The invention relates generally to fragmentation casings, and more particularly to a monolithic fragmentation casing that incorporates a pattern of tunnels within the casing.
Fragmentation casings are used in warheads for bombs, missiles, and related devices. Typically, a fragmentation casing relies on controlled fragmentation of a metal body when subjected to rapid pressurization experienced from a detonating explosive fill. Conventional methods for fabricating fragmentation casings rely on either preformed fragments in a matrix or the use of scoring or notches to induce shear in specific orientations. These methods are limited in terms of their performance (e.g., caused by uneven distribution of fragments, parasitic mass, poor resistance to acceleration, poor fragment velocity, etc.) and manufacturing complexities.
Accordingly, it is an object of the present invention to provide a fragmentation casing and method for making same.
Another object of the present invention is to provide a monolithic fragmentation casing that defines fragment distribution.
Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
In accordance with the present invention, a fragmentation casing including a monolithic tube having a solid radial wall and a pattern of tunnels defined in the solid radial wall. The tunnels may be filled with air, a powder that is a powdered form of the material used to make the solid radial wall, or a solid form of the material used to make the solid radial wall but whose hardness differs from that of the solid radial wall.
Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the exemplary embodiments and to the drawings, where corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:
Referring now to the drawings, simultaneous reference will be made to
In general, casing 10 is a monolithic structure that has a pattern of tunnels integrally formed in the solid radial wall of casing 10. As will be explained further below, the tunnels are arranged in a pattern to facilitate a controlled pattern of fragments when casing 10 is exploded by explosive materials (not shown) contained within the volume defined by casing 10. The pattern of tunnels may be a contiguous pattern (e.g., herringbone, interlocking weave, etc.). The pattern of tunnels also may be defined by a pattern of discontinuous tunnels (e.g., individual vertical, horizontal or angled tunnels, individual spherical or other geometric shapes arrayed in a pattern throughout the solid radial wall, etc.). Each tunnel may be filled with air, a powder form of the material used to make the solid radial wall of casing 10, or a solid form of the material used to make the solid radial wall of casing 10 but whose hardness differs (i.e., harder or softer) from that of the solid radial wall of casing 10.
In
In
Still further, the present invention is not limited to a contiguous pattern of tunnels in the solid radial wall of the casing. For example, in
Fabrication of each embodiment of casing 10 may be accomplished using an additive manufacturing process known as powder bed fusion. Casing 10 may be made from a metal, a plastic material, or a ceramic material. Suitable metals may include aluminum, titanium, steel, stainless steel, Inconel, tungsten, copper, brass, zirconium, magnesium, tantalum, and alloys thereof. However, it is to be understood that the present invention is not limited to the use of these metals as any metal, plastic, etc., that lends itself to use in a powder bed fusion process may be used. For example, suitable plastics include a variety of thermoplastic polymer materials to include, but not limited to, nylon, ABS, PVC, polycarbonates, ULTEM, HDEP, etc.
In a powder bed fusion process, a fusable material (e.g., metal, plastic, ceramic, etc.) is provided in a powdered state. In general, a powder bed fusion process causes an electromagnetic beam of radiation (e.g., laser beam, electron beam, etc.) to be directed towards the bed of fusable powder in accordance with a prescribed plan such that the fusable powder fuses/solidifies into a solid state to define a solid part. The unfused powder is then discarded as the finished solid part is removed from the powder bed. When casing 10 is fabricated using a powder bed fusion process in accordance with the present invention, the contiguous or discontinuous tunnels formed in the casing's solid radial wall may be air-filled or remain completely filled with unfused, fusable powder material. The beam of radiation also may be adjusted such that the fusable powder material is fused to a solid form thereof whose properties (e.g., grain structure, strength, and hardness) are different than those of the surrounding solid radial wall. In each case, casing 10 is a monolithic structure made completely from the same material as the solid radial wall is the solid state of the fusable powder material, while tunnels defined in the solid radial wall may remain filled with the unfused powder material used to make the solid radial wall.
Casing 10 may be incorporated into a fragmenting warhead by disposing explosive fill material(s) (not shown) within the tubular volume defined by solid radial wall 12. The choice and construction of the explosive fill material(s) are not limitations of the present invention. Retention of the unfused powder material within the tunnels serves to provide structural integrity of the tunnels, provide localized blast effects from movement of powder material upon detonation of the casing, and may also provide incendiary effects if the unfused powder material is reactive.
The advantages of the present invention are numerous. The monolithic fragmentation casing has structural integrity, while the casing's tunnels control fragmentation and the tunnel-contained material may provide enhanced localized shock protection and potentially incendiary effects. The single manufacturing process for making the casing from a single material avoids manufacturing defects and costs that are inherent to conventional manufactured casings made from multiple materials.
Although the invention has been described relative to a specific exemplary embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.
Finally, any numerical parameters set forth in the specification and attached claims are approximations (for example, by using the term “about”) that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be at least construed in light of the number of significant digits and by applying ordinary rounding.
The invention described herein was made in the performance of official duties by an employee of the Department of the Navy and may be manufactured, used, licensed by or for the Government for any governmental purpose without payment of any royalties thereon.
Number | Name | Date | Kind |
---|---|---|---|
189358 | Hotchkiss | Apr 1877 | A |
4305333 | Altenau | Dec 1981 | A |
4312274 | Zernow | Jan 1982 | A |
5126105 | Runkle | Jun 1992 | A |
6484642 | Kuhns | Nov 2002 | B1 |
7093542 | Gousman | Aug 2006 | B2 |
9738948 | Gwaltney | Aug 2017 | B2 |
20160178336 | Jennett | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
4025097 | Feb 1992 | DE |
102014014332 | Mar 2016 | DE |
2590823 | Jun 1987 | FR |