Monolithic single pole double throw RF MEMS switch

Information

  • Patent Grant
  • 6440767
  • Patent Number
    6,440,767
  • Date Filed
    Tuesday, January 23, 2001
    23 years ago
  • Date Issued
    Tuesday, August 27, 2002
    22 years ago
Abstract
Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch comprises a single RF input line and two RF output lines. The switch additionally comprises two armatures, each mechanically connected to a substrate at one end and having a conducting transmission line at the other end with a suspended biasing electrode located on top of or within a structural layer of the armature. Each conducting transmission line has conducting dimples that protrude beyond the bottom of the armature carrying the conducting transmission line. Closure of an armature causes the dimples of the corresponding conducting transmission line to mechanically and electrically engage the RF input line and the corresponding RF output line, thus directing RF energy from the RF input line to the selected RF output line.
Description




BACKGROUND OF THE INVENTION




1. Technical Field of the Invention




The present invention relates generally to switches. More particularly, it relates to the design and fabrication of microfabricated electromechanical switches having a single pole double throw configuration.




2. Description of Related Art




In communications applications, switches are often designed with semiconductor elements such as transistors or pin diodes. At microwave frequencies, however, these devices suffer from several shortcomings. PIN diodes and transistors typically have an insertion loss greater than 1 dB, which is the loss across the switch when the switch is closed. Transistors operating at microwave frequencies tend to have an isolation value of under 20 dB. This allows a signal to ‘bleed’ across the switch even when the switch is open. PIN diodes and transistors have a limited frequency response and typically only respond to frequencies under 20 GHz. In addition, the insertion losses and isolation values for these switches varies depending on the frequency of the signal passing through the switches. These characteristics make semiconductor transistors and pin diodes a poor choice for switches in microwave applications.




U.S. Pat. No. 5,121,089 issued Jun. 9, 1992 to Larson discloses a microwave micro-electro-mechanical systems (MEMS) switch. The Larson MEMS switch utilizes an armature design. One end of a metal armature is affixed to an output line, and the other end of the armature rests above an input line. The armature is electrically isolated from the input line when the switch is in an open position. When a voltage is applied to an electrode below the armature, the armature is pulled downward and contacts the input line. This creates a conducting path between the input line and the output line through the metal armature. This switch also provides only a Single Pole, Single Throw (SPST) function, that is, the switch is either open or closed.




U.S. Pat. No. 6.046,659 of Loo et al. discloses methods for the design and fabrication of SPST MEMS switches. Each MEMS switch has a multiple-layer armature with a suspended biasing electrode and a conducting transmission line affixed to the structural layer of the armature. A conducting dimple is connected to the conducting line to provide a reliable region of contact for the switch. The switch is fabricated using silicon nitride as the armature structural layer and silicon dioxide as a sacrificial layer supporting the armature during fabrication. Hydrofluoric acid is used to remove the silicon dioxide layer with post-processing in a critical point dryer to increase yield.




A MEMS switch has a very low insertion loss (less than 0.2 dB at 45 GHz) and a high isolation when open (greater than 30 dB) over a large bandwidth when compared to semiconductor transistors and pin diodes. These characteristics give the MEMS switch the potential to not only replace traditional narrow-bandwidth PIN diodes and transistor switches in microwave circuits, but to create a whole new class of high performance and compact microwave switch circuits.




A common feature of the MEMS switches described above is that they all disclose a single pole, single throw (SPST) configuration, that is, they can only switch an RF signal on or off. However, RF signals often must be switched between two destinations, such as when switching an RF signal between a first antenna array and a second antenna array. Switches that support this configuration are classified as single pole, double throw (SPDT) switches.




SPDT switches known in the art are either solid-state devices or mechanical relays. Solid-state SPDT RF switches, such as PIN diodes and FETs, suffer from the limited frequency response, insertion loss, and isolation problems described above. Isolation between the two output ports of the SPDT switch is of particular concern, since coupling of the signal from one output port to the other output port limits the effectiveness of the switch as a dual output port device. Mechanical relays are also available in SPDT configurations, but they are generally quite large, compared to other RF components, and consume significant amounts of power.




Therefore, there is a need in the art for a SPDT switch that provides low insertion loss and high isolation at its output ports. There is a further need to provide such a switch with a size near to that of other RF components and consumes little power.




SUMMARY OF THE INVENTION




The present invention relates to a method of design and fabrication of a micro-electro-mechanical single pole double throw (SPDT) switch. The switch is preferably designed with a pair of bi-layer or tri-layer armatures which give the switch superior mechanical qualities. The switch is arranged such that one armature of the pair of armatures is normally closed while the other armature is normally open due to the application of an electrostatic potential which operates on one of the two armatures. In addition, the switch preferably has conducting dimples with defined contact areas to provide improved contact characteristics.




One embodiment of the invention is a micro-electro-mechanical switch comprising an input line, two output lines, and a pair of armatures. The input line and the output lines are located on top of a substrate. The armatures are each made of at least one structural layer, a conducting transmission line on top of, below, or between the structural layers, and a suspended armature bias electrode similarly placed of each armature. One end of the structural layer is connected to the substrate, and a substrate bias electrode is located on top of the substrate below the suspended armature bias electrode on the armatures.




