Harlow E, Lane D., Antibodies a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1988.* |
Abaza MS, Atassi MZ. Effects of amino acid substitutions outside an antigenic site on protein binding to monoclonal antibodies of predetermined specificity obtained by peptide immunization: . . . J Protein Chem. 11(6):687-98, 1992.* |
Colman PM. Effects of amino acid sequence changes on antibody-antigen interactions. Res Immunol. 145(1):33-36, 1994.* |
Lederman S, et al. A single amino acid substitution in a common African allele of the CD4 molecule ablates binding of the monoclonal antibody, OKT4. Mol Immunol. 28(11):1171-81, 1991.* |
Ngo J.T, Marks J., Karplus M., Computational complexity, protein structure prediction, and The Levinthal paradox in the Protein Folding Problem, ch. 14, pp. 435-508, Birkhauser, 1994.* |
Tsuruga H, Yabuta N, Hashizume K, Ikeda M, Endo Y, Nojima H. Expression, nuclear localization and interactions of human MCM/P1 proteins. Biochem Biophys Res Commun. Jul. 9, 1997;236(1):118-25.* |
Shaw, D.R. et al., “Mouse/Human Chimeric Antibodies to a Tumor-Associated Antigen: Biologic Activity of the Four Human IgG Subclasses,” Journal of the National Cancer Institute, 80(19):1553-1559 (1988). (Corrected). |
Regenmortel, M.H.V.V. et al., “Synthetic Polypeptides as Antigens,” Elsevier Science Publishers B.V., pp. 4-9 (1988). |
BD PharMingen, Research Products Catalog (2000), p. 884. |
Gerdes J. et al., “Production of a Mouse Monoclonal Antibody Reactive with a Human Nuclear Antigen Associated with Cell Proliferation,” Int. J. Cancer, 31:13-20 (1983). |
Baisch, H. and Gerdes, J., “Simultaneous Staining of Exponentially Growing Versus Plateau Phase Cells with the Proliferation-Associated Antibody Ki-67 and Propidium Iodide: Analysis by Flow Cytometry,” Cell Tissue Kinet., 20:387-391 (1987). |
Maine, G.T. et al., “Mutants of S. Cerevisiae Defective in the Maintenance of Minichromosomes,” Genetics, 106:365-385 (1984). |
Blow, J.J. and Laskey, R.A., “A Role for the Nuclear Envelope in Controlling DNA Replication Within the Cell Cycle,” Nature, 332:546-548 (1988). |
Richter, A. and Knippers, R., “High-Molecular-Mass Complexes of Human Minichromosome-Maintenance Proteins in Mitotic Cells,” Eur. J. Biochem., 247:136-141 (1997). |
Thömmes, P. et al., “Properties of the Nuclear P1 Protein, a Mammalian Homologue of the Yeast Mcm3 Replication Protein,” Nucleic Acids Research, 20(5):1069-1074 (1992). |
Hu, B. et al., “The P1 Family: A New Class of Nuclear Mammalian Proteins Related to the Yeast Mcm Replication Process,” Nucleic Acids Research, 21(22):5289-5293 (1993). |
Köhler, G. and Kilstein, C., “Continuous Cultures of Fused Cells Secreting Antibody of Predelined Specificity,” Nature, 256:495-497 (1975). |
Brown, J.P. et al., “Structural Characterization of Human Melanoma-Associated Antigen p97 with Monoclonal Antibodies,” The Journal of Immunology, 127(2):539-546 (1981). |
Brown, J.P. et al., “Protein Antigens of Normal and Melignant Human Cells Identified by Immunoprecipitation with Monoclonal Antibodies,” The Journal of Biological Chemistry, 255(11):4980-4983 (1980). |
Yeh, M.Y. et al., “Cell Surface Antigens of Human Melanoma Identified by Monoclonal Antibody,” Proc. Natl. Acad. Sci. USA, 76(6):2927-2931 (1979). |
Yeh, M.Y. et al., “A Cell-Surface Antigen Which is Present in the Ganglioside Fraction and Shared by Human Melanomas,” Int. J. Cancer, 29:269-275 (1982). |
Kozbor, D. and Roder, J.C., “The Production of Monoclonal Antibodies from Human Lymphocytes,” Immunology Today, 4(3):72-79 (1983). |
Cole, S.P.C. et al., “The EBV-Hybridoma Technique and its Application to Human Lung Cancer,” Monoclonal Antibodies and Cancer Therapy, pp. 77-96 (1985). |
Lerner, E.A., “How to Make a Hybridoma,” The Yale Journal of Biology and Medicine, 54:387-402 (1981). |
Gefter, M.L. et al., “A Simple Method for Polyethylene Glycol-Promoted Hybridization of Mouse Myeloma Cells,” Somatic Cell Genetics, 3(2):231-236 (1977). |
Galfre, G. et al., “Antibodies to Major Histocompatibility Antigens Produced by Hybrid Cell Lines,” Nature, 266:550-552 (1977). |
Fuchs, P. et al., “Targeting Recombinant Antibodies to the Surface of Escherichia coli:Fusion to a Peptidoglycan Associated Lipoprotein,” Bio/Technology, 9:1369-1372 (1991). |
