All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
Increasing the viscosity of materials and/or using components with lower vapor pressure and/or high boiling points may enable more streamlined production methods and provide better thermomechanical properties for many applications by increasing the physical interactions between chains, increasing the average weight of monomers, the sterical degrees of freedom of a monomer, e.g., its potential to rotate around certain chemical bonds, etc. Hence, it may be advantageous to provide curable resins with components having lower vapor pressure to enable high-temperature printing processes.
Additive manufacturing (e.g., lithography-based additive manufacturing (L-AM)) techniques include a variety of techniques to fabricate objects, such as three-dimensional objects, out of photo-polymerizable materials. It has conventionally proven difficult to form many medical appliances through additive manufacturing techniques. One issue is that existing materials used for additive manufacturing are not biocompatible, much less appropriate for use in an intraoral environment or other part of the human body. Another issue is that existing materials used for additive manufacturing are often not viscous enough to form the precise and/or customizable features required of many appliances. Further, many current additive manufacturing techniques have relatively low curing or reaction temperatures, both for safety and cost concerns, which, for many medical appliances (including dental appliances), undermines the ability to produce a product that is stable at and/or above human body temperature. Yet another issue is that existing materials used for additive manufacturing do not provide the physical, chemical, and/or thermomechanical properties (elongation, time stress-relaxation, modulus, durability, toughness, etc.) desired of aligners, other dental appliances, hearing aids, and/or many medical devices. Hence, existing materials used for additive manufacturing lack many of the properties desired in medical devices, such as the ability to impart forces, torques, moments, and/or other movements that are accurate and consistent with a treatment plan.
Increasing the viscosity of materials and/or using components with lower vapor pressure and/or high boiling points may enable more streamlined production methods and provide better thermomechanical properties for many applications by increasing the physical interactions between chains, increasing the average weight of monomers, the sterical degrees of freedom of a monomer, e.g., its potential to rotate around certain chemical bonds, etc.
Against the issues referenced herein, the present disclosure aims to provide curable compositions for use in, e.g., high temperature lithography-based photopolymerization processes. These curable compositions may be used in a variety of applications, including for the formation of medical devices and/or those items used in an intraoral environment, e.g., intraoral devices, such as aligners, expanders, or spacers. Particularly in view of the challenges around the use of printable resins at elevated temperatures, the present disclosure provides photo-curable resins that comprise one or more polymerizable monomers having a low vapor pressure, a high boiling point, and, in various cases, an ability to act as viscosity modifiers, glass transition temperature modifiers, and cross-linkers for other polymerizable components present in the curable compositions provided herein. Such polymerizable monomers can provide (e.g., upon photo-curing) polymeric mateirals with properties that are particularly well suited for applications in medical devices, e.g., orthodontic appliances, and can hence address the demand for photo-curable compositions that allow the productions of materials with a wide range of specific mechanical properties.
In various aspects, the present disclosure provides a polymerizable monomer according to Formula (I):
wherein:
X is O, S, NR6, or SiR7R8;
R2 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R2 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R3, R4, and R5 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9; or R4 and R5 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein Y is O, S, NH, or C(O)O;
n is an integer from 0 to 6;
R6, R7, and R8 are independently H or substituted or unsubstituted C1-6 alkyl; and
R9 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some aspects, R3 is H. In some aspects, R4 is H. In some aspects, R1 is H or methyl. In some aspects, X is O. In some aspects, R5 is H. In some aspects, R2 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some aspects, the polymerizable monomer is selected from the group consisting of:
In some aspects, R5 is substituted or unsubstituted C1-6 alkoxy. In some aspects, the polymerizable monomer is:
In some aspects, X is S or SiR7R8 and R5 is substituted or unsubstituted C1-6 alkyl. In some aspects, the polymerizable monomer is:
In various aspects, provided herein is a polymerizable monomer according to Formula (II):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R10 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R11 and R12 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R13; or R11 and R12 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R13 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some aspects, R11 is H. In some aspects, R12 is H. In some aspects, R1 is H or methyl. In some aspects, R10 is substituted or unsubstituted C1-6 alkoxy. In some aspects, the polymerizable monomer is:
In various aspects, provided herein is a polymerizable monomer according to Formula (III):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R14 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R15 and R16 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R17; or R15 and R16 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R17 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some aspects, R1 is H or methyl. In some aspects, R14 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some aspects, R14 is substituted or unsubstituted aryl. In some aspects, R15 and R16 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some aspects, the polymerizable monomer is:
In various aspects, provided herein is a polymerizable monomer according to Formula (IV):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R18 is substituted C2-6 alkyl, substituted or unsubstituted C3-6 alkyl, or substituted or unsubstituted C3-6 heteroalkyl; and
R19 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, or substituted or unsubstituted C1-6 carboxy.
In some aspects, R1 is H or methyl. In some aspects, R18 is substituted C2-6 alkyl and R19 is unsubstituted C1-6 alkyl. In some aspects, the polymerizable monomer is:
In various aspects, provided herein is a polymerizable monomer according to Formula (V):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R20 and R22 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R28;
R21 and R23 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R29;
R24 and R26 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X3—(CH2)c—R30;
R25 and R27 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X4—(CH2)d—R31;
X1, X2, X3 and X4 are each independently a bond, O, or S;
a, b, c and d are each independently integers from 0 to 6; and
R28, R29, R30 and R31 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some aspects, the polymerizable monomer is selected from the group consisting of:
In various aspects, provided herein is a polymerizable monomer according to Formula
(VI):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R32 and R34 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X5—(CH2)e—R42;
R33 and R35 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43;
R36 and R38 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X7—CH2)g—R44;
R37 and R39 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X8—(CH2)h—R45;
R40 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 alkoxy, substituted or unsubstituted C3-6 thioalkoxy, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy, or —X9—(CH2)i—R46;
R41 is H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X10—(CH2)j—R47;
X5, X6, X7, X8, X9 and X10 are each independently a bond, O, or S;
e, f, g, h, i and j are each independently integers from 0 to 6; and
R42, R43, R44, R45, R46 and R47 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some aspects, R1 is H or methyl. In some aspects, the polymerizable monomer is selected from the group consisting of:
In various aspects, provided herein is a polymerizable monomer according to Formula (IX):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R77 is nitrile, substituted or unsubstituted C1-6 alkyl cyanide, or substituted or unsubstituted C1-6 carbonyl;
R78 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R79 and R80 are each independently H, C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; and
R81 is substituted or unsubstituted C1-6 alkoxy.
