In the prototypical thermionic converter depicted in
In U.S. Pat. No. 3,169,200, a multilayer converter is described which comprises two electrodes, intermediate elements and oxide spacers disposed between each adjacent element. A thermal gradient is maintained across the device, and opposite faces on each of the elements serve as emitter and collector. Electrons tunnel through each oxide barrier to a cooler collector, thereby generating a current flow through a load connected to the two electrodes. One drawback is that the device must contain some 10.6 elements in order to provide reasonable efficiency, and this is difficult to manufacture. A further drawback results from the losses due to thermal conduction: although the oxide spacers have a small contact coefficient with the emitter and collector elements, which minimizes thermal conduction, the number of elements required for the operation of the device means that thermal conduction is not insignificant.
A further issue that arises with gap diodes is parasitic heat loss. Although a vacuum gap by itself is a perfect insulator, heat may flow from the hot side to the cold side through the spacers and the edge seals. Even if a material with low thermal conductivity is chosen for spacers and edge seals, the heat losses can be substantial if the substrates are chosen from a metal or semiconductor material due to the fact that the spacers and seals are very thin.
In WO03090245, a gap diode is disclosed in which a tubular actuating element serves as both housing for a pair of electrodes and as a means for controlling the separation between the electrode pair. In a preferred embodiment, the tubular actuating element is a quartz piezo-electric tube. In accordance with another embodiment of the present invention, a gap diode is disclosed which is fabricated by micromachining techniques in which the separation of the electrodes is controlled by piezo-electric, electrostrictive or magnetostrictive actuators. Preferred embodiments of gap diodes include Cool Chips, Power Chips, and photoelectric converters.
However, active elements such as piezo actuators may be complicated and costly, and thus the simplicity of a layered structure to provide separation of electrodes is desirable.
U.S. Pat. Nos. 2,915,652 and 3,041,481 describe thermionic converters in which the emitter and collector are arranged in a novel arrangement and which also comprise the addition of electric and magnetic fields so as to provide improved converter efficiency and functioning. The emitter and collector are arranged side by side and a third electrode is positioned above and facing the emitter and collector. A transverse magnetic field, in addition to the electric field provided by the third electrode curves and directs the emitted electrons to the collector. This arrangement counters the effects of space charge and minimizes the transfer of heat between the emitter and collector, thereby increasing efficiency. However, the abovementioned patents disclose no method for constructing such potentially valuable devices. Furthermore, such arrangements would be difficult to construct in a manner similar to a vacuum tube due to the relatively large thermal gradients within the device and during start up and shut down.
Avto Metals:
In what follows, “Avto Metals” is to be understood as a metal film having a modified shape, which alters the electronic energy levels inside the modified electrode, leading to a decrease in electron work function as described in the foregoing, and illustrated in
In U.S. Pat. Nos. 6,281,514, 6,531,703 and 6,495,843 and WO9940628, a method is disclosed for promoting the passage of elementary particles at or through a potential barrier comprising providing a potential barrier having a geometrical shape for causing de Broglie interference between the elementary particles. In another embodiment, the invention provides an elementary particle-emitting surface having a series of indents. The depth of the indents is chosen so that the probability wave of the elementary particle reflected from the bottom of the indent interferes destructively with the probability wave of the elementary particle reflected from the surface. This results in the increase of tunneling through the potential barrier. When the elementary particle is an electron, electrons tunnel through the potential barrier, thereby leading to a reduction in the effective work function of the surface. In further embodiments, the invention provides vacuum diode devices, including a vacuum diode heat pump, a thermionic converter and a photoelectric converter, in which either or both of the electrodes in these devices utilize the elementary particle-emitting surface. In yet further embodiments, the invention provides devices in which the separation of the surfaces in such devices is controlled by piezo-electric positioning elements. A further embodiment provides a method for making an elementary particle-emitting surface having a series of indents.
In U.S. Pat. No. 6,117,344 and WO9947980, methods are described for fabricating nano-structured surfaces having geometries in which the passage of elementary particles through a potential barrier is enhanced. The methods use combinations of electron beam lithography, lift-off, and rolling, imprinting or stamping processes.
In U.S. Pat. No. 6,680,214, a method is disclosed for the induction of a suitable band gap and electron emissive properties into a substance, in which the substrate is provided with a surface structure corresponding to the interference of electron waves. Lithographic or similar techniques are used, either directly onto a metal mounted on the substrate, or onto a mold which then is used to impress the metal. In a preferred embodiment, a trench or series of nano-sized trenches are formed in the metal.