The input line is coupled to a pair of input contacts, each contact of the pair of contacts being associated with one of the armatures of the pair of armatures. The output lines are each coupled to an output contact, each output contact being associated with one of the armatures of the pair of armatures. A first end of the conducting transmission line in each armature rests above each of the input contacts and a second end rests above each of the output contacts when the switch is in an open position. Each conducting transmission line also contains a conducting dimple at both the first end and the second end such that the distance between the conducting dimple and the input and output contacts is less than the distance between the conducting transmission line and the input and output contacts so that the conducting dimples contact the input and output contacts when the switch is in the closed position. The structural layer may be formed below, above, or both above and below the conducting transmission line. The input line, output lines, input contacts, output contacts, armature bias pad, substrate bias pad, and substrate bias electrode are comprised of a stack of films referred to as the first metal layer which is preferably comprised of a 1500 angstrom film of gold on top of a 100 angstrom film of nickel on top of a 900 angstrom film of gold germanium. The armature bias electrodes, conducting transmission lines, and contact dimples are made of a film stack referred to as the second metal layer, which is preferably comprised of a 1000 angstrom film of deposited or evaporated gold on top of a 200 angstrom layer of titanium. The first and second metal layers have different compositions since the first layer is deposited on the substrate while the second layer is deposited on a dielectric, such as silicon nitride.




The present invention may also be embodied in a process for making a micro-electro-mechanical switch. The process comprises a first step of depositing a first metal layer onto a substrate to form an input line, a pair of input contacts, a pair of output lines, a pair of output contacts, substrate bias electrodes, substrate bias pads, and armature bias pads. A support layer, also known as a sacrificial layer, is deposited on top of the first metal layer and the substrate, and a beam structural layer is deposited on top of the sacrificial layer. The beam structural layer forms the armature pair with one end of each armature affixed to the substrate opposite its corresponding input contact. The process further comprises the steps of removing a portion of the structural layer and a portion of the support layer to create a dimple mold. Conducting dimples are formed in the dimple mold when the conducting transmission line and suspended armature bias electrodes are fabricated by depositing a second metal layer, such that the suspended armature bias electrode is electrically connected to the armature bias pad. A second structural layer may or may not be deposited on top of the second metal layer for stress matching and thermal stability of the switch. Finally, the sacrificial layer is removed from beneath the armatures to release the armatures and allow the switch to open and close.




The materials and fabrication techniques used for the process comprise standard integrated circuit manufacturing materials and techniques. The sacrificial layer is made of silicon dioxide and is removed by wet etching the silicon dioxide with HF and with post processing in a critical point dryer. The beam structural layer is comprised of silicon nitride. As discussed above, the first metal layer is preferably comprised of a film of gold on top of a film of nickel on top of a film of gold germanium. The second metal layer is preferably comprised of a film of gold on top of film of titanium. A second beam structural layer may be deposited on top of the conducting line such that the conducting line is encased between the first structural layer and the second structural layer. In alternative embodiments of the present invention, the second metal layer is deposited underneath, in between, or on top of the structural layers. If the second metal layer is underneath the structural layers, then a dielectric or insulator is deposited on top of the substrate bias electrodes to prevent electrical shorting to the armature bias electrodes when the switch is in the closed position











BRIEF DESCRIPTION OF THE DRAWINGS




These and other features and advantages will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings in which:





FIG. 1

is a top overview view of two discrete SPST MEMS switches connected in a SPDT configuration.





FIG. 2A

shows the isolation achieved with the SPDT switch depicted in FIG.


1


.





FIG. 2B

shows the insertion loss achieved with the SPDT switch depicted in FIG.


1


.





FIG. 3

is a top overview of the monolithic SPDT MEMS switch embodying the present invention.





FIG. 4A

is a side view of the monolithic SPDT MEMS switch depicted in

FIG. 3

taken along the section line


3


-


3


′ showing one armature in an open position.





FIG. 4B

is a side view of the monolithic SPDT MEMS switch depicted in

FIG. 3

taken along the section line


3


-


3


′ showing one armature in a closed position.





FIG. 5A

shows the isolation achieved with the monolithic MEMS SPDT switch according to the present invention





FIG. 5B

shows the insertion loss achieved with the monolithic MEMS SPDT switch according to the present invention.





FIGS. 6A-6F

are side elevational views of the monolithic MEMS SPDT switch of

FIG. 3

taken along section line


3


-


3


′ during progressive steps of a fabrication process further embodying the present invention.





FIG. 7

is a picture of one embodiment of a monolithic SPDT RF MEMS switch according to the present invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 1

is a general overview of a hybrid SPDT switch


100


constructed from two discrete SPST MEMS switches


10


A,


10


B. The two switches


10


A,


10


B are identical, so the description below refers to both switches


10


A,


10


B.




In the switch


10


A,


10


B, one end of an armature


16


is affixed to the substrate


14


near an armature bias pad


34


on the substrate


14


. The other end of the armature


16


is positioned over a left RF contact


21


and a right RF contact


19


. A substrate bias electrode


22


is printed on the substrate


14


below the armature


16


. The armature


16


contains an armature bias electrode


30


which is electrically isolated from the substrate bias electrode


22


by an air gap (not shown in

FIG. 1

) and a layer of silicon nitride (not shown in FIG.


1


), when the switch


10


A,


10


B is in an open position. When the switch


10


A,


10


B is in a closed position, the layer of silicon nitride still serves to electrically isolate the armature bias electrode


30


from the substrate bias electrode.