In some aspects, the polymerizable monomer according to any one of Formulas (I)-(IV) and (IX) has a vapor pressure of at most 12 Pa at 60° C. In some aspects, such polymerizable monomer has a vapor pressure from 2 Pa to 10 Pa at 60° C. In some aspects, such polymerizable monomer has a vapor pressure from 2 Pa to 5 Pa at 60° C. In some aspects, such polymerizable monomer has a mass loss of less than 0.5% after heating at 90° C. for 2 h. In some aspects, such
polymerizable monomer has a mass loss from 0.1% to 0.45% after heating at 90° C. for 2 h. In some aspects, such polymerizable monomer has a mass loss from 0.05% to 0.25% after heating at 90° C. for 2 h. In some aspects, such polymerizable monomer has a melting point of at least 30° C. In some aspects, one or more of R1-R47 or R77-R81 of the polymerizable monomer according to any one of Formulas (I)-(IV) and (IX) are substituted by a halogen, OH, NH2, NH(C1-6 alkyl), N(C1-6 alkyl)(C1-6 alkyl), or C1-3 alkyl.
In various aspects, the present disclosure provides a photo-curable resin comprising: a polymerizable monomer of any one of claims 1-42; and a photo-initiator. In some instances, the polymerizable monomer reduces a viscosity of the photo-curable resin by at least 5% compared to a resin that does not comprise the polymerizable monomer. In some instances, the polymerizable monomer reduces the viscosity of the photo-curable resin by at least 10%, 20%, 30%, 40%, or 50%. In some instances, such resin can further comprise a telechelic oligomer, a telechelic polymer, or a combination thereof. In some instances, the telechelic oligomer has a number-average molecular weight of greater than 500 Da but less than 3 kDa. In some instances, the telechelic polymer has a number-average molecular weight of greater than 5 kDa but less than 50 kDa. In some instances, the oligomer and the telechelic polymer comprise a photoreactive moiety at both of their termini. In some instances, the photoreactive moiety is an acrylate, methacrylate, vinyl acrylate, vinyl methacrylate, allyl ether, silene, alkyne, alkene, vinyl ether, maleimide, fumarate, maleate, itoconate, or styrenyl moiety. In some instances, the photoreactive moiety is an acrylate or a methacrylate. In some instances, the photo-curable resin is capable of being 3D printed at a temperature greater than 25° C. In some instances, the temperature is at least 30° C., 40° C., 50° C., 60° C., 80° C., or 100° C. In some instances, the photo-curable resin has a viscosity from 30 cP to 50,000 cP at a printing temperature. In some instances, the printing temperature is from 20° C. to 150° C. In some instances, the photo-curable resin comprises less than 20 wt % hydrogen bonding units. In some instances, the photo-curable resin further comprises a cross-linking modifier, a light blocker, a solvent, a glass transition temperature modifier, or a combination thereof. In some instances, the photo-curable resin further comprises 0.5-99.5 wt %, 1-99 wt %, 10-95 wt %, 20-90 wt %, 25-60 wt %, or 35-50 wt % of the polymerizable monomer, the oligomer, or a combination thereof. In some instances, the photo-curable resin is capable of undergoing polymerization-induced phase separation during photo-curing. In some instances, the photo-curable resin, when polymerized, comprises one or more polymeric phases. In some instances, at least one polymeric phase of the one or more polymeric phases is an amorphous phase having a glass transition temperature (Tg) of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some instances, the polymerizable monomer, in a polymerized form, is a component of the at least one amorphous phase that has the Tg of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some instances, at least one polymeric phase of the one or more polymeric phases is a crystalline phase comprising polymeric material. In some instances, the crystalline polymeric material has a melting point of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some instances, at least one polymeric phase of the one or more polymeric phases is 3-dimensional and has at least one dimension with a length of less than 1000 μm, less than 500 μm, less than 250 μm, or less than 200 μm.
In various aspects, the present disclosure provides a polymeric material formed from the photo-curable resin of any one of claims 43-65. In some instances, the polymeric material has one or more of the following characteristics: (A) a storage modulus greater than or equal to 200 MPa; (B) a flexural stress and/or flexural modulus of greater than or equal to 1.5 MPa remaining after 24 hours in a wet environment at 37° C.; (C) an elongation at break greater than or equal to 5% before and after 24 hours in a wet environment at 37° C.; (D) a water uptake of less than 25 wt % when measured after 24 hours in a wet environment at 37° C.; (E) transmission of at least 30% of visible light through the polymeric material after 24 hours in a wet environment at 37° C.; and (F) comprises a plurality of polymeric phases, wherein at least one polymeric phase of the one or more polymeric phases has a Tg of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some instances, the polymeric material has at least two characteristics of (A), (B), (C), (D), (E) and (F). In some instances, the polymeric material has at least three characteristics of (A), (B), (C), (D), (E) and (F). In some instances, wherein the polymeric material has at least four characteristics of (A), (B), (C), (D), (E) and (F). In some instances, the polymeric material has at least five characteristics of (A), (B), (C), (D), (E) and (F). In some instances, the polymeric material has all of the characteristics (A), (B), (C), (D), (E) and (F). In some instances, the polymeric material is characterized by a water uptake of less than 20 wt %, less than 15 wt %, less than 10 wt %, less than 5 wt %, less than 4 wt %, less than 3 wt %, less than 2 wt %, less than 1 wt %, less than 0.5 wt %, less than 0.25 wt %, or less than 0.1 wt % when measured after 24 hours in a wet environment at 37° C. In some instances, the polymeric material has greater than 60% conversion of double bonds to single bonds compared to the photo-curable resin, as measured by FTIR. In some instances, the polymeric material has an ultimate tensile strength from 10 MPa to 100 MPa, from 15 MPa to 80 MPa, from 20 MPa to 60 MPa, from 10 MPa to 50 MPa, from 10 MPa to 45 MPa, from 25 MPa to 40 MPa, from 30 MPa to 45 MPa, or from 30 MPa to 40 MPa after 24 hours in a wet environment at 37° C. In some instances, the polymeric material is characterized by an elongation at break greater than 10%, an elongation at break greater than 20%, an elongation at break greater than 30%, an elongation at break of 5% to 250%, an elongation at break of 20% to 250%, or an elongation at break value between 40% and 250% before and after 24 hours in a wet environment at 37° C. In some instances, the polymeric material is characterized by a storage modulus of 0.1 MPa to 4000 MPa, a storage modulus of 300 MPa to 3000 MPa, or a storage modulus of 750 MPa to 3000 MPa after 24 hours in a wet environment at 37° C. In some instances, the polymeric material has a flexural stress and/or flexural modulus of 400 MPa or more, 300 MPa or more, 200 MPa or more, 180 MPa or more, 160 MPa or more, 120 MPa or more, 100 MPa or more, 80 MPa or more, 70 MPa or more, 60 MPa or more, after 24 hours in a wet environment at 37° C. In some instances, at least 40%, 50%, 60%, or 70% of visible light passes through the polymeric material after 24 hours in a wet environment at 37° C. In some instances, the polymeric material is biocompatible, bioinert, or a combination thereof. In some instances, the polymeric material is capable of being 3D printed.
