The invention relates to the field of resistance heating in industrial resistance furnaces and, more specifically, to monolithic cement thermal heating blocks.
The design process and use of industrial resistance furnaces outlined the following main requirements for heating elements: high efficiency, reliability, durability, and nonconductivity.
According to M. A. Mikheev and I. M. Mikheeva, the most efficient heat transfer process from hot to cold compared to direct heating and other forms of heat transfer is the method of contact conductivity (Principles of Heat Transfer [in Russian], Moscow, Energiya Press, 1977, p. 17). In Calculation and design of electric resistance heaters, LA. Feldman described a maximum efficient shape for a heating resistance element made of a round zigzag-shaped wire (Moscow & Leningrad, Energiya Press, 1966, p. 18).
The closest heating element which was selected as a prototype is described in Patent No. Jia 2311742 of the Russian Federation of Jan. 2, 2003, IPC H05B 3/14. The said heating element is made of a ferrous material with a resistance element, located in the insulating layer, coated with the composite thermal and protective layers, in which heat is transferred from the resistance element to the surface through a composite insulating structure made of a few ceramic and organic matters. The insulating composite structure is designed for smoothing variations in the resistance element and the material of the heating element of a coefficient of thermal expansion (CTE). The resistance element is coated with an insulating layer from oxidation. The heating element is done by successive pressing in a few molds and the final firing.
The disadvantages of said heating element are as follows.
The object of the present invention is to design a monolithic nonconductive heating block, which combines high efficiency, reliability, and manufacturability. The technical result of the invention is to design a monolithic nonconductive heating block, which combines high efficiency, reliability, and manufacturability.
A monolithic thermal heating block is made of nonelectrically but thermally-conductive refractory phosphate concrete. It is filled with a heating element that comprises a zigzag-shaped filament heater and strip terminals. The area and circumference of the filament and the area and circumference of a terminal are in a ratio of not less than 1:4 and the sites where the filament heater is connected to the terminals are in the form of conical recesses in the monolithic thermal heating block.
A monolithic thermal heating block (
The heating element (2) (
The aforementioned conditions eliminate the operating defects of the furnace, such as burnout of the heating element in the sites where the heater connects with the terminal and high temperature on the terminal which leads to burnout of a clamping device of power supply cable with the terminals, namely:
The monolithic phosphate concrete block is homogeneous and has the same thermal conductivity along all three ordinates, which ensures, given that the symmetry axes of the heating element coincide with the symmetry axes of the heating block, uniform temperature distribution along the entire block and each plane of the block, including temperature equalization on the working surface of the block. The heating blocks are connected freely in the panel of any size for the resistance furnace of the required capacity.
Relative porosity of up to 20% of crystalline phosphate concrete, on the one hand, and high strength of up to 70 MPa, on the other hand, provide damping of thermal expansion of the metal heating element, which increases its plasticity with the temperature increase, without damaging the thermal block itself.
The strength and hardness of the thermal heating block made of phosphate concrete allow using it on the resistance furnace bottoms, which reduces power consumption up to 35%.
The claimed invention is implemented on a bogie-type hearth resistance furnace with a working volume of 1.2 cubic meters and a working temperature of +1150° C. The furnace is heated by 28 monolithic thermal heating blocks, the size of 400×400×30 mm with electric resistance of 1.5 Ω each, gathered together in 5 panels that allows to reach 3 phase electrical power up to 30 kW.
Number | Date | Country | Kind |
---|---|---|---|
2011141547 | Oct 2011 | RU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/RU2012/000842 | 10/10/2012 | WO | 00 | 4/13/2014 |