Embodiments of the present disclosure relate to antennas for digital wireless communications, and in particular, to a vertically stacked dual band antenna servicing a low frequency (LOW) band and a high frequency (HI) band.
Single band antennas typically take up significant real estate in a receiver/transmitter enclosure. With present day wireless mobile devices, there is a need to fit multiple antennas in approximately the same space previously occupied by a single antenna. Where two different frequency bands, and therefore two antennas are needed, if a difference in the center frequencies of two antennas is more than an octave (the higher frequency is twice the lower frequency), there is a need for two separate antennas, one for each receiver/transmitter. This will increase even more the space requirement in an enclosure. Unfortunately, related art antenna structures for mobile devices cannot fit two antennas operating in different frequency bands in the same enclosure.
The above-described problems are addressed and a technical solution is achieved in the art by providing a monolithic dual band antenna. The monolithic dual band antenna includes a first layer comprising a high frequency band antenna. The monolithic dual band antenna further includes a second layer underlying the first layer. The second layer includes a low frequency band antenna. The geometry of the high frequency antenna relative to the low frequency antenna causes resulting electric fields of the high frequency band antenna to be orthogonal to the resulting electric fields of the low frequency band antenna. The low frequency band antenna may act as a ground for the high frequency band antenna.
The first layer may comprise a micro-strip array of patches capable of beam forming. The first layer may further include an array of tunable phase shifter integrated circuits coupled to corresponding ones of the micro-strip array of patches of the high frequency band antenna. The array of tunable phase shifter integrated circuits may be operable to form a beam using the micro-strip array of patches of the high frequency band antenna.
The second layer underlying the first layer may include a single micro-strip patch for the low frequency band antenna.
A third layer underlying the second layer may include a control circuit coupled to the array of tunable phase shifter located in the first layer. The array of phase shifters may be coupled to corresponding ones of the micro-strip array of patches of the high frequency band antenna.
The present invention may be more readily understood from the detailed description of an exemplary embodiment presented below considered in conjunction with the following drawings:
Embodiments of the present disclosure describe a vertically stacked dual band antenna servicing a low frequency (LOW) band (e.g., 2.45 GHz) and a high frequency (HI) band (e.g., 20 GHz). The low frequency antenna may be a single micro strip patch. The high frequency antenna may be a multi-patch micro strip array capable of beam forming. The beam forming/direction of arrival may be effected by a voltage controlled phase shifter.
Layer 204 may be a first dielectric layer for the array of patches (e.g., 8 patches) high frequency band antenna 106. In one example, the dielectric layer 204 may be a layer of FR4 material about 0.5 mm thick with a relative dielectric permittivity of about 3.8 (the antenna frequency band and the size of the patch depend on this constant). The layer 206 is a glue layer comprising two layers of glue of about 0.1 mm thickness each.
The middle group of layers 208-212 may be the layers comprising the low frequency band antenna substantially underlying the layers 202-206 comprising the high frequency band antenna 106. The layer 208 may hold the single patch for the low frequency band antenna 108. The layer 208 may also function as the ground layer for the array of patches (e.g., 8 patches) high frequency band antenna 106. The layer 208 may be metallized and may comprise a copper foil of about 30 microns thickness (the metallized foils of all such layers in the dual band antenna 100 may comprise copper foils of about 30 microns thickness). The layer 210 may be a second dielectric layer of FR4 material of about 1 mm thickness and may also have a dielectric relative permittivity of about 3.8. The bottom layer 212 may be metallized and may represent the ground plane for the low frequency band antenna 108.
The last group of layers 214-218 may hold a control circuit for the high frequency band antenna 106. The last group of layers 214-218 substantially underlays the middle group of layers 208-212 comprising the low frequency band antenna 108. The layer 214 is a glue layer of about 0.1 mm thickness. The layer 216 may be a third dielectric layer of FR4 material of about 1 mm thickness and may also have a dielectric relative permittivity of about 3.8. The bottom layer 218 may hold the electronic devices and the interconnections. The control circuit may connected to the phase shifters on the TOP layer 202 through vias (not shown). The layer 218 may be a conductive layer of about 0.1 mm thickness.