Further provided herein is a polymeric film comprising a polymeric material of the present disclosure. In some instances, the film has a thickness of at least 100 μm and not more than 3 mm.
Further provided herein is a device comprising a polymeric material of the present disclosure or a polymeric film of the present disclosure.
Further provided herein is a medical device comprising a polymeric material of the present disclosure or a polymeric film of the present disclosure.
Further provided herein is a medical device comprising a polymer, wherein the polymer comprises a monomer of Formula (VII):
wherein:
X is N or CR59;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R48, R49, and R50 are each independently H, nitrile, substituted or unsubstituted C1-6 alkyl cyanide, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y1—(CH2)a—R60 ; or R48 and R49 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo-(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R51, R52, R53 and R54 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y2—(CH2)b—R61;
R55, R56, R57 and R58 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y3—(CH2)c—R62;
R59 is H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y4—(CH2)d—R63;
Y1, Y2, Y3, and Y4 are each independently a bond, O, or S;
a, b, c, and d are each independently integers from 0 to 6; and
R60, R61, R62 and R63 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
Further provided herein is a medical device comprising a polymer, wherein the polymer comprises a monomer of Formula (VIII):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R64, R65, R66 and R67 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R74;
R68, R69, R70 and R71 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R75;
R72 and R73 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X3—(CH2)c—R76;
X1, X2 and X3 are each independently a bond, O, or S;
a, b and c are each independently integers from 0 to 6; and
R74, R75 and R76 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, one or more of R1 or R48-R76 of Formula (VII) or (VIII) are substituted by a halogen, OH, NH2, NH(C1-6 alkyl), N(C1-6 alkyl)(C1-6 alkyl), or C1-3 alkyl. In some instances, the medical device is a dental appliance. In some instances, the dental appliance is a dental aligner, a dental expander or a dental spacer. In some instances, the medical device is capable of being produced by 3D printing.
In various aspects, provided herein is a method of synthesizing a polymerizable monomer according to any one of Formulas (I)-(VI) and (IX), the method comprising isolating the polymerizable monomer with a chemical yield of at least 25%. In such instances, the polymerizable monomer can be synthesized with a chemical yield of at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or at least about 97%. Furthermore, a polymerizable monomer of this disclosure can be synthesized and isolated with a chemical purity of at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97% or at least about 99%.
In various aspects, provided herein is a method of forming a polymeric material, the method comprising: (i) providing the photo-curable resin of the present disclosure; (ii) exposing the photo-curable resin to a light source; and (iii) curing the photo-curable resin to form the polymeric material. In some aspects, such method further comprises inducing phase separation during photo-curing. In some aspects, inducing phase separation comprises generating one or more polymeric phases in the polymeric material during photo-curing. In some aspects, at least one polymeric phase of the one or more polymeric phases is an amorphous phase having a glass transition temperature (Tg) of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some aspects, at least 25%, 50%, or 75% of polymeric phases generated during photo-curing have a glass transition temperature (Tg) of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some aspects, the at least one amorphous phase having the glass transition temperature (Tg) of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. comprises, integrated into its polymeric structure, a polymerizable monomer. In some aspects, at least one polymeric phase of the one or more polymeric phases is a crystalline phase comprising a crystalline polymeric material. In some aspects, the crystalline polymeric material has a melting point of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some aspects, at least one polymeric phase of the one or more polymeric phase is 3-dimensional and has at least one dimension with a length of less than 1000 μm, less than 500 μm, less than 250 μm, or less than 200 μm. In some aspects, the polymeric material is characterized by one or more of: (i) a storage modulus greater than or equal to 200 MPa; (ii) a flexural stress and/or flexural modulus of greater than or equal to 1.5 MPa remaining after 24 hours in a wet environment at 37° C.; (iii) an elongation at break greater than or equal to 5% before and after 24 hours in a wet environment at 37° C.; (iv) a water uptake of less than 25 wt % when measured after 24 hours in a wet environment at 37° C.; and (v) transmission of at least 30% of visible light through the polymeric material after 24 hours in a wet environment at 37° C. In some aspects, the method further comprises fabricating a medical device with the polymeric material. In some aspects, the medical device is a dental appliance. In some aspects, the dental appliance is a dental aligner, a dental expander or a dental spacer.
Further provided herein is a method of repositioning a patient's teeth, the method comprising: (i) generating a treatment plan for the patient, the plan comprising a plurality of intermediate tooth arrangements for moving teeth along a treatment path from an initial tooth arrangement toward a final tooth arrangement; (ii) producing a dental appliance according to claim 89, or a dental appliance comprising the polymeric material of any one of claims 66-81; and (iii) moving on-track, with the dental appliance, at least one of the patient's teeth toward an intermediate tooth arrangement or the final tooth arrangement. In some aspects, producing the dental appliance comprises 3D printing of the dental appliance. In some aspects, the method can further comprise tracking progression of the patient's teeth along the treatment path after administration of the dental appliance to the patient, the tracking comprising comparing a current arrangement of the patient's teeth to a planned arrangement of the patient's teeth. In some aspects, greater than 60% of the patient's teeth are on track with the treatment plan after 2 weeks of treatment. In some aspects, the dental appliance has a retained repositioning force to the at least one of the patient's teeth after 2 days that is at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, or at least 70% of repositioning force initially provided to the at least one of the patient's teeth.
The novel features of the invention are set forth with particularity in the appended claims. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The present disclosure provides polymerizable monomers, polymerizable compositions comprising such monomers (e.g., curable resins), and methods of using and producing such polymerizable monomers and compositions. In various embodiments, the presently described monomers and compositions are photo-polymerizable. Hence, in various instances, a polymerizable or photo-polymerizable monomer of the present disclosure can be a compound according to any one of Formulas (I)-(VI) and (IX), or in a polymerized form as shown in Formulas (VII) and (VIII) as part of a polymer used in a medical device as described herein. In various instances, a photo-polymerizable composition comprising one or more photo-polymerizable monomers can be used in methods to produce a polymeric material. Such methods can comprise exposing such photo-polymerizable compositions to electromagnetic radiation of appropriate wavelength initiating the polymerization reaction. In various instances, the present disclosure provides curable (e.g., photo-curable) resins capable of allowing polymerization-induced phase separation to occur during curing. Such phase separation can generate one or more polymeric phases. In some cases, at least one polymeric phase of the one or more phases in an amorphous polymeric phase. In some cases, at least one polymeric phase of the one or more phases in a crystalline polymeric phase. Such phase separation can provide polymeric materials with physical and mechanical properties ideal for use in medical devices, such as orthodontic appliances. Thus, in various embodiments, provided herein are medical devices, such as orthodontic appliances, that can comprise one or more polymeric materials that comprises, in polymeric form, one or more polymerizable monomers of the present disclosure.
