MONOCLONAL ANTIBODIES FOR DETECTING KAWASAKI DISEASE ANTIGENS

Abstract
The present disclosure provides monoclonal antibodies that target intracytoplasmic inclusion bodies in KD and methods for their use. Wherein an isolated antibody or antigen binding fragment thereof comprises: a heavy chain variable domain comprising: CDRH1, CDRH and CDRH3 sequences; and a light chain variable domain comprising: CDRL1, CDRL2, and CDRL3 sequences.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (702581.02308.xml; Size: 289,280 bytes; and Date of Creation: Mar. 3, 2023) is herein incorporated by reference in its entirety.


BACKGROUND

Kawasaki disease (KD) is an acute febrile illness of childhood with the clinical features of oral and conjunctival erythema, rash, cervical adenopathy, and redness and swelling of the hands and feet. The disorder is distinctive in its potential to cause severe and persisting coronary artery aneurysms that can lead to myocardial infarction, aneurysm rupture, and sudden death1,2,3 Many other infectious and inflammatory conditions of childhood share clinical features with KD, and distinguishing KD from these conditions is important to allow for timely treatment with intravenous gammaglobulin, which reduces the prevalence of coronary artery aneurysms. However, diagnosis is currently difficult, because the specific etiology has not been determined and there is no diagnostic test. This recently led to confusion between KD and Multisystem Inflammatory Syndrome in Children (MIS-C), which share some clinical features4.


Controversy exists as to the most likely etiologic agent(s) for KD, with some investigators favoring diverse infectious agents as triggers and others favoring a single agent or closely related group of agents as the cause5,6. Close examination of clinical and epidemiologic features provides clues about the most likely etiology. Most cases of KD occur in children 6 months to 5 years of age, a typical age range for acquisition of a ubiquitous infectious agent. Epidemics and outbreaks are commonly reported throughout the world, typical of infection with a single pathogen. The illness rarely recurs, arguing against both a hypothesis of multiple inciting pathogens and of autoimmune disease. Asian children experience the highest attack rates of KD, although children of all racial and ethnic groups can develop KD. In combination, these features strongly support infection with a presently unidentified ubiquitous infectious agent that usually results in asymptomatic infection, but causes KD in genetically susceptible children. Applicant's prior studies support a novel respiratory virus that forms intracytoplasmic inclusion bodies in infected tissues as the cause7-10. Recently, mitigation strategies such as masking and social distancing put into place during the COVID-19 pandemic resulted in a significant reduction in KD cases worldwide, providing a real-world experiment supporting a presently unknown respiratory virus as the most likely causative agent11-15.


The applicants previously reported an oligoclonal IgA response in acute KD coronary arteries16, supporting a specific immune response to a causative agent. Wang and colleagues performed scRNA seq and identified an oligoclonal B cell response in peripheral blood mononuclear cells from children with KD, consistent with the response in the coronary artery tissues6. A protein epitope targeted by monoclonal antibodies (MAbs) derived from clonally expanded peripheral blood plasmablasts from children with recently diagnosed KD was also recently identified17. Incubation of KD MAbs with human protein arrays that display full-length or near full-length proteins of 80% of the canonical proteome did not yield a human target of the antibodies, and a microbial, likely viral, target seems most likely, especially in view of the binding of the MAbs to intracytoplasmic inclusion bodies in KD tissues that the inventors observed to have virus-like particles in close proximity10, 17. Although a recent study proposed that KD pathogenesis was linked to an IL15/IL15RA cytokine storm5, prior transcriptional profiling study of KD coronary artery tissues showed no difference in expression of IL15 and IL15RA in coronary artery tissues of children with KD compared with childhood controls18. Instead, the KD coronary artery immune signature revealed activated cytotoxic T lymphocyte and type I interferon-induced gene upregulation, features characteristic of antiviral response18.


SUMMARY OF THE DISCLOSURE

The present disclosure provides antibodies and methods for detecting intracytoplasmic inclusion bodies.


In an aspect, provided herein is an isolated intracytoplasmic inclusion body (ICI) antibody or antigen binding fragment thereof comprising: 1. An isolated antibody or antigen binding fragment thereof comprising:

    • a heavy chain variable domain comprising:
    • a CDRH1 region selected from the group consisting of SEQ ID NOs: 2, 14, 22, 30, 42, 50, 62, 78, 86, 93, 101, 123, 126, 139, 149, 152, 164, 176, 186, and 205;
    • a CDRH2 region selected from the group consisting of SEQ ID NOs: 74, 15, 23, 31, 35, 43, 51, 63, 70, 75, 79, 87, 94, 102, 111, 114, 127, 136, 140, 153, 165, 168, 177, 183, 187, 193, 206, and 212;
    • a CDRH3 region selected from the group consisting of SEQ ID NOs: 4, 16, 14, 32, 36, 44, 52, 64, 71, 76, 80, 88, 95, 103, 112, 115, 124, 128, 137, 141, 150, 154, 166, 169, 178, 184, 188, 194, 207, 210, and 213; and
    • a light chain variable domain comprising:
    • a CDRL1 region selected from the group consisting of SEQ ID NOs: 6, 10, 18, 26, 37, 46, 54, 58, 66, 38, 82, 97, 105, 46, 119, 129, 132, 143, 146, 156, 160, 171, 180, 190, 197, 201, and 215;
    • a CDRL2 region selected from the group consisting of SEQ ID NOs: 7, 11, 27, 28, 47, 55, 59, 67, 39, 83, 98, 106, 120, 133, 157, 161, 198, 202, and 208; and
    • a CDRL3 region selected from the group consisting of SEQ ID NOs: 8, 12, 20, 28, 39, 48, 56, 60, 68, 73, 84, 99, 107, 109, 117, 121, 130, 134, 144, 147, 158, 162, 172, 174, 181, 191, 199, 203, and 216.


In another aspect, provided herein is a method of diagnosing Kawasaki Disease in a subject, comprising the steps of: i) obtaining a sample from a subject suspected of having Kawasaki Disease; ii) contacting the sample with any of the antibodies or antigen binding fragments disclosed herein; and ii) detecting the binding of the antibody in the sample, wherein binding of the antibody indicates the presence of Kawasaki Disease. In an embodiment, the sample is a blood sample. In an embodiment, detecting the binding of the antibody in the sample is carried out using ELISA, Western blot, immunostaining, immunoprecipitation, flow cytometry, sensor chips, or magnetic beads.


In another aspect, provided herein is a method of detecting intracytoplasmic inclusion bodies in a subject, comprising the steps of: i) obtaining a sample from a subject suspected of having Kawasaki Disease; ii) contacting the sample with any of the antibodies or antigen binding fragments; and ii) detecting the binding of the antibody in the sample, wherein binding of the antibody indicates the presence of intracytoplasmic inclusion bodies. In an embodiment, the sample is a blood sample.


In an aspect, provided herein is a peptide comprising SEQ ID NO: 281 or a peptide comprising a sequence with 95% similarity to SEQ ID NO: 281.


In an aspect, provided herein is a method of detecting associated with Kawasaki disease in a subject comprising the steps of:

    • i) obtaining a sample comprising antibodies from a subject suspected of having Kawasaki disease;
    • ii) contacting the sample with any of the peptides disclosed herein; and
    • iii) detecting the binding of antibodies to the peptide to form a peptide-antibody complex, wherein the presence of a peptide-antibody complex confirms the presence of antibodies associated with Kawasaki disease in the subject.


In another aspect, provided herein is a kit comprising i) any of the antibodies or antigen binding fragments thereof, or peptides provided herein; and ii) a detection reagent.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1A-1B. Approach to identify antigen-antibody response in KD patients. A. Scheme for analysis of plasmablast response in patients with KD. B. Diagram of the two approaches used to identify a consensus KD epitope and the convergent antibody response in plasmablasts from patients with KD.



FIG. 2A-2F. Amino acid substitution scans using MAbs from multiple KD patients support a consensus PMLFQSIV (SEQ ID NO: 315) epitope. The base peptide used is shown on the far left of each scan. Each amino acid of the base peptide is replaced by each of 20 amino acids and the relative binding of the peptide with each amino acid replacement is shown. Red indicates strong binding while blue indicates inhibition of binding relative to the base peptide. Scans using MAbs from KD patients 1, 3, 5, 6, 7, and 10 are shown; additional scans performed using MAbs from KD patients 2, 4, and 8 gave similar results.



FIGS. 3A-3B. KD MAbs show preferential binding to KD peptide 3 over KD peptide 1. A. ELISA of a subset MAbs to the three peptides. For all antibodies recognizing KD peptide 3, binding to KD peptide 3 was significantly greater than KD peptide 1 with p<0.01. B. Western blots of KD peptide 3 (FP3) and KD peptide 1 (FP1) mouse Fc fusion proteins probed with KD MAbs KD4-2H4 and KD6-2H3. Human IgG is used as a positive control for the secondary anti-human IgG antibody, and stripped blots were re-probed with anti-mouse IgG to assess protein loading. KD peptide 3 is SEQ ID NO: 281, KD peptide 2 is SEQ ID NO: 280, KD peptide 1 is SEQ ID NO: 279.



FIGS. 4A-4B. Analysis of CDR3 sequences of KD MAbs supports a convergent antibody response in KD patients. A. Alignment of CDR3 amino acid sequences from KD MAbs that recognize KDpeptide 3. B. Motif-based sequence analysis of CDR3 amino acid sequences of KD MAbs binding to KD peptide 3. Analysis was performed using the MEME suite (https://meme-suite.org/meme/), revealing a statistically significant consensus motif at 2.3e-6.



FIG. 5. KD MAbs show preferential binding to KD peptide 3 over KD peptide 1. KD peptide 3 is SEQ ID NO: 281, KD peptide 2 is SEQ ID NO: 280, KD peptide 1 is SEQ ID NO: 279.



FIG. 6. Serial dilutions of MAb reactivity against KDpeptide3



FIG. 7. Schematic depicting a model of KD pathogenesis subsequent to infection of the subject with a ubiquitous viral pathogen which may cause mild or asymptomatic infection in other subjects.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure describes monoclonal antibodies and antigen binding fragments thereof that can bind to intracytoplasmic inclusion bodies (ICI) and that are specific for antigens found in subjects with Kawasaki Disease (KD) The present disclosure also describes methods of using the disclosed monoclonal antibodies to diagnose and treat KD in a subject.


The present disclosure also provides a peptide specific for the detection of antibodies associated with Kawasaki disease, and the use of this peptide in assays and methods for detection of KD in children. One of these peptides (KD3) binds significantly more strongly to the majority of the Kawasaki disease monoclonal antibodies than previously reported peptides. Thus, protein constructs that use this peptide (KD3) sequence (or epitope) may perform even better than the previously reported peptides in serologic assays for Kawasaki disease, which is urgently needed.


The present disclosure also provides analysis of antibodies and the convergent VH3-74 antibody response in children with Kawasaki Disease recognizing this epitope (see FIG. 7). Of the original group of 11 children with Kawasaki disease in whom the inventors cloned the acute plasmablast response, 9 were identified as having an antibody binding to this specific protein epitope. The inventors presently have identified a total of 16 antibodies from the 9 children that recognize this epitope. The identification of a convergent VH3-74 antibody response in children with Kawasaki disease to a single non-human protein antigen strongly indicates a single infectious etiologic agent for the disease, and the identified epitope appears to represent a prominent epitope or mimotope of this agent. Thus, these antibodies may further provide help for not only treatment of KD and screening mechanisms for detecting KD, but also for determining the causality of KD.


Antibodies and Antigen Binding Domains Specific for Kawasaki Disease

The inventors herein disclose novel antibodies and antigen binding fragments thereof that are specific for antigens found in Kawasaki disease. Kawasaki Disease (KD) is a febrile illness of young childhood that has clinical and epidemiologic features of an infectious disease including epidemics with geographic wavelike spread. In some cases, Kawasaki disease manifests only as prolonged fever, making timely diagnosis difficult. Furthermore, the exact cause of Kawasaki disease is not known. The inventors hypothesize that the cause of Kawasaki disease is a ubiquitous pathogen. Previously, the inventors discovered that serum samples from of KD patients taken in different geographic locations and from different times in history contained antibodies directed to similar antigens, supporting the inventors' hypothesis.


In a first aspect, antibodies or antigen binding fragments thereof are provided.


An isolated antibody or antigen binding fragment thereof of the present invention may comprise: a heavy chain variable domain comprising: a CDRH1 region selected from the group consisting of SEQ ID NOs: 2, 14, 22, 30, 42, 50, 62, 78, 86, 93, 101, 123, 126, 139, 149, 152, 164, 176, 186, and 205; a CDRH2 region selected from the group consisting of SEQ ID NOs: 74, 15, 23, 31, 35, 43, 51, 63, 70, 75, 79, 87, 94, 102, 111, 114, 127, 136, 140, 153, 165, 168, 177, 183, 187, 193, 206, and 212; a CDRH3 region selected from the group consisting of SEQ ID NOs: 4, 16, 14, 32, 36, 44, 52, 64, 71, 76, 80, 88, 95, 103, 112, 115, 124, 128, 137, 141, 150, 154, 166, 169, 178, 184, 188, 194, 207, 210, and 213; and a light chain variable domain comprising: a CDRL1 region selected from the group consisting of SEQ ID NOs: 6, 10, 18, 26, 37, 46, 54, 58, 66, 38, 82, 97, 105, 46, 119, 129, 132, 143, 146, 156, 160, 171, 180, 190, 197, 201, and 215; a CDRL2 region selected from the group consisting of SEQ ID NOs: 7, 11, 27, 28, 47, 55, 59, 67, 39, 83, 98, 106, 120, 133, 157, 161, 198, 202, and 208; and a CDRL3 region selected from the group consisting of SEQ ID NOs: 8, 12, 20, 28, 39, 48, 56, 60, 68, 73, 84, 99, 107, 109, 117, 121, 130, 134, 144, 147, 158, 162, 172, 174, 181, 191, 199, 203, and 216.


The antibody or antigen binding fragment may comprise any of the monoclonal antibodies shown in Table 1 or Table 2.


The terms “antibody” or “antibody molecule” are used herein interchangeably and refer to immunoglobulin molecules or other molecules which comprise an antigen binding domain. The term “antibody” or “antibody molecule” as used herein is thus intended to include whole antibodies (e.g., IgG, IgA, IgE, IgM, or IgD), monoclonal antibodies, chimeric antibodies, humanized antibodies, and antibody fragments, including single chain variable fragments (ScFv), single domain antibodies, and antigen-binding fragments, genetically engineered antibodies, among others, as long as the characteristic properties (e.g., ability to bind antigens derived from Kawasaki disease) are retained. The term “antibody fragment” as used herein is intended to include any appropriate antibody fragment that displays antigen binding function, for example, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv, ds-scFv, Fd, mini bodies, monobodies, and multimers thereof and bispecific antibody fragments.


The term “antibody” includes “antibody fragments” or “antibody-derived fragments” and “antigen binding fragments” which comprise an antigen binding domain. Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they may be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain antibodies or single chain Fv (scFv), (see for instance Bird et al., Science 242, 423-426 (1988) and Huston et al., PNAS USA 85, 5879-5883 (1988)). Such single chain antibodies are encompassed within the term antibody unless otherwise noted or clearly indicated by context.


Antibodies can be genetically engineered from the CDRs, VH, VL, and monoclonal antibody sequences described herein into antibodies and antibody fragments by using conventional techniques such as, for example, synthesis by recombinant techniques or chemical synthesis. Techniques for producing antibody fragments are well known and described in the art.


One may wish to engraft one or more CDRs from the monoclonal antibodies described herein into alternate scaffolds. For example, standard molecular biological techniques can be used to transfer the DNA sequences encoding the antibody's CDR(s) to (1) full IgG scaffold of human or other species; (2) a scFv scaffold of human or other species, or (3) other specialty vectors. If the CDR(s) have been transferred to a new scaffold all of the previous modifications described can also be performed. For example, one could consult Biotechnol Genet Eng Rev, 2013, 29:175-86 for a review of useful methods.


The antibodies or antibody fragments can be wholly or partially synthetically produced. Thus, the antibody may be from any appropriate source, for example recombinant sources and/or produced in transgenic animals or transgenic plants. Thus, the antibody molecules can be produced in vitro or in vivo. The antibody or antibody fragment can be made that comprises all or a portion of a heavy chain constant region, such as an IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgE, IgM or IgD constant region.


Furthermore, the antibody or antibody fragment can further comprise all or a portion of a kappa light chain constant region or a lambda light chain constant region. All or part of such constant regions may be produced wholly or partially synthetic. Appropriate sequences for such constant regions are well known and documented in the art.


The term “fragment” as used herein refers to fragments of biological relevance (functional fragment), e.g., fragments which can contribute to or enable antigen binding, e.g., form part or all of the antigen binding site or can contribute to the prevention of the antigen interacting with its natural ligands. Fragments in some embodiments comprise a heavy chain variable region (VH domain) and light chain variable region (VL) of the disclosure. In some embodiments, the fragments comprise one or more of the heavy chain complementarity determining regions (CDRHs) of the antibodies or of the VH domains, and one or more of the light chain complementarity determining regions (CDRLs), or VL domains to form the antigen binding site.


The term “complementarity determining regions” or “CDRs,” as used herein, refers to part of the variable chains in immunoglobulins (antibodies) and T cell receptors, generated by B-cells and T-cells respectively, where these molecules bind to their specific antigen. As the most variable parts of the molecules, CDRs are crucial to the diversity of antigen specificities generated by lymphocytes. There are three CDRs (CDR1, CDR2 and CDR3), arranged non-consecutively, on the amino acid sequence of a variable domain of an antigen binding site. Since the antigen binding sites are typically composed of two variable domains (on two different polypeptide chains, heavy and light chain), there are six CDRs for each antigen binding site that can collectively come into contact with the antigen. A single whole antibody molecule has two antigen binding sites and therefore contains twelve CDRs. For further example, sixty CDRs can be found on a pentameric IgM molecule.


Within the variable domain, CDR1 and CDR2 may be found in the variable (V) region of a polypeptide chain, and CDR3 includes some of V, and all of diversity (D, heavy chains only) and joining (J) regions. Since most sequence variation associated with immunoglobulins and T cell receptors is found in the CDRs, these regions are sometimes referred to as hypervariable regions. Among these, CDR3 shows the greatest variability as it is encoded by a recombination of VJ in the case of a light chain region and VDJ in the case of heavy chain regions. The tertiary structure of an antibody is important to analyze and design new antibodies.


The human VH complex is composed of approximately 100 gene segments per haploid genome, including at least 51 functional genes, as judged by successful rearrangement in cloned cDNA. On the basis of nucleic acid sequence homology, the VH genes have been grouped into 6-7 families (VH 1-7). Among the seven families, the VH3 family is the largest. In some aspects the antibodies disclosed herein are derived from the VH3-74 family or the VH3-33 family or its paralog.


In some embodiments, the present invention comprises a polypeptide or protein comprising the antigen binding regions of the antibodies described herein, e.g., the CDRs (1-3) of the heavy and light chain that form the antigen binding region. The peptide may further comprise a detectable tag or other molecules.


As used herein, the terms “proteins” and “polypeptides” are used interchangeably herein to designate a series of amino acid residues connected to the other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues. The terms “protein” and “polypeptide” refer to a polymer of protein amino acids, including modified amino acids (e.g., phosphorylated, glycated, glycosylated, etc.) and amino acid analogs, regardless of its size or function. “Protein” and “polypeptide” are often used in reference to relatively large polypeptides, whereas the term “peptide” is often used in reference to small polypeptides, but usage of these terms in the art overlaps. The terms “protein” and “polypeptide” are used interchangeably herein when referring to an encoded gene product and fragments thereof. Thus, exemplary polypeptides or proteins include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, fragments, and analogs of the foregoing. The antibodies of the present invention are polypeptides, as well the antigen-binding fragments and fragments thereof.


The terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of a single amino acid composition that specifically binds to a single epitope of the antigen.


The term “chimeric antibody” refers to an antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a different source or species, usually prepared by recombinant DNA techniques. Other forms of “chimeric antibodies” are those in which the class or subclass has been modified or changed from that of the original antibody. Such “chimeric” antibodies are also referred to as “class-switched antibodies.” Methods for producing chimeric antibodies involve conventional recombinant DNA and gene transfection techniques now well known in the art. In some embodiments, the antibodies are chimeric antibodies including heavy chain constant domains from non-human mammals (e.g., mouse, rat, rabbit, or non-human primate). In some embodiments, the antibodies disclosed in the present invention are chimeric antibodies including constant regions from rabbit heavy chain immunoglobulin sequences. Suitable heavy chain constant region sequences from non-human mammals, including mouse, rat, rabbit, and non-human primate are known in the art.


The antibodies disclosed in the present invention are human antibodies, as they include the constant region from human germline immunoglobulin sequences. However, the human CDRs or heavy and light variable chains may be used to make recombinant human antibodies or chimeric antibodies by recombinant means. The term “recombinant human antibody” includes all human antibodies that are prepared, expressed, created, or isolated by recombinant means, such as antibodies isolated from a host cell such as an SP2-0, NS0 or CHO cell (like CHO K1) or from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes or antibodies expressed using a recombinant expression vector transfected into a host cell. Such recombinant human antibodies have variable and, in some embodiments, constant regions derived from human germline immunoglobulin sequences in a rearranged form. In some embodiments, the antibodies are chimeric antibodies and the heavy chain constant domain is from rabbit, mouse, rat, or nonhuman primate.


ICI and KD specific monoclonal antibodies described herein include the following (Tables 1 and 2). The sequences referenced in Table 1 are nucleotide sequences, whereby the nucleotide sequences encode for the amino acid sequences of the light or heavy chain variable regions in Table 2. Sequence names ending in “L” or “K” indicate a nucleotide sequence that encodes a light chain variable domain and the remainder of the sequence names indicate a nucleotide sequence that encodes a heavy chain variable domain. The light chain constant domain may be a kappa light chain constant domain or a lambda light chain constant domain.












TABLE 1








Antibody
Chain
Nucleotide Sequence
SEQ ID NO:







KD7-2H5
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
217




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATTAATAGTGATGGGAGTAGC





ACAAGCTACGCGGACTCCGTGAAGGGCC





GATTCGCCATCTCCAGAGACAACGCCAA





GAACACGCTGTATCTGCAAATGAACAGT





CTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCAAGAGCTTTGGGTGGCTGGGA





TATTGACTACTGGGGCCAGGGAACCCTG





GTCACCGTCTCG






KD7-2H5L
Light
CAGTCTGTGCTGACGCAGCCACCCTCAGC
218




GTCTGGGACCCCCGGGCAGAGGGTCACC





ATCTCTTGTTCTGGAAGCAGCTCCAACAT





CGGAAGTAATTATGTATACTGGTACCAG





CAGCTCCCAGGAACGGCCCCCAAACTCC





TCATCTATAGGAATAATCAGCGGCCCTCA





GGGGTCCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACCTCAGCCTCCCTGGCCATCA





GTGGGCTCCGGTCCGAGGATGAGGCTGA





TTATTACTGTGCAGCATGGGATGACAGCC





TGAGTGGTGGAGTGTTCGGCGGAGGGAC





CAAGCTGACCGTCCTAGGT






KD10-1C3L
Light
CAGTCTGTGCTGACGCAGCCGCCCTCAGT
219




GTCTGCGGCCCCGGGACAGAAGGTCACC





ATCTCCTGCTCTGGAGGCAGCTCCTCCAT





TGGGAATAATTATGTATCCTGGTACCAAC





TGCTCCCAGGAACAGCCCCCAAACTCCT





CATTTATGACAATAATAAGCGACCCTCA





GGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATC





ACCGGACTCCAGACTGGGGACGAGGCCG





ATTATTACTGCGGAACATGGGATAGCGG





CCTGAGTGCTGGGGTGTTCGGCGGAGGG





ACCAAGCTGACCGTCCTAGGT






KD10-1C3
Heavy
GTGCAGCTGGTGGAGTCTGGGGGAGGCG
220




TGGTCCAGCCTGGGAGGTCCCTGAGACT





CTCCTGTGCAGCCTCTGGATTCACCTTCA





GTGACTATGCTGTGCACTGGGTCCGCCAG





GCTCCAGGCAAGGGGCTGGAGTGGGCGG





CACTTATATCAAATGATGGAGATTTTAAA





TATTACGCAGACGCCGTGAAGGGCCGAT





TCACCATCTCCAGAGACAATTCCAACAA





CACGCTGTATCTACAAATGAACAGCCTG





AGAACTGAGGACACGGCTGTGTATTACT





GTGCGAGAGAAAGAGGGAGGGATAAAG





TATTCCCGCCGGGCTACTGGGGCCAGGG





AACCCTGGTCACCGTCTCG






KD7-1B5L
Light
CAGTCTGTGCTGACTCAGCCGCCCTCAGT
221




GTCTGCGGCCCCAGGACAGAAGGTCACC





ATCTCCTGCTCTGGAAGCAGCTCCAACAT





TGGGAATAATTATGTATCCTGGTACCAGC





AGCTCCCAGGAACAGCCCCCAAACTCCT





CATTTATGACAATAATAAGCGACCCTCA





GGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATC





ACCGGACTCCAGACTGGGGACGAGGCCG





ATTATTACTGCGGAACATGGGATAGCAG





CCTGAGTGCTGAGGTGTTCGGCGGAGGG





ACCAAGCTGACCGTCCTAGGT






KD7-1B5
Heavy
GTGCAGCTGGTGGAGTCTGGGGGAGGCG
222




TGGTCCAGCCTGGGAGGTCCCTGAGACT





CTCCTGTGAAGCGTCTGGATTCACCTTCA





GGAGTCGTGCCATGCACTGGGTCCGCCA





GGCTCCAGGCAAGGGGCTGGGGTGGGTG





GCAGTTATATGGTACGATGGAAGTAATA





AATACTATGCAGACTCCGTGAAGGGCCG





ATTCACCATCTCCAGAGACAATTCCAGG





AACACGCTGTATCTGCAAATGAACAGCC





TGAGAGCCGAGGACACGGCTGTATATTA





CTGTGCGAGAGATTTGGGTAGTGGTTTTT





CCCTTGACTACTGGGGCCAGGGAACCCT





GGTCACCGTCTCG






KD6-1A8L
Light
CAGGCTGTGGTGACTCAGGAGCCCTCAC
223




TGACTGTGTCCCCAGGAGGGACAGTCAC





TCTCACCTGTGCCTCCAGCACTGGAGCTG





TCACCAGTGCTCATTCTCCCCACTGGTTC





CGACAGAAGCCTGGCCAAGCCCCCAGGA





CACTGATTTATGATACATCCAACAAACCG





TCCTGGACACCTGCCCGGTTCTCAGGCTC





CCTCCTTGGGGGCAAAGCTGCCCTGACCC





TTTCGGGCGCGCAGCCTGAGGATGAGGC





TGAGTATTACTGCTTGCTCTCCAATAGTG





GAGTCCATTTTCTATTCGGCGGGGGGACC





AGGTTGACCGTCCTAGGTCA






KD6-1A8
Heavy
GAGGTGCAGCTGGTGCAGTCTGGGGCTG
224




AGGTGAAGAAGACTGGGTCCTCAGTGAA





GCTCTCCTGCACGGCTACCGGATACACTT





TCACCTATCGCTACCTGCACTGGGTGCGA





CAGGCCCCCGGACAAGCACTTGAGTGGA





TGGGCTACATAACAATTTACAATGGTGA





CACCAATTACGCACAGAAATTCCAGGAC





AGAGTCACCATTTCCAGGGACATGTCTCT





GAGCACAGTCTACATGGAGCTGAGCAGC





CTGACATCAGAGGACACGGCCATGTATT





TCTGTGTAAGATCCGCATTGTATGGGGAA





AATGCTTTTGATTTTTGGGGCCAAGGGAC





AATGGTCACCGTCTCA






KD1-1H8
Heavy
GAGGTGCAGCTGGTGGAGTCGGGGGGAG
225




GCTCAGTTCAGCCGGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAACTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTCTTAATATTGATGGGAGTAAC





ACATTCTACGCGGACTCCGTCAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAA





GAACACGCTGTATCTGCAAATGAACAGT





CTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGTAAGAGGAGGGAGTGACTCCGG





TGACTCCGTTCCCTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACCGTCTCG






KD1-1H8K
Light
GAAATAGTGATGACGCAGTCTCCAGCCA
226




CCCTGTCTGTGTCTCCAGGGGAAAGGGC





CACCCTCTCCTGCAGGGCCAGTCAGAGT





GTTAGCAGCAACTTAGCCTGGTACCAGC





AGAACCCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGCATCCACCAGGGCCACTG





GTATCCCAGCCAGGTTCAGTGGCAGTGG





ATCTGGGACAGAGTTCACTCTCACCATCA





GCAGCCTGCAGTCTGAAGATTTTGCAGTT





TATTACTGTCAGCACTATAATAACTGGCC





GTTCACTTTTGGCCAGGGGACCAAGGTG





GAAATCAAAC






KD1-2B1
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
227




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATTAATAATGATGGGAGTAGC





ACAGGCTACGCGGACTCTGTGGAGGGCC





GATTCACCATCTCCAGAGACAACGCCAA





GAACACGCTGTATCTGCAAATCAACAGT





CTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCAAGACAAGATGGTCACTACTA





CTACAGTATGGACGTCTGGGGCCAAGGG





ACCACGGTCACCGTCTC






KD1-2B1L
Light
CAGTCTGCCCTGACTCAGCCTCGCTCAGT
228




GTCCGGGTCTCCTGGACAGTCAGTCACCA





TCTCCTGCACTGGAACCAGCAGTGATGTT





GGTGGTTATAACTATGTCTCCTGGTACCA





ACAGCACCCAGGCAAAGCCCCCAAACTC





ATGATTTATGATGTCAGTGAGCGGCCCTC





AGGGGTCCCTGCTCGCTTCTCTGGCTCCA





AGTCTGGCAACACGGCCTCCCTGACCATC





TCTGGGCTCCAGGCTGAGGATGAGGCTG





ATTATTACTGCTGCTCATATGCAGGCAAC





TTCCGTTGGGTGTTCGGCGGAGGGACCA





AGCTGACCGTCCTAGG






KD10-1G3
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
229




GCTTGGTCCAGCCGGGGGGGTCCCTGAA





ACTCTCCTGTGCAGCCTCTGGGTTCAGTT





TCAGTGGCGCTGCGATGCACTGGGTCCG





CCAGTCCTCCGGGAGAGGGCTTGAGTGG





CTTGGCCGTATTAGAAGCAAAACTAACG





ACTATGCGACAGCATATGCAGAGTCGCT





GCACGGCAGGTTCACCATCTCCAGAGAT





GATGCAAAGAACACGGCGTATCTACAAA





TGAACAGGCTGAAAAGCGAGGACACGGC





CATATATTATTGTACAACCGTCTTGAGTA





AGGGAGATCATGCGGTCTGGTTGGGCCC





CTGGGGCCCGGGAACCCTGGTCACCGTC





TC






KD10-1G3L
Light
CAGCCTGTGCTGACTCAGCCACCTTCCTC
230




CTCCGCGTCTCCTGGAGAATCCGCCAGAC





TCACCTGCACCTTGCCCAGTGACATCAGT





GTTGCTGCGTCTGACATTTATTGGTATCA





ACAGAAGGCAGGGAGCCCTCCCAACTTT





CTCCTCTACGACCCGTCAGACTCACATAA





GGGCCAGGACTCTGGAGTCCCCAGCCGC





TTCTCTGGATCCAGAGATGGATCAGCCA





ATTCAGGGTTTTTACTGATTTCCGGGGTC





CAGTCTGAGGATGAGGCTGACTATTACT





GCATGGTCTGGCCACCCAATACTGTGGGT
231




GTCGTCTTCGGCGGAGGGACCACTCTGA





CCGTC






KD5-2D1L
Light
CAGGCTGTGGTGACTCAGGAGCCCTCAC





TGACTGTGTCCCCAGGAGGGACAGTCAC





TCTCACCTGTGCTTCCAGCACTGGAGCAG





TCACCAGTGGTTACTATCCAAACTGGTTC





CAGCAGAAACCTGGACAAGCACCCAGGG





CACTGATTTATAGTACAAGCAACAAACA





CTCCTGGACCCCTGCCCGGTTCTCAGGCT





CCCTCCTTGGGGGCAAAGCTGCCCTGAC





ACTGTCAGGTGTGCAGCCTGAGGACGAG





GCTGAGTATTACTGCCTGCTCTTCTATGG





TGGTGTTCATGTCTTCGGAGCTGGGACCA





AGGTCACCGTCCTAGGT






KD5-2D1

GAGGTGCAGCTGGTGGAGTCCGGGGGAG
232




ACTTAGTTCAGCCGGGGGGGTCCCTAAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTACCTACTGGATGCACTGGGTCCGC





CAAGCTCCCGGGCAGGGGCTGGTGTGGG





TCTCACGTATTAATGGTAATGGGAGAATC





ACAAACTACGCGGACTCCGTGAAGGGCC





GATTCACCGTCTCCCGAGACAACGCCAA





GAACACGGTGGATCTGCAAATGAACAGT





CTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCAAGAATCAATGAATGGGGAGA





CGTCTGGGGCAAAGGGACCACGGTCACC





GTCTCG






KD10-1A8K
Light
GATATTGTGATGACCCAGACCCCACTCTC
233




TCTGTCCGTCACCCCTGGACAGCCGGCCT





CCATCTCCTGCAAGTCTAGTCAGAGCCTC





CTGCATAATGATGGAAAGACCTTTTTGCA





TTGGTACCTGCAGAAGCCAGGCCAGTCT





CCACAGCTCCTAATCTATGAAGTTTCCAG





CCGCTTCTCTGGAGTGCCAGATAGGTTCA





GTGGCAGCGGGTCAGGGACAGATTTCAC





ACTGAAAATCAGCCGGGTGGAGGCTGAG





GATGTTGGAGTTTATTACTGCATGCAAGG





TATACACCTTCCTCCCACTTTCGGCGGGG





GGACCAAGGTGGAAATCAAACGT






KD10-1A8
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
234




GCTTAGTTCAGCCGGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACAT





TCAGTAGTTACTGGATGGAATGGGTCCG





CCAAGCTCCAGGGAAGGGGCTGGTTTGG





GTCTCACATATTAGTAGTGATGGGAGTGT





TACAAGGTACGTGGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACACGCTGTATCTGCAAATGAATAG





TCTGAGAGCCGAGGACACGGGTGTATAT





TATTGTGCAAAAGATCTTCACTGGAACGC





TCTTGATGTGTGGGGCCAAGGGACAATG





GTCACCGTCTCG






KD5-2D10K
Light
GAAATAGTGATGACGCAGTCTCCAGCCA
235




CCCTGTCTGTGTCTCCAGGGGAAAGAGC





CACCCTCTCCTGCAGGGCCAGTCAGAGT





GTTAGCAGCAACTTAGCCTGGTACCAGC





AGAAACCTGGCCAGGCTCCCAGGCTCCT





CATCTATGGTGCATCCACCAGGGCCACTG





GTATCCCAGCCAGGTTCAGTGGCAGTGG





GTCTGGGACAGAGTTCACTCTCACCATCA





GCAGCCTGCAGTCTGAAGATTTTGCAGTT





TATTACTGTCAGCAGTATAATAACTGGCC





TCCGTGGACGTTCGGCCAAGGGACCAAG





GTGGAAATCAAACGT






KD5-2D10
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
236




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATTAATAGTGATGGGAGTAGC





ACAAGCTACGCGGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAA





GAACACGCTGTATCTGCAAATGAACAGT





CTGAGAGCCGAGGACACGGCTGTGTATT





ACTGTGCAAGAGGAGTCCGCAGTGGCTG





GTACGCTGATGCTTTTGATATCTGGGGCC





AAGGGACAATGGTCACCGTCTCG






KD5-2D7
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
237




GCTTAGTTCAGCCGGGGGGGTCCCTGGG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAACTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCGCGTATTAATAGTGATGGGAGTGAC





ACAAGCTACGCGGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCGA





GAACACGCTGTATCTGCACATGAGCAGT





CTGAGAGCCGAGGACACGGCTGTCTATT





ACTGTGCAAGGGAATTGGGCTACGGTGA





CTACGGTATGGACGTCTGGGGCAAAGGG





ACCACGGTCACCGTCTCG






KD5-2D7L
Light
CAGTCTGTGCTGACGCAGCCACCCTCAGC
238




GTCTGGGACCCCCGGGCAGAGGGTCACC





ATCTCTTGTTCTGGAAGCAGCTCCAACAT





CGGAAGTCATTCTGTGATCTGGTACCAGC





AGCTCCCAGGAACGGCCCCCAAACTCCT





CGTCTATAGTGATAATCAGCGGCCCTCAG





GGGTCCCTGACCGATTCTCTGGCTCCAAG





TCTGGCACCTCAGCCTCCCTGGCCATCAG





TGGGCTCCAGTCTGAGGATGAGGCTGAT





TATTACTGTGCAGCATGGGATGACAGCCT





GAATCATCTTCATGTGGTATTCGGCGGAG





GGACCAAGCTGACCGTCCTA






KD10-2F6
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
239




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCCGGATTCATCT





TCAGTAACTACTGGATGCACTGGGTTCGC





CAAGCTCCAGGGGAGGGGCTGGTGTGGG





TCTCACGTATTAATAAAGATGGGAGTAG





CACATTTTACGCGGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACACGCTGTATCTGCAAATGAACAG





TCTGAGAGCCGAGGACACGGCTGTGTAT





TATTGTACAAGAGATTTCGATTTTTGGAG





TGGCTACTGGGGCCAGGGAACCCTGGTC





ACCGTCTCG






KD10-2F6L
Light
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
240




GTCTGGGTCTCCTGGACAGTCGATCACCA





TCTCCTGCACTGGAACCAGCAGTGACGTT





GGTGGTTGTGAGTATGTCTCCTGGTACCA





ACAGCACCCAGGCAAAGTCCCCAAACTC





ATCATTTATGAGGTCAGTAATCGGCCCTC





AGGGGTTTCTAATCGCTTCTCTGGCTCCA





AGTCTGGCAACACGGCCTCCCTGACCGTC





TCTGGGCTCCAGGCTGAGGACGAGGCTG





ATTATTTCTGCAGCTCCTGTACAACCAGC





GGCTCTTATGTCTTCGGAGCTGGGACCAA





GGTCACCGTCGTA






KD11-2E4
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
241




GCGTAGTTCAGCCTGGGGAGTCCCTGAG





ACTCTCCTGTGCAGCCTCCGGAGTCACCT





TCAGTAGTTACTGGATGCATTGGGTCCGC





CAAGTTCCAGGGAAGGGGCTGGTGTGGG





TCGCACGTATTAATATTGATGGGACCAGT





ACAACCTACGCGGACTGTGTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAA





GAACACGCTGTATCTGCAAATGAGCAGT





CTGAGAGCCGAGGACACGGCTGTTTATT





ACTGTGCAACAGAGCGAGGATTACTTAG





TGGTGGTCGCTGGCACTCCTCCCACTTTG





ACTACTGGGGCCAGGGAACCCTGGTCAC





CGTCTCG






KD11-2E4K

GACATCCAGATGACCCAGTCTCCTTCCAC
242




CCTGTCTGCATCTGTAGGAGACAGAGTC





ACCATCACTTGCCGGGCCAGTCAGAGTA





TTAGTAGCTGGTTGGCCTGGTATCAGCAG





AAACCAGGGAAAGCCCCTAAGGTCCTGA





TCTATAAGACGTCTAGTTTAGAAAGTGG





GGTCCCATCAAGGTTCAGCGGCAGTGGC





TCTGGGACAGAATTCACTCTCACCATCAG





CAGCCTGCAGCCTGATGATTTTGCAACTT





ATTACTGCCAACAGTATGACAGTTCTTCT





CTCACGTGGACGTTCGGCCAAGGGACCA





AGGTGGAAATCAAAC






KD11-2E5
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
243







GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGGTTCTGGATGCACTGGGTCCGC





CAGGTTCCAGGGAAGGGGCTGGTGTGGA





TCTCACGTATTAATAGTGATGCGACTAGC





TCAAGCTACGCGGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAA





GAACACACTGTTTCTGCAAATGAACAGT





CTGAGAGCCGAGGACACGGCTGTCTATT





ACTGTGCAACCAGCAATACAGCTCTGGTT





TATTTGCCTGAGAACTGGGGCCAGGGAA





CCCTGGTCACCGTCTCG



KD11-2E5K

GAAATTGTGTTGACACAGTCTCCAGCCAC
244




CCTGTCTTTGTCTCCAGGAGAGAGAGCCA





CCCTCTCCTGCAGGGCCAGTCAGAGTGTT





AGCGACTACTTAGCCTGGTACCAACAGA





AACCTGGCCAGGCTCCCAGGCTCCTCATC





TATGATGCATCCAACAGGGCCACTGGCA





TCCCAGCCAGGTTCAGTGGCGGTGGGTCT





GGGACAGACTTCACTCTCACCATCAGCA





GCCTAGAGCCTGAAGATTTTGCAGTTTAT





TACTGTCAGCAGCGCAGCTACTGGCCTCC





GACGTTCGGCCAAGGGACCAAGGTGGAA





ATCAAAC






KD2-1D10L
Light
CAGTCTGCCCTGACTCAGCCTCCCTCCGC
245




GTCCGGGTCTCCTGGACAGTCAGTCACCA





TCACCTGCACTGGAACCAGCAGTGACGT





TGGTGGTTATAACTATGTCTCCTGGTACC





AACAGCACCCAGGCAAAGCCCCCAAACT





CATGATTTATGAGGTCAGTAAGCGGCCCT





CAGGGGTCCCTGATCGCTTCTCTGGCTCC





AAGTCTGGCAACACGGCCTCCCTGACCG





TCTCTGGGCTCCAGGCTGAGGATGAGGC





TGATTATCACTGCAGCTCATTTGCAGGCG





ACAACAATTCCCCGGTATTCGGCGGAGG





GACCAAATTGACCGTCCTAG






KD2-1D10
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
246




GCTTAATTCACCCGGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCCCCAGGGAAGGGGCTGGTGTGGG





TCTCACATATTAAGAGTGATGGGAGTAA





CACAATCTACGCGGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACACGCTGTATCTACAAATGAACAG





TCTGAGAGCCGAGGACACGGCTGTGTAT





TACTGTGGAAGAGGGCGCAGTTTGACCC





CACGCTCGGCCATTGACTACTGGGGCCA





GGGAACCCTGGTCACCGTCTC






KD9-2A4
Heavy
CTGGTGGAGTCTGGGGGAGGCTTGGTCC
247




AGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGCAGTTA





TGCTATGCACTGGGTCCGCCAGGCTCCAG





GGAAGGGACTGGAGTTTGCTTCAGCTATT





AGTAGTGATGGGGGTACCACATATTACG





CAAACTCTGTGAAGGGCAGATTCACCAT





CTCCAGAGACAATTCCAAGAACACGCTG





TATCTTCAAATGGGCAGCCTGAGGGATG





AAGACATGGCTGTGTATTACTGTGCGAG





AGATGATCTGAGCACCAGCTGGGACCTT





GACTACTGGGGCCAGGGAACCCTGGTCA





CCGTCTC






KD9-2A4L
Light
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
248




GTCTGGGTCTCCTGGACAGTCGATCACCA





TCTCCTGCACTGGAACCAGCAGTGACGTT





GGTGGTTATAACTATGTCTCCTGGTACCA





ACAGCACCCAGGCAAAGCCCCCAAACTC





ATGATTTATGACGTCAGTAATCGGCCCTC





AGGGGTTTCTAATCGCTTCTCTGGCTCCA





AGTCTGGCAACACGGCCTCCCTGACCATC





TCTGGGCTCCAGGCTGAGGACGAGGCTG





ATTATTACTGCAGCTCATATACAATCAGC





AGCACTAACGTCTTCGGAACTGGGACCA





AGGTCACCGTCCTAG






KD3-1B6L
Light
CAGTCTGCCCTGACTCAGCCTGCCTCCAT
249




GTCTGGGTCTCCTGGACAGTCGATCACCA





TCTCCTGCACTGGAACCAGCAGTGATGTT





GGAGCTCATAACTTTATCTCCTGGTACCA





ACAACACCCAGGCAAAGCCCCCAAACTC





ATGATTTTTGAGGTCAATAAGCGGCCCTC





AGGGGTTTCTAATCGCTTCTCTGGCTCCA





AGTCTGGCAACACGGCCTCCCTGACAAT





CTCTGGCCTCCAGGCTGAGGACGAGGCT





GATTATTTCTGCTGCTCATATGCAGGTTA





TAGCACTTGGGTGTTCGGCGGAGGGACC





AAGCTGACCGTCCTAG






KD3-1B6
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
250




GCGTAGTCCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGAAGTCTCTGGATTCATCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGTTGCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATAAATAGTGATGGGAGTAG





TACAAGTTACGCGGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAATACGCTGAATCTGCAAATGAATTTT





CTGAGAGCCGAGGACACGGCTGTGTATT





ATTGTGCAAGAGGGGGTGATCACGGTGA





CTACGGCTTCTTTGAGTCTTGGGGCCAGG





GAACCCTGGTCACCGTCTC






KD3-1C10
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
251




GGTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAATCACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGCTGTGGG





TCTCGCGTATTGATACTGGTGGGAGTACC





ACAAACTACGCGGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAGCGCCAA





GAACACGGTGTATCTACAAATGAACAGT





CTGAGAGCCGAAGACACGGCTGTTTATT





ACTGTGCAAGAGGCGGTCTCTTCTACTAC





GGTATGGACGTCTGGGGCCAAGGGACCA





CGGTCACCGTCTC






KD3-1C10K
Light
GAAATTGTGTTGACGCAGTCTCCAGGCA
252




CCCTGTCTTTGTCTCCAGGGGAAAGGGCC





ACCCTCTCCTGCAGGGCCAGTCAGACTA





GTAGCAGCACCTCCTTAGCCTGGTATCAG





CAGAAACGTGGCCAGGCTCCCAGGCTCC





TCATCTATGGTGCATCCCGCAGGGCCACT





GGCATCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATC





AGCAGACTGGAGCCTGAAGATTTTGCAG





TATATTACTGTCAGCAATTTAGTGGCTCA





CCTGCGTACACTTTTGGCCAGGGGACCA





AGGTGGAAATCAAAC






KD6-2H8K
Light
GATATTGTGATGACCCAGACTCCACTCTC
253




CCTGCCCGTCACCCCTGGAGAGCCGGCC





TCCATCTCCTGTAGGTCTAGTCAGAGCCT





CTTGGATAGTGCTGATGGAAACACCTATT





TGGACTGGTACCTGCAGAAGCCAGGGCA





GTCTCCACAGCTCCTGATCCATACGCTTT





CCCATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCAGTGGGTCAGGCACTGAT





TTCACACTGAAAATCAGCAGGGTGGAGG





CTGAAGATGTTGGAGTTTATTACTGCATG





CAACGTATAGCCTTTCCCGTCACTTTCGG





CCCTGGGACCAAAGTGGATATCAAAC






KD6-2H8
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
254




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAACTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGGAGGGGCTGGAGTGGG





TCTCACGTATTAATAGTGATGGGAATAA





GGTAAGTTACGCGGACTCCGTGAGGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACACGCTGTATCTACAAATGAACAG





CCTGACAGGCGAGGACACGGCTGTGTAT





TATTGTGCAAGATCTAACTGGGGATCGG





CAGACTACTGGGGCCAGGGAACCCTGGT





CACCGTCTC






KD6-1H10
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
255




GCTCAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCTGCCTCTGGATTCACCT





TCAGTAGATACTGGATGCACTGGGTCCG





CCAGGCTCCAGGGGAGGGGCTCGTTTGG





GTCTCACGTATAAATAGTGATGAGACTG





ACAAGCTTTACGCGGACTCCGTGAAGGG





CCGATTCTCCATCTTCAGAGACAACGCCA





AGAACACACTATATCTGCAAATGAACAG





ACTGAGAGCCGAGGACACGGCTGTATAC





TACTGTGCAAGAGATCGAGAGGATGTTG





TAGTGGGGCCAGCTACTCAACACACCAT





CTTTAACTCCTGGGGCCAGGGAACCCTG





GTCACCGTCTC






KD6-1H10L
Light
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
256




GTCTGGGTCTCCTGGACAGTCGATCACCA





TCTCCTGCACTGGAACCAGCAGTGATGTT





GGGAGTTCTAACTTTGTCTCCTGGTACCA





ACAACACCCAGGCAAAGCCCCCAAACTC





ATCCTTTATGAGGTCAGTAAGCGGCCCGC





TGGAGTTTCTAGTCGCTTCTCTGGCTCCA





GGTCTGGCAACACGGCCTCCCTGACAAT





CTCTGGAGCCCAGGCTGAGGACGAGGCT





GACTATTCCTGCTGCTCAACTTCTTCTGTT





GGCACTCTTTATGTCTTCGGAACTGGGAC





CAAGGTAACCGTCCTAG






KD8-2E9L
Light
CAGTCTGTGCTGACGCAGCCGCCCTCAGT
257




GTCTGCGGCCCCAGGACAGAAGGTCACC





ATCTCCTGCTCTGGAAGCAACTACAACAT





TGGGAATAATTATGTATCCTGGTACCAGC





GACTCCCAGGAACAGCCCCCAAACTCCT





CATTTATGACAATAATAAGCGACCCTCA





GGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATC





ACCGGACTCCAGACTGGGGACGAGGCCG





ATTATTACTGCGGAACATGGGATAGCAG





CCTGAGGGCTGGGGTGTTCGGCGGAGGG





ACCAAGCTGACCGTCCTAG






KD8-2E9
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
258




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACTT





TCAGTAGGCACTGGATGCACTGGGTCCG





CCAAGCTCCAGGGAAGGGGCTGGTGTGG





GTCTCACGTATTAATAGTGATGGGAGTA





GCACAAGTAACGCGGACTCCGTGAAGGG





CCGAATCACCATCTCCAGAGACAACGGC





AAGAACACGCTGTATCTGCAGATGAACA





GTCTGAGAGCCGAGGACACGGCTGTGTA





TTACTGTGCAAGGGAGATAGCATCGGGG





ACAGATGCTTTTGATATCTGGGGCCAAG





GGACAATGGTCACCGTCTC






KD9-2H6
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
259




GCTTAGTAAAGCCTGGGGAGTCCCTTAG





ACTCTCCTGTGTAGGTTCTGGATTCACTC





TCACTAACGCCTGGATGATCTGGGTCCGC





CAGACTTCAGGGAAGGGGCTGGAATGGG





TTGGTCGCATCAAGAGTAAAATTGATGG





TGGGGCAATCGACTACGGTGCACCCGTG





AAAGGTAGATTTACCATCTCAAGAGATG





ATACAAAAAACACGGTGTATCTGCAAAT





GAACAGCCTGCAAACCGACGACACAGGC





GTCTATTTCTGTACCACAGATCGTTATAG





TACTGGCTACTACGGCATGGACGACTACT





GGGGCCAGGGAACCCTGGTCACCGTCTC






KD9-2H6L
Light
TCCTATGAGCTGACTCAGCCACCCTCAGT
260




GTCCGTGTCCCCAGGACAGACAGCCACC





ATCACCTGCTCTGGAGATAAATTGGGAG





ATAAATATTCTTTCTGGTATCAACAGAAG





CCAGGCCAGTCCCCTGTGGTGGTCATCTA





TCAAGATTCCAAGCGGCCCTCAGGGATC





CCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGG





ACCCAGGCTATGGATGAGGCTGACTATT





ACTGTCAGGTGTGGGACACCGACTCTGC





AGTCTTCGGAACTGGGACCAGGGTCACC





GTCCT






KD12-1F10K
Light
GACATCCAGATGACCCAGTCTCCATCCTC
261




CCTGTCTGCATCTGTAGGAGACAGAGTC





ACCATCACTTGCCGGGCAAGTCAGAGCA





TTAGCAGCTATTTAAATTGGTATCAGCAG





AAACCAGGGAAAGCCCCTAAGCTCCTGA





TCTATGCTGCATCCAGTTTGCAAAGTGGG





GTCCCATCAAGGTTCAGTGGCAGTGGAT





CTGGGACAGATTTCACTCTCACCATCAGC





AGTCTGCAACCTGAAGATTTTGCAACTTA





CTACTGTCAACAGAGTTACAGTACCCCGT





ACACTTTTGGCCAGGGGACCAAGGTGGA





AATCAAAC






KD12-1F10
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
262




GCCTGGTCAAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCGGCCTCTGGATTCACCT





TCAGTAGCTATAGCATGAACTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGG





GTCTCATCCATTAGTAGTAGTAGTAGTTA





CATATACTACGCAGACTCAGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACTCACTGTATCTGCAAATGAACAG





CCTGAGAGCCGAGGACACGGCTGTGTAT





TACTGTGCGAGAGATACGATTTCTCGATA





CTGGGGCCAGGGAACCCTGGTCACCGTC





TC






KD12-1A10
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
263




GCCTGGTCAAGCCTGGGGGGTCCCTGAG





ACTTTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGTTACAGCATGAACTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGG





GTCTCATCCATTAGTGGTAGTAGTAGTTA





CATGCACTACGCAGAGTCAGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACTCACTGTATCTGCAAATGAATAG





CCTGAGAGCCGAGGACACGGCTGTGTAT





TACTGTGCGAGTACGGGGATTATCACGT





ATTACTATGCTTCGGGGGTCCCTGACTAC





TGGGGCCAGGGAACCCTGGTCACCGTCT
264




C






KD12-1A10L
Light
CAGTCTGTGCTGACTCAGCCACCCTCAGC





GTCTGGGACCCCCGGGCAGAGGGTCACC





ATGTCTTGTTCTGGAAGCAGCTCCAACAT





CGGAAGAAATTATGTATACTGGTACCAG





CAGCTCCCAGGAACGGCCCCCAAACTCC





TCATCTATAGGAATAATCAGCGACCCTCA





GGGGTCCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACCTCAGTCTCCCTGGCCATCA





GTGGGCTCCGGTCCGAGGATGAGGCTGA





TTATTACTGTGCAGCATGGGATGACAGCC





TGAGTGGTGTGGTATTCGGCGGAGGGAC





CAAGCTGACCGTCCTAG






KD12-2A10K
Light
GAAATTGTGTTGACGCAGTCTCCAGGCA
265




CCCTGTCTTTGTCTCCAGGGGAAAGAGCC





ACCCTCTCCTGCAGGGCCAGTCAGAGTGT





TAGCAGCAACTTAGCCTGGTACCAGCAG





AAACCTGGCCAGGCTCCCAGGGTCCTCA





TCTATGGTGCATCCAGCAGGGCCACTGG





CATCCCAGACAGGTTCAGTGGCAGTCGG





TCTGGGACAGACTTCACTCTCACCATCAG





CAGACTGGAGCCTGAAGATTTTGCAGTG





TATTACTGTCAGCGGTATGATAACTCACC





TCGGACGTTCGGCCAAGGGACCAAGGTG





GAAATCAAAC






KD12-2A10
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
266




GCTTGGTAAAGCCTGGGGGGTCCCTTAG





ACTCTCCTGTGCAGCCTCTGGTTTCACTT





TCATTAACGCCTGGATGAACTGGGTCCGC





CAGGCTCCAGGGAAGGGGCTGGAGTGGG





TCGGCCTAATTAAAAGCAAAACTGATGG





TGGGACAATAGACTACGCTGCACCCGTG





AAAGGCAGATTCACTATTTCAAGAGATG





ATTCAGAAAAAATGTTGTATCTGCAAAT





GGACAGCCTGAAGACCGAGGACACAGCC





GTGTATTACTGTACCACAATGTATGGCTG





GAAGGACGCGAGGGACTATTGGGGCCAG





GGAACCCTGGTCACCGTCTC






KD12-2A1K
Light
GAAATTGTGTTGACGCAGTCTCCAGGCA
267




CCCTGTCTTTGTCTCCAGGGGAAAGAGCC





ACCCTCTCCTGCAGGGCCAGTCAGAGTGT





TAGCAGCAGCTACTTAGCCTGGTACCAG





CAGAAACCTGGCCAGGCTCCCAGGTTCC





TCATCTATGGTGCGTCCAGTAGGGCCACT





GGCATCCCGGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATC





AGCAGACTGGAGCCTGAAGATTTTGCAG





TGTATTACTGTCAGCAGTATGGTAGCTCA





CCGTACACTTTTGGCCAGGGGACCAAGG





TGGAAATCAAAC






KD12-2A1
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
268




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATTAAAAGTGATGGGAGTAG





CACAAGCTACGCGGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACACGCTGTATCTGCAAATGAACAG





TCTGAGAGCCGAGGACACGGCTGTGTAT





TACTGTGCAAGAGGGGGTGGCAGCAGCA





ACTGGTACCCGGGTTTCTTTGACTACTGG





GGCCAGGGAACCCTGGTCACCGTCTC






KD12-2H1
Heavy
GAGGTGCAGCTGTTGGAGTCTGGGGGAG
269




GCTTGGTACAGCCGGGGGGGTCCCTGAG





ACTCTCCTGTGTAGCCTCTGGATTCACCT





TCAGCAGCTATGCCATGAGCTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGG





GTCTCTAGTATTAGTGCTAGTGGTGGTAG





CACATATTACGCAGACTCCGTGAAGGGC





CGGTTCACCATCTCCAGAGACAATTCCAA





GAACACGCTGTATCTGCAAATGAACAGC





CTGAGAGCCGAGGACACGGCCGTATATT





ACTGTGGGAATTGGCCGGAAGGATTCCC





GGCCTACTTTCACTACTGGGGCCAGGGA





ACCCTGGTCACCGTCTC
270





KD12-2H1K
Light
GAAATAGTGATGACGCAGTCTCCAGCCA





CCCTGTCTGTGTCTCCAGGGGAAAGAGTC





ACCCTCTCCTGCAGGGCCAGTCAGAGTGT





TACCAGCGAGTTGGCCTGGTACCAGCAG





AAACCTGGCCAGGCTCCCAGGCTCCTCAT





CTATGATGCATCCACCGGGGCCACTGGT





ATCCCAGCCAGGTTCAGTGGCAGTGGGT





CTGGGACAGACTTCACTCTCACCATCAGC





AGCCTGCAGTCTGAAGATTTTGCAGTTTA





TTACTGTCAGCAGCATAATAACTGGCCTC





TCACTTTCGGCGGCGGGACCAAGGTGGA





AATCAAAC






KD12-2C10
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
271




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGTATTAAGAGTGATGGGAGGAG





CATAAGTTACGCGGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACACGCTGTATCTGCAAATGAACAG





TCTGAGAGCCGAGGACACGGCTGTGTAT





TACTGTGCAAGAGATCCCCACGGCACAG





CAGCTCCTCCCCGTGATGCTTTTGATATC





TGGGGCCAAGGGACAATGGTCACCGTCT





C






KD12-2C10L
Light
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
272




GTCTGGGTCTCCTGGACAGTCGATCACCA





TCTCCTGCACTGGAACCAGCGGTGATGTT





GGGAGTTATAACCTTGTCTCCTGGTACCA





ACAGTACCCAGGCAAAGCCCCCAAACTC





ATGATTTATGAGGTCGATAAGCGGCCCTC





AGGGGTCTCTAATCGCTTCTCTGGCTCCA





AGTCTGGCAACACGGCCTCCCTGACAATT





TCTGGGCTCCGGGCTGAGGACGAGGCTC





ATTATCACTGCTTCTCATATGCAGGTAGT





TTGACTTTGGTATTCGGTGGAGGGACCAA





GTTGACCGTCCTAG






KD12-1G7L
Light
CAGTCTGTGCTGACTCAGCCACCCTCAGT
273




GTCTGGGACCCCCGGGCAGAGGGTCACC





ATCTCTTGTTCTGGAAGCAGCTCCAACAT





CGGAAGTAAAACTGCAAACTGGTACCAG





AAGCTCCCAGGAACGGCCCCCAAACTCC





TCATCTATAGTAACAATCAGCGGCCCTCA





GGGGTCCCTGACCGATTCTCTGGCTCCAA





GTCAGGCACCTCAGCCTCCCTGGCTATCA





GTGGGCTCCAGTCTGAGGATGAGGCTGG





GTACTACTGCACAGCATGGGATGACAGC





CTGAATGGTCCGGTGTTCGGCGGAGGGA





CCAAGCTGACCGTCCTAG






KD12-1G7
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
274




GCTTGGTCCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGGAGCCTCTGGATTCACCG





TCAGTGGCAAGTATATGACCTGGGCCCG





CCAGGCTCCTGAGAAGGGACTGGAGTGG





GTCTCAGCTATCTATCGCGGTGGTGGCAC





ATACTACGCAGACTCCGTGAAGGGCAGA





TTCACCATCTCCAGAGACAATTCCAAAA





ACATGTTATATCTTCAAATGAACAGCCTG





AGAGCCGAGGACACGGCTGTGTATTACT





GTGGGGGGTCCGTGATGGTGAGTGCTAC





TGACTACTGGGGCCAGGGAACCCTGGTC





ACCGTCTC






KD12-1H2K
Light
GACATCCAGATGACCCAGTCTCCATCCTC
275




CCTGTCTGCATCTGTAGGAGACAGAGTC





ACCATCACTTGCCGGGCAAGTCAGAGCA





TTAGCAGCTATTTAAATTGGTATCAGCAG





AAACCAGGGAAAGCCCCTAAGCTCCTGA





TCTATGCTGCATCCAGTTTGCAAAGTGGG





GTCCCATCAAGGTTCAGTGGCAGTGGAT





CTGGGACAGATTTCACTCTCACCATCAGC





AGTCTGCAACCTGAAGATTTTGCAACTTA





CTACTGTCAACAGAGTTACAGTACCCCGT





ACACTTTTGGCCAGGGGACCAAGGTGGA





GATCAAAC






KD12-1H2
Heavy
GAGGTGCAGCTGGTGGAGTCTGGGGGAG
276




GCCTGGTCAAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGCAGCCTCTGGATTCACCT





TCAGTAGCTATAGCATGAACTGGGTCCG





CCAGGCTCCAGGGAAGGGGCTGGAGTGG





GTCTCATCCATTAGTAGTAGTAGTAGTTA





CATATACTACGCAGACTCAGTGAAGGGC





CGATTCACCATCTCCAGAGACAACGCCA





AGAACTCACTGTATCTGCAAATGAACAG





CCTGAGAGCCGAGGACACGGCTGTGTAT





TACTGTGCGAGAGATCAAATTAGTGGTT





ACTGGGGCCAGGGAACCCTGGTCACCGT





CTC






KD12-2F2
Heavy
GAGGTGCAGCTGGTGGAGTCCGGGGGAG
277




GCTTAGTTCAGCCTGGGGGGTCCCTGAG





ACTCTCCTGTGTAGCCTCTGGATTCACCT





TCAGTAGCTACTGGATGCACTGGGTCCGC





CAAGCTCCAGGGAAGGGGCTGGTGTGGG





TCTCACGGATTTATCCTGATGGGACTACT





ACTGCAAACTACGCGGACTCCGTGAAGG





GCCGATTCACCATCTCCAGAGACAACGC





CAAGAACACGGTGTATCTGCAAATGAAC





AGTCTGAGAGCCGAGGACACGGCTGTTT





ATTACTGTGCAAGAGATCTTCGGGAGTCT





GATTACTGGGGCCAGGGAACCCTGGTCA





CCGTCTC






KD12-2F2L
Light
CAGTCTGCCCTGACTCAGCCTGCCTCCGT
278




GTCTGGGTCTCCTGGACAGTCGATCACCA





TCTCCTGCACTGGAACCAGCAGTGACGT





GGGTAATTATAATTATGTCTCCTGGCACC





AACAACACCCAGGGAAAGCCCCCAAACT





CATGATTTATGATGTCAGTAATCGGCCCT





CAGGGGTTTCTAATCGCTTCTCTGGCTCC





AAGTCTGGCAACACGGCCTCCCTGACCA





TCTCTGGGCTCCAGGCTGAGGACGAGGC





TGATTATTACTGCAACTCATATACAACCT





ACAGCACTCACGTCTTCGGAACTGGGAC





CAAGGTCACCGTCCTAG
















TABLE 2







Antibody amino acid sequences including CDRs














Entire Sequence
CDR


Antibody
Chain
Sequence
SEQ ID NO:
SEQ ID NO:





KD7-2H5
Heavy
EVQLVESGGGLVQPGGSLRLSC
  1

CDR1: 42





AASGFTFSSYWMHWVRQAPG




CDR2:

74





KGLVWVSRINSDGSSTSYADSV



CDR3:
4





KGRFAISRDNAKNTLYLQMNSL






RAEDTAVYYCARALGGWDIDY






WGQGTLVTVS







KD7-2H5L
Light
QSVLTQPPSASGTPGQRVTISCS
  5

CDR1: 6





GSSSNIGSNYVYWYQQLPGTAP




CDR2:

7





KLLIYRNNQRPSGVPDRFSGSKS



CDR3:
8





GTSASLAISGLRSEDEADYYCA








AWDDSLSGGV
FGGGTKLTVLG








KD10-1C3L
Light
QSVLTQPPSVSAAPGQKVTISCS
  9

CDR1: 10





GGSSSIGNNYVSWYQLLPGTAP




CDR2:

11





KLLIYDNNKRPSGIPDRFSGSKS



CDR3:
8





GTSATLGITGLQTGDEADYYCG








TWDSGLSAGV
FGGGTKLTVLG








KD10-1C3
Heavy
VQLVESGGGVVQPGRSLRLSCA
 13

CDR1: 10





ASGFTFSDYAVHWVRQAPGKG




CDR2:

11





LEWAALISNDGDFKYYADAVK



CDR3:
8





GRFTISRDNSNNTLYLQMNSLR






TEDTAVYYCARERGRDKVFPP








GY
WGQGTLVTVS








KD7-1B5L
Light
QSVLTQPPSVSAAPGQKVTISCS
 17

CDR1: 18





GSSSNIGNNYVSWYQQLPGTAP




CDR2:

11





KLLIYDNNKRPSGIPDRFSGSKS



CDR3:
8





GTSATLGITGLQTGDEADYYCG








TWDSSLSAEV
FGGGTKLTVLG








KD7-1B5
Heavy
VQLVESGGGVVQPGRSLRLSCE
 21

CDR1: 22





ASGFTFRSRAMHWVRQAPGKG




CDR2:

23





LGWVAVIWYDGSNKYYADSVK



CDR3:
8





GRFTISRDNSRNTLYLQMNSLR






AEDTAVYYCARDLGSGFSLDY






WGQGTLVTVS







KD6-1A8L
Light
QAVVTQEPSLTVSPGGTVTLTC
 25

CDR1: 26





ASSTGAVTSAHSPHWFRQKPG




CDR2:

27





QAPRTLIYDTSNKPSWTPARFSG



CDR3:
8





SLLGGKAALTLSGAQPEDEAEY






YCLLSNSGVHFLFGGGTRLTVL






G







KD6-1A8
Heavy
EVQLVQSGAEVKKTGSSVKLSC
 29

CDR1: 30





TATGYTFTYRYLHWVRQAPGQ




CDR2:

31





ALEWMGYITIYNGDTNYAQKF



CDR3:
8





QDRVTISRDMSLSTVYMELSSLT






SEDTAMYFCVRSALYGENAFD








F
EWGQGTMVTVS








KD1-1H8
Heavy
EVQLVESGGGSVQPGGSLRLSC
 33

CDR1: 78





AASGFTFSNYWMHWVRQAPG




CDR2:

35





KGLVWVSRLNIDGSNTFYADSV



CDR3:
8





KGRFTISRDNAKNTLYLQMNSL






RAEDTAVYYCVRGGSDSGDSV








PFDL
WGRGTLVTVS








KD1-1H8K
Light
EIVMTQSPATLSVSPGERATLSC
 37

CDR1: 38





RASQSVSSNLAWYQQNPGQAP




CDR2:

39





RLLIYGASTRATGIPARFSGSGS



CDR3:
8





GTEFTLTISSLQSEDFAVYYCQH








YNNWPFT
FGQGTKVEIK








KD1-2B1
Heavy
EVQLVESGGGLVQPGGSLRLSC
 41

CDR1: 42





AASGFTFSSYWMHWVRQAPG




CDR2:

43





KGLVWVSRINNDGSSTGYADSV



CDR3:
8





EGRFTISRDNAKNTLYLQINSLR






AEDTAVYYCARQDGHYYYSM








DV
WGQGTTVTV








KD1-2B1L
Light
QSALTQPRSVSGSPGQSVTISCT
 45

CDR1: 46





GTSSDVGGYNYVSWYQQHPGK




CDR2:

47





APKLMIYDVSERPSGVPARFSGS



CDR3:
8





KSGNTASLTISGLQAEDEADYY






CCSYAGNFRWVFGGGTKLTVL







KD10-1G3
Heavy
EVQLVESGGGLVQPGGSLKLSC
 49

CDR1: 50





AASGFSFSGAAMHWVRQSSGR




CDR2:

51





GLEWLGRIRSKINDYATAYAES



CDR3:
8





LHGRFTISRDDAKNTAYLQMNR






LKSEDTAIYYCTTVLSKGDHAV








WLGP
WGPGTLVTV








KD10-1G3L
Light
QPVLTQPPSSSASPGESARLTCT
 53

CDR1: 54





LPSDISVAASDIYWYQQKAGSPP




CDR2:

55





NFLLYDPSDSHKGQDSGVPSRF



CDR3:
8





SGSRDGSANSGFLLISGVQSEDE






ADYYCMVWPPNTVGVVFGGG






TTLTV







KD5-2D1L
Light
QAVVTQEPSLTVSPGGTVTLTC
 57

CDR1: 58





ASSTGAVTSGYYPNWFQQKPG




CDR2:

59





QAPRALIYSTSNKHSWTPARFSG



CDR3:
8





SLLGGKAALTLSGVQPEDEAEY






YCLLFYGGVHVFGAGTKVTVLG







KD5-2D1
Heavy
EVQLVESGGDLVQPGGSLRLSC
 61

CDR1: 62





AASGFTFSTYWMHWVRQAPG




CDR2:

63





QGLVWVSRINGNGRITNYADSV



CDR3:
8





KGRFTVSRDNAKNTVDLQMNS






LRAEDTAVYYCARINEWGDV






WGKGTTVTVS







KD10-1A8K
Light
DIVMTQTPLSLSVTPGQPASISC
 65

CDR1: 66





KSSQSLLHNDGKTFLHWYLQK




CDR2:

67





PGQSPQLLIYEVSSRFSGVPDRFS



CDR3:
8





GSGSGTDFTLKISRVEAEDVGV






YYCMQGIHLPPTFGGGTKVEIKR







KD10-1A8
Heavy
EVQLVESGGGLVQPGGSLRLSC
 69

CDR1: 42





AASGFTFSSYWMEWVRQAPGK




CDR2:

70





GLVWVSHISSDGSVTRYVDSVK



CDR3:
8





GRFTISRDNAKNTLYLQMNSLR






AEDTGVYYCAKDLHWNALDV






WGQGTMVTVS







KD5-2D10K
Light
EIVMTQSPATLSVSPGERATLSC
 72

CDR1: 38





RASQSVSSNLAWYQQKPGQAP




CDR2:

39





RLLIYGASTRATGIPARFSGSGS



CDR3:
8





GTEFTLTISSLQSEDFAVYYCQQ








YNNWPPWTF
GQGTKVEIKR








KD5-2D10
Heavy
EVQLVESGGGLVQPGGSLRLSC
 42

CDR1: 42





AASGFTFSSYWMHWVRQAPG




CDR2:

75





KGLVWVSRINSDGSSTSYADSV



CDR3:
8





KGRFTISRDNAKNTLYLQMNSL






RAEDTAVYYCARGVRSGWYA








DAFDI
WGQGTMVTVS








KD5-2D7
Heavy
EVQLVESGGGLVQPGGSLGLSC
 77

CDR1: 78





AASGFTFSNYWMHWVRQAPG




CDR2:

79





KGLVWVSRINSDGSDTSYADSV



CDR3:
8





KGRFTISRDNAENTLYLHMSSL






RAEDTAVYYCARELGYGDYG








MDV
WGKGTTVTVS








KD5-2D7L
Light
QSVLTQPPSASGTPGQRVTISCS
 81

CDR1: 82





GSSSNIGSHSVIWYQQLPGTAPK




CDR2:

83





LLVYSDNQRPSGVPDRFSGSKS



CDR3:
8





GTSASLAISGLQSEDEADYYCA








AWDDSLNHLHVV
FGGGTKLTVL








KD10-2F6
Heavy
EVQLVESGGGLVQPGGSLRLSC
 85

CDR1: 86





AASGFIFSNYWMHWVRQAPGE




CDR2:

87





GLVWVSRINKDGSSTFYADSVK



CDR3:
8





GRFTISRDNAKNTLYLQMNSLR






AEDTAVYYCTRDFDEWSGYW






GQGTLVTVS







KD10-2F6L
Light
QSALTQPASVSGSPGQSITISCTG
 89

CDR1: 90





TSSDVGGCEYVSWYQQHPGKV




CDR2:

67





PKLIIYEVSNRPSGVSNRFSGSKS



CDR3:
8





GNTASLTVSGLQAEDEADYFCS








SCTTSGSYV
FGAGTKVTVV








KD11-2E4
Heavy
EVQLVESGGGVVQPGESLRLSC
 92

CDR1: 93





AASGVTFSSYWMHWVRQVPG




CDR2:

94





KGLVWVARINIDGTSTTYADCV



CDR3:
8





KGRFTISRDNAKNTLYLQMSSL






RAEDTAVYYCATERGLLSGGR








WHSSHFDY
WGQGTLVTVS








KD11-2E4K
Light
DIQMTQSPSTLSASVGDRVTITC
 96

CDR1: 97





RASQSISSWLAWYQQKPGKAP




CDR2:

98





KVLIYKTSSLESGVPS



CDR3:
8





RFSGSGSGTEFTLTISSLQPDDFA



CDR3:
8





TYYCQQYDSSSLTWTFGQGTK






VEIK




KD11-2E5

EVQLVESGGGLVQPGGSLRLSC
101





AASGFTFSRFWMHWVRQVPG






KGLVWISRINSDATSSSYADSVK






GRFTISRDNAKNTLFLQMNSLR






AEDTAVYYCATSNTALVYLPE








N
WGQGTLVTVS








KD11-2E5K
Light
EIVLTQSPATLSLSPGERATLSCR
104

CDR1: 105





ASQSVSDYLAWYQQKPGQAPR




CDR2:

106





LLIYDASNRATGIPA



CDR3:
8





RFSGGGSGTDFTLTISSLEPEDFA






VYYCQQRSYWPPTFGQGTKVE






IK







KD2-1D10L
Light
QSALTQPPSASGSPGQSVTITCT
108

CDR1: 46





GTSSDVGGYNYVSWYQQHPGK




CDR2:

67





APKLMIYEVSKRPSGVPDRFSGS



CDR3:
8





KSGNTASLTVSGLQAEDEADYH






CSSFAGDNNSPVFGGGTKLTVL







KD2-1D10
Heavy
EVQLVESGGGLIHPGGSLRLSCA
110

CDR1: 42





ASGFTFSSYWMHWVRQAPGK




CDR2:

111





GLVWVSHIKSDGSNTIYADSVK



CDR3:
8





GRFTISRDNAKNTLYLQMNSLR






AEDTAVYYCGRGRSLTPRSAID








Y
WGQGTLVTV








KD9-2A4
Heavy
LVESGGGLVQPGGSLRLSCAAS
113

CDR1: 2






GFTFSSLAMHWVRQAPGKGLE





CDR2:

114





FASAISSDGGTTYYANSVKGRF



CDR3:
8





TISRDNSKNTLYLQMGSLRDED






MAVYYCARDDLSTSWDLDYW






GQGTLVTV







KD9-2A4L
Light
QSALTQPASVSGSPGQSITISCTG
116

CDR1: 46





TSSDVGGYNYVSWYQQHPGKA




CDR2:

47





PKLMIYDVSNRPSGVSNRFSGSK



CDR3:
8





SGNTASLTISGLQAEDEADYYCS








SYTISSTNV
FGTGTKVTVL








KD3-1B6L
Light
QSALTQPASMSGSPGQSITISCT
118

CDR1: 119





GTSSDVGAHNFISWYQQHPGK




CDR2:

120





APKLMIFEVNKRPSGVSNRFSGS



CDR3:
8





KSGNTASLTISGLQAEDEADYFC






CSYAGYSTWVFGGGTKLTVL







KD3-1B6
Heavy
EVQLVESGGGVVQPGGSLRLSC
122

CDR1: 123





EVSGFIFSSYWMHWVRQVAGK




CDR2:

75





GLVWVSRINSDGSSTSYADSVK



CDR3:
8





GRFTISRDNAKNTLNLQMNFLR






AEDTAVYYCARGGDHGDYGF








FES
WGQGTLVTV








KD3-1C10
Heavy
EVQLVESGGGLVQPGGSLRLSC
125

CDR1: 126





AASGFTFSNHWMHWVRQAPG




CDR2:

127





KGLLWVSRIDTGGSTTNYADSV



CDR3:
8





KGRFTISRDSAKNTVYLQMNSL






RAEDTAVYYCARGGLFYYGM








DV
WGQGTTVTV








KD3-1C10K
Light
EIVLTQSPGTLSLSPGERATLSCR
313

CDR1: 129





ASQTSSSTSLAWYQQKRGQAPR




CDR2:

39





LLIYGASRRATGIP



CDR3:
8





DRFSGSGSGTDFTLTISRLEPEDF






AVYYCQQFSGSPAYTFGQGTK






VEIK







KD6-2H8K
Light
DIVMTQTPLSLPVTPGEPASISCR
131

CDR1: 132





SSQSLLDSADGNTYLDWYLQK




CDR2:

133





PGQSPQLLIHTLSHRASGVPDRF



CDR3:
8





SGSGSGTDFTLKISRVEAEDVGV






YYCMQRIAFPVTFGPGTKVDIK







KD6-2H8
Heavy
EVQLVESGGGLVQPGGSLRLSC
135

CDR1: 78





AASGFTFSNYWMHWVRQAPG




CDR2:

136





EGLEWVSRINSDGNKVSYADSV



CDR3:
8





RGRFTISRDNAKNTLYLQMNSL






TGEDTAVYYCARSNWGSADY






WGQGTLVTV







KD6-1H10
Heavy
EVQLVESGGGSVQPGGSLRLSC
138

CDR1: 139





AASGFTFSRYWMHWVRQAPG




CDR2:

140





EGLVWVSRINSDETDKLYADSV



CDR3:
8





KGRFSIFRDNAKNTLYLQMNRL






RAEDTAVYYCARDREDVVVGP






ATQHTIFNSWGQGTLVTV







KD6-1H10L
Light
QSALTQPASVSGSPGQSITISCTG
142

CDR1: 143





TSSDVGSSNFVSWYQQHPGKAP




CDR2:

67





KLILYEVSKRPAGVSSRFSGSRS



CDR3:
8





GNTASLTISGAQAEDEADYSCC








STSSVGTLYV
FGTGTKVTVL








KD8-2E9L
Light
QSVLTQPPSVSAAPGQKVTISCS
145

CDR1: 146





GSNYNIGNNYVSWYQRLPGTA




CDR2:

11





PKLLIYDNNKRPSGIP



CDR3:
8





DRFSGSKSGTSATLGITGLQTGD






EADYYCGTWDSSLRAGVFGGG






TKLTVL







KD8-2E9
Heavy
EVQLVESGGGLVQPGGSLRLSC
148

CDR1: 149





AASGFTFSRHWMHWVRQAPG




CDR2:

75





KGLVWVSRINSDGSSTSNADSV



CDR3:
8





KGRITISRDNGKNTLYLQMNSL






RAEDTAVYYCAREIASGTDAF








DI
WGQGTMVTV








KD9-2H6
Heavy
EVQLVESGGGLVKPGESLRLSC
151

CDR1: 152





VGSGFTLTNAWMIWVRQTSGK




CDR2:

153





GLEWVGRIKSKIDGGAIDYGAP



CDR3:
8





VKGRFTISRDDTKNTVYLQMNS






LQTDDTGVYFCTTDRYSTGYY








GMDDY
WGQGTLVTV








KD9-2H6L
Light
SYELTQPPSVSVSPGQTATITCS
155

CDR1: 156





GDKLGDKYSFWYQQKPGQSPV




CDR2:

157





VVIYQDSKRPSGIPERFSGSNSG



CDR3:
8





NTATLTISGTQAMDEADYYCQV








WDTDSAV
FGTGTRVTV








KD12-1F10K
Light
DIQMTQSPSSLSASVGDRVTITC
159

CDR1: 160





RASQSISSYLNWYQQKPGKAPK




CDR2:

161





LLIYAASSLQSGVPSRFSGSGSGT



CDR3:
8





DFTLTISSLQPEDFATYYCQQSY








STPYT
FGQGTKVEIK








KD12-1F10
Heavy
EVQLVESGGGLVKPGGSLRLSC
163

CDR1: 164





AASGFTFSSYSMNWVRQAPGK




CDR2:

165





GLEWVSSISSSSSYIYYADSVKG



CDR3:
8





RFTISRDNAKNSLYLQMNSLRA






EDTAVYYCARDTISRYWGQGT






LVTV







KD12-1A10
Heavy
EVQLVESGGGLVKPGGSLRLSC
167

CDR1: 164





AASGFTFSSYSMNWVRQAPGK




CDR2:

168





GLEWVSSISGSSSYMHYAESVK



CDR3:
8





GRFTISRDNAKNSLYLQMNSLR






AEDTAVYYCASTGIITYYYASG








VPDY
WGQGTLVTV








KD12-1A10L
Light
QSVLTQPPSASGTPGQRVTMSC
170

CDR1: 171





SGSSSNIGRNYVYWYQQLPGTA




CDR2:

7





PKLLIYRNNQRPSGVPDRFSGSK



CDR3:
8





SGTSVSLAISGLRSEDEADYYCA








AWDDSLSGV
VFGGGTKLTVL








KD12-2A10K
Light
EIVLTQSPGTLSLSPGERATLSCR
173

CDR1: 38





ASQSVSSNLAWYQQKPGQAPR




CDR2:

39





VLIYGASSRATGIPDRFSGSRSGT



CDR3:
8





DFTLTISRLEPEDFAVYYCQRYD








NSPRT
FGQGTKVEIK








KD12-2A10
Heavy
EVQLVESGGGLVKPGGSLRLSC
175

CDR1: 176





AASGFTFINAWMNWVRQAPG




CDR2:

177





KGLEWVGLIKSKTDGGTIDYAA



CDR3:
8





PVKGRFTISRDDSEKMLYLQMD






SLKTEDTAVYYCTTMYGWKD








ARDY
WGQGTLVTV








KD12-2A1K
Light
EIVLTQSPGTLSLSPGERATLSCR
179

CDR1: 180





ASQSVSSSYLAWYQQKPGQAPR




CDR2:

39





FLIYGASSRATGIPDRFSGSGSGT



CDR3:
8





DFTLTISRLEPEDFAVYYCQQY








GSSPYT
FGQGTKVEIK








KD12-2A1
Heavy
EVQLVESGGGLVQPGGSLRLSC
182

CDR1: 42





AASGFTFSSYWMHWVRQAPG




CDR2:

183





KGLVWVSRIKSDGSSTSYADSV



CDR3:
8





KGRFTISRDNAKNTLYLQMNSL






RAEDTAVYYCARGGGSSNWYP








GFFDY
WGQGTLVTV








KD12-2H1
Heavy
EVQLLESGGGLVQPGGSLRLSC
185

CDR1: 286





VASGFTFSSYAMSWVRQAPGK




CDR2:

187





GLEWVSSISASGGSTYYADSVK



CDR3:
8





GRFTISRDNSKNTLYLQMNSLR






AEDTAVYYCGNWPEGFPAYFH








Y
WGQGTLVTV








KD12-2H1K
Light
EIVMTQSPATLSVSPGERVTLSC
189

CDR1: 190





RASQSVTSELAWYQQKPGQAP




CDR2:

106





RLLIYDASTGATGIPARFSGSGS



CDR3:
8





GTDFTLTISSLQSEDFAVYYCQQ








HNNWPLT
FGGGTKVEIK








KD12-2C10
Heavy
EVQLVESGGGLVQPGGSLRLSC
192

CDR1: 42





AASGFTFSSYWMHWVRQAPG




CDR2:

193





KGLVWVSRIKSDGRSISYADSV



CDR3:
8





KGRFTISRDNAKNTLYLQMNSL






RAEDTAVYYCARDPHGTAAPP








RDAFDI
WGQGTMV TV








KD12-2C10L
Light
QSALTQPASVSGSPGQSITISCTG
196

CDR1: 197





TSGDVGSYNLVSWYQQYPGKA




CDR2:

198





PKLMIYEVDKRPSGVSNRFSGS



CDR3:
8





KSGNTASLTISGLRAEDEAHYH






CESYAGSLTLVFGGGTKLTVL







KD12-1G7L
Light
QSVLTQPPSVSGTPGQRVTISCS
200

CDR1: 201





GSSSNIGSKTANWYQKLPGTAP




CDR2:

202





KLLIYSNNQRPSGVPDRFSGSKS



CDR3:
8





GTSASLAISGLQSEDEAGYYCT








AWDDSLNGPV
FGGGTKLTVL








KD12-1G7
Heavy
EVQLVESGGGLVQPGGSLRLSC
204

CDR1: 205





GASGFTVSGKYMTWARQAPEK




CDR2:

206





GLEWVSAIYRGGGTYYADSVK



CDR3:
8





GRFTISRDNSKNMLYLQMNSLR






AEDTAVYYCGGSVMVSATDY






WGQGTLVTV







KD12-1H2K
Light
DIQMTQSPSSLSASVGDRVTITC
159

CDR1: 160





RASQSISSYLNWYQQKPGKAPK




CDR2:

208





LLIYAASSLQSGVPSRFSGSGSGT



CDR3:
8





DFTLTISSLQPEDFATYYCQQSY








STPYT
FGQGTKVEIK








KD12-1H2
Heavy
EVQLVESGGGLVKPGGSLRLSC
209

CDR1: 164





AASGFTFSSYSMNWVRQAPGK




CDR2:

165





GLEWVSSISSSSSYIYYADSVKG



CDR3:
8





RFTISRDNAKNSLYLQMNSLRA






EDTAVYYCARDQISGYWGQGT






LVTV







KD12-2F2
Heavy
EVQLVESGGGLVQPGGSLRLSC
211

CDR1: 42





VASGFTFSSYWMHWVRQAPG




CDR2:

212





KGLVWVSRIYPDGTTTANYADS



CDR3:
8





VKGRFTISRDNAKNTVYLQMNS






LRAEDTAVYYCARDLRESDYW






GQGTLVTV







KD12-2F2L
Light
QSALTQPASVSGSPGQSITISCTG
214

CDR1: 215





TSSDVGNYNYVSWHQQHPGKA




CDR2:

47





PKLMIYDVSNRPSGVSNRFSGSK



CDR3:
8





SGNTASLTISGLQAEDEADYYC








NSYTTYSTHV
FGTGTKVTVL










In an aspect, provided herein are nucleic acids or polynucleotides encoding antibodies or antigen binding fragments described herein. In some aspects, the antibodies or fragments comprise the sequences in Table 1 or Table 2, or a sequence having at least 90% or 95% sequence identity to the sequences in Table 1 or Table 2.


In some aspects the ICI or KD antibody or antigen binding fragment thereof comprises an antibody capable of binding to a epitope. In some aspects the epitope comprises P8, L10, Q12, S13 and I14, in some aspects the epitope may comprise M9 and V15, in some aspects the epitope may comprise F11, wherein the capital letter is the amino acid, and the superscript number is the position relative to SEQ ID NO: 281 or KDpeptide3. In some aspects the epitope comprises SEQ ID NO: 280 or KDpeptide2, in some aspects the epitope comprises SEQ ID NO: 279 or KDpeptide1, in some aspects the epitope comprises SEQ ID NO: 281. In some aspects the epitope comprises the amino acid sequence of PMLF(V,T)QSIV of SEQ ID NO: 282, or SEQ ID NO: 283 (PMLFQSIV) or sequences 90% identical thereof.


Protein] and nucleic acid sequence identities are evaluated using the Basic Local Alignment Search Tool (“BLAST”) which is well known in the art (Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. USA 87:2267-2268; Altschul et al., 1997, Nucl. Acids Res. 25:3389-3402). The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as “high-scoring segment pairs,” between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. Preferably, the statistical significance of a high-scoring segment pair is evaluated using the statistical significance formula (Karlin and Altschul, 1990), the disclosure of which is incorporated by reference in its entirety. The BLAST programs can be used with the default parameters or with modified parameters provided by the user.


“Percentage of sequence identity” is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.


The term “substantial identity” of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 85% sequence identity to the SEQ ID. Alternatively, percent identity can be any integer from 85% to 100%. More preferred embodiments include at least: 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% compared to a reference sequence using the programs described herein, preferably BLAST using standard parameters, as described. These values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.


“Substantial identity” of amino acid sequences for purposes of this invention normally means polypeptide sequence identity of at least 85%. Preferred percent identity of polypeptides can be any integer from 85% to 100%. More preferred embodiments include at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.


The antibody may be linked to a tag, detectable label or additional moiety. The isolated antibody or fragment thereof is directly or indirectly linked to a tag or detectable label. The antibody or fragment thereof may be conjugated to the tag or detectable label. The tag or detectable label is a polypeptide, wherein the polypeptide is translated concurrently with the antibody polypeptide sequence.


The term “tag” or “detectable label” as used herein includes any useful moiety that allows for the purification, identification, detection, diagnosing, imaging, or therapeutic use of the antibody of the present invention and are readily known in the art. Suitable tags or detection labels include epitope tags, detection markers and/or imaging moieties, including, for example, enzymatic markers, fluorescence markers, radioactive markers, among others.


The term “additional moiety” includes other molecules that may be linked to the antibody or antibody fragment thereof. Suitable additional moieties include, but are not limited to, for example, therapeutic agents, small molecules, and drugs, among others. The additional moieties can also include diagnostic agents.


The detectable label may be a biotin or a biotinylated tag. The detectable label may be a fluorescent protein, luciferase, a fluorescent compound, or a colorimetric reagent.


In an aspect, provided herein is a nucleic acid or polynucleotide encoding an antibody or antibody fragment described herein. The polynucleotide may be a polynucleotide construct encoding the polypeptide, antibody or antibody fragment described herein. The nucleic acid construct may be an expression vector or vector capable of expressing the protein or polynucleotide in a host cell.


The present invention also provides expression vectors comprising a polynucleotide encoding the antibodies or fragments of the present invention. Advantageously, the expression vector is a recombinant expression vector comprising an “expression cassette” or an “expression construct” according to the present invention. Within the construct, the polynucleotide may operatively linked to a transcriptional promoter (e.g., a heterologous promoter) allowing the construct to direct the transcription of said polynucleotide in a host cell. Such vectors are referred to herein as “recombinant constructs,” “expression constructs,” “recombinant expression vectors” (or simply, “expression vectors” or “vectors”).


Suitable vectors are known in the art and contain the necessary elements in order for the gene encoded within the vector to be expressed as a protein in the host cell. The term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated, specifically exogenous DNA segments encoding the antibodies or fragments thereof. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome to be expressed in viral particles to be infected into cells and allow expression of the viral vectors carried within the viral particles.


Certain vectors are capable of autonomous replication in a host cell into which they are introduced. Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome (e.g. lentiviral vectors). Viral vectors include those known in the art, e.g., replication defective retroviruses (including lentiviruses), adenoviruses and adeno-associated viruses (rAAV)), which serve equivalent functions. Lentiviral vectors may be used to make suitable lentiviral vector particles by methods known in the art to transform cells in order to express the antibody or antigen binding fragment thereof described herein.


The present invention also provides a host cell comprising the isolated nucleic acids or expression vectors described herein that are capable of producing the antibodies or antibody fragments thereof. In one embodiment, the host cell is a hybridoma cell. In another embodiment, the host cell contains a recombinant expression cassette or a recombinant expression vector according to the present invention and is able to express the encoded antibody or antigen binding fragment thereof. The host cell can be a prokaryotic or eukaryotic host cell. Suitable host cells include, but are not limited to, mammalian cells, bacterial cells and yeast cells. In some embodiments, the host cell may be a eukaryotic cell. The term “host cell” includes a cell into which exogenous nucleic acid has been introduced, including the progeny of such cells. Host cells also include “transformants” and “transformed cells”, which include the primary transformed cell and progeny derived therefrom without regard to the number of passages. Progeny may not be completely identical in nucleic acid content to a parent cell, but may contain mutations. Mutant progeny that have the same function or biological activity that was screened or selected for in the originally transformed cell are included herein. It should be appreciated that the host cell can be any cell capable of expressing antibodies, for example fungi; mammalian cells; insect cells, using, for example, a baculovirus expression system; plant cells, such as, for example, corn, rice, Arabidopsis, and the like. See, generally, Verma, R. et al., J Immunol Methods. 1998 Jul. 1; 216 (1-2): 165-81. Host cell also include hybridomas that produce the monoclonal antibodies described herein.


Peptides Specific for Kawasaki Disease

The inventors discovered that patients diagnosed with Kawasaki disease produce antibodies that recognize a particular peptide (see FIGS. 2 and 3). Accordingly, in another aspect of the current disclosure, peptides specific for binding antibodies found in subjects with Kawasaki disease are provided. The peptides comprise SEQ ID NO: 281 (KD3) or a sequence with 95% similarity to SEQ ID NO: 281. The peptides may comprise a detectable label or tag. The peptides may be linked to a solid support. The peptides may be used in a method of detecting the presence of antibodies associated with Kawasaki diseases. A polynucleotide construct capable of expressing the polypeptide is also provided.


As used herein, “solid support” refers to any suitable material for the immobilization peptides (including, but not limited to epitope fragments, antibodies, or antibody fragments thereof) of the instant disclosure. For example, the solid support may be beads, particles, tubes, wells, probes, dipsticks, pipette tips, slides, fibers, membranes, papers, natural and modified celluloses, polyacrylamides, agaroses, glass, polypropylene, polyethylene, polystyrene, dextran, nylon, amylases, plastics, magnetite or any other suitable material readily known to one of skill in the art.


Methods of Detection, Imaging and Diagnosing Kawasaki Disease

In an aspect, methods of detecting antibodies associated with Kawasaki disease and treating KD are provided using the polypeptide KD3 are described herein


The peptide KD3 (SEQ ID NO: 281) or a fragment having at least 95% sequence identity, more particularly at least 98% sequence identity, is used as a detection agent for detecting the presence of antibodies associated with Kawasaki Disease (KD) in a sample. For example, the method of detecting antibodies associated with Kawasaki disease in a subject may comprise the steps of: i) obtaining a sample from a subject suspected of having Kawasaki disease; ii) contacting the sample with the peptide described here in (e.g., KD3, i.e., SEQ ID NO: 281 or a polypeptide having at least 95% sequence similarity to SEQ ID NO: 281); and iii) detecting the specific binding of antibodies to the peptide to form a peptide-antibody complex, wherein the presence of a peptide-antibody complex confirms the presence of antibodies associated with Kawasaki disease in the subject. Methods of detection of the peptide-antibody complex include methods known in the art, for example, enzyme-linked immunoabsorbent assay (ELISA), Western blot, immunostaining, immunoprecipitation, flow cytometry, sensor chips, magnetic beads, nanoparticles, and the like. If antibodies are detected within the sample, the method can further comprise: iv) treating the subject having antibodies associated with Kawasaki disease with intravenous immunoglobulin (IV Ig). Other treatment options for KD could also be employed and considered within the scope of this invention.


The methods may be carried out using a kit comprising the peptide. The peptide may be linked to a solid support. The peptide may further comprise or be linked to a detectable label.


The detecting of the peptide-antibody complex may comprise contacting the peptide-antibody complex with a secondary antibody wherein the secondary antibody is optionally linked to a detectable label. Suitable secondary antibodies include, but are not limited to anti-human antibodies that specifically bind to human Fc region of antibodies, particularly to IgG antibodies. Other suitable anti-human antibodies that could specifically recognize human antibodies bound to the peptide are also contemplated.


The methods may comprise the steps of i) obtaining a sample from a subject suspected of having Kawasaki Disease; ii) contacting the sample with an antibody or antigen binding fragment thereof of Table 2; iii) detecting the binding of the antibody to a component of the sample, whereby binding of the antibody to the component of the sample indicates the presence of an antigen associated with Kawasaki Disease. The detection can confirm the diagnosis of Kawasaki disease in the subject. As used herein, “component of the sample” refers to any molecule present in a subject's sample which is capable of being bound by an Kawasaki-specific antibodies described herein, for example, proteins, peptides, viral particles, carbohydrates, glycoproteins, and the like, that is specific for the Kawasaki disease associated antibody and does not bind to a control antibody.


The term “contacting” or “exposing,” as used herein refers to bringing a disclosed antibody and a cell, a target receptor, a biological sample, or other biological entity, together in such a manner that the antibody can detect and/or affect the activity of the target, either directly; i.e., by interacting with the target itself, or indirectly; i.e., by interacting with another molecule, co-factor, factor, or protein that is attached to said target.


The methods may further comprise iv) treating the subject having a component associated with Kawasaki disease (and in some cases, diagnosed with Kawasaki disease) with intravenous administrated immunoglobulin (IV Ig). As used herein, the terms “treating” or “to treat” each mean to alleviate symptoms, eliminate the causation of resultant symptoms either on a temporary or permanent basis, and/or to prevent or slow the appearance or to reverse the progression or severity of symptoms of Kawasaki disease. As used herein, “intravenous Ig” refers to an effective amount of pooled IgG from donor subjects. Trade names of intravenous immunoglobulin formulations include Flebogamma®, Gamunex®, Privigen®, Octagam®, and Gammagard®, while trade names of subcutaneous formulations include Cutaquig®, Cuvitru®, HyQvia®, Hizentra®, Gamunex-C®, and Gammaked®.


The “sample” or “biological sample” for the detection methods described herein are any biological sample obtained from the patient or subject that comprises antibodies. The sample may be a blood sample, a tissue sample, or a serum sample.


Detecting the binding of the antibody or antigen binding fragment thereof in the sample may be carried out using ELISA, Western blot, immunostaining, immunoprecipitation, flow cytometry, sensor chips, magnetic beads, nanoparticles and the like


Patients with KD have intracytoplasmic inclusion bodies present in some tissues, e.g., respiratory epithelium. Therefore, in another aspect of the current disclosure, methods of detecting intracytoplasmic inclusion bodies in a subject are provided. The methods may comprise the steps of: i) obtaining a sample from a subject suspected of having Kawasaki Disease; ii) contacting the sample with an antibody or antigen binding fragment thereof of Table 2; and iii) detecting the binding of the antibody or antigen binding fragment thereof in the sample, whereby binding of the antibody indicates the presence of intracytoplasmic inclusion bodies. The methods may further comprise iv) treating the subject having ICI bodies with intravenous immunoglobulin (IV Ig).


Suitable methods of detection are known in the art and include, but are not limited to, for example, ELISA, Western blot, immunostaining, immunoprecipitation, flow cytometry, sensor chips, magnetic beads, and the like.


In another aspect of the current disclosure, further methods of diagnosing Kawasaki disease are provided. The methods may comprise the steps of: i) obtaining a sample comprising antibodies from a subject suspected of having Kawasaki disease; ii) contacting the sample with a peptide comprising SEQ ID NO: 281, or a peptide comprising a sequence with 95% similarity to SEQ ID NO: 281; and iii) detecting the binding of antibodies to the peptide to form an peptide-antibody complex, wherein the presence of a peptide-antibody complex confirms the diagnosis of Kawasaki disease in the subject. The methods may further comprise iv) treating the subject diagnosed with Kawasaki disease with intravenous immunoglobulin (IV Ig). The peptide may be linked to a solid support. Detecting may comprise contacting the peptide-antibody complex with a secondary antibody wherein the secondary antibody is optionally linked to a detectable label.


Kits for Diagnosing Kawasaki Disease and Detecting Intracytoplasmic Inclusion Bodies

In another aspect of the current disclosure, kits are provided. Any suitable kits comprising the components to carry out the methods described herein are contemplated.


The kits may comprise: i) an antibody or antigen binding fragment thereof of Table 2; and ii) a detection reagent. The kits may further comprise: iii) a solid support. The antibody or antigen binding fragment thereof may be linked to the solid support. The solid support may comprise a lateral flow device. The solid support may be the inner, bottom surface of a well of a microtiter plate or a substrate that is included as part of a lateral flow device, for example. The reagents employed in the methods of using the kit may be dried or immobilized onto the solid support, which may comprise a chromatographic support, contained within the device.


An exemplary lateral flow device is the lateral flow device that is described in U.S. Pat. No. 5,726,010, which is incorporated herein by reference in its entirety. The device for performing a lateral flow assay may be a SNAP® device, which is commercially available from IDEXX Laboratories, Inc. of Westbrook, Me. However, it is to be understood that the skilled artisan will recognize that a large variety of other lateral flow devices that are not SNAP® devices or described by U.S. Pat. No. 5,726,010 allow for the immobilization of an antibody thereon, and therefore would be suitable for being used in the methods and kits device of the present invention.


Peptide and antibodies used in the methods and kits of the invention may be immobilized on the solid support by any methodology known in the art, including, for example, covalently or non-covalently, directly or indirectly, attaching the antibodies to the solid support. Therefore, while these antibodies may be attached to the solid support by physical adsorption (i.e., without the use of chemical linkers), it is also true that these antibodies may be immobilized to the solid support by any chemical binding (i.e., with the use of chemical linkers) method readily known to one of skill in the art.


In some embodiments, the kits may comprise: i) a peptide comprising SEQ ID NO: 281, or a peptide comprising a sequence with 95% similarity to SEQ ID NO: 281; and ii) a detection reagent. The kits may comprise iii) a solid support. The detection reagent may comprise a secondary antibody optionally linked to a detectable agent or label. The detection agent may be linked to the polypeptide. The kit may include instructions. The polypeptide may be linked to a solid support. The solid support may be a lateral flow device. The kit may further comprise an anti-human Fc antibody capable of detecting human antibodies.


A suitable kit may be an ELISA kit capable of detecting the binding the peptide to a human antibody, and therefore the kit may further comprise an antibody capable of binding the Fc portion of human antibodies.


The present invention has been described in terms of one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.


Miscellaneous

Unless otherwise specified or indicated by context, the terms “a”, “an”, and “the” mean “one or more.” For example, “a molecule” should be interpreted to mean “one or more molecules.”


As used herein, “about”, “approximately,” “substantially,” and “significantly” will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which they are used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, “about” and “approximately” will mean plus or minus ≤10% of the particular term and “substantially” and “significantly” will mean plus or minus >10% of the particular term.


As used herein, the terms “include” and “including” have the same meaning as the terms “comprise” and “comprising.” The terms “comprise” and “comprising” should be interpreted as being “open” transitional terms that permit the inclusion of additional components further to those components recited in the claims. The terms “consist” and “consisting of” should be interpreted as being “closed” transitional terms that do not permit the inclusion additional components other than the components recited in the claims. The term “consisting essentially of” should be interpreted to be partially closed and allowing the inclusion only of additional components that do not fundamentally alter the nature of the claimed subject matter.


All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.


Preferred aspects of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred aspects may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect a person having ordinary skill in the art to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


EXAMPLES
Example 1

To characterize the antibody response in KD patients, the inventors generated MAbs from clonally expanded peripheral blood plasmablasts obtained by single cell sorting from 12 children with KD (FIG. 1A, Table 3). In prior work, the inventors reported that KD MAbs from 3 patients, designated KD4-2H4, KD6-2B2, and KD8-1D4, bind to intracytoplasmic inclusion bodies in tissues from fatal KD cases and recognize a specific epitope designated as KDpeptide1. These MAbs did not recognize a human protein by protein array analyses 17. The MAbs are described in PCT Application No. PCT/US2020/020440 which is incorporated herein by reference in its entirety. In the present disclosure, the inventors prepared additional KD MAbs from a total of 12 KD patients to determine whether the specific epitope could be refined to optimize binding to KD MAbs. The inventors also analyzed the KD MAbs that bound to the refined epitope, to determine if they shared sequence similarity between KD patients (FIG. 1B).









TABLE 3







Clinical and plasmablast data for Kawasaki disease patients in this study1















Day
Day







of
of


Total




illness
illness

Zmax
#



Race/
of
IVIG
Incomplete
RCA/
Plasmablasts















Patient
Age
Gender
Ethnicity
sample
given
KD
LAD
(isotype)



















KD1
4
yr
F
Hispanic
17
13
No
RCA 4.7
119











(49A, 28G, 42M)


KD2
4
yr
F
Caucasian
24
8
No
NL
115











(64A, 22G, 29M)


KD3
5
yr
M
Black
20
19
Yes
NL
67 (33A, 31G, 3M)


KD4
3
mo
M
Hispanic
8
6
Yes
RCA 3.0,
153










LAD
(102G, 30A, 21M)










3.5


KD5
11
mo
F
½ Caucasian,
14
10
Yes
NL
115






½ Asian




(63G, 39A, 13M)






(Vietnamese)


KD6
4
yr
F
Black
13
5 and 8
No
RCA 3.0
80 (43A, 23G,











14M)


KD7
17
mo
M
Caucasian
13
9
No
RCA 9.8,
121










LAD
(56A, 50G, 15M)










5.7


KD8
17
mo
M
Caucasian
14
12
Yes
LAD 3.5
85











(41A, 34G, 10M)


KD9
3
yr
M
Asian (Indian)
9
6
No
NL
81











(30A, 38G, 13M)


KD10
5
yr
F
Asian (½ Japanese,
11
7
No
RCA 5.4,
88 (41A, 41G, 6M)






½ Korean)



LAD










7.4, distal










large R, L










CAA


KD11
3
yr
F
Caucasian
15
5
No
RCA 2.55,
132 (36A, 50G,










distal L
46M)










main 5.6


KD12
7
mo
M
Caucasian
22
18
No
RCA 4.3
159 (69A, 34G,










LAD 11.6
56M)





Zmax = maximal Z score;


RCA = right coronary artery,


LAD = left anterior descending coronary artery,


IVIG = intravenous gammaglobulin



1Patients 1-11 previously reported in Rowley A H et al., J Infect Dis 222, 158-168 (2020)







Sequencing analysis of MAbs recognizing KDpeptide1 shows use of the VH3-74 family and its paralogs. KD4-2H4, KD6-2B2, and KD8-1D4, the MAbs originally identified as binding to KDpeptide1, are members of the VH3-74, VH3-33, and VH3-72 families, which are paralog VH families with similarity scores of ≥82% 21. To determine if plasmablasts encoding antibodies from the VH3-74 family preferentially bind to the epitope, in this study the inventors prepared additional MAbs from eight additional KD patients. This yielded VH3-74 antibodies that recognized the peptide epitope by ELISA from KD3 (KD3-1C10), KD5 (KD5-2D7 and KD5-2D10), and KD10 (KD10-1A8) (Table 4, VH3-74 MAbs bolded, Table 5). These results suggest that VH3-74 antibodies and their paralogs might be preferentially used by children with KD to respond to the protein epitope, presumably because the antibody structure of this family allows for binding to this KD antigen.









TABLE 4







MAbs generated from plasmablasts of patients with KD that bind to KD peptide





















IGHV AA


IGK(L)V







HCDR3
mutations from

K(L)
AA
PB


Patient
MAb
IGHV
JH
length
GL
IGK(L)V
CDR3
mutations
Isotype



















KD4
KD4-2H4

3-

2
14
4
L2-11*01
10
0
IgG





74*01



KD6
KD6-2B2
3-
3
12
15
K1-5*03
10
9
IgA




33*01


KD8
KD8-1D4
3-
3
12
1
K1-6*01
9
4
IgA




72*01


KD1
KD1-2B1

3-

6
13
4
L2-11*01
10
3
IgA





74*01



KD1
KD1-1H8

3-

2
15
7
K3-
9
2
IgA





74*01




15*01


KD2
KD2-1D10

3-

4
14
7
L2-8*01
11
4
IgG





74*01



KD3
KD3-1C10

3-

6
12
10
K3-
10
9
IgA





74*01




20*01


KD5
KD5-2D7

3-

6
13
6
L1-44*01
13
6
IgG





74*01



KD5
KD5-2D10

3-

3
15
0
K3-
10
0
IgG





74*01




15*01


KD6
KD6-2H3
3-
3
19
9
K3-
8
5
IgG




15*01



15*01


KD7
KD7-2H5

3-

4
11
1
L1-47*01
11
0
IgA





74*01



KD7
KD7-1B5
3-
4
12
6
L1-51*01
11
0
IgA




33*01


KD10
KD10-1G3
3-
5
15
14
L5-37*01
11
20
IgA




73*01


KD10
KD10-1A8

3-

3
11
8
K2-
9
3
IgG





74*01




29*02


KD11
KD11-2E4

3-

4
19
11
K1-5*03
11
4
IgA





74*01



KD11
KD11-
3-
4
13
0
K3-
10
0
IgA



2A12
21*01



20*01


KD12
KD12-2A1

3-

4
16
1
K3-
9
1
IgA





74*01




20*01


KD12
KD12-
3-
4
8
0
K1-
9
0
IgA



1F10
21*01



39*01


KD12
KD12-
3-
4
12
7
K3-
9
7
IgG



2A10
15*07



20*01


KD12
KD12-1G7
3-
4
11
10
L1-44*01
11
6
IgA




66*01





Group 1: KD Mabs previously described to bind Kdpep117, shown in this report to have improved binding to Kdpep3. Group 2: KD Mabs generated from 8 different KD patients in 2017-2018 that bind to Kdpep3. Group 3: KD Mabs generated from one KD patient in 2022 that recognize Kdpep3. Members of the IGHV 3-74 gene family are bolded; all others are paralogs of the VH3-74 family.













