The present invention relates in general to electronic circuits and semiconductor devices and, more particularly, to an integrated or monolithic MOSFET and Schottky diode for mobile phone boost converters.
Most modern electronic equipment require a power supply to provide a direct current (DC) operating potential to the electronic components contained therein. Common types of electronic equipment which use DC power supplies include cell phones, personal computers, energy systems, telecommunication systems, audio-video equipment, consumer electronics, automotive components, and other devices which utilize integrated circuits, semiconductor chips, or otherwise require DC operating potential. Most, if not all, semiconductor components require a low voltage DC operating potential.
Not all semiconductor devices or electronic components operate with the same DC potential. Some integrated circuits (ICs) or discrete semiconductor devices require a higher DC supply voltage than others. A common approach in electronic systems requiring multiple DC operating voltage levels is to convert a base DC operating potential to other voltage levels. For example, the battery or main power supply to the electronic system may provide 3 volts DC. One or more DC/DC boost converters within the electronic system increase the voltage level to say 5 volts DC or 12 volts DC to supply power to certain components within the system.
The DC/DC boost converter uses an inductor or coil having a first terminal coupled to the converter input and power metal oxide semiconductor field effect transistor (MOSFET) coupled between a second terminal of the coil and ground. The conduction through MOSFET is controlled by a pulse width modulated (PWM) controller. The PWM controller turns on the power MOSFET to enable a current conduction path through the coil and thereby store energy in the coil. When the PWM controller turns off the power MOSFET, the energy stored in the coil is transferred through a Schottky diode to an output of the DC/DC boost converter. The output voltage of the converter is used to generate a feedback signal to the PWM controller to control the on-time of the power MOSFET and regulate the DC output voltage of the boost converter.
The power MOSFET and Schottky diode are typically discrete components in the DC/DC boost converter. In some electronic systems, such as cellular phones, space on the printed circuit board (PCB) is a premium. As cell phones reduce in feature size, the space required for discrete components becomes a design issue. In addition to surface area limitations, the need for low profile and small footprint semiconductor devices continues to grow as cell phones become thinner and smaller in design.
A need exists for semiconductor devices and packages that are compatible with electronic systems having limited surface areas and low profiles.
In one embodiment, the present invention is a monolithic semiconductor device, comprising a lateral double diffused metal oxide semiconductor field effect transistor (LDMOSFET) formed with a plurality conduction fingers on a surface of the monolithic semiconductor device. A diode is formed on the surface of the monolithic semiconductor device and integrated between the plurality of conduction fingers of the LDMOSFET. A first conduction terminal of the LDMOSFET is connected to a first terminal of the diode on the surface of the monolithic semiconductor device.
In another embodiment, the present invention is a semiconductor package, comprising a monolithic semiconductor device including a lateral double diffused metal oxide semiconductor field effect transistor formed on a surface of the monolithic semiconductor device and a diode formed on the surface of the monolithic semiconductor device and integrated between a plurality of conduction fingers of the LDMOSFET.
In another embodiment, the present invention is a monolithic semiconductor device, comprising a lateral double diffused metal oxide semiconductor field effect transistor formed with a plurality conduction fingers on a surface of the monolithic semiconductor device. A diode is formed on the surface of the monolithic semiconductor device and integrated between the plurality of conduction fingers of the LDMOSFET.
In another embodiment, the present invention is a method of making a monolithic semiconductor device comprising the steps of forming a lateral double diffused metal oxide semiconductor field effect transistor with a plurality conduction fingers on a surface of the monolithic semiconductor device, and forming a diode on the surface of the monolithic semiconductor device integrated between the plurality of conduction fingers of the LDMOSFET.
The present invention is described in one or more embodiments in the following description with reference to the Figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
Referring to
Many of the electronic components on PCB 22 may require different DC operating potentials. Cell phone 10 has one lithium-ion battery source, e.g. 3.6 volts DC, attached to rear body 20. To convert the 3.6 VDC battery voltage to other operating potentials, one or more DC/DC boost converters are designed into PCB 22. The DC/DC boost converter generates DC operating potentials, e.g. 5 VDC or higher, for the electronic components which require a power supply different than the 3.6 VDC battery voltage.
The space limitations of PCB 22 in cell phone 10 dictate that the use of discrete components should be minimized and eliminated where possible. The semiconductor die or device within each discrete component is small compared to its overall package size. The same issue exists with other electronic systems having space limitations, such as radios, two-way pagers, digital recorders, laptop computers, compact disk players, compact video players, and the like. To support this design preference, in the following description, the power MOSFET and Schottky diode of the DC/DC boost converter are integrated into a single monolithic package.
In addition, other electronic systems that do not necessarily have space limitations, e.g. personal computers, energy systems, telecommunication systems, audio-video equipment, consumer electronics, and automotive components, can benefit from the cost savings and design efficiencies associated with the integration of discrete components.