All terms, chemical names, expressions and designations have their usual meanings which are well-known to those skilled in the art. As used herein, the terms “to comprise” and “comprising” are to be understood as non-limiting, i.e., other components than those explicitly named may be included.
Number ranges are to be understood as inclusive, i.e. including the indicated lower and upper limits. Furthermore, the term “about”, as used herein, and unless clearly indicated otherwise, generally refers to and encompasses plus or minus 10% of the indicated numerical value(s). For example, “about 10%” may indicate a range of 9% to 11%, and “about 1” may include the range 0.9-1.1.
As used herein, the term “polymer” generally refers to a molecule composed of repeating structural units connected by covalent chemical bonds and characterized by a substantial number of repeating units (e.g., equal to or greater than 20 repeating units and often equal to or greater than 100 repeating units and often equal to or greater than 200 repeating units) and a molecular weight greater than or equal to 5,000 Daltons (Da) or 5 kDa, such as greater than or equal to 10 kDa, 15 kDa, 20 kDa, 30 kDa, 40 kDa, 50 kDa, or 100 kDa. Polymers are commonly the polymerization product of one or more monomer precursors. The term polymer includes homopolymers, i.e., polymers consisting essentially of a single repeating monomer species. The term polymer also includes copolymers which are formed when two or more different types of monomers are linked in the same polymer. Copolymers may comprise two or more monomer subunits, and include random, block, alternating, segmented, grafted, tapered and other copolymers. The term “cross-linked polymers” generally refers to polymers having one or multiple links between at least two polymer chains, which can result from multivalent monomers forming cross-linking sites upon polymerization.
As used herein, the term “oligomer” generally refers to a molecule composed of repeating structural units connected by covalent chemical bonds and characterized by a number of repeating units less than that of a polymer (e.g., equal to or less than 10 repeating units) and a lower molecular weight than polymers (e.g., less than 5,000 Da or 2,000 Da). In some case, oligomers may be the polymerization product of one or more monomer precursors. In an embodiment, an oligomer or a monomer cannot be considered a polymer in its own right.
As used herein, the terms “telechelic polymer” and “telechelic oligomer” generally refer to a polymer or oligomer the molecules of which are capable of entering, through reactive groups, into further polymerization.
As used herein, the term “reactive diluent” generally refers to a substance which reduces the viscosity of another substance, such as a monomer or curable resin. A reactive diluent may become part of another substance, such as a polymer obtained by a polymerization process. In some examples, a reactive diluent is a curable monomer which, when mixed with a curable resin, reduces the viscosity of the resultant formulation and is incorporated into the polymer that results from polymerization of the formulation.
Oligomer and polymer mixtures can be characterized and differentiated from other mixtures of oligomers and polymers by measurements of molecular weight and molecular weight distributions.
The average molecular weight (M) is the average number of repeating units n times the molecular weight or molar mass (Mi) of the repeating unit. The number-average molecular weight (Mn) is the arithmetic mean, representing the total weight of the molecules present divided by the total number of molecules.
Photoinitiators described in the present disclosure can include those that can be activated with light and initiate polymerization of the polymerizable components of the formulation. A “photoinitiator”, as used herein, may generally refer to a compound that can produce radical species and/or promote radical reactions upon exposure to radiation (e.g., UV or visible light).
The term “biocompatible,” as used herein, refers to a material that does not elicit an immunological rejection or detrimental effect, referred herein as an adverse immune response, when it is disposed within an in-vivo biological environment. For example, in embodiments a biological marker indicative of an immune response changes less than 10%, or less than 20%, or less than 25%, or less than 40%, or less than 50% from a baseline value when a human or animal is exposed to or in contact with the biocompatible material. Alternatively, immune response may be determined histologically, wherein localized immune response is assessed by visually assessing markers, including immune cells or markers that are involved in the immune response pathway, in and adjacent to the material. In an aspect, a biocompatible material or device does not observably change immune response as determined histologically. In some embodiments, the disclosure provides biocompatible devices configured for long-term use, such as on the order of weeks to months, without invoking an adverse immune response. Biological effects may be initially evaluated by measurement of cytotoxicity, sensitization, irritation and intracutaneous reactivity, acute systemic toxicity, pyrogenicity, subacute/subchronic toxicity and/or implantation. Biological tests for supplemental evaluation include testing for chronic toxicity.
“Bioinert” refers to a material that does not elicit an immune response from a human or animal when it is disposed within an in-vivo biological environment. For example, a biological marker indicative of an immune response remains substantially constant (plus or minus 5% of a baseline value) when a human or animal is exposed to or in contact with the bioinert material. In some embodiments, the disclosure provides bioinert devices.
When a group of substituents is disclosed herein, it is understood that all individual members of that group and all subgroups, including any isomers, enantiomers, and diastereomers of the group members, are disclosed separately. When a Markush group or other grouping is used herein, all individual members of the group and all combinations and subcombinations possible of the group are intended to be individually included in the disclosure. When a compound is described herein such that a particular isomer, enantiomer or diastereomer of the compound is not specified, for example, in a formula or in a chemical name, that description is intended to include each isomers and enantiomer of the compound described individual or in any combination. Additionally, unless otherwise specified, all isotopic variants of compounds disclosed herein are intended to be encompassed by the disclosure. Specific names of compounds are intended to be exemplary, as it is known that one of ordinary skill in the art can name the same compounds differently.
It is noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a monomer” includes a plurality of such monomers and equivalents thereof known to those skilled in the art, and so forth. As well, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
As used herein, “comprising” is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. As used herein, “consisting of” excludes any element, step, or ingredient not specified in the claim element. As used herein, “consisting essentially of” does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim.
As used herein, the term “group” may refer to a functional group of a chemical compound. Groups of the present compounds refer to an atom or a collection of atoms that are a part of the compound. Groups of the present disclosure may be attached to other atoms of the compound via one or more covalent bonds. Groups may also be characterized with respect to their valence state. The present disclosure includes groups characterized as monovalent, divalent, trivalent, etc. valence states.
As used herein, the term “substituted” refers to a compound (e.g., an alkyl chain) wherein a hydrogen is replaced by another functional group or atom, as described herein.
As used herein, a broken line in a chemical structure can be used to indicate a bond to the rest of the molecule. For example, in
is used to designate the 1-position as the point of attachment of 1-methylcyclopentate to the rest of the molecule. Alternatively,
in, e.g.,
can be used to indicate that the given moiety, the cyclohexyl moiety in this example, is attached to a molecule via the bond that is “capped” with the waay line.