TABLE 5







Genetic characteristics of KD MAbs prepared in this study











Heavy chain
Light chain
























CDR3
Number of


CDR3
Number of
Number of


Patient #




length
mutations


length
mutations
plasmablasts


(total PB)
MAb
IGHV
IGHD
IGHJ
(aa)
(aa)
IGV
IGJ
(aa)
(aa)
(G, A, M)





















KD1
1H8
IGHV3-74*01
IGHD4-17*01
IGHJ2*01
15
7
IGKV3-16*01
IGKJ2*01
9
2
0, 1, 0



2B1
IGHV3-74*01
IGHD5-24*01
IGHJ6*02
13
4
IGLV2-11*01
IGLJ3*02
10
3
0, 1, 0


KD2
1D10
IGHV3-74*01
IGHD3-9*01
IGHJ4*02
14
7
IGLV2-8*01
IGLJ2*01
11
4
1, 0, 0


KD3
1B6
IGHV3-74*01
IGHD4-17*01
IGHJ4*02
14
7
IGLV2-23*02
IGLJ3*02
10
9
0, 1, 0



1C10
IGHV3-74*01

IGHJ6*02
12
10
IGKV3-20*01
IGKJ2*01
10
9
0, 1, 0


KD5
2D1
IGHV3-74*01
IGHD7-27*01
IGHJ6*03
9
11
IGLV2-43*01
IGLJ1*01
9
3
1, 0, 0



2D10
IGHV3-74*01
IGHD6-19*01
IGHJ3*02
15
0
IGKV3-15*01
IGKJ1*01
10
0
1, 0, 0



2D7
IGHV3-74*01
IGHD4-17*01
IGHJ6*04
13
6
IGLV1-44*01
IGLJ2*01
13
5
1, 0, 0


KD6
2H8
IGHV3-74*01
IGHD7-27*01
IGHJ4*02
10
9
IGKV2-40*01
IGKJ3*01
9
4
0, 1, 0



1H10
IGHV3-74*01
IGHD2-15*01
IGHJ4*02
20
11
IGLV2-23*02
IGLJ1*01
11
8
0, 1, 0


KD7
2H5
IGHV3-74*01
IGHD6-19*01
IGHJ4*02
11
1
IGLV1-47*01
IGLJ3*02
11
0
0, 1, 0



1B5
IGHV3-33*01
IGHD3-22*01
IGHJ4*02
12
6
IGLV1-51*01
IGLJ3*02
11
0
0, 1, 0


KD8
2E9
IGHV3-74*01
IGHD6-25*01
IGHJ3*02
13
6
IGLV1-51*01
IGLJ3*02
11
4
1, 0, 0


KD9
2A4
IGHV3-64*01
IGHD6-13*01
IGHJ4*02
13
6
IGLV2-14*01
IGLJ1*01
10
2
0, 1, 0



2H6
IGHV3-15*01
IGHD3-22*01
IGHJ4*02
15
18
IGLV3-1*01
IGLJ1*01
9
7
0, 1, 0


KD10
1C3
IGHV3-30*04
IGHD5-12*01
IGHJ4*02
14
10
IGLV1-51*01
IGLJ3*02
11
4
0, 1, 0



1G3
IGHV3-73*01
IGHD1-14*01
IGHJ5*02
15
14
IGLV5-37*01
IGLJ2*01
11
20
0, 1, 0



1A8
IGHV3-74*01
IGHD1-1*01
IGHJ3*01
11
8
IGKV2-29*02
IGKJ4*01
9
3
1, 0, 0



2F6
IGHV3-74*01
IGHD3-3*01
IGHJ4*02
10
6
IGLV2-14*01
IGLJ1*01
10
10
1, 0, 0


KD11
2E4
IGHV3-74*01
IGHD2-15*01
IGHJ4*02
19
11
IGKV1-6*003
IGKJ1*01
11
4
0, 1, 0



2E5
IGHV3-74*01
IGHD5-18*01
IGHJ4*02
13
8
IGKV3-11*01
IGKJ1*01
9
3
0, 1, 0


KD12
1F10
IGHV3-21*01
IGHD3-3*01
IGHJ4*02
8
0
IGKV1-39*01
IGKJ2*02
9
0
0, 2, 1



1H2
IGHV3-21*01
IGHD2-15*01
IGHJ4*02
8
0
IGKV1-39*01
IGKJ2*01
9
0



1A10
IGHV3-21*01
IGHD3-10*01
IGHJ4*02
17
4
IGLV1-47*01
IGLJ2*01
11
3
2, 0, 0



2A10
IGHV3-15*07
IGHD1-1*01
IGHJ4*02
12
7
IGKV3-20*01
IGKJ1*01
9
7
1, 0, 1



2A1
IGHV3-74*01
IGHD6-13*01
IGHJ4*02
16
1
IGKV3-20*01
IGKJ2*01
9
1
0, 2, 0



2H1
IGHV3-23*01
IGHD1-14*01
IGHJ4*02
13
4
IGKV3-15*01
IGKJ4*01
9
7
0, 2, 0



2C10
IGHV3-74*01
IGHD6-6*01
IGHJ4*02
17
3
IGLV2-23*02
IGLJ2*01
10
8
0, 2, 1



1G7
IGHV3-66*01
IGHD2-21*01
IGHJ4*02
11
10
IGLV1-44*01
IGLJ3*02
11
6
0, 2, 0



2F2
IGHV3-74*01
IGHD3-10*01
IGHJ4*02
9
7
IGLV1-14*03
IGLJ1*01
10
6
1, 1, 0









Optimizing the epitope recognized by KD MAbs using amino acid substitution scans. To determine if peptides with improved binding to KD MAbs could be identified, the inventors performed substitution matrix analysis using MAbs recognizing the initial KD epitope KPAVIPDREALYQDIDEMEEC (KDpeptide1) (SEQ ID NO: 279). Each position in the peptide was substituted with all other amino acids and binding of KDMAbs was evaluated by peptide array. The inventors performed substitution analysis using a total of 13 KD MAbs, with representative results using 6 KD MAbs shown in FIGS. 2A-2F. The results are depicted in a heat map with red indicating strong binding and blue indicating decreased or no binding compared to the base peptide. The sequential use of the substitution scans led to development of a second KD peptide KPAVIPDREMLIQSIVEMEEC (KDpeptide2) (SEQ ID NO: 280) and then to a third peptide PAVIPDRPMLFQSIVEMEEC (KDpeptide3) (SEQ ID NO: 281). Multiple substitution scans demonstrated the essential or near-essential nature of P8, L10, Q12, S13 and I14 of KDpeptide3 for binding to the MAbs, with M9 and V15 highly favored and F11 less essential, allowing for substitution by V, T, or I at that position (FIG. 2, amino acid numbering is from KDpeptide3).


MAbs from children with KD show preferential binding to KDpeptide3. The inventors directly compared binding of KD MAbs to KDpeptide1, KDpeptide2, and KDpeptide3, as shown in FIG. 3A and FIG. 5. Serial dilutions of MAb reactivity against KDpeptide3 are shown in FIG. 6. The three previously identified KD MAbs that bind to KDpeptide1 and 13 newly generated KD MAbs from multiple patients preferentially recognize KDpeptide3 over other peptides. A subset of antibodies demonstrated binding to KDpeptide3 and KDpeptide2, but did not bind to KD peptide 1 (KD1-2B1, KD1-1H8, KD2-1D10, KD5-2D7, KD6-2H3, KD7-2H5, KD7-1B5, KD10-1G3, KD11-2A12, and KD11-2E4) (Table 3, FIGS. 3A, 5, and 6, Table 5). Of note, substitution of P8 in KDpeptide3 for E at that position in KDpeptide1 and KDpeptide2 resulted in a significant enhancement of binding for multiple KD MAbs. BLAST analyses of the core sequence PMLF(V,T)QSIV (SEQ ID NO: 282) did not yield human protein hits. Because The inventors have previously demonstrated that KD inclusion bodies identified by KD MAbs contain RNA and not DNA8, the inventors also performed BLASTp analyses restricted to RNA viruses, yielding remote hits to diverse RNA viruses. These analyses were largely uninformative because of the limitations of the short core sequence length of about 8 amino acids, similar to the length of other linear epitopes bound by antibodies22, and because the KD agent is likely one whose sequence is not present in established databases. Moreover, acute plasmablast responses to viral infection are often targeted at viral surface proteins, which are less conserved between viral families and can even be divergent between different viral genotypes of the same virus, making it less likely that homology to a known virus could be readily identified23-25.


The inventors also prepared mouse-Fc fusion proteins containing three copies of KDpeptide1 and KDpeptide3 for use in Western blot assays with KD MAbs to assess binding of the MAbs to these fusion proteins. Western blot results using the MAbs were comparable to ELISA using the peptides themselves. KD MAbs demonstrated enhanced binding to fusion proteins containing KDpeptide3 compared with those containing KDpeptide1 (KD4-2H4, FIG. 3B). Some MAbs recognized fusion proteins containing KDpeptide3 but did not recognize those containing KDpeptide1, similar to the ELISA results (KD6-2H3, FIG. 3B and FIG. 5).


Importantly, all KD MAbs that were initially discovered to bind to KDpeptide1 showed stronger binding to KDpeptide3 (FIG. 3a, p value <0.01 for all MAbs), indicating that KDpeptide3 is a common epitope in the KD response. These results suggest that the KDpeptide3 sequence more closely resembles the sequence of the antigen in the KD triggering agent (either as a linear sequence or as a mimotope) than does the KDpeptide1 sequence.


KD MAbs binding to KDpeptide3 from 10 of 11 KD patients use heavy chain VH3-74 or its paralogs. All MAbs binding to KDpeptide3 derived from VH3-74 or its paralog families with similarity scores of ≥82%21 (Table 4, Table 5). These MAbs were identified in 10 of 11 children with KD, including all of 8 children who developed coronary aneurysms (Tables 3 and 4). The single child (KD9) from whom the inventors did not identify a MAb that binds to any of the three peptides did not have plasmablasts encoding VH3-74 or paralogs VH3-33 or VH3-72 among the 81 single cells sequenced. This patient fulfilled clinical diagnostic criteria for KD but did not develop coronary artery abnormalities.


The genetic features of the MAbs prepared for this report are detailed in Table 5. MAbs recognizing KDpeptide3 differed in CDR3 sequence, with lengths varying from 11-19 amino acids, and with 0-15 amino acid mutations from germline. D genes D4-17*01, D3-9*01, D6-13*01, and D6-19*01, and light chains L2-11*01, L1-44*01, K3-15*01, K3-20*01, and K1-5*03 were used by two or more MAbs in the dataset (Table 5). Overall, 10 of 15 (67%) VH3-74 MAbs and 2 of 3 (67%) VH3-33 MAbs that the inventors produced from plasmablasts from 11 children with KD recognized KDpeptide3 (Table 4 and Table 5). The inventors note that neither 3 VHI nor 4 VH4 antibodies from clonally expanded plasmablasts from the original 11 KD patients recognized KDpeptide1, 2, or 3, nor did 5 VH3-74 MAbs from these patients, suggesting that the response to KD likely includes additional epitopes that the inventors have not yet identified and/or that some VH3-74 MAbs circulating in the plasmablast pool were not responding to KD (Table 5).


The prevalence of VH3-74 MAbs from children with KD that bind to KDpeptide3 define a convergent plasmablast response to a specific protein epitope in KD.


Plasmablast analysis of KD patient 12 also yields MAbs binding to KDpeptide3. Our initial study of KD plasmablasts included children with KD diagnosed in 2017-201817. To determine if the antigen that includes the KDpeptide3 sequence was also recognized by a KD patient presenting 5 years following our initial study, the inventors sequenced 159 single plasmablasts from KD12, an infant with classic KD who developed a giant coronary artery aneurysm in 2022. In this patient, SARS-CoV-2 antibody was negative and there was no lymphopenia, hypotension, or myocardial dysfunction to suggest MIS-C. Nine sets of clonally expanded plasmablasts were identified in this child's peripheral blood (Table 5). These included 3 sets of clonally expanded VH3-74 plasmablasts, two of which included plasmablasts of more than one isotype within the set, compatible with isotype switching during an acute response to infection. One of these VH3-74 plasmablasts, KD12-2A1, recognized KDpeptide3 but not KDpeptide1 or KDpeptide2 (Table 4, FIG. 3A). MAbs made from three additional clonally related sets of plasmablasts, KD12-1F10, KD12-1G7, and KD12-2A10, also recognized KDpeptide3 albeit with lower binding; these MAbs were of the VH3-21, VH3-66, and VH3-15 families, respectively, which are paralogs of VH3-74 with similarity scores of ≥82% 21 (Table 4, Table 5).


KD MAbs binding to KD peptide3 share a common CDR3 epitope. The inventors found that MAbs from KD patients 1-12 that recognize KDpeptide3 did not have the same CDR3 sequences (FIG. 4A). However, motif-based sequence analysis of the CDR3 amino acid sequences (https://meme-suite.org/meme/) revealed a statistically significant common motif at 2.3e-6 (FIG. 4B). Of the 20 KD MAbs recognizing KDpeptide3 (Table 4), 19 share the motif, with KD12-1F10 the only exception. These results provide further support for a convergent VH3-74 antibody response to the KDpeptide3 protein antigen in children with KD presenting over a 5-year time period.


KD MAbs do not demonstrate cross-reactive binding to SARS-CoV-2 proteins by ELISA. Because of some clinical similarities between SARS-CoV-2-induced MIS-C and KD, some investigators have suggested that KD might be caused by a virus with homology to SARS-CoV-2. To determine if KD MAbs were cross-reactive with SARS-CoV-2 spike or nucleocapsid proteins, the inventors performed ELISA of KD MAbs against these proteins. Control antibodies to these proteins gave positive results, while none of 13 KD MAbs reacted with these proteins, including11 that react with KDpeptide3, and 2 others whose targets remain unknown (data not shown).


DISCUSSION

KD is characterized by significant inflammation of a variety of organs and tissues, most notably the coronary arteries, but the inciting agent of this response has remained a mystery. The differential diagnosis of KD is wide, since the clinical features are shared by many infectious and inflammatory conditions of childhood, hampering diagnosis and institution of appropriate treatment 1. Because no specific infectious etiologic agent has been identified as the cause of KD to date, diverse triggering etiologies have been suggested. However, this theory does not explain the restricted age group affected, the rarity of recurrence, and the worldwide reports of outbreaks and epidemics of illness, which are much more compatible with a single causative agent or group of closely related agents that results in lifelong immunity following infection in most cases. In the present study, the inventors report a refined protein epitope targeted by a convergent VH3-74 antibody response in 11/12 children with KD. These findings are consistent with immune response to an antigen derived from the same causative agent in these 11 patients, as summarized in FIG. 1. The one patient in whom this response was not identified had typical features of the illness but did not develop coronary artery abnormalities. The possibilities for a lack of detection of a similar response in this single patient include an insufficient number of plasmablasts sequenced, misdiagnosis of another illness of childhood as KD, or a different KD triggering pathogen. Convergent antibody responses as observed in this study are characteristic of responses to specific antigens of infectious agents19,20,26 These data support our hypothesis of a single, presently unidentified, respiratory virus as the predominant or sole cause of KD and provide a direction for the development of serologic assays11,17,27.


Because of some clinical similarities between KD and MIS-C and the observation that some children with MIS-C can have dilation of the coronary arteries during their acute illness, some investigators have postulated that a virus closely related to SARS-CoV-2 might be the cause of KD. However, coronary artery dilation arising from MIS-C is mild, short-lived, and peaks during the acute febrile illness, features that are distinct from KD and similar to what has been observed in other inflammatory conditions associated with marked cytokine release such as systemic onset juvenile idiopathic arthritis28. Moreover, autopsy studies on fatal MIS-C cases to date have not revealed coronary artery inflammation, which is the hallmark of KD1,29-33. The inventors tested KD MAbs to determine if they showed cross-reactivity with SARS-CoV-2 proteins, with negative results.


Determining the nucleic acid sequence of the putative KD viral agent is a research priority. Identification of a novel virus in this patient population is particularly challenging. The target tissues of the disease, the coronary arteries, are unavailable to the researcher in the living patient. The disease affects very young children, limiting clinical samples available for research. It is unlikely that the KD agent is present in blood samples at the time of clinical presentation, because high throughput sequencing of blood samples has not yielded the agent. Fatalities generally occur weeks into the illness as a complication of coronary artery inflammation, a time when the immune system may have cleared the pathogen or reduced it to a very low level in KD tissues. If the agent is dissimilar to known viruses, then its identification among unassigned sequences in a high-throughput sequencing dataset could be very challenging. Moreover, available KD tissues containing virus-like inclusion bodies are virtually all formalin-fixed and paraffin-embedded, yielding fragmented RNA that could be resistant to assembly of a genome.


These results identify a specific protein epitope targeted by VH3-74 plasmablasts encoding a common CRD3 motif in children with KD. The findings support a research focus toward identification of a predominant etiologic agent for KD and provide insights into the pathogenesis of this potentially fatal illness of childhood.


This work reports a convergent VH3-74 plasmablast response to a specific protein epitope in 11 children with KD. The inventors identified this epitope using substitution matrix analyses of the epitope in our original report17. Because convergent antibody responses are typical of B cell response to distinct antigens of specific pathogens, the refined epitope likely represents either a linear epitope or a mimotope of an antigen derived from the triggering agent of KD19,20 These results strongly favor one predominant cause of KD, providing significant progress toward identifying the etiology and pathogenesis.


Methods

Patients. This study was approved by the Institutional Review Board of the Ann and Robert H. Lurie Children's Hospital of Chicago, and patients were enrolled following informed consent. Peripheral blood was obtained from KD patients on day 8-24 after fever onset. Patients KD1 through KD11 presented in April 2017 through July 2018, and were previously reported17. Patient KD 12 presented in February 2022. Clinical and plasmablast data on the 12 patients are described in Table 3.


Flow Cytometry. CD3CD19+CD38++CD27++ peripheral blood mononuclear cells were gated and single cells sorted into individual wells of 96-well plates, as previously described 17.


Amplification, Sequencing, and Cloning of Immunoglobulin Variable Regions. Reverse transcription and polymerase chain reaction amplification of heavy and light chain variable genes were performed as previously described17. Light chains were cloned into human immunoglobulin K and A light chain expression vectors34 and heavy chains were cloned into human γ1 and rabbit γ (pFUSEss vectors, Invivogen) heavy chain expression vectors, to enable production of human and rabbit versions of the MAbs. Heavy and light chains of the MAbs produced for this study have been submitted to GenBank with accession numbers OP207904 through OP207952.


Antibody Production and Analysis. Antibodies were produced by transfection of 293F suspension cells using a 1.5:1 ratio of light chain:heavy chain DNAs and Freestyle MAX reagent, and purified over protein A agarose beads (ThermoFisher Scientific).


Substitution Analysis. Substitution analysis was performed on peptides recognized by KD MAbs by creating a peptide array that includes stepwise substitution of all amino acid positions of the peptide with all 20 amino acids, to determine the amino acids that yielded optimal antibody binding (PEPperPRINT, www.pepperprint.com).


ELISA for Binding of peptides to KD Monoclonal Antibodies. Immulon 2 HB 96-well plates (ThermoFisher) were coated with 800 ng of synthetic peptides (Anaspec) per well and incubated with rabbit KD MAbs at 10, 1, and 0.1 μg/mL in triplicate followed by horseradish peroxidase (HRP)-labeled goat anti-rabbit antibody at 1:2500 (Southern Biotech). Absorbance at 450 nm was determined on a Multiskan FC spectrophotometer after addition of ultra 3,3′,5,5′-tetramethylbenzidine followed by 1.5 M sulfuric acid solution. Absorbance of the KD peptides were recorded after subtraction of results obtained using scrambled versions of the peptides. An OD reading more than ten times the background reactivity of scrambled peptides was considered positive; OD readings of KD MAbs with scrambled peptides and negative MAbs with KD peptides were consistently ≤0.05. The inventors used two-sample t-tests to compare the differences of intensity between KD Peptide 1 and KD Peptide 3 for each monoclonal antibody.


ELISA for reactivity of KD MAbs with SARS-CoV-2 proteins. Immulon 2 HB plates were coated with SARS-CoV-2 spike hexapro at 50 ng/well (plasmid graciously provided by F. Krammer) or full-length nucleocapsid protein 100-μL/well (Invivogen, his-sars2-n) in coating buffer (50 mM sodium carbonate/bicarbonate, pH 9.6) and incubated overnight at 4° C. KD rabbit MAbs were applied at 2 μg/mL in triplicate followed by HRP-labeled goat anti-rabbit IgG antibody (Southern Biotech) at 1:4000. Positive controls were rabbit antibody to SARS-CoV-2 spike protein (Thermo Scientific 703971) and rabbit antibody to SARS-CoV-2 nucleocapsid (Thermo Scientific MA5-36086). Absorbance was determined as above.


Western Blot Assay using Mouse Fc-Concatemerized KD peptide Fusion Proteins. The inventors optimized the nucleotide sequence that codes for KD peptide sequences for expression in 293F cells and prepared multimers of KD peptide sequences linked by short spacers. For KDpeptide1, the sequence was: AGKPAVIPDREALYQDIDEMEECLDEAGKPAVIPDREALYQDIDEMEECLDEAGKPAVI PDREALYQDIDEMEECLD (SEQ ID NO: 279). For KDpeptide3, the sequence was: AGVIPDRPMLFQSIVEMEECLDEAGVIPDRPMLFQSIVEMEECLDEAGVIPDRPMLFQSIV EMEECLD (SEQ ID NO: 281). The sequences were cloned into pINFUSE-mlgG2b-Fc2 (Invivogen), and the fusion protein prepared by transfection in 293 cells followed by protein A agarose bead purification. Western blot assays were performed using 100 ng of each construct and electrophoresis on 12% Tris-glycine gels (Biorad) with transfer to PVDF membrane (Fisher). After blocking the membranes, KD MAbs at 0.1 μg/mL were incubated with membranes overnight at 4° C. Following incubation, membranes were washed and incubated with HRP-labelled goat anti-human IgG (ThermoFisher A18811) at a dilution of 1:5000 and developed using Supersignal West Femto Substrate (ThermoFisher).