A right conducting dimple


25


and a left conducting dimple


24


protrude from the armature


16


toward the left RF contact


21


and the right RF contact


19


. A conducting RF line


28


is printed on the armature


16


and electrically connects the right conducting dimple


25


to the left conducting dimple


24


. When the MEMS switch


10


A,


10


B is in an open position, the dimples


24


,


25


are electrically isolated from the left RF contact


21


and the right RF contact


19


by an air gap. The left RF contact


21


and the right RF contact


19


are isolated from each other by a nonmetallic gap in the substrate


14


. The left RF contact


21


is electrically connected to a left RF line


20


and the right RF contact


19


is electrically connected to a right RF line


18


.




The armature


16


is comprised of a beam structural layer


26


, the conducting line


28


, suspended armature bias electrode


30


, and via hole


32


. The armature bias electrode


30


is encapsulated within the beam structural layer


26


and extends over the majority of the armature


16


. The armature bias electrode


30


connects to the armature bias pad


34


through metal deposited in the via hole


32


. The substrate bias electrode


22


is in electrical contact with a substrate bias pad


36


. The substrate bias pad


36


and the substrate bias electrode


22


may comprise a single layer of deposited metal. When a voltage is applied between the suspended armature bias electrode


30


and the substrate bias electrode


22


, an electrostatic attractive force will pull the suspended armature bias electrode


30


as well as the attached armature


16


towards the substrate bias electrode


22


, so that the right conducting dimple


25


touches the right RF contact


19


and the left conducting dimple


24


touches the left RF contact


21


. Since the RF conducting line


28


electrically connects the right conducting dimple


25


to the left conducting dimple


24


, the conducting line


28


and the dimples


24


,


25


bridge the gap between the right RF contact


19


and the left RF contact


21


, thereby closing the MEMS switch


10


A,


10


B. The RF conducting line


28


is electrically isolated from the armature bias electrode


30


, so the voltage applied to the armature bias electrode


30


is isolated from the RF signal carried through the RF conducting line


28


.




In the hybrid SPDT switch


100


, an electrical connection


101


is used to connect the right RF line


18


of the first MEMS switch


10


A to the left RF line


20


of the second MEMS switch


10


B. The electrical connection


101


may comprise a wirebond, a solder line, or other electrical connecting means known in the art. Thus, in the SPDT configuration, the right RF line


18


of the first switch


10


A and the left RF line


20


of the second switch


10


B comprise the input port


110


of the SPDT switch


100


. RF energy may be provided to the input port


110


by connecting to either the right RF line


18


of the first MEMS switch


10


A or the left RF line


20


of the second MEMS switch


10


B, or, as shown in

FIG. 1

, using a “Y” connection


11


to connect input RF energy to both the right RF line


18


and the left RF line


20


. The left output port


120


of the hybrid SPDT switch


100


is electrically connected to the left RF line


20


of the first MEMS switch


10


A and the right output port


122


is electrically connected to the right RF line


18


of the second MEMS switch


10


B.




The hybrid SPDT switch


100


operates by either opening the first switch


10


A and simultaneously closing the second


10


B, or vice versa. If the first switch


10


A is opened and the second


10


B is closed, RF energy will be directed out of the second output port


122


. If the first switch


10


A is closed and the second


10


B opened, RF energy will be directed out of the first output port


120


.





FIG. 2A

shows the isolation achieved between the input port


110


and an output port


120


of the first switch


10


A when the second switch


10


B is in the closed position and the second output port


122


is connected to a matched load. Note at frequencies lower than 14 GHz, the isolation is greater than 30 dB. In RF circuits, it is usually desirable to have RF isolation exceed 30 dB.

FIG. 2B

shows the insertion loss seen with the hybrid SPDT switch


100


described above. As shown in

FIG. 2B

, the insertion loss does not exceed 0.2 dB, which is generally acceptable performance.




Creation of a hybrid MEMS SPDT switch by combining two discrete MEMS SPST switches has some serious drawbacks. The first major drawback is the fabrication process for the hybrid MEMS SPDT switch requires an additional manufacturing step of electrically connecting together the two discrete MEMS SPDT switches. Another drawback, as illustrated in

FIG. 2A

, is that the RF isolation provided by the switch suffers due to RF coupling between the two output ports, caused by the wirebond that couples the two switches. A further drawback is that the size of the switch is essentially twice the size of the two individual SPST switches.




A monolithic SPDT switch provides for improved operation over that provided by the hybrid MEMS switch described above. A monolithic MEMS SPDT switch is based upon the simultaneous fabrication of two SPST switches in a side-by-side configuration on the same substrate. A general overview of a MEMS SPDT switch


300


according to the present invention is shown in FIG.


3


. The MEMS SPDT switch


300


shown in

FIG. 3

contains many features similar to those depicted and described for the hybrid MEMS SPDT switch


100


discussed above. Thus, materials and techniques used for constructing the hybrid MEMS SPDT switch


100


described above may also be used be in the construction of the monolithic MEMS SPDT switch


300


according to the present invention.