Hay, B.N. et al., “Bacteriophage Cloning and Escherichia coli Expression of a Human IgM Fab,” Hum. Antibod. Hybridomas, 3:81-85 (1992). |
Huse, W.D. et al., “Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda,” Science, 246:1275-1281 (1989). |
Griffiths, A.D. et al., “Human Anti-Self Antibodies with High Specificity from Phage Display Libraries,” The EMBO Journal, 12(2):725-734 (1993). |
Hawkins, R.E. et al., “Selection of Phage Antibodies by Binding Affinity,” J. Mol. Biol., 226:889-896 (1992). |
Clackson, T. et al., “Making Antibody Fragments Using Phage Display Libraries,” Nature, 352:624-628 (1991). |
Gram, H. et al., “In Vitro Selection and Affinity Maturation of Antibodies from a Naive Combinatorial Immunoglobulin Library,” Proc. Natl. Acad. Sci. USA, 89:3576-3580 (1992). |
Garrard, L.J. et al., “F, Assembly and Enrichment in a Monovalent Phage Display System,” Bio/Technology, 9:1373-1377 (1991). |
Hoogenboom, H.R. et al., “Multi-subunit Proteins on the Surface of Filamentous Phage: Methodologies for Displaying Antibody (Fab) Heavy and Light Chains,” Nucleic Acids Research, 19(15):4133-4137 (1991). |
Barbas, C.F. et al., “Assembly of Combinatorial Antibody Libraries on Phage Surfaces: The Gene III Site,” Proc. Natl. Acad. Sci. USA, 88:7978-7982 (1991). |
Better, M. et al., “Escherichia coli Secretion of an Active Chimeric Antibody Fragment,” Science, 240:1041-1043 (1988). |
Liu, A.Y. et al., “Chimeric Mouse-Human IgG1 Antibody that can Mediate Lysis of Cancer Cells,” Proc. Natl. Acad. Sci. USA, 84:3439-3443 (1987). |
Liu, A.Y. et al., “Production of a Mouse-Human Chimeric Monoclonal Antibody to CD20 with Potent Fc-Dependent Biologic Activity,” The Journal of Immunology, 139(10):3521-3526 (1987). |
Sun, L.K. et al., “Chimeric Antibody with Human Constant Regions and Mouse Variable Regions Directed Against Carcinoma-Associated Antigen 17-1A,” Proc. Acad. Sci. USA, 84:214-218 (1987). |
Nishimura, Y. et al., “Recombinant Human-Mouse Chimeric Monoclonal Antibody Specific for Common Acute Lymphocytic Leukemia Antigen,” Cancer Research, 47:999-1005 (1997). |
Wood, C.R. et al., “The Synthesis and In Vivo Assembly of Functional Antibodies in Yeast,” Nature, 314:446-449 (1985). |
Shaw, D.R. et al., “Mouse/Human Chimeric Antibodies to a Tumor Associated Antigen: Biologic Activity of the Four Human IgG Subclasses,” Journal of the National Cancer Institute, 80(19):153-159 (1988). |
Morrison, S.L., “Transfectomas Provide Novel Chimeric Antibodies,” Science, 329:1202-1207 (1985). |
Di, V.T. et al., “Chimeric Antibodies,” BioTechniques, 4(3):214-221 (1986). |
Jones, P.T. et al., “Replacing the Complementarity-Determining Regions in a Human Antibody with those from a Mouse,” Nature, 321:522-525 (1966). |
Verhoeyen, M. et al., “Reshaping Human Antibodies: Grafting an Antilysczyme Activity,” Science, 239:1534-1536 (1988). |
Beidler, C.B. et al., “Cloning and High Level Expression of a Chimeric Antibody with Specificity for Human Carcinoembryonic Antigen,” The Journal of Immunology, 141(11):4053-4060 (1988). |
Mashal, R.D. et al., “Expression of Cell Cycle-regulated Proteins in Prostate Cancer,” Cancer Research, 56:4159-4163 (1996). |
Toyoshima, H. et al., “p27, a Novel Inhibitor of G1 Cyclin Cdk Protein Kinase Activity, is Related to p21,” Cell, 78:67-74 (1994). |
Lloyd, R.V. et al., “Aberrant p27kip1 Expression in Endocrine and Other Tumors,” American Journal of Pathology, 150 (2):401-407 (1997). |
Zhang, P. et al., “Cooperative Between the Cdk Inhibitors p27KIP1 and p57KIP2 in the Control of Tissue Growth and Development,” Genes & Development, 12:3162-3167 (1998). |
Someya, A.K. and Shioda, M., “The Possible Involvement of Replication-Related Proteins with a Dead-Box-Like Motif in Cell-Free DNA Replication of Xenopus Eggs,” Biochemical and Biophysical Research Communications, 212(3):1098-1105 (1995). |
McCafferty, J. et al., “Phage Antibodies: Filamentous Phage Displaying Antibody Variable Domains,” Nature, 348:552-554 (1990). |
Scholzen, T. and Gerdes, J., “The Ki-67 Protein: From the Known and the Unknown,” Journal of Cellular Physiology, 182:311-322 (2000). |