TABLE 6







Informal Sequence Listing








SEQ ID



NO
Sequence











1
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV



WVSRINSDGSSTSYADSVKGRFAISRDNAKNTLYLQMNSLRAEDTAV



YYCARALGGWDIDYWGQGTLVTVS





42
GFTFSSYW





75
INSDGSST





4
ARALGGWDIDY





5
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI



YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLS



GGVFGGGTKLTVLG





6
SSNIGSNY





7
RNN





8
AAWDDSLSGGV





9
QSVLTQPPSVSAAPGQKVTISCSGGSSSIGNNYVSWYQLLPGTAPKLLI



YDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSGLS



AGVFGGGTKLTVLG





10
SSSIGNNY





11
DNN





12
GTWDSGLSAGV





13
VQLVESGGGVVQPGRSLRLSCAASGFTFSDYAVHWVRQAPGKGLEW



AALISNDGDFKYYADAVKGRFTISRDNSNNTLYLQMNSLRTEDTAVY



YCARERGRDKVFPPGYWGQGTLVTVS





14
GFTFSDYA





15
SNDGDFK





16
ARERGRDKVFPPGY





17
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLI



YDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLS



AEVFGGGTKLTVLG





18
SSNIGNNY





19
DNN





20
GTWDSSLSAEV





21
VQLVESGGGVVQPGRSLRLSCEASGFTFRSRAMHWVRQAPGKGLGW



VAVIWYDGSNKYYADSVKGRFTISRDNSRNTLYLQMNSLRAEDTAVY



YCARDLGSGFSLDYWGQGTLVTVS





22
GFTFRSRA





23
IWYDGSNK





24
ARDLGSGFSLDY





25
QAVVTQEPSLTVSPGGTVTLTCASSTGAVTSAHSPHWFRQKPGQAPRT



LIYDTSNKPSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSNSG



VHFLFGGGTRLTVLG





26
TGAVTSAHS





27
DTS





28
LLSNSGVHFL





29
EVQLVQSGAEVKKTGSSVKLSCTATGYTFTYRYLHWVRQAPGQALE



WMGYITIYNGDTNYAQKFQDRVTISRDMSLSTVYMELSSLTSEDTAM



YFCVRSALYGENAFDFWGQGTMVTVS





30
GYTFTYRY





31
ITIYNGDT





32
VRSALYGENAFDF





33
EVQLVESGGGSVQPGGSLRLSCAASGFTFSNYWMHWVRQAPGKGLV



WVSRLNIDGSNTFYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAV



YYCVRGGSDSGDSVPFDLWGRGTLVTVS





78
GFTFSNYW





35
LNIDGSNT





36
VRGGSDSGDSVPFDL





37
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQNPGQAPRLLIY



GASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQHYNNWPFTF



GQGTKVEIK





38
QSVSSN





39
GAS





40
QHYNNWPFT





41
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV



WVSRINNDGSSTGYADSVEGRFTISRDNAKNTLYLQINSLRAEDTAVY



YCARQDGHYYYSMDVWGQGTTVTV





42
GFTFSSYW





43
INNDGSST





44
ARQDGHYYYSMDV





45
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKL



MIYDVSERPSGVPARFSGSKSGNTASLTISGLQAEDEADYYCCSYAGN



FRWVFGGGTKLTVL





46
SSDVGGYNY





47
DVS





48
CSYAGNFRWV





49
EVQLVESGGGLVQPGGSLKLSCAASGFSFSGAAMHWVRQSSGRGLEW



LGRIRSKTNDYATAYAESLHGRFTISRDDAKNTAYLQMNRLKSEDTAI



YYCTTVLSKGDHAVWLGPWGPGTLVTV





50
GFSFSGAA





51
IRSKTNDYAT





52
TTVLSKGDHAVWLGP





53
QPVLTQPPSSSASPGESARLTCTLPSDISVAASDIYWYQQKAGSPPNFLL



YDPSDSHKGQDSGVPSRFSGSRDGSANSGFLLISGVQSEDEADYYCMV



WPPNTVGVVFGGGTTLTV





54
SDISVAASD





55
DPSDSHK





56
MVWPPNTVGVV





57
QAVVTQEPSLTVSPGGTVTLTCASSTGAVTSGYYPNWFQQKPGQAPR



ALIYSTSNKHSWTPARFSGSLLGGKAALTLSGVQPEDEAEYYCLLFYG



GVHVFGAGTKVTVLG





58
TGAVTSGYY





59
STS





60
LLFYGGVHV





61
EVQLVESGGDLVQPGGSLRLSCAASGFTFSTYWMHWVRQAPGQGLV



WVSRINGNGRITNYADSVKGRFTVSRDNAKNTVDLQMNSLRAEDTAV



YYCARINEWGDVWGKGTTVTVS





62
GFTFSTYW





63
INGNGRIT





64
ARINEWGDV





65
DIVMTQTPLSLSVTPGQPASISCKSSQSLLHNDGKTFLHWYLQKPGQSP



QLLIYEVSSRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGIH



LPPTFGGGTKVEIKR





66
QSLLHNDGKTF





67
EVS





68
MQGIHLPPT





69
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMEWVRQAPGKGLV



WVSHISSDGSVTRYVDSVKGRFTISRDNAKNTLYLQMNSLRAEDTGV



YYCAKDLHWNALDVWGQGTMVTVS





42
GFTFSSYW





70
ISSDGSVT





71
AKDLHWNALDV





72
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIY



GASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPWT



FGQGTKVEIKR





38
QSVSSN





39
GAS





73
QQYNNWPPWT





74
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV



WVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVY



YCARGVRSGWYADAFDIWGQGTMVTVS





42
GFTFSSYW





75
INSDGSST





76
ARGVRSGWYADAFDI





77
EVQLVESGGGLVQPGGSLGLSCAASGFTFSNYWMHWVRQAPGKGLV



WVSRINSDGSDTSYADSVKGRFTISRDNAENTLYLHMSSLRAEDTAVY



YCARELGYGDYGMDVWGKGTTVTVS





78
GFTFSNYW





79
INSDGSDT





80
ARELGYGDYGMDV





81
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSHSVIWYQQLPGTAPKLLVY



SDNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNH



LHVVFGGGTKLTVL





82
SSNIGSHS





83
SDN





84
AAWDDSLNHLHVV





85
EVQLVESGGGLVQPGGSLRLSCAASGFIFSNYWMHWVRQAPGEGLV



WVSRINKDGSSTFYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAV



YYCTRDFDFWSGYWGQGTLVTVS





86
GFIFSNYW





87
INKDGSST





88
TRDFDFWSGY





89
QSALTQPASVSGSPGQSITISCTGTSSDVGGCEYVSWYQQHPGKVPKLII



YEVSNRPSGVSNRFSGSKSGNTASLTVSGLQAEDEADYFCSSCTTSGSY



VFGAGTKVTVV





90
SSDVGGCEY





67
EVS





91
SSCTTSGSYV





92
EVQLVESGGGVVQPGESLRLSCAASGVTFSSYWMHWVRQVPGKGLV



WVARINIDGTSTTYADCVKGRFTISRDNAKNTLYLQMSSLRAEDTAVY



YCATERGLLSGGRWHSSHFDYWGQGTLVTVS





93
GVTFSSYW





94
INIDGTST





95
ATERGLLSGGRWHSSHFDY





96
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKVLIY



KTSSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYDSSSLTWT



FGQGTKVEIK





97
QSISSW





98
KTS





99
QQYDSSSLTWT





100
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRFWMHWVRQVPGKGLV



WISRINSDATSSSYADSVKGRFTISRDNAKNTLFLQMNSLRAEDTAVY



YCATSNTALVYLPENWGQGTLVTVS





101
GFTFSRFW





102
INSDATSS





103
ATSNTALVYLPEN





104
EIVLTQSPATLSLSPGERATLSCRASQSVSDYLAWYQQKPGQAPRLLIY



DASNRATGIPARFSGGGSGTDFTLTISSLEPEDFAVYYCQQRSYWPPTF



GQGTKVEIK





105
QSVSDY





106
DAS





107
QQRSYWPPT





108
QSALTQPPSASGSPGQSVTITCTGTSSDVGGYNYVSWYQQHPGKAPKL



MIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYHCSSFAGD



NNSPVFGGGTKLTVL





46
SSDVGGYNY





67
EVS





109
SSFAGDNNSPV





110
EVQLVESGGGLIHPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVW



VSHIKSDGSNTIYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYY



CGRGRSLTPRSAIDYWGQGTLVTV





42
GFTFSSYW





111
IKSDGSNT





112
GRGRSLTPRSAIDY





113
LVESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEFASAI



SSDGGTTYYANSVKGRFTISRDNSKNTLYLQMGSLRDEDMAVYYCAR



DDLSTSWDLDYWGQGTLVTV





2
GFTFSSY





114
ISSDGGTT





115
ARDDLSTSWDLDY





116
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL



MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTISST



NVFGTGTKVTVL





46
SSDVGGYNY





47
DVS





117
SSYTISSTNV





118
QSALTQPASMSGSPGQSITISCTGTSSDVGAHNFISWYQQHPGKAPKLM



IFEVNKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYFCCSYAGYST



WVFGGGTKLTVL





119
SSDVGAHNF





120
EVN





121
SYAGYSTWV





122
EVQLVESGGGVVQPGGSLRLSCEVSGFIFSSYWMHWVRQVAGKGLV



WVSRINSDGSSTSYADSVKGRFTISRDNAKNTLNLQMNFLRAEDTAVY



YCARGGDHGDYGFFESWGQGTLVTV





123
GFIFSSYW





75
INSDGSST





124
ARGGDHGDYGFFES





125
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNHWMHWVRQAPGKGLL



WVSRIDTGGSTTNYADSVKGRFTISRDSAKNTVYLQMNSLRAEDTAV



YYCARGGLFYYGMDVWGQGTTVTV





126
GFTFSNHW





127
IDTGGSTT





128
ARGGLFYYGMDV





313
EIVLTQSPGTLSLSPGERATLSCRASQTSSSTSLAWYQQKRGQAPRLLIY



GASRRATGIP



DRFSGSGSGTDFTLTISRLEPEDFAVYYCQQFSGSPAYTFGQGTKVEIK





129
QTSSSTS





39
GAS





130
QQFSGSPAYT





131
DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSADGNTYLDWYLQKPGQS



PQLLIHTLSHRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRI



AFPVTFGPGTKVDIK





132
QSLLDSADGNTY





133
TLS





134
MQRIAFPVT





135
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWMHWVRQAPGEGLE



WVSRINSDGNKVSYADSVRGRFTISRDNAKNTLYLQMNSLTGEDTAV



YYCARSNWGSADYWGQGTLVTV





78
GFTFSNYW





136
INSDGNKV





137
ARSNWGSADY





138
EVQLVESGGGSVQPGGSLRLSCAASGFTFSRYWMHWVRQAPGEGLV



WVSRINSDETDKLYADSVKGRFSIFRDNAKNTLYLQMNRLRAEDTAV



YYCARDREDVVVGPATQHTIFNSWGQGTLVTV





139
GFTFSRYW





140
INSDETDK





141
ARDREDVVVG





142
QSALTQPASVSGSPGQSITISCTGTSSDVGSSNFVSWYQQHPGKAPKLIL



YEVSKRPAGVSSRFSGSRSGNTASLTISGAQAEDEADYSCCSTSSVGTL



YVFGTGTKVTVL





143
DVGSSNF





67
EVS





144
CSTSSVGTLYV





145
QSVLTQPPSVSAAPGQKVTISCSGSNYNIGNNYVSWYQRLPGTAPKLLI



YDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLR



AGVFGGGTKLTVL





146
NYNIGNNY





11
DNN





147
GTWDSSLRAGV





148
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHWMHWVRQAPGKGLV



WVSRINSDGSSTSNADSVKGRITISRDNGKNTLYLQMNSLRAEDTAVY



YCAREIASGTDAFDIWGQGTMVTV





149
GFTFSRHW





75
INSDGSST





150
AREIASGTDAFDI





151
EVQLVESGGGLVKPGESLRLSCVGSGFTLTNAWMIWVRQTSGKGLEW



VGRIKSKIDGGAIDYGAPVKGRFTISRDDTKNTVYLQMNSLQTDDTGV



YFCTTDRYSTGYYGMDDYWGQGTLVTV





152
GFTLTNAW





153
IKSKIDGGA





154
TTDRYSTGYYGMDDY





155
SYELTQPPSVSVSPGQTATITCSGDKLGDKYSFWYQQKPGQSPVVVIY



QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQVWDTDSAV



FGTGTRVTV





156
KLGDKY





157
QDS





158
QVWDTDSAV





159
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY



AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFG



QGTKVEIK





160
QSISSY





161
AAS





162
QQSYSTPYT





163
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW



VSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC



ARDTISRYWGQGTLVTV





164
GFTFSSYS





165
ISSSSSYI





166
ARDTISRY





167
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW



VSSISGSSSYMHYAESVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYY



CASTGIITYYYASGVPDYWGQGTLVTV





164
GFTFSSYS





168
ISGSSSYM





169
STGIITYYYASGVPDY





170
QSVLTQPPSASGTPGQRVTMSCSGSSSNIGRNYVYWYQQLPGTAPKLL



IYRNNQRPSGVPDRFSGSKSGTSVSLAISGLRSEDEADYYCAAWDDSLS



GVVFGGGTKLTVL





171
SSNIGRNY





7
RNN





172
AAWDDSLSGVV





173
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNLAWYQQKPGQAPRVLIY



GASSRATGIPDRESGSRSGTDFTLTISRLEPEDFAVYYCQRYDNSPRTFG



QGTKVEIK





38
QSVSSN





39
GAS





174
QRYDNSPRT





175
EVQLVESGGGLVKPGGSLRLSCAASGFTFINAWMNWVRQAPGKGLE



WVGLIKSKTDGGTIDYAAPVKGRFTISRDDSEKMLYLQMDSLKTEDTA



VYYCTTMYGWKDARDYWGQGTLVTV





176
GFTFINAW





177
IKSKTDGGT





178
TTMYGWKDARDY





179
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRFLI



YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPYTF



GQGTKVEIK





180
QSVSSSY





39
GAS





181
QQYGSSPYT





182
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV



WVSRIKSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVY



YCARGGGSSNWYPGFFDYWGQGTLVTV





42
GFTFSSYW





183
IKSDGSST





184
ARGGGSSNWYPGFFDY





185
EVQLLESGGGLVQPGGSLRLSCVASGFTFSSYAMSWVRQAPGKGLEW



VSSISASGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY



CGNWPEGFPAYFHYWGQGTLVTV





186
GFTFSSYA





187
ISASGGST





188
GNWPEGFPAYFHY





189
EIVMTQSPATLSVSPGERVTLSCRASQSVTSELAWYQQKPGQAPRLLIY



DASTGATGIPARFSGSGSGTDFTLTISSLQSEDFAVYYCQQHNNWPLTF



GGGTKVEIK





190
QSVTSE





106
DAS





191
QQHNNWPLT





192
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV



WVSRIKSDGRSISYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVY



YCARDPHGTAAPPRDAFDIWGQGTMVTV





42
GFTFSSYW





193
IKSDGRSI





194
ARDPHGTAAPPRDAFDI





196
QSALTQPASVSGSPGQSITISCTGTSGDVGSYNLVSWYQQYPGKAPKL



MIYEVDKRPSGVSNRFSGSKSGNTASLTISGLRAEDEAHYHCFSYAGSL



TLVFGGGTKLTVL





197
SGDVGSYNL





198
EVD





199
FSYAGSLTLV





200
QSVLTQPPSVSGTPGQRVTISCSGSSSNIGSKTANWYQKLPGTAPKLLIY



SNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEAGYYCTAWDDSLNG



PVFGGGTKLTVL





201
SSNIGSK





202
SNN





203
TAWDDSLNGPV





204
EVQLVESGGGLVQPGGSLRLSCGASGFTVSGKYMTWARQAPEKGLE



WVSAIYRGGGTYYADSVKGRFTISRDNSKNMLYLQMNSLRAEDTAVY



YCGGSVMVSATDYWGQGTLVTV





205
GFTVSGKY





206
IYRGGGT





207
GGSVMVSATDY





159
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY



AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFG



QGTKVEIK





160
QSISSY





208
AASS





162
QQSYSTPYT





209
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEW



VSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC



ARDQISGYWGQGTLVTV





164
GFTFSSYS





165
ISSSSSYI





210
ARDQISGY





211
EVQLVESGGGLVQPGGSLRLSCVASGFTFSSYWMHWVRQAPGKGLV



WVSRIYPDGTTTANYADSVKGRFTISRDNAKNTVYLQMNSLRAEDTA



VYYCARDLRESDYWGQGTLVTV





42
GFTFSSYW





212
IYPDGTTTA





213
ARDLRESDY





214
QSALTQPASVSGSPGQSITISCTGTSSDVGNYNYVSWHQQHPGKAPKL



MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTTYS



THVFGTGTKVTVL





215
SSDVGNYNY





47
DVS





216
NSYTTYSTHV





217
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATTAATAGTGATGGGAGTAGCACAAGCTACGCGG



ACTCCGTGAAGGGCCGATTCGCCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGCAAGAGCTTTGGGTGGCTGGGATATTGACTACT



GGGGCCAGGGAACCCTGGTCACCGTCTCG





218
CAGTCTGTGCTGACGCAGCCACCCTCAGCGTCTGGGACCCCCGGGC



AGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAG



TAATTATGTATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAA



CTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCTGACC



GATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGT



GGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGG



ATGACAGCCTGAGTGGTGGAGTGTTCGGCGGAGGGACCAAGCTGA



CCGTCCTAGGT





219
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCGGGAC



AGAAGGTCACCATCTCCTGCTCTGGAGGCAGCTCCTCCATTGGGAA



TAATTATGTATCCTGGTACCAACTGCTCCCAGGAACAGCCCCCAAA



CTCCTCATTTATGACAATAATAAGCGACCCTCAGGGATTCCTGACC



GATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCAC



CGGACTCCAGACTGGGGACGAGGCCGATTATTACTGCGGAACATGG



GATAGCGGCCTGAGTGCTGGGGTGTTCGGCGGAGGGACCAAGCTG



ACCGTCCTAGGT





220
GTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGG



TCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTGACTA



TGCTGTGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGG



GCGGCACTTATATCAAATGATGGAGATTTTAAATATTACGCAGACG



CCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAACAACAC



GCTGTATCTACAAATGAACAGCCTGAGAACTGAGGACACGGCTGTG



TATTACTGTGCGAGAGAAAGAGGGAGGGATAAAGTATTCCCGCCG



GGCTACTGGGGCCAGGGAACCCTGGTCACCGTCTCG





221
CAGTCTGTGCTGACTCAGCCGCCCTCAGTGTCTGCGGCCCCAGGAC



AGAAGGTCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAA



TAATTATGTATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAA



CTCCTCATTTATGACAATAATAAGCGACCCTCAGGGATTCCTGACC



GATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCAC



CGGACTCCAGACTGGGGACGAGGCCGATTATTACTGCGGAACATGG



GATAGCAGCCTGAGTGCTGAGGTGTTCGGCGGAGGGACCAAGCTG



ACCGTCCTAGGT





222
GTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGG



TCCCTGAGACTCTCCTGTGAAGCGTCTGGATTCACCTTCAGGAGTCG



TGCCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGGGTGG



GTGGCAGTTATATGGTACGATGGAAGTAATAAATACTATGCAGACT



CCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAGGAACAC



GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTA



TATTACTGTGCGAGAGATTTGGGTAGTGGTTTTTCCCTTGACTACTG



GGGCCAGGGAACCCTGGTCACCGTCTCG





223
CAGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAG



GGACAGTCACTCTCACCTGTGCCTCCAGCACTGGAGCTGTCACCAG



TGCTCATTCTCCCCACTGGTTCCGACAGAAGCCTGGCCAAGCCCCC



AGGACACTGATTTATGATACATCCAACAAACCGTCCTGGACACCTG



CCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTT



TCGGGCGCGCAGCCTGAGGATGAGGCTGAGTATTACTGCTTGCTCT



CCAATAGTGGAGTCCATTTTCTATTCGGCGGGGGGACCAGGTTGAC



CGTCCTAGGTCA





224
GAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGACTGGG



TCCTCAGTGAAGCTCTCCTGCACGGCTACCGGATACACTTTCACCTA



TCGCTACCTGCACTGGGTGCGACAGGCCCCCGGACAAGCACTTGAG



TGGATGGGCTACATAACAATTTACAATGGTGACACCAATTACGCAC



AGAAATTCCAGGACAGAGTCACCATTTCCAGGGACATGTCTCTGAG



CACAGTCTACATGGAGCTGAGCAGCCTGACATCAGAGGACACGGC



CATGTATTTCTGTGTAAGATCCGCATTGTATGGGGAAAATGCTTTTG



ATTTTTGGGGCCAAGGGACAATGGTCACCGTCTCA





225
GAGGTGCAGCTGGTGGAGTCGGGGGGAGGCTCAGTTCAGCCGGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAA



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTCTTAATATTGATGGGAGTAACACATTCTACGCGG



ACTCCGTCAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGTAAGAGGAGGGAGTGACTCCGGTGACTCCGTTC



CCTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCG





226
GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAG



GGGAAAGGGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAG



CAACTTAGCCTGGTACCAGCAGAACCCTGGCCAGGCTCCCAGGCTC



CTCATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGT



TCAGTGGCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGCAG



CCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCACTATAATA



ACTGGCCGTTCACTTTTGGCCAGGGGACCAAGGTGGAAATCAAAC





227
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATTAATAATGATGGGAGTAGCACAGGCTACGCGG



ACTCTGTGGAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATCAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGCAAGACAAGATGGTCACTACTACTACAGTATGG



ACGTCTGGGGCCAAGGGACCACGGTCACCGTCTC





228
CAGTCTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACA



GTCAGTCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGT



TATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCA



AACTCATGATTTATGATGTCAGTGAGCGGCCCTCAGGGGTCCCTGC



TCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCT



CTGGGCTCCAGGCTGAGGATGAGGCTGATTATTACTGCTGCTCATA



TGCAGGCAACTTCCGTTGGGTGTTCGGCGGAGGGACCAAGCTGACC



GTCCTAGG





229
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCGGGG



GGGTCCCTGAAACTCTCCTGTGCAGCCTCTGGGTTCAGTTTCAGTGG



CGCTGCGATGCACTGGGTCCGCCAGTCCTCCGGGAGAGGGCTTGAG



TGGCTTGGCCGTATTAGAAGCAAAACTAACGACTATGCGACAGCAT



ATGCAGAGTCGCTGCACGGCAGGTTCACCATCTCCAGAGATGATGC



AAAGAACACGGCGTATCTACAAATGAACAGGCTGAAAAGCGAGGA



CACGGCCATATATTATTGTACAACCGTCTTGAGTAAGGGAGATCAT



GCGGTCTGGTTGGGCCCCTGGGGCCCGGGAACCCTGGTCACCGTCT



C





230
CAGCCTGTGCTGACTCAGCCACCTTCCTCCTCCGCGTCTCCTGGAGA



ATCCGCCAGACTCACCTGCACCTTGCCCAGTGACATCAGTGTTGCT



GCGTCTGACATTTATTGGTATCAACAGAAGGCAGGGAGCCCTCCCA



ACTTTCTCCTCTACGACCCGTCAGACTCACATAAGGGCCAGGACTC



TGGAGTCCCCAGCCGCTTCTCTGGATCCAGAGATGGATCAGCCAAT



TCAGGGTTTTTACTGATTTCCGGGGTCCAGTCTGAGGATGAGGCTG



ACTATTACTGCATGGTCTGGCCACCCAATACTGTGGGTGTCGTCTTC



GGCGGAGGGACCACTCTGACCGTC





231
CAGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAG



GGACAGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAG



TGGTTACTATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCC



AGGGCACTGATTTATAGTACAAGCAACAAACACTCCTGGACCCCTG



CCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACACT



GTCAGGTGTGCAGCCTGAGGACGAGGCTGAGTATTACTGCCTGCTC



TTCTATGGTGGTGTTCATGTCTTCGGAGCTGGGACCAAGGTCACCGT



CCTAGGT





232
GAGGTGCAGCTGGTGGAGTCCGGGGGAGACTTAGTTCAGCCGGGG



GGGTCCCTAAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAC



CTACTGGATGCACTGGGTCCGCCAAGCTCCCGGGCAGGGGCTGGTG



TGGGTCTCACGTATTAATGGTAATGGGAGAATCACAAACTACGCGG



ACTCCGTGAAGGGCCGATTCACCGTCTCCCGAGACAACGCCAAGAA



CACGGTGGATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGC



TGTGTATTACTGTGCAAGAATCAATGAATGGGGAGACGTCTGGGGC



AAAGGGACCACGGTCACCGTCTCG





233
GATATTGTGATGACCCAGACCCCACTCTCTCTGTCCGTCACCCCTGG



ACAGCCGGCCTCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCAT



AATGATGGAAAGACCTTTTTGCATTGGTACCTGCAGAAGCCAGGCC



AGTCTCCACAGCTCCTAATCTATGAAGTTTCCAGCCGCTTCTCTGGA



GTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACAC



TGAAAATCAGCCGGGTGGAGGCTGAGGATGTTGGAGTTTATTACTG



CATGCAAGGTATACACCTTCCTCCCACTTTCGGCGGGGGGACCAAG



GTGGAAATCAAACGT





234
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCGGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACATTCAGTAG



TTACTGGATGGAATGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTT



TGGGTCTCACATATTAGTAGTGATGGGAGTGTTACAAGGTACGTGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAATAGTCTGAGAGCCGAGGACACGGGT



GTATATTATTGTGCAAAAGATCTTCACTGGAACGCTCTTGATGTGTG



GGGCCAAGGGACAATGGTCACCGTCTCG





235
GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAG



GGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAG



CAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTC



CTCATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGT



TCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAG



CCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATA



ACTGGCCTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCA



AACGT





236
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATTAATAGTGATGGGAGTAGCACAAGCTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGCAAGAGGAGTCCGCAGTGGCTGGTACGCTGATG



CTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCG





237
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCGGGG



GGGTCCCTGGGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAA



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCGCGTATTAATAGTGATGGGAGTGACACAAGCTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCGAGAA



CACGCTGTATCTGCACATGAGCAGTCTGAGAGCCGAGGACACGGCT



GTCTATTACTGTGCAAGGGAATTGGGCTACGGTGACTACGGTATGG



ACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCG





238
CAGTCTGTGCTGACGCAGCCACCCTCAGCGTCTGGGACCCCCGGGC



AGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAG



TCATTCTGTGATCTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAA



CTCCTCGTCTATAGTGATAATCAGCGGCCCTCAGGGGTCCCTGACC



GATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGT



GGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGTGCAGCATGGG



ATGACAGCCTGAATCATCTTCATGTGGTATTCGGCGGAGGGACCAA



GCTGACCGTCCTA





239
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCCGGATTCATCTTCAGTAA



CTACTGGATGCACTGGGTTCGCCAAGCTCCAGGGGAGGGGCTGGTG



TGGGTCTCACGTATTAATAAAGATGGGAGTAGCACATTTTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTATTGTACAAGAGATTTCGATTTTTGGAGTGGCTACTGGGG



CCAGGGAACCCTGGTCACCGTCTCG





240
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACA



GTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGT



TGTGAGTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGTCCCCA



AACTCATCATTTATGAGGTCAGTAATCGGCCCTCAGGGGTTTCTAAT



CGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTC



TGGGCTCCAGGCTGAGGACGAGGCTGATTATTTCTGCAGCTCCTGT



ACAACCAGCGGCTCTTATGTCTTCGGAGCTGGGACCAAGGTCACCG



TCGTA





241
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCGTAGTTCAGCCTGGG



GAGTCCCTGAGACTCTCCTGTGCAGCCTCCGGAGTCACCTTCAGTA



GTTACTGGATGCATTGGGTCCGCCAAGTTCCAGGGAAGGGGCTGGT



GTGGGTCGCACGTATTAATATTGATGGGACCAGTACAACCTACGCG



GACTGTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGA



ACACGCTGTATCTGCAAATGAGCAGTCTGAGAGCCGAGGACACGG



CTGTTTATTACTGTGCAACAGAGCGAGGATTACTTAGTGGTGGTCG



CTGGCACTCCTCCCACTTTGACTACTGGGGCCAGGGAACCCTGGTC



ACCGTCTCG





242
GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGG



AGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGC



TGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGGTCC



TGATCTATAAGACGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTT



CAGCGGCAGTGGCTCTGGGACAGAATTCACTCTCACCATCAGCAGC



CTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATGACA



GTTCTTCTCTCACGTGGACGTTCGGCCAAGGGACCAAGGTGGAAAT



CAAAC





243
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



GTTCTGGATGCACTGGGTCCGCCAGGTTCCAGGGAAGGGGCTGGTG



TGGATCTCACGTATTAATAGTGATGCGACTAGCTCAAGCTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACACTGTTTCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTCTATTACTGTGCAACCAGCAATACAGCTCTGGTTTATTTGCCTGA



GAACTGGGGCCAGGGAACCCTGGTCACCGTCTCG





244
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGG



AGAGAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCGAC



TACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCC



TCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTT



CAGTGGCGGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGC



CTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGCAGCT



ACTGGCCTCCGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAAC





245
CAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACA



GTCAGTCACCATCACCTGCACTGGAACCAGCAGTGACGTTGGTGGT



TATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCA



AACTCATGATTTATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGA



TCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCT



CTGGGCTCCAGGCTGAGGATGAGGCTGATTATCACTGCAGCTCATT



TGCAGGCGACAACAATTCCCCGGTATTCGGCGGAGGGACCAAATTG



ACCGTCCTAG





246
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAATTCACCCGGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCCCCAGGGAAGGGGCTGGTG



TGGGTCTCACATATTAAGAGTGATGGGAGTAACACAATCTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTACAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGGAAGAGGGCGCAGTTTGACCCCACGCTCGGCCA



TTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC





247
CTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGA



GACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGCAGTTATGCTATG



CACTGGGTCCGCCAGGCTCCAGGGAAGGGACTGGAGTTTGCTTCAG



CTATTAGTAGTGATGGGGGTACCACATATTACGCAAACTCTGTGAA



GGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT



CTTCAAATGGGCAGCCTGAGGGATGAAGACATGGCTGTGTATTACT



GTGCGAGAGATGATCTGAGCACCAGCTGGGACCTTGACTACTGGGG



CCAGGGAACCCTGGTCACCGTCTC





248
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACA



GTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGT



TATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCA



AACTCATGATTTATGACGTCAGTAATCGGCCCTCAGGGGTTTCTAAT



CGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTC



TGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATAT



ACAATCAGCAGCACTAACGTCTTCGGAACTGGGACCAAGGTCACCG



TCCTAG





249
CAGTCTGCCCTGACTCAGCCTGCCTCCATGTCTGGGTCTCCTGGACA



GTCGATCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGAGCT



CATAACTTTATCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCA



AACTCATGATTTTTGAGGTCAATAAGCGGCCCTCAGGGGTTTCTAA



TCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCT



CTGGCCTCCAGGCTGAGGACGAGGCTGATTATTTCTGCTGCTCATAT



GCAGGTTATAGCACTTGGGTGTTCGGCGGAGGGACCAAGCTGACCG



TCCTAG





250
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCGTAGTCCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGAAGTCTCTGGATTCATCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGTTGCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATAAATAGTGATGGGAGTAGTACAAGTTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



TACGCTGAATCTGCAAATGAATTTTCTGAGAGCCGAGGACACGGCT



GTGTATTATTGTGCAAGAGGGGGTGATCACGGTGACTACGGCTTCT



TTGAGTCTTGGGGCCAGGGAACCCTGGTCACCGTCTC





251
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGGTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAA



TCACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGCTG



TGGGTCTCGCGTATTGATACTGGTGGGAGTACCACAAACTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAGCGCCAAGAA



CACGGTGTATCTACAAATGAACAGTCTGAGAGCCGAAGACACGGCT



GTTTATTACTGTGCAAGAGGCGGTCTCTTCTACTACGGTATGGACGT



CTGGGGCCAAGGGACCACGGTCACCGTCTC





252
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGG



GGAAAGGGCCACCCTCTCCTGCAGGGCCAGTCAGACTAGTAGCAGC



ACCTCCTTAGCCTGGTATCAGCAGAAACGTGGCCAGGCTCCCAGGC



TCCTCATCTATGGTGCATCCCGCAGGGCCACTGGCATCCCAGACAG



GTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC



AGACTGGAGCCTGAAGATTTTGCAGTATATTACTGTCAGCAATTTA



GTGGCTCACCTGCGTACACTTTTGGCCAGGGGACCAAGGTGGAAAT



CAAAC





253
GATATTGTGATGACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGG



AGAGCCGGCCTCCATCTCCTGTAGGTCTAGTCAGAGCCTCTTGGAT



AGTGCTGATGGAAACACCTATTTGGACTGGTACCTGCAGAAGCCAG



GGCAGTCTCCACAGCTCCTGATCCATACGCTTTCCCATCGGGCCTCT



GGAGTCCCAGACAGGTTCAGTGGCAGTGGGTCAGGCACTGATTTCA



CACTGAAAATCAGCAGGGTGGAGGCTGAAGATGTTGGAGTTTATTA



CTGCATGCAACGTATAGCCTTTCCCGTCACTTTCGGCCCTGGGACCA



AAGTGGATATCAAAC





254
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAA



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGGAGGGGCTGGA



GTGGGTCTCACGTATTAATAGTGATGGGAATAAGGTAAGTTACGCG



GACTCCGTGAGGGGCCGATTCACCATCTCCAGAGACAACGCCAAGA



ACACGCTGTATCTACAAATGAACAGCCTGACAGGCGAGGACACGG



CTGTGTATTATTGTGCAAGATCTAACTGGGGATCGGCAGACTACTG



GGGCCAGGGAACCCTGGTCACCGTCTC





255
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTCAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCTGCCTCTGGATTCACCTTCAGTAG