In WO03/083177, the use of electrodes having a modified shape and a method of etching a patterned indent onto the surface of a modified electrode, which modifies the electronic energy levels inside the modified electrode, leading to a decrease in electron work function is disclosed. The method comprises creating an indented or protruded structure on the surface of a metal. The depth of the indents or height of protrusions is equal to α, and the thickness of the metal is Lx+α. The minimum value for α is chosen to be greater than the surface roughness of the metal. Preferably the value of α is chosen to be equal to or less than Lx/5. The width of the indentations or protrusions is chosen to be at least 2 times the value of α. Typically the depth of the indents is =λ/2, wherein λ is the de Broglie wavelength, and the depth is greater than the surface roughness of the metal surface. Typically the width of the indents is >>λ, wherein λ is the de Broglie wavelength. Typically the thickness of the indents is a multiple of the depth, preferably between 5 and 15 times the depth, and preferably in the range 15 to 75 nm.
From the foregoing, it may be appreciated that a need has arisen for a thermionic device that can operate at lower temperatures and with lower parasitic losses than current devices. It is the intention of this invention to provide a thermionic converter having these qualities.
The present invention is directed towards a thermionic converter in which the hot and cold electrodes are placed side by side onto a single substrate, preferably a die from ceramic, glass, or a semiconductor material wafer. The chemical composition of the emitter and collector is engineered to provide a substantial electron emission current at the desired temperature. For a high efficiency converter, the collector work function must be lower than the emitter work function since the output voltage is approximately the difference in work function potential. In one preferred embodiment, the collector electrode is made from the same material as the emitter electrode having the addition of an Avto Metal pattern of nanosized indents, as described above, so as to lower the work function. The present invention further maintains that the die is cut through to reduce the thermal losses between the hot and cold side. Another component of the present invention is a meander-like path cut to allow the required electrical connections to the electrodes while minimizing conductive heat losses. Electrons are guided from the emitter to the collector by means of static electromagnetic fields. In one embodiment, electrostatic control electrodes are constructed to match the size and shape of the underlying electrodes and are arranged above and facing the emitter and collector electrodes.
A first advantage of this present invention is a device having a lower parasitic losses and lower operation temperatures as compared to prior art devices. These advantages further include reduced radiative heat transfer, less heat transferred through electrical connections, fewer and simpler serial connections and no space charge effect.
Another advantage of this invention is the ability to have multiple emitter and collector electrodes fabricated and connected on a single die, thereby simplifying the device and rendering it relatively inexpensive to construct.
A further advantage of the present invention is its compatibility with Avto Metals, thereby providing the most efficient and cost effective choice of materials for the electrodes.
Another advantage of the present invention is the potential for mass manufacturing with standard semiconductor fabrication processes at low costs, due to the monolithic structure of the converter. Similarly, a multiplicity of identical devices can be manufactured on a larger wafer and later be separated by dicing or laser cutting to form individual devices.
For a more complete explanation of the present invention and the technical advantages thereof, reference is now made to the following description and the accompanying drawings, in which:
Embodiments of the present invention and their technical advantages may be better understood by referring to
Referring back to
While the device of the present invention may comprise just one hot electrode 1 and one cold electrode 2, in the embodiment displayed in
One primary benefit of this inventive method is that all electrodes are electrically isolated from the vacuum enclosure and the heat or cold fingers or heat pipes. Therefore, multiple modules 15 may be easily configured in a series connection to obtain the desired output voltage, as displayed in
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention.
The present application claims the benefit of Provisional Application No. 60/995,000 filed 24 Sep. 2007, which application is included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2915652 | Joseph et al. | Dec 1959 | A |
3041481 | Peters, Jr. et al. | Jun 1962 | A |
3169200 | Huffman et al. | Feb 1965 | A |
4712039 | Hong | Dec 1987 | A |
5722242 | Edelson | Mar 1998 | A |
6064137 | Cox | May 2000 | A |
6117344 | Cox et al. | Sep 2000 | A |
6229083 | Edelson | May 2001 | B1 |
6281514 | Tavkhelidze | Aug 2001 | B1 |
6495843 | Tavkelidze | Dec 2002 | B1 |
6531703 | Tavkhelidze | Mar 2003 | B1 |
6680214 | Tavkhelidze et al. | Jan 2004 | B1 |
7557487 | Tanielian | Jul 2009 | B2 |
20050147841 | Tavkhelidze et al. | Jul 2005 | A1 |
20060006515 | Cox | Jan 2006 | A1 |
20070013055 | Walitzki | Jan 2007 | A1 |
20090079297 | Walitzki | Mar 2009 | A1 |
20090127549 | Walitzki | May 2009 | A1 |
Number | Date | Country |
---|---|---|
9947980 | Sep 1999 | WO |
03083177 | Oct 2003 | WO |
03090245 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20090079297 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60995000 | Sep 2007 | US |