One end of a first armature


316


is affixed to the substrate


314


near an armature bias pad


334


on the substrate


314


. Similarly, one end of a second armature


317


is also affixed to the substrate


314


near the armature bias pad


334


on the substrate


314


. The other end of the first armature


316


is positioned over a left input contact


356


and a left output contact


321


. The other end of the second armature


317


is positioned over a right input contact


357


and a right output contact


326


. The first armature


316


and second armature


317


may be oriented in a parallel direction to each other so that they project above the substrate


314


in the same direction. The left output contact


321


is electrically connected to a left RF output line


320


. The left output contact


321


and the left RF output line


320


may be constructed as a single metal structure. Similarly, the right output contact


326


is connected to a right RF output line


325


, and may also be a single metal structure. The left input contact


356


and the right input contact


357


are both electrically connected to an RF input line


315


. The left input contact


356


, the right input contact


357


, and the RF input line


315


may also be a single metal structure.




A first substrate bias electrode


322


is printed on the substrate


314


below the first armature


316


and a second substrate bias electrode


323


is printed on the substrate below the second armature


317


. The first armature


316


contains a first armature bias electrode


330


, preferably encapsulated with a first beam structural layer


326


. Similarly, the second armature


317


contains a second armature bias electrode


331


, preferably encapsulated within a second beam structural layer


327


. Both the first armature bias electrode


330


and the second armature bias electrode


331


are electrically isolated from their corresponding substrate bias electrodes


322


,


323


by an air gap (not shown in

FIG. 3

) and a dielectric layer (not shown in FIG.


3


), preferably silicon nitride, beneath the armature bias electrodes


330


,


331


within the beam structural layers


326


,


327


when the armatures


316


,


317


are in an open position. When the armatures


316


,


317


are in a closed position, the dielectric layer beneath the armature bias electrodes


330


,


331


, provides electrical isolation from the substrate bias electrodes


322


,


323


.




A first substrate bias electrode pad


336


is electrically connected to the first substrate bias electrode


322


by a first metal path


338


. Preferably, the first substrate bias electrode pad


336


, the first substrate bias electrode


322


, and the first metal path


338


comprise a single metal structure, which may be formed by depositing a single metal layer on the substrate


314


. A second substrate bias electrode pad


337


is electrically connected to the second substrate bias electrode


323


by a second metal path


339


. Preferably, the second substrate bias electrode pad


337


, the second substrate bias electrode


323


, and the second metal path


339


comprise a single metal structure, which may be formed by depositing a single metal layer on the substrate


314


.




A left input conducting dimple


342


and a left output conducting dimple


341


protrude from the first armature


316


toward the left RF input contact


356


and the left RF output contact


321


. A first conducting transmission line


340


is printed on the first armature


316


and electrically connects the left input conducting dimple


342


to the left output conducting dimple


341


. When the first armature


316


is in an open position, the conducting dimples


341


,


342


are electrically isolated from the left RF input contact


356


and the left RF output contact


321


by an air gap. The left RF input contact


356


and the left RF output contact


321


are separated from each other on the substrate


314


by a nonconducting gap.




The first armature


316


is comprised of the first beam structural layer


326


, the first conducting transmission line


340


, the first suspended armature bias electrode


330


, and a first via hole


332


. The first armature bias electrode


330


may be encapsulated within the first beam structural layer


326


so that dielectric material covers both the top and bottom of the first armature bias electrode


330


. The first armature bias electrode


330


extends over the majority of the first armature


316


, but the first armature bias electrode


330


is electrically isolated from the first conducting transmission line


340


. The first armature bias electrode


330


connects to the armature bias pad


334


through metal deposited in the first via hole


332


. When a voltage is applied between the first suspended armature bias electrode


330


and the first substrate bias electrode


322


, an electrostatic attractive force will pull the first suspended armature bias electrode


330


as well as the attached first armature


316


towards the first substrate bias electrode


322


, such that the left input conducting dimple


342


touches the left input contact


356


and the left output conducting dimple


341


touches the left output contact


321


. Since the conducting line


340


is fabricated to electrically connect the left input conducting dimple


342


to the left output conducting dimple


341


, the conducting line


340


and the dimples


341


,


342


bridge the gap between the RF input line


315


and the left RF output contact line


320


, thereby directing RF energy applied to the RF input line


315


to the left RF output line


320


.




Similarly, a right input conducting dimple


346


and a right output conducting dimple


347


protrude from the second armature


317


toward the right RF input contact


357


and the right RF output contact


326


. A second conducting transmission line


345


is printed on the second armature


317


and electrically connects the right input conducting dimple


346


to the right output conducting dimple


347


. When the second armature


317


is in an open position, the conducting dimples


346


,


347


are electrically isolated from the right RF input contact


357


and the right RF output contact


326


by an air gap. The right RF input contact


357


and the right RF output contact


326


are separated from each other on the substrate


314


by a nonconducting gap.




The second armature


317


is comprised of a second beam structural layer


327


, the second conducting transmission line


345


, a second suspended armature bias electrode


331


, and a second via hole


333


. The second armature bias electrode


331


may be encapsulated within the second beam structural layer


327


so that dielectric material covers both the top and bottom of the second armature bias electrode


331


. The second armature bias electrode


331


extends over the majority of the second armature


317


, but the second armature bias electrode


331


is electrically isolated from the second conducting transmission line


345


. The second armature bias electrode


331


connects to the armature bias pad


334


through metal deposited in the second via hole


333


. When a voltage is applied between the second suspended armature bias electrode


331


and the second substrate bias electrode


323


, an electrostatic attractive force will pull the second suspended armature bias electrode


331


as well as the attached second armature


317


towards the second substrate bias electrode


323


, such that the right input conducting dimple


346


touches the right RF input contact


357


and the right output conducting dimple


347


touches the right RF output contact


326


. Since the second conducting line


345


is fabricated to electrically connect the right input conducting dimple


347


to the right output conducting dimple


347


, the second conducting line


345


and the dimples


346


,


347


bridge the gap between the right RF input contact


357


and the right RF output contact


326


, thereby directing RF energy applied to the RF input line


315


to the right RF output line


325


.