More particularly, all conductive layers are electrochemically deposited on the dielectric material. The glue layer 206 may be applied between the group of layers 202-204 and the group of layers 208-212. The glue layer 214 may be applied between group of layers 208-212 and the group of layers 216-218. The layer 206 may two-layers of glue while the layer 214 is one single layer. Each layer may be 0.1 mm thick.
In order to decouple the high frequency band antenna 106 from the low frequency band antenna 108, the geometry was selected such that the resulting electric fields of the high frequency band antenna 106 from the low frequency band antenna 108 may be orthogonal to each other as shown in
The multiply-layer antenna configuration 100 saves significant real estate in a receiver/transmitter enclosure. The high frequency band antenna 106 may be configured to overly the low frequency band antenna 108, the latter acting as ground for the high frequency band antenna 106.
Applying different voltages on the inputs phase shifter integrated circuits 104 result different phase shifts per patch antenna. For a certain combination of phase shifts, the high frequency band antenna 106 may transmit maximum power or receive maximum power in a particular direction.
The high frequency band antenna 106 may be composed of 8 mini patch antennas. Each one of the mini patch antennas may be fed via a phase shifter connected through a micro-strip. These 8 antennas may behave as a single antenna having one single radiating lobe (8 mini-lobes composed in one single larger lobe). If the microwave phase on each of mini antennas is different from the others, the resulting lobe may be bent by an angle φo depending on the microwave phase value Δφi on each of the mini-patches.
As noted above, the phase shifters control circuit 900 may include two programmable serial interface digital to analog (D to A) converters 902, 906, respectively, having four analog outputs each (3, 4, 5, 6 and respectively 1, 2, 7, 8). The control logic may include a serial data input (SDA), a serial clock input (SCLK) and a load (LD) input coupled to a microcontroller/processor (not shown) through the connector 908. The D to A converters 902, 906 may be supplied with 5 V from a low noise power supply 910 and may share the same serial (I2C) control bus.
In operation, serialized digital values corresponding to phase shift voltages are input over the I2C bus by the microprocessor through the connector 908 to the D to A converters 902, 906, the latter applying corresponding voltages representing corresponding phase shifts to be applied to the corresponding voltage-controlled phase shifters 904 to control the beam forming of the patches of the high frequency band antenna 106.
The test antenna 1004 is the emitter, while the horn antenna 1010 is the receiver. The transmission coefficient S21 from the emitter 1004 to the receiver 1010 is measured and saved on the VNA screen. Without control, S21 represents a reference (φo=0). The beam forming control unit 1006 sets the phase shifters values and the precision goniometer 1008 rotates the test antenna 1004 until a maximum is detected. This is how the
Step 1: Calculation of the Width (W)—
Step 2: Calculation of the Effective Dielectric Constant. This is based on the height, dielectric constant of the dielectric and the calculated width of the patch antenna.
Step 3: Calculation of the Effective Length
Step 4: Calculation of the Length Extension ΔL (1104)
Step 5: Calculation of Actual Length of the Patch
L=L
eff−2ΔL
where the following parameters are used:
In the foregoing description, numerous details are set forth. It will be apparent, however, to one of ordinary skill in the art having the benefit of this disclosure, that the present disclosure may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present disclosure.
Some portions of the detailed description have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “segmenting”, “analyzing”, “determining”, “enabling”, “identifying,” “modifying” or the like, refer to the actions and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The disclosure also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may include a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
The words “example” or “exemplary” are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “example’ or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an embodiment” or “one embodiment” or “an implementation” or “one implementation” throughout is not intended to mean the same embodiment or implementation unless described as such.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.”
Whereas many alterations and modifications of the disclosure will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that any particular embodiment shown and described by way of illustration is in no way intended to be considered limiting. Therefore, references to details of various embodiments are not intended to limit the scope of the claims, which in themselves recite only those features regarded as the disclosure.
This application claims the benefit of U.S. provisional patent application No. 62/194,552 filed Jul. 20, 2015, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62194552 | Jul 2015 | US |