Alkyl groups include straight-chain, branched and cyclic alkyl groups, unless otherwise defined for a compound or genus of compounds. Alkyl groups include those having from 1 to 30 carbon atoms, unless otherwise defined. Thus, alkyl groups can include small alkyl groups having 1 to 3 carbon atoms, e medium length alkyl groups having from 4-10 carbon atoms, as well as long alkyl groups having more than 10 carbon atoms, particularly those having 10-30 carbon atoms. The term cycloalkyl specifically refers to an alky group having a ring structure such as ring structure comprising 3-30 carbon atoms, optionally 3-20 carbon atoms and optionally 3-10 carbon atoms, including an alkyl group having one or more rings. Cycloalkyl groups include those having a 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-member carbon ring(s) and particularly those having a 3-, 4-, 5-, 6-, 7- or 8-member ring(s). The carbon rings in cycloalkyl groups can also carry alkyl groups. Cycloalkyl groups can include bicyclic and tricyclic alkyl groups. Alkyl groups are optionally substituted, as described herein. Substituted alkyl groups can include among others those which are substituted with aryl groups, which in turn can be optionally substituted. Specific alkyl groups include methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, s-butyl, t-butyl, cyclobutyl, n-pentyl, branched-pentyl, cyclopentyl, n-hexyl, branched hexyl, and cyclohexyl groups, all of which are optionally substituted. Unless otherwise defined herein, substituted alkyl groups include fully halogenated or semihalogenated alkyl groups, such as alkyl groups having one or more hydrogens replaced with one or more fluorine atoms, chlorine atoms, bromine atoms and/or iodine atoms. Thus, substituted alkyl groups can include fully fluorinated or semifluorinated alkyl groups, such as alkyl groups having one or more hydrogens replaced with one or more fluorine atoms. An alkoxy group is an alkyl group that has been modified by linkage to oxygen and can be represented by the formula R—O and can also be referred to as an alkyl ether group. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, butoxy and heptoxy. Alkoxy groups include substituted alkoxy groups wherein the alky portion of the groups is substituted as provided herein in connection with the description of alkyl groups. As used herein MeO— refers to CH3O—. Moreover, a thioalkoxy group, as used herein is an alkyl group that has been modified by linkage to sulfur atom (instead of an oxygen) and can be represented by the formula R—S.
Alkenyl groups include straight-chain, branched and cyclic alkenyl groups. Alkenyl groups include those having 1, 2 or more double bonds and those in which two or more of the double bonds are conjugated double bonds. Unless otherwise defined herein, alkenyl groups include those having from 2 to 20 carbon atoms. Alkenyl groups include small alkenyl groups having 2 to 3 carbon atoms. Alkenyl groups include medium length alkenyl groups having from 4-10 carbon atoms. Alkenyl groups include long alkenyl groups having more than 10 carbon atoms, particularly those having 10-20 carbon atoms. Cycloalkenyl groups include those in which a double bond is in the ring or in an alkenyl group attached to a ring. The term cycloalkenyl specifically refers to an alkenyl group having a ring structure, including an alkenyl group having a 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-member carbon ring(s) and particularly those having a 3-, 4-, 5-, 6-, 7- or 8-member ring(s). The carbon rings in cycloalkenyl groups can also carry alkyl groups. Cycloalkenyl groups can include bicyclic and tricyclic alkenyl groups. Alkenyl groups are optionally substituted. Unless otherwise defined herein, substituted alkenyl groups include among others those that are substituted with alkyl or aryl groups, which groups in turn can be optionally substituted. Specific alkenyl groups include ethenyl, prop-1-enyl, prop-2-enyl, cycloprop-1-enyl, but-1-enyl, but-2-enyl, cyclobut-1-enyl, cyclobut-2-enyl, pent-1-enyl, pent-2-enyl, branched pentenyl, cyclopent-1-enyl, hex-1-enyl, branched hexenyl, cyclohexenyl, all of which are optionally substituted. Substituted alkenyl groups can include fully halogenated or semihalogenated alkenyl groups, such as alkenyl groups having one or more hydrogens replaced with one or more fluorine atoms, chlorine atoms, bromine atoms and/or iodine atoms. Substituted alkenyl groups include fully fluorinated or semifluorinated alkenyl groups, such as alkenyl groups having one or more hydrogen atoms replaced with one or more fluorine atoms.
Aryl groups include groups having one or more 5-, 6-, 7- or 8-membered aromatic rings, including heterocyclic aromatic rings. The term heteroaryl specifically refers to aryl groups having at least one 5-, 6-, 7- or 8-member heterocyclic aromatic rings. Aryl groups can contain one or more fused aromatic rings, including one or more fused heteroaromatic rings, and/or a combination of one or more aromatic rings and one or more nonaromatic rings that may be fused or linked via covalent bonds. Heterocyclic aromatic rings can include one or more N, O, or S atoms in the ring. Heterocyclic aromatic rings can include those with one, two or three N atoms, those with one or two O atoms, and those with one or two S atoms, or combinations of one or two or three N, O or S atoms. Aryl groups are optionally substituted. Substituted aryl groups include among others those that are substituted with alkyl or alkenyl groups, which groups in turn can be optionally substituted. Specific aryl groups include phenyl, biphenyl groups, pyrrolidinyl, imidazolidinyl, tetrahydrofuryl, tetrahydrothienyl, furyl, thienyl, pyridyl, quinolyl, isoquinolyl, pyridazinyl, pyrazinyl, indolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, pyridinyl, benzoxadiazolyl, benzothiadiazolyl, and naphthyl groups, all of which are optionally substituted. Substituted aryl groups include fully halogenated or semihalogenated aryl groups, such as aryl groups having one or more hydrogens replaced with one or more fluorine atoms, chlorine atoms, bromine atoms and/or iodine atoms. Substituted aryl groups include fully fluorinated or semifluorinated aryl groups, such as aryl groups having one or more hydrogens replaced with one or more fluorine atoms. Aryl groups include, but are not limited to, aromatic group-containing or heterocylic aromatic group-containing groups corresponding to any one of the following: benzene, naphthalene, naphthoquinone, diphenylmethane, fluorene, anthracene, anthraquinone, phenanthrene, tetracene, tetracenedione, pyridine, quinoline, isoquinoline, indoles, isoindole, pyrrole, imidazole, oxazole, thiazole, pyrazole, pyrazine, pyrimidine, purine, benzimidazole, furans, benzofuran, dibenzofuran, carbazole, acridine, acridone, phenanthridine, thiophene, benzothiophene, dibenzothiophene, xanthene, xanthone, flavone, coumarin, azulene or anthracycline. As used herein, a group corresponding to the groups listed above expressly includes an aromatic or heterocyclic aromatic group, including monovalent, divalent and polyvalent groups, of the aromatic and heterocyclic aromatic groups listed herein provided in a covalently bonded configuration in the compounds of the disclosure at any suitable point of attachment. In some embodiments, aryl groups contain between 5 and 30 carbon atoms. In some embodiments, aryl groups contain one aromatic or heteroaromatic six-member ring and one or more additional five- or six-member aromatic or heteroaromatic ring. In embodiments, aryl groups contain between five and eighteen carbon atoms in the rings. Aryl groups optionally have one or more aromatic rings or heterocyclic aromatic rings having one or more electron donating groups, electron withdrawing groups and/or targeting ligands provided as substituents.