The substrate


314


may be comprised of a variety of materials. If the monolithic MEMS switch


300


is intended for use with semiconductor devices, it is preferable to use a semiconducting substance such as gallium arsenide (GaAs) for the substrate


314


. This allows the circuit elements as well as the MEMS switch


300


to be fabricated simultaneously on the same substrate using standard integrated circuit fabrication technology such as metal sputtering and masking. For low-noise HEMT MMIC (high electron mobility transistor monolithic microwave integrated circuit) applications, indium phosphide (InP) can be used as the substrate


314


. Other possible substrate materials include high resistivity silicon, various ceramics, or quartz. The flexibility in the fabrication of the monolithic MEMS switch


300


allows the switch


300


to be used in a variety of circuits. This reduces the cost and complexity of circuits designed using the present MEMS switch.




The gaps between the dimples


341


,


342


,


346


,


347


and the input and output contacts


356


,


357


,


321


,


326


are smaller than the gap between the armatures


316


,


317


and the substrate


314


, as shown in FIG.


4


A. When actuated by electrostatic attraction, an armature


316


,


317


bends towards the substrate


314


. First, the dimples


341


,


342


,


346


,


347


contact their corresponding input and output contacts


356


,


357


,


321


,


326


at which point the armature


316


,


317


bends to allow the suspended armature bias electrode


330


,


331


to rest directly above the substrate bias electrode


322


,


323


, but isolated from the substrate bias electrode


322


,


323


by dielectric material in the beam structural layer. This fully closed state is shown in FIG.


4


B. The force of the metallic contact between the dimples


341


,


342


,


346


,


347


and the input and output contacts


356


,


357


,


321


,


326


is thus primarily dependent on the flexibility of the armature


316


,


317


and the geometry of the dimples and not on the attractive forces of the armature electrode


330


,


331


to the substrate electrode


322


,


323


.




The first beam structural layer


326


is the primary support of the first armature


316


and the second beam structural layer is the primary support of the second armature


317


. The first armature electrode


330


and the second armature electrode


331


are printed either on top of the corresponding beam structural layers


326


,


327


or are encapsulated within the beam structural layers


326


,


327


. The beam structural layer


326


,


327


is made from a stress-free material such as silicon nitride. The multiple layer design of the armature electrode


330


,


331


encapsulated within a resilient structural layer


326


,


327


gives each armature


316


,


317


enhanced mechanical properties.




An embodiment of a monolithic SPDT RF MEMS switch according to the present invention is pictured in

FIG. 7. A

monolithic SPDT switch according to the present invention provides significantly better performance than the hybrid switch discussed above. Isolation and insertion loss data for the switch shown in

FIG. 7

is presented in

FIGS. 5A and 5B

. As shown in

FIG. 5A

, the isolation provided by the switch is 40 dB or greater below 15 GHZ. Hence, the monolithic SPDT switch provides an improvement of up to 10 dB in isolation over the hybrid SPDT switch. The monolithic switch does not suffer from increased insertion loss. As shown in

FIG. 5D

, the insertion loss is less than 0.3 dB for frequencies below 15 GHz.




A layer of SiO


2


is used to support the armature


316


,


317


during the fabrication of the MEMS switch


300


, but it is removed in the last fabrication step, hence its term “sacrificial layer.” It is necessary to remove this sacrificial SiO


2


layer in order to free each armature


316


,


317


such that they are free to deflect out of plane of the substrate


314


. An HF etchant solution is typically used, and openings in the beam structural layers


326


,


327


allow the HF to etch the sacrificial layer beneath the armatures


316


,


317


in this last fabrication step as discussed below in conjunction with

FIGS. 6E and 6F

.





FIGS. 6A-6F

illustrate the manufacturing processes embodying the present invention used to fabricate the monolithic MEMS switch


300


of

FIGS. 3

,


4


and


7


.

FIGS. 6A-6F

present a profile of the switch taken along the section line


3





3


′ of FIG.


3


. Therefore,

FIGS. 6A-6F

specifically illustrate the steps required to fabricate the structures associated with the first armature


316


. However, the structures associated with both the first armature


316


and the second armature


317


may be fabricated simultaneously in the monolithic MEMS switch


300


. Therefore, the process discussion below addresses the steps used to fabricate the entire monolithic MEMS switch


300


.




The process begins with a substrate


314


. In a preferred embodiment, GaAs is used as the substrate. Other materials may be used, however, such as InP, ceramics, quartz or silicon. The substrate is chosen primarily based on the technology of the circuitry the MEMS switch is to be connected to so that the MEMS switch and the circuit may be fabricated simultaneously. For example, InP can be used for low noise HEMT MMICS (high electron mobility transistor monolothic microwave integrated circuits) and GaAs is typically used for PHEMT (pseudomorphic HEMT) power MMICS.





FIG. 6A

shows a profile of the MEMS switch


300


after the first step of depositing a metal


1


layer onto the substrate


314


for the armature bias pad


334


, substrate bias electrode pads


336


,


337


(not shown in FIG.


