060844 Mathieu et al. Feb 2020 A1
20200078190 Rogers et al. Mar 2020 A1
20200093607 Davenport et al. Mar 2020 A1
20200093609 Shoshtaev Mar 2020 A1
20200100904 Stein et al. Apr 2020 A1
20200129306 Miller et al. Apr 2020 A1
20200129307 Hunziker et al. Apr 2020 A1
20200138591 Moskowitz et al. May 2020 A1
20200138593 Martynova et al. May 2020 A1
20200146840 Black et al. May 2020 A1
20200205993 Davenport et al. Jul 2020 A1
20200222202 Kuyler et al. Jul 2020 A1
20200229944 Suh et al. Jul 2020 A1
20200246159 Suh et al. Aug 2020 A1
20200246162 Schultz et al. Aug 2020 A1
20200261242 Bost et al. Aug 2020 A1
20200268524 Glerum et al. Aug 2020 A1
20200276028 Blain et al. Sep 2020 A1
20200289287 Emerick et al. Sep 2020 A1
20200297507 Iott et al. Sep 2020 A1
20200330239 Davenport et al. Oct 2020 A1
20200330245 Glerum Oct 2020 A1
20200345511 Daffinson et al. Nov 2020 A1
20200352731 Berry Nov 2020 A1
20200352738 Berry Nov 2020 A1
20200360153 Weiman et al. Nov 2020 A1
20200375753 McLaughlin et al. Dec 2020 A1
20200375755 Cain Dec 2020 A1
20200383797 Predick et al. Dec 2020 A1
20200383799 Cain Dec 2020 A1
20200390565 Jimenez et al. Dec 2020 A1
20200397593 Davenport et al. Dec 2020 A1
20200405498 Gray et al. Dec 2020 A1
20200405499 Gerbec et al. Dec 2020 A1
20200405500 Cain Dec 2020 A1
Foreign Referenced Citations (23)
Number Date Country
44 16 605 Jun 1995 DE
0 767 636 Apr 1997 EP
0 880 950 Dec 1998 EP
0 857 042 Nov 2001 EP
1 442 732 Aug 2004 EP
1 124 512 Sep 2004 EP
1 107 711 Oct 2004 EP
1 506 753 Feb 2005 EP
1 459 711 Jul 2007 EP
3082115 Dec 2019 FR
2 377 387 Jan 2003 GB
9214423 Sep 1992 WO
97 00054 Jan 1997 WO
99 26562 Jun 1999 WO
9966867 Dec 1999 WO
0012033 Mar 2000 WO
0025706 May 2000 WO
00 49977 Aug 2000 WO
0219952 Mar 2002 WO
03105673 Dec 2003 WO
2014133755 Sep 2014 WO
2017168208 Oct 2017 WO
2018049227 Mar 2018 WO
Non-Patent Literature Citations (2)
Entry
International Search Report, and Written Opinion for Application. No. PCT/US2019/019067, dated Jun. 3, 2019.
International Search Report and Written Opinion for Application No. PCT/US2019/019060, dated Jun. 5, 2019.
Related Publications (1)
Number Date Country
20230018019 A1 Jan 2023 US