A DC/DC boost converter 40 is shown in
The output voltage VOUT is used to generate a feedback (FB) signal, which is applied to PWM controller 56. PWM controller 56 generates a PWM control signal which is applied to the gate of power MOSFET 50. PWM controller 56 controls the conduction time of MOSFET 50 during each control cycle. If the output voltage VOUT falls, due to an increasing load, the duty cycle of the PWM control signal increases to lengthen the on-time of MOSFET 50 within the control cycle. Diode 48 is reversed biased to isolate the converter output during the on-state of the MOSFET. The longer conduction period of MOSFET 50 stores more energy in coil 46. During the off-time of the MOSFET, diode 48 becomes forward biased and the energy stored in coil 46 is transferred to the converter output to charge capacitor 58 and increases the output voltage VOUT. If the output voltage VOUT rises, due to a decreasing load, the duty cycle of the PWM control signal decreases to shorten the on-time of MOSFET 50 during the control cycle. Again, diode 48 is reversed biased to isolate the converter output during the on-state of the MOSFET. The shorter conduction period of MOSFET 50 stores less energy in coil 46. During the off-time of the MOSFET, diode 48 becomes forward biased and the lesser amount of energy stored in coil 46 is transferred to the converter output to charge capacitor 58 so as to decrease the output voltage VOUT.
In the present embodiment, power MOSFET 50 and Schottky diode 48 are integrated into a single, chip-scale, monolithic package 60 having a 1.15×1.15 square millimeter (mm2) footprint. The height of package 60 is 0.8 mm to accommodate the low profile requirement. The power MOSFET occupies about 23% of the die area (0.28 mm2), while the Schottky diode occupies about 60% of the die area (0.72 mm2).
As shown in
Package 60 occupies significantly less space than conventional discrete components providing the same function. In fact, package 60 uses 68% less space on PCB 22 as compared to a conventional discrete MOSFET alone. The difference is more pronounced when taking into account a discrete Schottky diode and interconnecting PCB tracks. The small footprint and low profile of package 60 is applicable to systems requiring efficient and compact components, such as DC/DC boost converters used in cellular phones.
Further detail of the monolithic semiconductor device 78 including power MOSFET 50 and Schottky diode 48 is shown in
In the cross-sectional view, substrate 80 is made of p-type semiconductor material and provides structural support. The following regions and layers are formed on substrate 80 using semiconductor manufacturing processes understood by those skilled in the art. The manufacturing processes includes layering, patterning, doping, and heat treatment. In the layering process, materials are grown or deposited on the substrate by techniques involving thermal oxidation, nitridation, chemical vapor deposition, evaporation, and sputtering. Patterning involves use of photolithography to mask areas of the surface and etch away undesired material. The doping process injects concentrations of dopant material by thermal diffusion or ion implantation.
Using the above semiconductor manufacturing processes, a P-well region 82 is formed on substrate 80. A body region 84 made with P-material is formed over or above P-well region 82. P+ body 86 and N+ source region 88 are formed over or above P− body region 84. Terminal 89 is connected to N+ source region 88 to provide the source terminal of power MOSFET 50. Terminal 89 electrically connects to bump 62. An N-drift region 90 and N+ drain region 92 are formed above P-well region 82. Oxide layer 96 is formed over N+ source region 88, P− body region 84, and N-drift region 90. Gate region 98 is formed over oxide layer 96. Terminal 99 is coupled to gate region 98 to provide the gate terminal of power MOSFET 50. Terminal 99 electrically connects to bump 64.
Using the above semiconductor manufacturing processes, an N-drift region 100 and N+ region 102 are formed over or above P-well region 82. A metal layer 104 is formed over or above N-drift region 100 and further connects to N+ drain region 92 to provide terminal 105. Metal layer 104 may be made with titanium (Ti) or titanium nitride (TiN). The metal layer junction with the lightly doped N-drift region 100 forms the Schottky diode. The metal layer 104 contact to the heavier doped N+ drain region 92 forms an ohmic contact. Terminal 105 is the common terminal for the drain of power MOSFET 50 and the anode of diode 48. Terminal 106 is connected to N+ region 102 which forms the cathode of diode 48. Terminals 105 and 106 electrically connect to bumps 66 and 68, respectively.
In another application, diode 48 may be formed in semiconductor structure 78 as a Zener diode. The Zener diode would be formed in the surface of semiconductor structure 78 and be commonly connected to MOSFET 50 as described above.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
The present non-provisional patent application claims priority to provisional application Ser. No. 60/646,120, entitled “Monolithic MOSFET and Schottky Diode for Mobile Phone Boost Converter,” and filed on Jan. 21, 2005, by Anderson et al.
Number | Date | Country | |
---|---|---|---|
60646120 | Jan 2005 | US |