6


A), the output lines


320


,


325


, the input line


315


(not shown in

FIG. 6A

) and the substrate bias electrodes


322


,


323


is complete. The metal


1


layer may be deposited lithographically using standard integrated circuit fabrication technology, such as resist lift-off or resist definition and metal etch. In the preferred embodiment, gold (Au) is used as the primary composition of the metal


1


layer. Au is preferred in RF applications because of its low resistivity. In order to ensure the adhesion of the Au to the substrate, a 900 angstrom layer of gold germanium is deposited, followed by a 100 angstrom layer of nickel, and finally a 1500 angstrom layer of gold. The thin layer of gold germanium (AuGe) eutectic metal is deposited to ensure adhesion of the Au by alloying the AuGe into the semiconductor similar to a standard ohmic metal process for any III-V MESFET or HEMT.




Next, as shown in

FIG. 6B

, a support layer


372


is placed on top of the Au and etched so that the armatures


316


,


317


may be produced above the support layer


372


. The support layer


372


is typically comprised of 2 microns of SiO


2


which may be sputter deposited or deposited using PECVD (plasma enhanced chemical vapor deposition). Vias


332


,


333


are etched in the sacrificial layer


372


so that the metal of the armature bias pad


334


is exposed. The vias


332


,


333


definition may be performed using standard resist lithography and etching of the support layer


372


. Other materials besides SiO


2


may be used as a sacrificial layer


372


. The important characteristics of the sacrificial layer


372


are a high etch rate, good thickness uniformity, and conformal coating by the oxide of the metal already on the substrate


314


. The thickness of the oxide partially determines the thickness of the switch opening, which is critical in determining the voltage necessary to close the switch as well as the electrical isolation of the switch when the switch is open. The sacrificial layer


372


will be removed in the final step to release the armatures


316


,


317


, as shown in FIG.


6


F.




Another advantage of using SiO


2


as the support layer


372


is that SiO


2


can withstand high temperatures. Other types of support layers, such as organic polyimides, harden considerably if exposed to high temperatures. This makes the polyimide sacrificial layer difficult to later remove. The support layer


372


is exposed to high temperatures when the silicon nitride for the beam structural layers


326


,


327


is deposited, as a high temperature deposition is desired when depositing the silicon nitride to give the silicon nitride a lower HF etch rate.





FIG. 6C

shows the fabrication of the beam structural layers


326


,


327


. The beam structural layers


326


,


327


are the supporting mechanism of the armatures


316


,


317


and are preferably made out of silicon nitride, although other materials besides silicon nitride may be used. Silicon nitride is preferred because it can be deposited so that there is neutral stress in the beam structural layers


326


,


327


. Neutral stress fabrication reduces the bowing that may occur when the switch is actuated. The material used for the structural layers


326


,


327


must have a low etch rate compared to the support layer


372


so that the structural layers


326


,


327


are not etched away when the sacrificial layer


372


is removed to release the armatures


316


,


317


. The structural layers


326


,


327


are patterned and etched using standard lithographic and etching processes.




The beam structural layers


326


,


327


may be formed only below the armature bias electrodes


330


,


331


. If the beam structural layer


326


,


327


are fabricated only below the first armature bias electrodes


330


,


331


, bowing will occur in the armatures


316


,


317


when the switch is actuated, if the stresses in the structural layers


326


,


327


differs from the stresses in the armature bias electrodes


330


,


331


. The armatures


316


,


317


will bow either upwards or downwards, depending upon which material has the higher stress. Bowing can change the voltage required to activate the switch and, if the bowing is severe enough, can prevent the switch from either opening (bowed downward) or closing (bowed upward) regardless of the actuating voltage.




The beam structural layers


326


,


327


may also be formed both above and below the armature bias electrodes


330


,


331


to minimize the bowing in the armatures


316


,


317


. By fabricating the beam structural layers


326


,


327


on both sides of the armature bias electrodes


330


,


331


, the effect of different material stress is minimized because the portions of the beam structural layers


326


,


327


that are above the armature bias electrodes


330


,


331


will flex in the same manner as the portions of the beam structural layers


326


,


327


that are below the armature bias electrodes


330


,


331


. The armature bias electrodes


330


,


331


are constrained by the structural layers


326


,


327


and will therefore flex with the structural layers


326


,


327


so that the bowing in the switch is minimized.




In

FIG. 6D

, dimple receptacles


376


are etched into the beam structural layers


326


,


327


and the support layer


372


. The dimple receptacles


376


are openings where the conducting dimples


341


,


342


,


346


,


347


will later be deposited, as shown in FIG.


6


E. The dimple receptacles


376


are created using standard lithography and a dry etch of the beam structural layers


326


,


327


, followed by a partial etch of the support layer


372


. The openings in the structural layers


326


,


327


allow the dimples


341


,


342


,


346


,


347


to protrude through the structural layers


326


,


327


.




Next, as shown in

FIG. 6E

, a metal


2


layer is deposited onto the beam structural layers


326


,


327


. The metal


2


layer forms the suspended armature bias electrodes


330


,


331


, the conducting transmission lines


340


,


345


(not shown in FIG.