Arylalkyl groups are alkyl groups substituted with one or more aryl groups wherein the alkyl groups optionally carry additional substituents and the aryl groups are optionally substituted. Specific alkylaryl groups are phenyl-substituted alkyl groups, e.g., phenylmethyl groups. Alkylaryl groups are alternatively described as aryl groups substituted with one or more alkyl groups wherein the alkyl groups optionally carry additional substituents and the aryl groups are optionally substituted. Specific alkylaryl groups are alkyl-substituted phenyl groups such as methylphenyl. Substituted arylalkyl groups include fully halogenated or semihalogenated arylalkyl groups, such as arylalkyl groups having one or more alkyl and/or aryl groups having one or more hydrogens replaced with one or more fluorine atoms, chlorine atoms, bromine atoms and/or iodine atoms.
As used herein, the terms “alkylene” and “alkylene group” are used synonymously and refer to a divalent group “—CH2—” derived from an alkyl group as defined herein. The disclosure includes compounds having one or more alkylene groups. Alkylene groups in some compounds function as attaching and/or spacer groups. Compounds of the disclosure may have substituted and/or unsubstituted C1-C20 alkylene, C1-C10 alkylene and C1-C6 alkylene groups.
As used herein, the terms “cycloalkylene” and “cycloalkylene group” are used synonymously and refer to a divalent group derived from a cycloalkyl group as defined herein. The disclosure includes compounds having one or more cycloalkylene groups. Cycloalkyl groups in some compounds function as attaching and/or spacer groups. Compounds of the disclosure may have substituted and/or unsubstituted C3-C20 cycloalkylene, C3-C10 cycloalkylene and C3-C5 cycloalkylene groups.
As used herein, the terms “arylene” and “arylene group” are used synonymously and refer to a divalent group derived from an aryl group as defined herein. The disclosure includes compounds having one or more arylene groups. In some embodiments, an arylene is a divalent group derived from an aryl group by removal of hydrogen atoms from two intra-ring carbon atoms of an aromatic ring of the aryl group. Arylene groups in some compounds function as attaching and/or spacer groups. Arylene groups in some compounds function as chromophore, fluorophore, aromatic antenna, dye and/or imaging groups. Compounds of the disclosure include substituted and/or unsubstituted C3-C30 arylene, C3-C20 arylene, C3-C10 arylene and C1-C5 arylene groups.
As used herein, the terms “heteroarylene” and “heteroarylene group” are used synonymously and refer to a divalent group derived from a heteroaryl group as defined herein. The disclosure includes compounds having one or more heteroarylene groups. In some embodiments, a heteroarylene is a divalent group derived from a heteroaryl group by removal of hydrogen atoms from two intra-ring carbon atoms or intra-ring nitrogen atoms of a heteroaromatic or aromatic ring of the heteroaryl group. Heteroarylene groups in some compounds function as attaching and/or spacer groups. Heteroarylene groups in some compounds function as chromophore, aromatic antenna, fluorophore, dye and/or imaging groups. Compounds of the disclosure include substituted and/or unsubstituted C3-C30 heteroarylene, C3-C20 heteroarylene, C1-C10 heteroarylene and C3-C5 heteroarylene groups.
As used herein, the terms “alkenylene” and “alkenylene group” are used synonymously and refer to a divalent group derived from an alkenyl group as defined herein. The invention includes compounds having one or more alkenylene groups. Alkenylene groups in some compounds function as attaching and/or spacer groups. Compounds of the disclosure include substituted and/or unsubstituted C2-C20 alkenylene, C2-C10 alkenylene and C2-C5 alkenylene groups.
As used herein, the terms “cycloalkenylene” and “cycloalkenylene group” are used synonymously and refer to a divalent group derived from a cycloalkenyl group as defined herein. The disclosure includes compounds having one or more cycloalkenylene groups. Cycloalkenylene groups in some compounds function as attaching and/or spacer groups. Compounds of the disclosure include substituted and/or unsubstituted C3-C20 cycloalkenylene, C3-C10 cycloalkenylene and C3-C5 cycloalkenylene groups.
As used herein, the terms “alkynylene” and “alkynylene group” are used synonymously and refer to a divalent group derived from an alkynyl group as defined herein. The disclosure includes compounds having one or more alkynylene groups. Alkynylene groups in some compounds function as attaching and/or spacer groups. Compounds of the disclosure include substituted and/or unsubstituted C2-C20 alkynylene, C2-C10 alkynylene and C2-C5 alkynylene groups.
As used herein, the terms “halo” and “halogen” can be used interchangeably and refer to a halogen group such as a fluoro (—F), chloro (—Cl), bromo (—Br) or iodo (—I)
The term “heterocyclic” refers to ring structures containing at least one other kind of atom, in addition to carbon, in the ring. Examples of such heteroatoms include nitrogen, oxygen and sulfur. Heterocyclic rings include heterocyclic alicyclic rings and heterocyclic aromatic rings. Examples of heterocyclic rings include, but are not limited to, pyrrolidinyl, piperidyl, imidazolidinyl, tetrahydrofuryl, tetrahydrothienyl, furyl, thienyl, pyridyl, quinolyl, isoquinolyl, pyridazinyl, pyrazinyl, indolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, pyridinyl, benzoxadiazolyl, benzothiadiazolyl, triazolyl and tetrazolyl groups. Atoms of heterocyclic rings can be bonded to a wide range of other atoms and functional groups, for example, provided as substituents.
The term “carbocyclic” refers to ring structures containing only carbon atoms in the ring. Carbon atoms of carbocyclic rings can be bonded to a wide range of other atoms and functional groups, for example, provided as substituents.
The term “alicyclic ring” refers to a ring, or plurality of fused rings, that is not an aromatic ring. Alicyclic rings include both carbocyclic and heterocyclic rings.
The term “aromatic ring” refers to a ring, or a plurality of fused rings, that includes at least one aromatic ring group. The term aromatic ring includes aromatic rings comprising carbon, hydrogen and heteroatoms. Aromatic ring includes carbocyclic and heterocyclic aromatic rings. Aromatic rings are components of aryl groups.
The term “fused ring” or “fused ring structure” refers to a plurality of alicyclic and/or aromatic rings provided in a fused ring configuration, such as fused rings that share at least two intra ring carbon atoms and/or heteroatoms.