ATACTGGATGCACTGGGTCCGCCAGGCTCCAGGGGAGGGGCTCGTT



TGGGTCTCACGTATAAATAGTGATGAGACTGACAAGCTTTACGCGG



ACTCCGTGAAGGGCCGATTCTCCATCTTCAGAGACAACGCCAAGAA



CACACTATATCTGCAAATGAACAGACTGAGAGCCGAGGACACGGC



TGTATACTACTGTGCAAGAGATCGAGAGGATGTTGTAGTGGGGCCA



GCTACTCAACACACCATCTTTAACTCCTGGGGCCAGGGAACCCTGG



TCACCGTCTC





256
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACA



GTCGATCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGT



TCTAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCA



AACTCATCCTTTATGAGGTCAGTAAGCGGCCCGCTGGAGTTTCTAG



TCGCTTCTCTGGCTCCAGGTCTGGCAACACGGCCTCCCTGACAATCT



CTGGAGCCCAGGCTGAGGACGAGGCTGACTATTCCTGCTGCTCAAC



TTCTTCTGTTGGCACTCTTTATGTCTTCGGAACTGGGACCAAGGTAA



CCGTCCTAG





257
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGAC



AGAAGGTCACCATCTCCTGCTCTGGAAGCAACTACAACATTGGGAA



TAATTATGTATCCTGGTACCAGCGACTCCCAGGAACAGCCCCCAAA



CTCCTCATTTATGACAATAATAAGCGACCCTCAGGGATTCCTGACC



GATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCAC



CGGACTCCAGACTGGGGACGAGGCCGATTATTACTGCGGAACATGG



GATAGCAGCCTGAGGGCTGGGGTGTTCGGCGGAGGGACCAAGCTG



ACCGTCCTAG





258
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACTTTCAGTAG



GCACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGT



GTGGGTCTCACGTATTAATAGTGATGGGAGTAGCACAAGTAACGCG



GACTCCGTGAAGGGCCGAATCACCATCTCCAGAGACAACGGCAAG



AACACGCTGTATCTGCAGATGAACAGTCTGAGAGCCGAGGACACG



GCTGTGTATTACTGTGCAAGGGAGATAGCATCGGGGACAGATGCTT



TTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC





259
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTAGTAAAGCCTGGG



GAGTCCCTTAGACTCTCCTGTGTAGGTTCTGGATTCACTCTCACTAA



CGCCTGGATGATCTGGGTCCGCCAGACTTCAGGGAAGGGGCTGGAA



TGGGTTGGTCGCATCAAGAGTAAAATTGATGGTGGGGCAATCGACT



ACGGTGCACCCGTGAAAGGTAGATTTACCATCTCAAGAGATGATAC



AAAAAACACGGTGTATCTGCAAATGAACAGCCTGCAAACCGACGA



CACAGGCGTCTATTTCTGTACCACAGATCGTTATAGTACTGGCTACT



ACGGCATGGACGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC





260
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGAC



AGACAGCCACCATCACCTGCTCTGGAGATAAATTGGGAGATAAATA



TTCTTTCTGGTATCAACAGAAGCCAGGCCAGTCCCCTGTGGTGGTC



ATCTATCAAGATTCCAAGCGGCCCTCAGGGATCCCTGAGCGATTCT



CTGGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGAC



CCAGGCTATGGATGAGGCTGACTATTACTGTCAGGTGTGGGACACC



GACTCTGCAGTCTTCGGAACTGGGACCAGGGTCACCGTCCT





261
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGG



AGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGC



TATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCC



TGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTT



CAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGT



CTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACA



GTACCCCGTACACTTTTGGCCAGGGGACCAAGGTGGAAATCAAAC





262
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCGGCCTCTGGATTCACCTTCAGTAG



CTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA



GTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCA



GACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG



AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACG



GCTGTGTATTACTGTGCGAGAGATACGATTTCTCGATACTGGGGCC



AGGGAACCCTGGTCACCGTCTC





263
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGG



GGGTCCCTGAGACTTTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



TTACAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA



GTGGGTCTCATCCATTAGTGGTAGTAGTAGTTACATGCACTACGCA



GAGTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG



AACTCACTGTATCTGCAAATGAATAGCCTGAGAGCCGAGGACACGG



CTGTGTATTACTGTGCGAGTACGGGGATTATCACGTATTACTATGCT



TCGGGGGTCCCTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT



C





264
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGC



AGAGGGTCACCATGTCTTGTTCTGGAAGCAGCTCCAACATCGGAAG



AAATTATGTATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAA



CTCCTCATCTATAGGAATAATCAGCGACCCTCAGGGGTCCCTGACC



GATTCTCTGGCTCCAAGTCTGGCACCTCAGTCTCCCTGGCCATCAGT



GGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGG



ATGACAGCCTGAGTGGTGTGGTATTCGGCGGAGGGACCAAGCTGAC



CGTCCTAG





265
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGG



GGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGC



AACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGGTCC



TCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTT



CAGTGGCAGTCGGTCTGGGACAGACTTCACTCTCACCATCAGCAGA



CTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCGGTATGATA



ACTCACCTCGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAAC





266
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTAAAGCCTGGG



GGGTCCCTTAGACTCTCCTGTGCAGCCTCTGGTTTCACTTTCATTAA



CGCCTGGATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA



GTGGGTCGGCCTAATTAAAAGCAAAACTGATGGTGGGACAATAGA



CTACGCTGCACCCGTGAAAGGCAGATTCACTATTTCAAGAGATGAT



TCAGAAAAAATGTTGTATCTGCAAATGGACAGCCTGAAGACCGAG



GACACAGCCGTGTATTACTGTACCACAATGTATGGCTGGAAGGACG



CGAGGGACTATTGGGGCCAGGGAACCCTGGTCACCGTCTC





267
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGG



GGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGC



AGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGT



TCCTCATCTATGGTGCGTCCAGTAGGGCCACTGGCATCCCGGACAG



GTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC



AGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATG



GTAGCTCACCGTACACTTTTGGCCAGGGGACCAAGGTGGAAATCAA



AC





268
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATTAAAAGTGATGGGAGTAGCACAAGCTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGCAAGAGGGGGTGGCAGCAGCAACTGGTACCCGG



GTTTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC





269
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCGGGG



GGGTCCCTGAGACTCTCCTGTGTAGCCTCTGGATTCACCTTCAGCAG



CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA



GTGGGTCTCTAGTATTAGTGCTAGTGGTGGTAGCACATATTACGCA



GACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGA



ACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGG



CCGTATATTACTGTGGGAATTGGCCGGAAGGATTCCCGGCCTACTT



TCACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC





270
GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAG



GGGAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTACCAG



CGAGTTGGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTC



CTCATCTATGATGCATCCACCGGGGCCACTGGTATCCCAGCCAGGT



TCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAG



CCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCATAATA



ACTGGCCTCTCACTTTCGGCGGCGGGACCAAGGTGGAAATCAAAC





271
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATTAAGAGTGATGGGAGGAGCATAAGTTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTACTGTGCAAGAGATCCCCACGGCACAGCAGCTCCTCCCC



GTGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC





272
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACA



GTCGATCACCATCTCCTGCACTGGAACCAGCGGTGATGTTGGGAGT



TATAACCTTGTCTCCTGGTACCAACAGTACCCAGGCAAAGCCCCCA



AACTCATGATTTATGAGGTCGATAAGCGGCCCTCAGGGGTCTCTAA



TCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATTT



CTGGGCTCCGGGCTGAGGACGAGGCTCATTATCACTGCTTCTCATA



TGCAGGTAGTTTGACTTTGGTATTCGGTGGAGGGACCAAGTTGACC



GTCCTAG





273
CAGTCTGTGCTGACTCAGCCACCCTCAGTGTCTGGGACCCCCGGGC



AGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAG



TAAAACTGCAAACTGGTACCAGAAGCTCCCAGGAACGGCCCCCAA



ACTCCTCATCTATAGTAACAATCAGCGGCCCTCAGGGGTCCCTGAC



CGATTCTCTGGCTCCAAGTCAGGCACCTCAGCCTCCCTGGCTATCAG



TGGGCTCCAGTCTGAGGATGAGGCTGGGTACTACTGCACAGCATGG



GATGACAGCCTGAATGGTCCGGTGTTCGGCGGAGGGACCAAGCTG



ACCGTCCTAG





274
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGGAGCCTCTGGATTCACCGTCAGTG



GCAAGTATATGACCTGGGCCCGCCAGGCTCCTGAGAAGGGACTGG



AGTGGGTCTCAGCTATCTATCGCGGTGGTGGCACATACTACGCAGA



CTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAAAAC



ATGTTATATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTG



TGTATTACTGTGGGGGGTCCGTGATGGTGAGTGCTACTGACTACTG



GGGCCAGGGAACCCTGGTCACCGTCTC





275
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGG



AGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGC



TATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCC



TGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTT



CAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGT



CTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACA



GTACCCCGTACACTTTTGGCCAGGGGACCAAGGTGGAGATCAAAC





276
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA



GTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCA



GACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAG



AACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACG



GCTGTGTATTACTGTGCGAGAGATCAAATTAGTGGTTACTGGGGCC



AGGGAACCCTGGTCACCGTCTC





277
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGTAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGGATTTATCCTGATGGGACTACTACTGCAAACTACG



CGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAA



GAACACGGTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACAC



GGCTGTTTATTACTGTGCAAGAGATCTTCGGGAGTCTGATTACTGG



GGCCAGGGAACCCTGGTCACCGTCTC





278
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACA



GTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTGGGTAAT



TATAATTATGTCTCCTGGCACCAACAACACCCAGGGAAAGCCCCCA



AACTCATGATTTATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAAT



CGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTC



TGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAACTCATAT



ACAACCTACAGCACTCACGTCTTCGGAACTGGGACCAAGGTCACCG



TCCTAG





279
KPAVIPDREALYQDIDEMEEC





280
KPAVIPDREMLIQSIVEMEEC





281
PAVIPDRPMLFQSIVEMEEC





282
PMLF(V,T)QSIV





283
PMLFQSIV





284
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGCCCAGCCTGGG



ACGTCTCTGAGACTCTCCTGTGAAGCGTCTGGATTCACCTTCCGTGA



CTATGCCATGCGCTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAG



TGGGTGGCATTTATATGGAATGATGGAAGTAAGAAATATTACACAG



ACTCCGTGAGGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAA



CATGCTGTATCTGCAAATGGACAGCCTGAGAGCCGAGGACACGGCT



CTTTATTACTGTGCCAGAAAGATGAGTGAAGATGATGCTTTTGATCT



GTGGGGCCAAGGGACAATGGTCACCGTCT





285
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCGGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACATTCAGTAG



TTACTGGATGGAATGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTT



TGGGTCTCACATAAAGATATTAGTAGTGATGGGAGTGTTACAAGGT



ACGTGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGC



CAAGAACACGCTGTATCTGCAAATGAATAGTCTGAGAGCCGAGGA



CACGGGTGTATATTATTGTGCAAAAGATCTTCACTGGAACGCTCTT



GATGTGTGGGGCCAAGGGACAATGGTCACCGTCTCG





286
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKL



MIYDVSKRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGS



YTLLFGGGTKLTVL





287
CSYAGSYTLL





288
CAGTCTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACA



GTCAGTCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGT



TATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCA



AACTCATGATTTATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGA



TCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCT



CTGGGCTCCAGGCTGAGGATGAGGCTGATTATTACTGCTGCTCATA



TGCAGGCAGCTACACTTTGTTATTCGGCGGAGGGACCAAGCTGACC



GTCCTAG





289
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMYWVRQAPGKGLV



WVSRINSDGSTTNYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAV



YFCARYAHLGIGWYFDLWGRGTLVTVSS





290
INSDGSTT





291
ARYAHLGIGWYFDL





292
GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGG



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAG



CTACTGGATGTACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTG



TGGGTCTCACGTATTAATAGTGATGGGAGTACCACGAACTACGCGG



ACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA



CACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCT



GTGTATTTCTGTGCAAGATATGCCCACCTGGGGATAGGTTGGTACTT



CGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCCTCAG





293
DIQMTQSPSTLSASAGDRVTITCRASQSVSKYLAWYQQKPGKAPRLLI



YKASSLQSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQHYNTYPSW



TFGQGTKVEIK





294
QSVSKY





295
KAS





296
QHYNTYPSWT





297
GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGCAGG



AGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTGTTAGTAAG



TACTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAGGCTCC



TGATCTATAAGGCATCTAGTTTACAAAGTGGGGTCCCATCAAGGTT



CAGTGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGC



CTGCAGCCTGATGATTTTGCTACTTATTACTGCCAACACTATAATAC



TTATCCTTCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAA





298
EVQLVESGGGVAQPGTSLRLSCEASGFTFRDYAMRWVRQAPGKGLE



WVAFIWNDGSKKYYTDSVRGRFTISRDNSKNMLYLQMDSLRAEDTAL



YYCARKMSEDDAFDLWGQGTMVTV





299
GFTFRDYA





300
IWNDGSKK





301
ARKMSEDDAFDL





302
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIY



GASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDIATYYCLQEYTYPLTFG



GGTKVEIK





303
QGIRND





304
LQEYTYPLT





305
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCCGTAGG



AGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAAAT



GATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCC



TGATCTATGGTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGATT



CAGCGGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGC



CTGCAGCCTGAAGATATTGCAACCTATTACTGTCTACAAGAATACA



CTTACCCGCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAA





306
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYYMDWVRQAPGKGLE



WVGRTRNKANSYTTEYAASVKGRFTISRDDSKNSLYLQMNSLKTEDT



AVYYCARFLLVADAFDIWGQGTMVTV





307
GFTFSDYY





308
TRNKANSYTT





309
ARFLLVADAFDI





310
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGA



GGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTGA



CTACTACATGGACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA



GTGGGTTGGCCGCACTAGAAACAAAGCTAACAGTTACACCACAGA



ATACGCCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGAT



TCAAAGAACTCACTGTATCTGCAAATGAACAGCCTGAAAACCGAGG



ACACGGCCGTGTATTACTGTGCTAGATTTCTGCTGGTTGCGGATGCT



TTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCT





311
AGKPAVIPDREALYQDIDEMEECLDEAGKPAVIPDREALYQDIDEMEE



CLDEAGKPAVIPDREALYQDIDEMEECLD





312
IYPLEDMAEPKVERIDAQEDC









EMBODIMENTS

1. An isolated antibody or antigen binding fragment thereof comprising:

    • a heavy chain variable domain comprising:
    • a CDRH1 region selected from the group consisting of SEQ ID NOs: 2, 14, 22, 30, 42, 50, 62, 78, 86, 93, 101, 123, 126, 139, 149, 152, 164, 176, 186, and 205;
    • a CDRH2 region selected from the group consisting of SEQ ID NOs: 74, 15, 23, 31, 35, 43, 51, 63, 70, 75, 79, 87, 94, 102, 111, 114, 127, 136, 140, 153, 165, 168, 177, 183, 187, 193, 206, and 212;
    • a CDRH3 region selected from the group consisting of SEQ ID NOs: 4, 16, 14, 32, 36, 44, 52, 64, 71, 76, 80, 88, 95, 103, 112, 115, 124, 128, 137, 141, 150, 154, 166, 169, 178, 184, 188, 194, 207, 210, and 213; and
    • a light chain variable domain comprising:
    • a CDRL1 region selected from the group consisting of SEQ ID NOs: 6, 10, 18, 26, 37, 46, 54, 58, 66, 38, 82, 97, 105, 46, 119, 129, 132, 143, 146, 156, 160, 171, 180, 190, 197, 201, and 215;
    • a CDRL2 region selected from the group consisting of SEQ ID NOs: 7, 11, 27, 28, 47, 55, 59, 67, 39, 83, 98, 106, 120, 133, 157, 161, 198, 202, and 208; and
    • a CDRL3 region selected from the group consisting of SEQ ID NOs: 8, 12, 20, 28, 39, 48, 56, 60, 68, 73, 84, 99, 107, 109, 117, 121, 130, 134, 144, 147, 158, 162, 172, 174, 181, 191, 199, 203, and 216.


2. The antibody or antigen binding fragment thereof of embodiment 1, wherein

    • (a) the heavy chain variable region is encoded by SEQ ID NO: 1 and the light chain variable region is encoded by SEQ ID NO: 5;
    • or
    • (b) the heavy chain variable region is encoded by SEQ ID NO: 13 and the light chain variable region is encoded by SEQ ID NO: 9;
    • or
    • (c) the heavy chain variable region is encoded by SEQ ID NO: 21 and the light chain variable region is encoded by SEQ ID NO: 17;
    • or
    • (d) the heavy chain variable region is encoded by SEQ ID NO: 29 and the light chain variable region is encoded by SEQ ID NO: 25;
    • or
    • (e) the heavy chain variable region is encoded by SEQ ID NO: 33 and the light chain variable region is encoded by SEQ ID NO: 37;
    • or
    • (f) the heavy chain variable region is encoded by SEQ ID NO: 41 and the light chain variable region is encoded by SEQ ID NO: 45;
    • or
    • (g) the heavy chain variable region is encoded by SEQ ID NO: 49 and the light chain variable region is encoded by SEQ ID NO: 53;
    • or
    • (h) the heavy chain variable region is encoded by SEQ ID NO: 61 and the light chain variable region is encoded by SEQ ID NO: 57;
    • or
    • (i) the heavy chain variable region is encoded by SEQ ID NO: 69 and the light chain variable region is encoded by SEQ ID NO: 65;
    • or
    • (j) the heavy chain variable region is encoded by SEQ ID NO: 74 and the light chain variable region is encoded by SEQ ID NO: 72;
    • or
    • (k) the heavy chain variable region is encoded by SEQ ID NO: 77 and the light chain variable region is encoded by SEQ ID NO: 81;
    • or
    • (l) the heavy chain variable region is encoded by SEQ ID NO: 85 and the light chain variable region is encoded by SEQ ID NO: 89;
    • or
    • (m) the heavy chain variable region is encoded by SEQ ID NO: 92 and the light chain variable region is encoded by SEQ ID NO: 96;
    • or
    • (n) the heavy chain variable region is encoded by SEQ ID NO: 100 and the light chain variable region is encoded by SEQ ID NO: 104;
    • or
    • (o) the heavy chain variable region is encoded by SEQ ID NO: 110 and the light chain variable region is encoded by SEQ ID NO: 108;
    • or
    • (p) the heavy chain variable region is encoded by SEQ ID NO: 113 and the light chain variable region is encoded by SEQ ID NO: 116;
    • or
    • (q) the heavy chain variable region is encoded by SEQ ID NO: 122 and the light chain variable region is encoded by SEQ ID NO: 118;
    • or
    • (r) the heavy chain variable region is encoded by SEQ ID NO: 125 and the light chain variable region is encoded by SEQ ID NO: 313;
    • or
    • (s) the heavy chain variable region is encoded by SEQ ID NO: 135 and the light chain variable region is encoded by SEQ ID NO: 131;
    • or
    • (t) the heavy chain variable region is encoded by SEQ ID NO: 138 and the light chain variable region is encoded by SEQ ID NO: 142;
    • or
    • (u) the heavy chain variable region is encoded by SEQ ID NO: 148 and the light chain variable region is encoded by SEQ ID NO: 145;
    • or
    • (v) the heavy chain variable region is encoded by SEQ ID NO: 151 and the light chain variable region is encoded by SEQ ID NO: 155;
    • or
    • (w) the heavy chain variable region is encoded by SEQ ID NO: 163 and the light chain variable region is encoded by SEQ ID NO: 159;
    • or
    • (x) the heavy chain variable region is encoded by SEQ ID NO: 167 and the light chain variable region is encoded by SEQ ID NO: 170;
    • or
    • (y) the heavy chain variable region is encoded by SEQ ID NO: 175 the light chain variable region is encoded by SEQ ID NO: 173;
    • or
    • (z) the heavy chain variable region is encoded by SEQ ID NO: 182 the light chain variable region is encoded by SEQ ID NO: 179;
    • or
    • (aa) the heavy chain variable region is encoded by SEQ ID NO: 185 the light chain variable region is encoded by SEQ ID NO: 189;
    • or
    • (bb) the heavy chain variable region is encoded by SEQ ID NO: 192 the light chain variable region is encoded by SEQ ID NO: 196;
    • or
    • (cc) the heavy chain variable region is encoded by SEQ ID NO: 204 the light chain variable region is encoded by SEQ ID NO: 200;
    • or
    • (dd) the heavy chain variable region is encoded by SEQ ID NO: 209 the light chain variable region is encoded by SEQ ID NO: 159;
    • or
    • (ee) the heavy chain variable region is encoded by SEQ ID NO: 211 the light chain variable region is encoded by SEQ ID NO: 214.


3. The antibody or antigen binding fragment thereof of embodiment 1 or embodiment 2, wherein

    • (a) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 74, and a CDRH3 region consisting of SEQ ID NO: 4; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 6, a CDRL2 region consisting of SEQ ID NO: 7, and a CDRL3 region consisting of SEQ ID NO: 8;
    • or
    • (b) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 14, a CDRH2 region consisting of SEQ ID NO: 15, and a CDRH3 region consisting of SEQ ID NO: 16; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 10, a CDRL2 region consisting of SEQ ID NO: 11, and a CDRL3 region consisting of SEQ ID NO: 12;
    • or
    • (c) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 22, a CDRH2 region consisting of SEQ ID NO: 23, and a CDRH3 region consisting of SEQ ID NO: 14; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 18, a CDRL2 region consisting of SEQ ID NO: 11, and a CDRL3 region consisting of SEQ ID NO: 20;
    • or
    • (d) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 30, a CDRH2 region consisting of SEQ ID NO: 31, and a CDRH3 region consisting of SEQ ID NO: 32; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 26, a CDRL2 region consisting of SEQ ID NO: 27, and a CDRL3 region consisting of SEQ ID NO: 28;
    • or
    • (e) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 78, a CDRH2 region consisting of SEQ ID NO: 35, and a CDRH3 region consisting of SEQ ID NO: 36; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 37, a CDRL2 region consisting of SEQ ID NO: 38, and a CDRL3 region consisting of SEQ ID NO: 39;
    • or
    • (f) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 43, and a CDRH3 region consisting of SEQ ID NO: 44; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 46, a CDRL2 region consisting of SEQ ID NO: 47, and a CDRL3 region consisting of SEQ ID NO: 48;
    • or
    • (g) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 50, a CDRH2 region consisting of SEQ ID NO: 51, and a CDRH3 region consisting of SEQ ID NO: 52; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 54, a CDRL2 region consisting of SEQ ID NO: 55, and a CDRL3 region consisting of SEQ ID NO: 56;
    • or
    • (h) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 62, a CDRH2 region consisting of SEQ ID NO: 63, and a CDRH3 region consisting of SEQ ID NO: 64; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 58, a CDRL2 region consisting of SEQ ID NO: 59, and a CDRL3 region consisting of SEQ ID NO: 60;
    • or
    • (i) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 70, and a CDRH3 region consisting of SEQ ID NO: 71; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 66, a CDRL2 region consisting of SEQ ID NO: 67, and a CDRL3 region consisting of SEQ ID NO: 68;
    • or
    • (j) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 75, and a CDRH3 region consisting of SEQ ID NO: 76; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 38, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 73;
    • or
    • (k) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 78, a CDRH2 region consisting of SEQ ID NO: 79, and a CDRH3 region consisting of SEQ ID NO: 80; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 82, a CDRL2 region consisting of SEQ ID NO: 83, and a CDRL3 region consisting of SEQ ID NO: 84;
    • or
    • (l) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 86, a CDRH2 region consisting of SEQ ID NO: 87, and a CDRH3 region consisting of SEQ ID NO: 88; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 82, a CDRL2 region consisting of SEQ ID NO: 83, and a CDRL3 region consisting of SEQ ID NO: 84;
    • or
    • (m) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 93, a CDRH2 region consisting of SEQ ID NO: 94, and a CDRH3 region consisting of SEQ ID NO: 95; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 97, a CDRL2 region consisting of SEQ ID NO: 98, and a CDRL3 region consisting of SEQ ID NO: 99;
    • or
    • (n) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 101, a CDRH2 region consisting of SEQ ID NO: 102, and a CDRH3 region consisting of SEQ ID NO: 103; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 105, a CDRL2 region consisting of SEQ ID NO: 106, and a CDRL3 region consisting of SEQ ID NO: 107;
    • or
    • (o) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 111, and a CDRH3 region consisting of SEQ ID NO: 112; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 46, a CDRL2 region consisting of SEQ ID NO: 67, and a CDRL3 region consisting of SEQ ID NO: 109;
    • or
    • (p) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 2, a CDRH2 region consisting of SEQ ID NO: 114, and a CDRH3 region consisting of SEQ ID NO: 115; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 46, a CDRL2 region consisting of SEQ ID NO: 47, and a CDRL3 region consisting of SEQ ID NO: 117;
    • or
    • (q) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 123, a CDRH2 region consisting of SEQ ID NO: 75, and a CDRH3 region consisting of SEQ ID NO: 124; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 119, a CDRL2 region consisting of SEQ ID NO: 120, and a CDRL3 region consisting of SEQ ID NO: 121;
    • or
    • (r) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 126, a CDRH2 region consisting of SEQ ID NO: 127, and a CDRH3 region consisting of SEQ ID NO: 128; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 129, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 130;
    • or
    • (s) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 78, a CDRH2 region consisting of SEQ ID NO: 136, and a CDRH3 region consisting of SEQ ID NO: 137; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 132, a CDRL2 region consisting of SEQ ID NO: 133, and a CDRL3 region consisting of SEQ ID NO: 134;
    • or
    • (t) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 139, a CDRH2 region consisting of SEQ ID NO: 140, and a CDRH3 region consisting of SEQ ID NO: 141; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 143, a CDRL2 region consisting of SEQ ID NO: 67, and a CDRL3 region consisting of SEQ ID NO: 144;
    • or
    • (u) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 149, a CDRH2 region consisting of SEQ ID NO: 75, and a CDRH3 region consisting of SEQ ID NO: 150; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 146, a CDRL2 region consisting of SEQ ID NO: 11, and a CDRL3 region consisting of SEQ ID NO: 147;
    • or
    • (v) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 152, a CDRH2 region consisting of SEQ ID NO: 153, and a CDRH3 region consisting of SEQ ID NO: 154; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 156, a CDRL2 region consisting of SEQ ID NO: 157, and a CDRL3 region consisting of SEQ ID NO: 158;
    • or
    • (w) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 164, a CDRH2 region consisting of SEQ ID NO: 165, and a CDRH3 region consisting of SEQ ID NO: 166; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 160, a CDRL2 region consisting of SEQ ID NO: 161, and a CDRL3 region consisting of SEQ ID NO: 162;
    • or
    • (x) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 164, a CDRH2 region consisting of SEQ ID NO: 168, and a CDRH3 region consisting of SEQ ID NO: 169; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 171, a CDRL2 region consisting of SEQ ID NO: 7, and a CDRL3 region consisting of SEQ ID NO: 172;
    • or
    • (y) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 176, a CDRH2 region consisting of SEQ ID NO: 177, and a CDRH3 region consisting of SEQ ID NO: 178; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 38, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 174;
    • or
    • (z) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 183, and a CDRH3 region consisting of SEQ ID NO: 184; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 180, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 181;
    • or
    • (aa) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 186, a CDRH2 region consisting of SEQ ID NO: 187, and a CDRH3 region consisting of SEQ ID NO: 188; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 190, a CDRL2 region consisting of SEQ ID NO: 106, and a CDRL3 region consisting of SEQ ID NO: 191;
    • or
    • (bb) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 193, and a CDRH3 region consisting of SEQ ID NO: 194; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 197, a CDRL2 region consisting of SEQ ID NO: 198, and a CDRL3 region consisting of SEQ ID NO: 199;
    • or
    • (cc) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 205, a CDRH2 region consisting of SEQ ID NO: 206, and a CDRH3 region consisting of SEQ ID NO: 207; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 201, a CDRL2 region consisting of SEQ ID NO: 202, and a CDRL3 region consisting of SEQ ID NO: 203;
    • or
    • (dd) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 164, a CDRH2 region consisting of SEQ ID NO: 165, and a CDRH3 region consisting of SEQ ID NO: 210; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 160, a CDRL2 region consisting of SEQ ID NO: 208, and a CDRL3 region consisting of SEQ ID NO: 162;
    • or
    • (ee) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 212, and a CDRH3 region consisting of SEQ ID NO: 213; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 215, a CDRL2 region consisting of SEQ ID NO: 47, and a CDRL3 region consisting of SEQ ID NO: 216.