6


E), and the dimples


341


,


342


,


346


,


347


. In the preferred embodiment, the metal


2


layer is comprised of a sputter deposition of a thin film (200 angstroms) of Ti followed by a 1000 angstrom deposition of Au. The metal


2


layer must be conformal across the wafer and acts as a plating plane for the Au. The plating is done by using metal


2


lithography to open up the areas of the switch that are to be plated. The Au is electroplated by electrically contacting the membrane metal on the edge of the wafer and placing the metal


2


patterned wafer in the plating solution. The plating occurs only where the membrane metal is exposed to the plating solution to complete the electrical circuit and not where the electrically insulating resist is left on the wafer. After 2 microns of Au is plated, the resist is stripped off of the wafer and the whole surface is ion milled to remove the membrane metal. Some Au will also be removed from the top of the plated Au during the ion milling, but that loss is minimal because the membrane is only 1200 angstroms thick.




The result of this process is that the conducting transmission lines


340


,


345


and the dimples


341


,


342


,


346


,


347


are created in the metal


2


layer, primarily Au in the preferred embodiment. In addition, the Au fills the vias


332


,


333


and connects the armature bias electrodes


330


,


331


to the armature bias pad


334


. Au is a preferred choice for metal


2


because of its low resistivity. When choosing the metal for the metal


2


layer and the material for the beam structural layers


326


,


327


, it is important to select the materials such that the stress of the beam structural layers


326


,


327


such that the armatures


316


,


317


will not bow upwards or downwards when actuating. This is done by carefully determining the deposition parameters for the structural layer. Silicon nitride was chosen for this structural layer not only for its insulating characteristics but in large part because of the controllability of these deposition parameters and the resultant stress levels of the film.




The beam structural layers


326


,


327


are then lithographically defined and etched to complete the switch fabrication. Finally, the sacrificial layer


372


is removed to release the armature


316


, as shown in FIG.


6


F.




If the sacrificial layer


372


is comprised of SiO


2


, then it will typically be wet etched away in the final fabrication sequence by using a hydrofluoric acid (HF) solution. The etch and rinses are performed with post-processing in a critical point dryer to ensure that the armatures


316


,


317


do not come into contact with the substrate


314


when the sacrificial layer


372


is removed. If contact occurs during this process, device sticking and switch failure are likely. Contact is prevented by transferring the switch from a liquid phase (e.g. HF) environment to a gaseous phase (e.g.air) environment not directly, but by introducing a supercritical phase in between the liquid and gaseous phases. The sample is etched in HF and rinsed with DI water by dilution, so that the switch is not removed from a liquid during the process. DI water is similarly replaced with ethanol. The sample is transferred to the critical point dryer and the chamber is sealed. High pressure liquid CO


2


replaces the ethanol in the chamber, so that there is only CO


2


surrounding the sample. The chamber is heated so that the CO


2


changes into the supercritical phase. Pressure is then released so that the CO


2


changes into the gaseous phase. Now that the sample is surrounded only by gas, it may be removed from the chamber into room air. A side elevational view of the MEMS switch


300


after the support layer


372


has been removed is shown in FIG.


6


F.




As can be surmised by one skilled in the art, there are many more configurations of the present invention that may be used other than the ones presented herein. For example, other metals can be used to form the conducting transmission line layer, the bias electrodes and pads, and the input and output lines. Also, the beam structural layer and the sacrificial layer may be fabricated with materials other than silicon nitride and silicon dioxide. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it be understood that it is the following claims, including all equivalents, that are intended to define the scope of this invention.