As used herein, the term “alkoxyalkyl” refers to a substituent of the formula alkyl-O-alkyl.
As used herein, the term “polyhydroxyalkyl” refers to a substituent having from 2 to 12 carbon atoms and from 2 to 5 hydroxyl groups, such as the 2,3-dihydroxypropyl, 2,3,4-trihydroxybutyl or 2,3,4,5-tetrahydroxypentyl residue.
As used herein, the term “polyalkoxyalkyl” refers to a substituent of the formula alkyl-(alkoxy)n-alkoxy wherein n is an integer from 1 to 10, e.g., 1 to 4, and in some embodiments 1 to 3.
The term “heteroalkyl”, as used herein, generally refers to an alkyl, alkenyl or alkynyl group as defined herein, wherein at least one carbon atom of the alkyl group is replaced with a heteroatom. In some instances, heteroalkyl groups may contain from 1 to 18 non-hydrogen atoms (carbon and heteroatoms) in the chain, or from 1 to 12 non-hydrogen atoms, or from 1 to 6 non-hydrogen atoms, or from 1 to 4 non-hydrogen atoms. Heteroalkyl groups may be straight or branched, and saturated or unsaturated. Unsaturated heteroalkyl groups have one or more double bonds and/or one or more triple bonds. Heteroalkyl groups may be unsubstituted or substituted. Exemplary heteroalkyl groups include, but are not limited to, alkoxyalkyl (e.g., methoxymethyl), and aminoalkyl (e.g., alkylaminoalkyl and dialkylaminoalkyl). Heteroalkyl groups may be optionally substituted with one or more substituents.
The term “carbonyl”, as used herein, for example in the context of C1-6 carbonly substituents, generally refers to a carbon chain of given length (e.g, C1-6), wherein each of the carbon atom of a given carbon chain can form the carbonyl bond, as long as it chemically feasible in terms of the valence state of that carbon atom. Thus, in some instance, the “C1-6 carbonly” substituent refers to a carbon chain of between 1 and 6 cabon atoms, and either the terminal carbon contains the carbonyl functionality, or an inner carbon contains the carbonyl functionality, in which case the substituent could be described as a ketone. The term “carboxy”, as used herein, for example in the context of C1-6 carboxy substituents, generally refers to a carbon chain of given length (e.g, C1-6), wherein a terminal carbon contains the carboxy functionality, unless otherwise defined herein.
As to any of the groups described herein that contain one or more substituents, it is understood that such groups do not contain any substitution or substitution patterns which are sterically impractical and/or synthetically non-feasible. In addition, the compounds of this disclosure include all stereochemical isomers arising from the substitution of these compounds.
Unless otherwise defined herein, optional substituents for any alkyl, alkenyl and aryl group includes substitution with one or more of the following substituents, among others:
halogen, including fluorine, chlorine, bromine or iodine;
pseudohalides, including —CN, —OCN (cyanate), —NCO (isocyanate), —SCN (thiocyanate) and —NCS (isothiocyanate);
—COOR, where R is a hydrogen or an alkyl group or an aryl group and more specifically where R is a methyl, ethyl, propyl, butyl, or phenyl group all of which groups are optionally substituted;
—COR, where R is a hydrogen or an alkyl group or an aryl group and more specifically where R is a methyl, ethyl, propyl, butyl, or phenyl group all of which groups are optionally substituted;
—CON(R)2, where each R, independently of each other R, is a hydrogen or an alkyl group or an aryl group and more specifically where R is a methyl, ethyl, propyl, butyl, or phenyl group all of which groups are optionally substituted; and where R and R can form a ring which can contain one or more double bonds and can contain one or more additional carbon atoms;
—OCON(R)2, where each R, independently of each other R, is a hydrogen or an alkyl group or an aryl group and more specifically where R is a methyl, ethyl, propyl, butyl, or phenyl group all of which groups are optionally substituted; and where R and R can form a ring which can contain one or more double bonds and can contain one or more additional carbon atoms;
—N(R)2, where each R, independently of each other R, is a hydrogen, or an alkyl group, or an acyl group or an aryl group and more specifically where R is a methyl, ethyl, propyl, butyl, phenyl or acetyl group, all of which are optionally substituted; and where R and R can form a ring that can contain one or more double bonds and can contain one or more additional carbon atoms;
—SR, where R is hydrogen or an alkyl group or an aryl group and more specifically where R is hydrogen, methyl, ethyl, propyl, butyl, or a phenyl group, which are optionally substituted;
—SO2R, or —SOR, where R is an alkyl group or an aryl group and more specifically where R is a methyl, ethyl, propyl, butyl, or phenyl group, all of which are optionally substituted;
—OCOOR, where R is an alkyl group or an aryl group;
—SO2N(R)2, where each R, independently of each other R, is a hydrogen, or an alkyl group, or an aryl group all of which are optionally substituted and wherein R and R can form a ring that can contain one or more double bonds and can contain one or more additional carbon atoms; and
—OR, where R is H, an alkyl group, an aryl group, or an acyl group all of which are optionally substituted. In a particular example R can be an acyl yielding —OCOR″, wherein R″ is a hydrogen or an alkyl group or an aryl group and more specifically where R″ is methyl, ethyl, propyl, butyl, or phenyl groups all of which groups are optionally substituted.
Specific substituted alkyl groups include haloalkyl groups, particularly trihalomethyl groups and specifically trifluoromethyl groups. Specific substituted aryl groups include mono-, di-, tri, tetra- and pentahalo-substituted phenyl groups; mono-, di-, tri-, tetra-, penta-, hexa-, and hepta-halo-substituted naphthalene groups; 3- or 4-halo-substituted phenyl groups, 3- or 4-alkyl-substituted phenyl groups, 3- or 4-alkoxy-substituted phenyl groups, 3- or 4-RCO-substituted phenyl, 5- or 6-halo-substituted naphthalene groups. More specifically, substituted aryl groups include acetylphenyl groups, particularly 4-acetylphenyl groups; fluorophenyl groups, particularly 3-fluorophenyl and 4-fluorophenyl groups; chlorophenyl groups, particularly 3-chlorophenyl and 4-chlorophenyl groups; methylphenyl groups, particularly 4-methylphenyl groups; and methoxyphenyl groups, particularly 4-methoxyphenyl groups.
As to any of the above groups that contain one or more substituents, it is understood that such groups do not contain any substitution or substitution patterns which are sterically impractical and/or synthetically non-feasible. In addition, the compounds of this disclosure include all stereochemical isomers arising from the substitution of these compounds.