4. The antibody or antigen binding fragment thereof of any of embodiment 1-3, wherein the antibody is a chimeric antibody and the heavy chain constant domain is from rabbit, mouse, rat, or nonhuman primate.


5. The antibody or antigen binding fragment thereof of any of embodiment 1-4, wherein the light chain constant domain is a kappa light chain constant domain or a lambda light chain constant domain.


6. The antibody or antigen binding fragment thereof of any of embodiment 1-5, wherein the antibody is linked to a detectable label.


7. A peptide comprising SEQ ID NO: 281 or a peptide comprising a sequence with 95% similarity to SEQ ID NO: 281.


8. The peptide of embodiment 7, further comprising a detectable label.


9. The peptide of embodiment 7 or 8, wherein the peptide is linked to a solid support.


10. A method of diagnosing Kawasaki Disease in a subject, comprising the steps of:

    • i) obtaining a sample from a subject suspected of having Kawasaki Disease;
    • ii) contacting the sample with the antibody or antigen binding fragment thereof of any of embodiment 1-3; and
    • iii) detecting the binding of the antibody to a component of the sample, whereby binding of the antibody to the component of the sample indicates the presence of Kawasaki Disease and confirms the diagnosis of Kawasaki disease in the subject.


11. The method of embodiment 10, further comprising

    • iv) treating the subject diagnosed with Kawasaki disease with intravenous immunoglobulin (IV Ig).


12. The method of embodiment 10 or embodiment 11, wherein the sample is a blood sample or a serum sample.


13. The method of any of embodiment 10-12, wherein detecting the binding of the antibody or antigen binding fragment thereof in the sample is carried out using ELISA, Western blot, immunostaining, immunoprecipitation, flow cytometry, sensor chips, or magnetic beads.


14. The method of any of embodiment 10-13, wherein the antibody or antigen binding fragment thereof is linked to a solid support.


15. The method of embodiment 14, wherein detecting the binding of the antibody to the component of the sample comprises contacting the sample with an antibody or antigen fragment thereof of any of embodiment 1-3.


16. A method of detecting intracytoplasmic inclusion bodies in a subject, comprising the steps of:

    • i) obtaining a sample from a subject suspected of having Kawasaki Disease;
    • ii) contacting the sample with the antibody or antigen binding fragment thereof of any of embodiment 1-3; and
    • iii) detecting the binding of the antibody or antigen binding fragment thereof in the sample, whereby binding of the antibody indicates the presence of intracytoplasmic inclusion bodies as compared to a negative control.


17. The method of embodiment 16, further comprising

    • iv) treating the subject having detected antibodies associated with Kawasaki disease with intravenous immunoglobulin (IV Ig).


18. A method of detecting antibodies associated with Kawasaki disease in a subject comprising the steps of:

    • i) obtaining a sample comprising antibodies from a subject suspected of having Kawasaki disease;
    • ii) contacting the sample with the peptide of any of embodiment 7-9; and
    • iii) detecting the binding of antibodies to the peptide to form a peptide-antibody complex, wherein the presence of a peptide-antibody complex confirms the presence of antibodies associated with Kawasaki disease in the subject.


19. The method of embodiment 18, further comprising


iv) treating the subject having detected antibodies associated with Kawasaki disease with intravenous immunoglobulin (IV Ig).


20. The method of embodiment 18 or 19, wherein the peptide is linked to a solid support.


21. The method of any of embodiment 18-20, wherein detecting comprises contacting the peptide-antibody complex with a secondary antibody wherein the secondary antibody is optionally linked to a detectable label.


22. The method of embodiment 21, wherein the secondary antibody is an anti-human Fc antibody.


23. A kit comprising:

    • i) the antibody or antigen binding fragment thereof of any of embodiment 1-3;
    • ii) a detection reagent.


24. The kit of embodiment 23, further comprising:

    • iii) a solid support.


25. The kit of embodiment 24, wherein the antibody or antigen binding fragment thereof is linked to the solid support.


26. The kit of embodiment 24 or 25, wherein the solid support comprises a lateral flow device.


27. The kit of any of embodiment 23-26, wherein the detection reagent comprises an antibody or antigen binding fragment thereof of any of embodiment 1-3.


28. A kit comprising:

    • i) a peptide of any of embodiment 7-9;
    • ii) a detection reagent.


29. The kit of embodiment 28, further comprising:

    • iii) a solid support, wherein the peptide is linked to the solid support.


30. The kit of embodiment 29, wherein the detection reagent comprises a secondary antibody optionally linked to a detectable label.


REFERENCES



  • 1. McCrindle, B. W. et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 135, e927-e999 (2017).

  • 2. Orenstein, J. M. et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One 7, e38998 (2012).

  • 3. Amano, S. et al. General pathology of Kawasaki disease. On the morphological alterations corresponding to the clinical manifestations. Acta Pathol. Jpn. 30, 681-694 (1980).

  • 4. Whittaker, E. et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA 2020 Jun. 9, (2020).

  • 5. Ghosh, P. et al. An Artificial Intelligence-guided signature reveals the shared host immune response in MIS-C and Kawasaki disease. Nat. Commun. 13, 2687 (2022).

  • 6. Wang, Z. et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nature Communications vol. 12 (2021).

  • 7. Rowley, A. H. et al. Cytoplasmic inclusion bodies are detected by synthetic antibody in ciliated bronchial epithelium during acute Kawasaki disease. J. Infect. Dis. 192, 1757-1766 (2005).

  • 8. Rowley, A. H. et al. RNA-containing cytoplasmic inclusion bodies in ciliated bronchial epithelium months to years after acute Kawasaki disease. PLoS One 3, e1582 (2008).

  • 9. Rowley, A. H. et al. Detection of antigen in bronchial epithelium and macrophages in acute Kawasaki disease by use of synthetic antibody. J. Infect. Dis. 190, 856-865 (2004).

  • 10. Rowley, A. H. et al. Ultrastructural, immunofluorescence, and RNA evidence support the hypothesis of a ‘new’ virus associated with Kawasaki disease. J. Infect. Dis. 203, 1021-1030 (2011).

  • 11. Shulman, S., Geevarghese, B., Kim, K. Y. & Rowley, A. The Impact of Social Distancing for COVID-19 Upon Diagnosis of Kawasaki Disease. J Pediatric Infect Dis Soc 2021 Mar. 24, (2021).

  • 12. Kang, J. M. et al. Reduction in Kawasaki Disease After Nonpharmaceutical Interventions in the COVID-19 Era: A Nationwide Observational Study in Korea. Circulation 2021 Jun. 8, (2021).

  • 13. Bailey, L. C. et al. Assessment of 135794 Pediatric Patients Tested for Severe Acute Respiratory Syndrome Coronavirus 2 Across the United States. JAMA Pediatr. 175, 176-184 (2021).

  • 14. Koskela, U. et al. Multi-inflammatory syndrome and Kawasaki disease in children during the COVID-19 pandemic: A nationwide register-based study and time series analysis. Acta Paediatr. 110, 3063-3068 (2021).

  • 15. Ae, R., Shibata, Y., Kosami, K., Nakamura, Y. & Hamada, H. Kawasaki Disease and Pediatric Infectious Diseases During the Coronavirus Disease 2019 Pandemic. J. Pediatr. 239, 50-58.e2 (2021).

  • 16. Rowley, A. H., Shulman, S. T., Spike, B. T., Mask, C. A. & Baker, S. C. Oligoclonal IgA response in the vascular wall in acute Kawasaki disease. J. Immunol. 166, 1334-1343 (2001).

  • 17. Rowley, A. H. et al. A Protein Epitope Targeted by the Antibody Response to Kawasaki Disease. J. Infect. Dis. 222, 158-168 (2020).

  • 18. Rowley, A. H. et al. The transcriptional profile of coronary arteritis in Kawasaki disease. BMC Genomics 16, 1076 (2015).

  • 19. Kreer, C., Gruell, H., Mora, T., Walczak, A. M. & Klein, F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 8, (2020).

  • 20. Zhang, Q. et al. Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nature Communications vol. 12 (2021).

  • 21. Teng, G. & Papavasiliou, F. N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41, 107-120 (2007).

  • 22. Forsstrom, B. et al. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol. Cell. Proteomics 13, 1585-1597 (2014).

  • 23. Xu, M. et al. Plasmablasts Generated during Repeated Dengue Infection Are Virus Glycoprotein-Specific and Bind to Multiple Virus Serotypes. The Journal of Immunology vol. 189 5877-5885 (2012).

  • 24. Nair, N. et al. High-dimensional immune profiling of total and rotavirus VP6-specific intestinal and circulating B cells by mass cytometry. Mucosal Immunology vol. 9 68-82 (2016).

  • 25. Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 19, 383-397 (2019).

  • 26. Weitkamp, J.-H. et al. Infant and adult human B cell responses to rotavirus share common immunodominant variable gene repertoires. J. Immunol. 171, 4680-4688 (2003).

  • 27. Shulman, S. T. & Rowley, A. H. Kawasaki disease: insights into pathogenesis and approaches to treatment. Nat. Rev. Rheumatol. 11, 475-482 (2015).

  • 28. Vella, L. A. & Rowley, A. H. Current Insights Into the Pathophysiology of Multisystem Inflammatory Syndrome in Children. Curr. Pediatr. Rep. 9, 83-92 (2021).

  • 29. Feldstein, L. R. et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020 Jul. 1, (2020).

  • 30. Binstadt, B. A. et al. Coronary artery dilation among patients presenting with systemic-onset juvenile idiopathic arthritis. Pediatrics 116, e89-93 (2005).

  • 31. Mayordomo-Colunga, J. et al. SARS-CoV-2 Spike Protein in Intestinal Cells of a Patient with Coronavirus Disease 2019 Multisystem Inflammatory Syndrome. J. Pediatr. 243, 214-218.e5 (2022).

  • 32. Duarte-Neto, A. N. et al. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. EClinicalMedicine 35, 100850 (2021).

  • 33. Fox, S. E., Lameira, F. S., Rinker, E. B. & Vander Heide, R. S. Cardiac Endotheliitis and Multisystem Inflammatory Syndrome After COVID-19. Ann. Intern. Med. 173, 1025-1027 (2020).

  • 34. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372-384 (2009).


Claims
  • 1. An isolated antibody or antigen binding fragment thereof comprising: a heavy chain variable domain comprising:a CDRH1 region selected from the group consisting of SEQ ID NOs: 2, 14, 22, 30, 42, 50, 62, 78, 86, 93, 101, 123, 126, 139, 149, 152, 164, 176, 186, and 205;a CDRH2 region selected from the group consisting of SEQ ID NOs: 74, 15, 23, 31, 35, 43, 51, 63, 70, 75, 79, 87, 94, 102, 111, 114, 127, 136, 140, 153, 165, 168, 177, 183, 187, 193, 206, and 212;a CDRH3 region selected from the group consisting of SEQ ID NOs: 4, 16, 14, 32, 36, 44, 52, 64, 71, 76, 80, 88, 95, 103, 112, 115, 124, 128, 137, 141, 150, 154, 166, 169, 178, 184, 188, 194, 207, 210, and 213; anda light chain variable domain comprising:a CDRL1 region selected from the group consisting of SEQ ID NOs: 6, 10, 18, 26, 37, 46, 54, 58, 66, 38, 82, 97, 105, 46, 119, 129, 132, 143, 146, 156, 160, 171, 180, 190, 197, 201, and 215;a CDRL2 region selected from the group consisting of SEQ ID NOs: 7, 11, 27, 28, 47, 55, 59, 67, 39, 83, 98, 106, 120, 133, 157, 161, 198, 202, and 208; anda CDRL3 region selected from the group consisting of SEQ ID NOs: 8, 12, 20, 28, 39, 48, 56, 60, 68, 73, 84, 99, 107, 109, 117, 121, 130, 134, 144, 147, 158, 162, 172, 174, 181, 191, 199, 203, and 216.
  • 2. The antibody or antigen binding fragment thereof of claim 1, wherein (a) the heavy chain variable region is encoded by SEQ ID NO: 1 and the light chain variable region is encoded by SEQ ID NO: 5;or(b) the heavy chain variable region is encoded by SEQ ID NO: 13 and the light chain variable region is encoded by SEQ ID NO: 9;or(c) the heavy chain variable region is encoded by SEQ ID NO: 21 and the light chain variable region is encoded by SEQ ID NO: 17;or(d) the heavy chain variable region is encoded by SEQ ID NO: 29 and the light chain variable region is encoded by SEQ ID NO: 25;or(e) the heavy chain variable region is encoded by SEQ ID NO: 33 and the light chain variable region is encoded by SEQ ID NO: 37;or(f) the heavy chain variable region is encoded by SEQ ID NO: 41 and the light chain variable region is encoded by SEQ ID NO: 45;or(g) the heavy chain variable region is encoded by SEQ ID NO: 49 and the light chain variable region is encoded by SEQ ID NO: 53;or(h) the heavy chain variable region is encoded by SEQ ID NO: 61 and the light chain variable region is encoded by SEQ ID NO: 57;or(i) the heavy chain variable region is encoded by SEQ ID NO: 69 and the light chain variable region is encoded by SEQ ID NO: 65;or(j) the heavy chain variable region is encoded by SEQ ID NO: 74 and the light chain variable region is encoded by SEQ ID NO: 72;or(k) the heavy chain variable region is encoded by SEQ ID NO: 77 and the light chain variable region is encoded by SEQ ID NO: 81;or(l) the heavy chain variable region is encoded by SEQ ID NO: 85 and the light chain variable region is encoded by SEQ ID NO: 89;or(m) the heavy chain variable region is encoded by SEQ ID NO: 92 and the light chain variable region is encoded by SEQ ID NO: 96;or(n) the heavy chain variable region is encoded by SEQ ID NO: 100 and the light chain variable region is encoded by SEQ ID NO: 104;or(o) the heavy chain variable region is encoded by SEQ ID NO: 110 and the light chain variable region is encoded by SEQ ID NO: 108;or(p) the heavy chain variable region is encoded by SEQ ID NO: 113 and the light chain variable region is encoded by SEQ ID NO: 116;or(q) the heavy chain variable region is encoded by SEQ ID NO: 122 and the light chain variable region is encoded by SEQ ID NO: 118;or(r) the heavy chain variable region is encoded by SEQ ID NO: 125 and the light chain variable region is encoded by SEQ ID NO: 313;or(s) the heavy chain variable region is encoded by SEQ ID NO: 135 and the light chain variable region is encoded by SEQ ID NO: 131;or(t) the heavy chain variable region is encoded by SEQ ID NO: 138 and the light chain variable region is encoded by SEQ ID NO: 142;or(u) the heavy chain variable region is encoded by SEQ ID NO: 148 and the light chain variable region is encoded by SEQ ID NO: 145;or(v) the heavy chain variable region is encoded by SEQ ID NO: 151 and the light chain variable region is encoded by SEQ ID NO: 155;or(w) the heavy chain variable region is encoded by SEQ ID NO: 163 and the light chain variable region is encoded by SEQ ID NO: 159;or(x) the heavy chain variable region is encoded by SEQ ID NO: 167 and the light chain variable region is encoded by SEQ ID NO: 170;or(y) the heavy chain variable region is encoded by SEQ ID NO: 175 the light chain variable region is encoded by SEQ ID NO: 173;or(z) the heavy chain variable region is encoded by SEQ ID NO: 182 the light chain variable region is encoded by SEQ ID NO: 179;
  • 3. The antibody or antigen binding fragment thereof of claim 1 or claim 2, wherein (a) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 74, and a CDRH3 region consisting of SEQ ID NO: 4; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 6, a CDRL2 region consisting of SEQ ID NO: 7, and a CDRL3 region consisting of SEQ ID NO: 8;or(b) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 14, a CDRH2 region consisting of SEQ ID NO: 15, and a CDRH3 region consisting of SEQ ID NO: 16; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 10, a CDRL2 region consisting of SEQ ID NO: 11, and a CDRL3 region consisting of SEQ ID NO: 12;or(c) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 22, a CDRH2 region consisting of SEQ ID NO: 23, and a CDRH3 region consisting of SEQ ID NO: 14; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 18, a CDRL2 region consisting of SEQ ID NO: 11, and a CDRL3 region consisting of SEQ ID NO: 20;or(d) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 30, a CDRH2 region consisting of SEQ ID NO: 31, and a CDRH3 region consisting of SEQ ID NO: 32; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 26, a CDRL2 region consisting of SEQ ID NO: 27, and a CDRL3 region consisting of SEQ ID NO: 28;or(e) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 78, a CDRH2 region consisting of SEQ ID NO: 35, and a CDRH3 region consisting of SEQ ID NO: 36; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 37, a CDRL2 region consisting of SEQ ID NO: 38, and a CDRL3 region consisting of SEQ ID NO: 39;or(f) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 43, and a CDRH3 region consisting of SEQ ID NO: 44; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 46, a CDRL2 region consisting of SEQ ID NO: 47, and a CDRL3 region consisting of SEQ ID NO: 48;or(g) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 50, a CDRH2 region consisting of SEQ ID NO: 51, and a CDRH3 region consisting of SEQ ID NO: 52; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 54, a CDRL2 region consisting of SEQ ID NO: 55, and a CDRL3 region consisting of SEQ ID NO: 56;or(h) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 62, a CDRH2 region consisting of SEQ ID NO: 63, and a CDRH3 region consisting of SEQ ID NO: 64; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 58, a CDRL2 region consisting of SEQ ID NO: 59, and a CDRL3 region consisting of SEQ ID NO: 60;or(i) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 70, and a CDRH3 region consisting of SEQ ID NO: 71; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 66, a CDRL2 region consisting of SEQ ID NO: 67, and a CDRL3 region consisting of SEQ ID NO: 68;or(j) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 75, and a CDRH3 region consisting of SEQ ID NO: 76; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 38, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 73;or(k) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 78, a CDRH2 region consisting of SEQ ID NO: 79, and a CDRH3 region consisting of SEQ ID NO: 80; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 82, a CDRL2 region consisting of SEQ ID NO: 83, and a CDRL3 region consisting of SEQ ID NO: 84;or(l) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 86, a CDRH2 region consisting of SEQ ID NO: 87, and a CDRH3 region consisting of SEQ ID NO: 88; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 82, a CDRL2 region consisting of SEQ ID NO: 83, and a CDRL3 region consisting of SEQ ID NO: 84;or(m) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 93, a CDRH2 region consisting of SEQ ID NO: 94, and a CDRH3 region consisting of SEQ ID NO: 95; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 97, a CDRL2 region consisting of SEQ ID NO: 98, and a CDRL3 region consisting of SEQ ID NO: 99;or(n) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 101, a CDRH2 region consisting of SEQ ID NO: 102, and a CDRH3 region consisting of SEQ ID NO: 103; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 105, a CDRL2 region consisting of SEQ ID NO: 106, and a CDRL3 region consisting of SEQ ID NO: 107;or(o) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 111, and a CDRH3 region consisting of SEQ ID NO: 112; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 46, a CDRL2 region consisting of SEQ ID NO: 67, and a CDRL3 region consisting of SEQ ID NO: 109;or(p) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 2, a CDRH2 region consisting of SEQ ID NO: 114, and a CDRH3 region consisting of SEQ ID NO: 115; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 46, a CDRL2 region consisting of SEQ ID NO: 47, and a CDRL3 region consisting of SEQ ID NO: 117;or(q) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 123, a CDRH2 region consisting of SEQ ID NO: 75, and a CDRH3 region consisting of SEQ ID NO: 124; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 119, a CDRL2 region consisting of SEQ ID NO: 120, and a CDRL3 region consisting of SEQ ID NO: 121;or(r) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 126, a CDRH2 region consisting of SEQ ID NO: 127, and a CDRH3 region consisting of SEQ ID NO: 128; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 129, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 130;or(s) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 78, a CDRH2 region consisting of SEQ ID NO: 136, and a CDRH3 region consisting of SEQ ID NO: 137; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 132, a CDRL2 region consisting of SEQ ID NO: 133, and a CDRL3 region consisting of SEQ ID NO: 134;or(t) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 139, a CDRH2 region consisting of SEQ ID NO: 140, and a CDRH3 region consisting of SEQ ID NO: 141; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 143, a CDRL2 region consisting of SEQ ID NO: 67, and a CDRL3 region consisting of SEQ ID NO: 144;or(u) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 149, a CDRH2 region consisting of SEQ ID NO: 75, and a CDRH3 region consisting of SEQ ID NO: 150; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 146, a CDRL2 region consisting of SEQ ID NO: 11, and a CDRL3 region consisting of SEQ ID NO: 147;or(v) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 152, a CDRH2 region consisting of SEQ ID NO: 153, and a CDRH3 region consisting of SEQ ID NO: 154; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 156, a CDRL2 region consisting of SEQ ID NO: 157, and a CDRL3 region consisting of SEQ ID NO: 158;or(w) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 164, a CDRH2 region consisting of SEQ ID NO: 165, and a CDRH3 region consisting of SEQ ID NO: 166; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 160, a CDRL2 region consisting of SEQ ID NO: 161, and a CDRL3 region consisting of SEQ ID NO: 162;or(x) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 164, a CDRH2 region consisting of SEQ ID NO: 168, and a CDRH3 region consisting of SEQ ID NO: 169; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 171, a CDRL2 region consisting of SEQ ID NO: 7, and a CDRL3 region consisting of SEQ ID NO: 172;or(y) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 176, a CDRH2 region consisting of SEQ ID NO: 177, and a CDRH3 region consisting of SEQ ID NO: 178; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 38, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 174;or(z) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 42, a CDRH2 region consisting of SEQ ID NO: 183, and a CDRH3 region consisting of SEQ ID NO: 184; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 180, a CDRL2 region consisting of SEQ ID NO: 39, and a CDRL3 region consisting of SEQ ID NO: 181;or(aa) a heavy chain variable domain comprising a CDRH1 region consisting of SEQ ID NO: 186, a CDRH2 region consisting of SEQ ID NO: 187, and a CDRH3 region consisting of SEQ ID NO: 188; and a light chain variable domain comprising a CDRL1 region consisting of SEQ ID NO: 190, a CDRL2 region consisting of SEQ ID NO: 106, and a CDRL3 region consisting of SEQ ID NO: 191;
  • 4. The antibody or antigen binding fragment thereof of any of claims 1-3, wherein the antibody is a chimeric antibody and the heavy chain constant domain is from rabbit, mouse, rat, or nonhuman primate.
  • 5. The antibody or antigen binding fragment thereof of any of claims 1-4, wherein the light chain constant domain is a kappa light chain constant domain or a lambda light chain constant domain.
  • 6. The antibody or antigen binding fragment thereof of any of claims 1-5, wherein the antibody is linked to a detectable label.
  • 7. A peptide comprising SEQ ID NO: 281 or a peptide comprising a sequence with 95% similarity to SEQ ID NO: 281.
  • 8. The peptide of claim 7, further comprising a detectable label.
  • 9. The peptide of claim 7 or 8, wherein the peptide is linked to a solid support.
  • 10. A method of diagnosing Kawasaki Disease in a subject, comprising the steps of: i) obtaining a sample from a subject suspected of having Kawasaki Disease;ii) contacting the sample with the antibody or antigen binding fragment thereof of any of claims 1-3; andiii) detecting the binding of the antibody to a component of the sample, whereby binding of the antibody to the component of the sample indicates the presence of Kawasaki Disease and confirms the diagnosis of Kawasaki disease in the subject.
  • 11. The method of claim 10, further comprising iv) treating the subject diagnosed with Kawasaki disease with intravenous immunoglobulin (IV Ig).
  • 12. The method of claim 10 or claim 11, wherein the sample is a blood sample or a serum sample.
  • 13. The method of any of claims 10-12, wherein detecting the binding of the antibody or antigen binding fragment thereof in the sample is carried out using ELISA, Western blot, immunostaining, immunoprecipitation, flow cytometry, sensor chips, or magnetic beads.
  • 14. The method of any of claims 10-13, wherein the antibody or antigen binding fragment thereof is linked to a solid support.
  • 15. The method of claim 14, wherein detecting the binding of the antibody to the component of the sample comprises contacting the sample with an antibody or antigen fragment thereof of any of claims 1-3.
  • 16. A method of detecting intracytoplasmic inclusion bodies in a subject, comprising the steps of: i) obtaining a sample from a subject suspected of having Kawasaki Disease;ii) contacting the sample with the antibody or antigen binding fragment thereof of any of claims 1-3; andiii) detecting the binding of the antibody or antigen binding fragment thereof in the sample, whereby binding of the antibody indicates the presence of intracytoplasmic inclusion bodies as compared to a negative control.
  • 17. The method of claim 16, further comprising iv) treating the subject having detected antibodies associated with Kawasaki disease with intravenous immunoglobulin (IV Ig).
  • 18. A method of detecting antibodies associated with Kawasaki disease in a subject comprising the steps of: i) obtaining a sample comprising antibodies from a subject suspected of having Kawasaki disease;ii) contacting the sample with the peptide of any of claims 7-9; andiii) detecting the binding of antibodies to the peptide to form a peptide-antibody complex, wherein the presence of a peptide-antibody complex confirms the presence of antibodies associated with Kawasaki disease in the subject.
  • 19. The method of claim 18, further comprising iv) treating the subject having detected antibodies associated with Kawasaki disease with intravenous immunoglobulin (IV Ig).
  • 20. The method of claim 18 or 19, wherein the peptide is linked to a solid support.
  • 21. The method of any of claims 18-20, wherein detecting comprises contacting the peptide-antibody complex with a secondary antibody wherein the secondary antibody is optionally linked to a detectable label.
  • 22. The method of claim 21, wherein the secondary antibody is an anti-human Fc antibody.
  • 23. A kit comprising: i) the antibody or antigen binding fragment thereof of any of claims 1-3;ii) a detection reagent.
  • 24. The kit of claim 23, further comprising: iii) a solid support.
  • 25. The kit of claim 24, wherein the antibody or antigen binding fragment thereof is linked to the solid support.
  • 26. The kit of claim 24 or 25, wherein the solid support comprises a lateral flow device.
  • 27. The kit of any of claims 23-26, wherein the detection reagent comprises an antibody or antigen binding fragment thereof of any of claims 1-3.
  • 28. A kit comprising: i) a peptide of any of claims 7-9;ii) a detection reagent.
  • 29. The kit of claim 28, further comprising: iii) a solid support,
  • 30. The kit of claim 29, wherein the detection reagent comprises a secondary antibody optionally linked to a detectable label.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Application No. 63/268,847 filed Mar. 3, 2022, and U.S. Provisional Application No. 63/476,373, filed Dec. 20, 2022, each of which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant 5RO1AI150719 awarded by the National Institutes of Health. The government has certain rights in this invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2023/063740 3/3/2023 WO
Provisional Applications (2)
Number Date Country
63268847 Mar 2022 US
63476373 Dec 2022 US