Claims
  • 1. A method of switching an RF signal applied at an input port to one of two output ports, comprising the steps of:providing a monolithic SPDT RF MEMS switch comprising: a substrate; an input line on top of the substrate; a first output line on top of the substrate and separated from the input line; a first substrate electrode on top of the substrate, located adjacent to but separated from the input line and the first output line; a second output line on top of the substrate and separated from the input line; a second substrate electrode on top of the substrate, located adjacent to but separated from the input line and the second output line; a first armature comprising: a first armature lower structural layer having a first end mechanically connected to the substrate and a second end positioned over the input line and first output line; a first conducting transmission line located at the second end of the first armature structural layer and suspended above the input line and the first output line; and a first suspended armature electrode disposed above and in contact with the first armature lower structural layer and suspended above the first substrate electrode; and a second armature comprising: a second armature lower structural layer having a first end mechanically connected to the substrate and a second end positioned over the input line and the second output line; a second conducting transmission line located at the second end of the second armature structural layer and suspended above the input line and the second output line; and a second suspended armature electrode disposed above and in contact with the second armature lower structural layer and suspended above the second substrate electrode; and connecting the input port to the input line; connecting one of the output ports to the first output line and the other output port to the second output line; and applying a voltage between a selected one of the two substrate electrodes and the armature electrode suspended above the substrate electrode so as to cause the armature suspended above the selected substrate electrode to close.
  • 2. The method of claim 1, wherein the first suspended armature electrode and the second suspended armature electrode are electrically connected to a common armature electrode pad and the voltage is applied between one of the two substrate electrodes and the common armature electrode pad.
  • 3. The method of claim 1, wherein the armature suspended above the non-selected substrate electrode is in an open position.
  • 4. The method of claim 1, wherein the first transmission line further comprises a first set of one or more contact dimples that project below a bottom surface of the first armature and the second transmission line further comprises a second set of one or more contact dimples that project below a bottom surface of the second armature.
  • 5. The method of claim 4, wherein a gap between the first set of one or more contact dimples and a plane defined by the top of the input line and the first output line is less than a gap between the first armature lower structural layer and the substrate, and wherein the first set of one or more contact dimples mechanically and electrically contact the input line and the first output line when the first armature is in the closed position and a gap between the second set of one or more contact dimples and a plane defined by the top of the input line and the second output line is less than a gap between the second armature lower structural layer and the substrate, and wherein the second set of one or more contact dimples mechanically and electrically contact the input line and the second output line when the second armature is in the closed position.
  • 6. The method of claim 5 wherein the first suspended armature electrode, the second suspended armature electrode, the first set of one or more contact dimples, and the second set of one or more contact dimples each comprise layers of gold and titanium.
  • 7. The method of claim 1 wherein the input pad, the first output pad, the second output pad, the first substrate electrode, the second substrate electrode, the first suspended armature electrode and the second suspended armature electrode each comprise layers of gold, nickel, and gold germanium.
  • 8. The method of claim 1, wherein the monolithic SPDT RF MEMS switch further comprises:a first armature structural layer disposed above and in contact with the first armature lower structural layer and the first suspended armature electrode; and a second armature structural layer disposed above and in contact with the second armature lower structural layer and the second suspended armature electrode.
  • 9. The method of claim 8, wherein the structural layers comprise silicon nitride.
  • 10. A micro-electro-mechanical switch, comprisinga) a substrate; b) an input line on top of the substrate; c) a first output line on top of the substrate and separated from the input line; d) a first substrate electrode on top of the substrate, located adjacent to but separated from the input line and the first output line; e) a second output line on top of the substrate and separated from the input line; f) a second substrate electrode on top of the substrate, located adjacent to but separated from the input line and the second output line; g) a first armature comprising: 1) a first armature lower structural layer having a first end mechanically connected to the substrate and a second end positioned over the input line and first output line; 2) a first conducting transmission line located at the second end of the first armature structural layer and suspended above the input line and the first output line; and 3) a first suspended armature electrode disposed above and in contact with the first armature lower structural layer and suspended above the first substrate electrode; and h) a second armature comprising: 1) a second armature lower structural layer having a first end mechanically connected to the substrate and a second end positioned over the input line and the second output line; 2) a second conducting transmission line located at the second end of the second armature structural layer and suspended above the input line and the second output line; and 3) a second suspended armature electrode disposed above and in contact with the second armature lower structural layer and suspended above the second substrate electrode.
  • 11. The micro-electro-mechanical switch of claim 10 wherein the first conducting transmission line is suspended above the input line and the first output line when the first armature is in an open position, and mechanically and electrically contacts the input line and the first output line when the first armature is in a closed position and the second conducting transmission line is suspended above the input line and the second output line when the second armature is in an open position, and mechanically and electrically contacts the input line and the second output line when the second armature is in a closed position.
  • 12. The micro-electro-mechanical switch of claim 11 wherein the first armature is in a closed position when the second armature is in an open position and the first armature is in an open position when the second armature is in a closed position.
  • 13. The micro-electro-mechanical switch of claim 10 wherein the first suspended armature electrode and the second suspended armature electrode are electrically connected to an armature electrode bias pad.
  • 14. The micro-electro-mechanical switch of claim 10 wherein the first suspended armature electrode is connected to a first armature electrode bias pad and the second suspended armature electrode is electrically connected to a second armature electrode bias pad, and the first and second armature electrode bias pads are electrically isolated from each other.
  • 15. The micro-electro-mechanical switch of claim 10 wherein the first transmission line further comprises a first set of one or more contact dimples that project below a bottom surface of the first armature and the second transmission line further comprises a second set of one or more contact dimples that project below a bottom surface of the second armature.
  • 16. The micro-electro-mechanical switch of claim 15 wherein a gap between the first set of one or more contact dimples and a plane defined by the top of the input line and the first output line is less than a gap between the first armature lower structural layer and the substrate, and wherein the first set of one or more contact dimples mechanically and electrically contact the input line and the first output line when the first armature is in the closed position and a gap between the second set of one or more contact dimples and a plane defined by the top of the input line and the second output line is less than a gap between the second armature lower structural layer and the substrate, and wherein the second set of one or more contact dimples mechanically and electrically contact the input line and the second output line when the second armature is in the closed position.
  • 17. The micro-electro-mechanical switch of claim 16 wherein the first suspended armature electrode, the second suspended armature electrode, the first set of one or more contact dimples, and the second set of one or more contact dimples each comprise layers of gold and titanium.
  • 18. The micro-electro-mechanical switch of claim 10 wherein the input pad, the first output pad, the second output pad, the first substrate electrode, the second substrate electrode, the first suspended armature electrode and the second suspended armature electrode each comprise layers of gold, nickel, and gold germanium.
  • 19. The micro-electro-mechanical switch of claim 10 further comprising:a first armature structural layer disposed above and in contact with the first armature lower structural layer and the first suspended armature electrode; and a second armature structural layer disposed above and in contact with the second armature lower structural layer and the second suspended armature electrode.
  • 20. The micro-electro-mechanical switch of claim 19, wherein the structural layers comprise silicon nitride.
US Referenced Citations (5)
Number Name Date Kind
5121089 Larson Jun 1992 A
6046659 Loo et al. Apr 2000 A
6160230 McMillan et al. Dec 2000 A
6307452 Sun Oct 2001 B1
6310526 Yip et al. Oct 2001 B1