The present disclosure provides polymerizable monomers. A polymerizable monomer of this disclosure can be used as part of a polymerizable composition (e.g., a photo-curable resin). As described herein, a polymerizable monomer according to the present disclosure can be used as a reactive diluent for, e.g., highly viscous curable resins and can, in some embodimenter, also provide cross-linked polymers, which can have useful thermomechanical properties for use in devices, such as medical devices (e.g., orthodontic appliances).
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (I):
wherein:
X is O, S, NR6, or SiR7R8;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R2 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R3, R4, and R5 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9, or R4 and R5 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein Y is O, S, NH, or C(O)O;
n is an integer from 0 to 6;
R6, R7, and R8 are independently H or substituted or unsubstituted C1-6 alkyl; and
R9 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (I):
wherein:
X is O, S, NR6, or SiR7R8;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R2 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R3 is H, substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9; or R4 and R5 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R4 and R5 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9; or R4 and R5 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein Y is O, S, NH, or C(O)O;
n is an integer from 0 to 6;
R6, R7, and R8 are independently H or substituted or unsubstituted C1-6 alkyl; and R9 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroarylheteroaryl.
In some instances, R3 is H. In some instances, R3 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9. In some instances, R3 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy. In some instances, R3 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 alkoxy. In some instances, R3 is substituted or unsubstituted C4-6 alkyl or substituted or unsubstituted C4-6 alkoxy.
In some instances, R4 is H. In some cases, R4 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9. In some cases, R4 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 alkoxy, substituted or unsubstituted C3-6 thioalkoxy. In some cases, R4 is substituted or unsubstituted C3-6 alkyl or substituted or unsubstituted C3-6 alkoxy. In some cases, R4 is substituted or unsubstituted C4-6 alkyl or substituted or unsubstituted C4-6 alkoxy.
In various cases, R1 is H or methyl. In some instances, X is O. In some cases, R3, R4, and R5 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9. In some cases, R3, R4, and R5 are each independently H, substituted or unsubstituted C1-6 alkyl or substituted or unsubstituted C1-6 alkoxy. In some cases, at least one of R3, R4, and R5 is substituted or unsubstituted C1-6 alkoxy.
In some instances, R5 is H. In some cases, R5 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9. In some cases, R5 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 alkoxy, substituted or unsubstituted C3-6 thioalkoxy. In some cases, R5 is substituted or unsubstituted C3-6 alkyl or substituted or unsubstituted C3-6 alkoxy. In some cases, R5 is substituted or unsubstituted C4-6 alkyl or substituted or unsubstituted C4-6 alkoxy.
In some embodiments, R2 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some cases, R2 is unsubstituted cyclo(C3-8) alkyl, unsubstituted cyclo(C3-8) heteroalkyl, unsubstituted aryl, or unsubstituted heteroaryl. In some cases, R2 is substituted or unsubstituted cyclo(C3-8) alkyl or substituted or unsubstituted aryl. In some cases, R2 is unsubstituted cyclo(C3-8) alkyl or unsubstituted aryl. In some cases, R2 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy. In some cases, R2 is unsubstituted C3-6 alkyl, unsubstituted C3-6 heteroalkyl, unsubstituted C3-6 carbonyl, or unsubstituted C3-6 carboxy. In some cases, R2 is substituted or unsubstituted C3-6 alkyl or substituted or unsubstituted C3-6 heteroalkyl. In some cases, R2 is unsubstituted C3-6 alkyl or unsubstituted C3-6 heteroalkyl.
In such instances, the polymerizable monomer can be selected from the group consisting of:
In some embodiments, R5 is substituted or unsubstituted C1-6 alkoxy. In such instances, the polymerizable monomer can be:
In some embodiments, X is S or SiR7R8 and R5 is substituted or unsubstituted C1-6 alkyl. In such instances, the polymerizable monomer can be:
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (II):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen; R10 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R11 and R12 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R13, or R11 and R12 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R13 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, R11 is H. In some instances, R12 is H. In various instances, R1 is H or methyl. In some instances, R11 and R12 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R13. In some instances, R11 and R12 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 alkoxy, or substituted or unsubstituted C1-6 thioalkoxy. In some instances, R11 and R12 are each independently H, substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 alkoxy, or substituted or unsubstituted C3-6 thioalkoxy. In some instances, R11 and R12 are each independently H, substituted or unsubstituted C3-6 alkyl. In some instances, R11 and R12 are each independently H, substituted or unsubstituted C3-6 alkoxy. In some instances, at least one of R11 and R12 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R13.
In some instances, R10 is substituted or unsubstituted C1-6 alkoxy. In such cases, the polymerizable monomer can be:
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (III):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R14 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R15 and R16 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R17, or R15 and R16 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R17 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (III):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R14 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R15 and R16 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)nR17, wherein at most one of R15 and R16 is H;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R17 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, R1 is H or methyl. In some cases, wherein R14 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In such cases, wherein R14 can be substituted or unsubstituted aryl.
In some instances, R14 is substituted or unsubstituted C3-6 alkyl or substituted or unsubstituted C3-6 heteroalkyl. In some instances, R14 is substituted or unsubstituted C3-4 alkyl, substituted or unsubstituted C3-4 heteroalkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, or substituted or unsubstituted heteroaryl. In some instances, R14 is substituted or unsubstituted C3-6 alkyl. In some instances, R14 is substituted C3-6 alkyl.
In some instances, at most one of R15 and R16 is H. In some instances, R15 and R16 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R17. In some instances, R15 and R16 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 alkoxy, or substituted or unsubstituted C1-6 thioalkoxy. In some instances, R15 and R16 are each independently H, substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 alkoxy, or substituted or unsubstituted C3-6 thioalkoxy. In some instances, R15 and R16 are each independently H, substituted or unsubstituted C3-6 alkyl. In some instances, R15 and R16 are each independently H, substituted or unsubstituted C3-6 alkoxy.
In some instances, R15 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R17. In some instances, R16 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R17. In some instances, at least one of R15 and R16 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy or substituted or unsubstituted C1-6 thioalkoxy. In some instances, R15 and R16 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In such cases, the polymerizable monomer can be:
In some cases, the compound according for formula (III) has a structure according to formula (IIIa):
wherein:
R82 is hydrogen, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, OR83, —NR83R84, SR83, or halogen; and
each instance of R83 and R84 is independently selected from the group consisting of hydrogen and C1-3 alkyl, or wherein R83 and R84 together form a 4-, 5-, 6-, 7-, or 8-membered ring substituted or unsubstituted heterocycle. In some instances, one or more of R82-R84 are substituted by a halogen, OH, NH2, NH(C1-6 alkyl), N(C1-6 alkyl)(C1-6 alkyl), or C1-3 alkyl. In some instances, one or more of R82-R84 are substituted by a halogen, OH, or NH2.
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (IV):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R18 is substituted C2-6 alkyl, substituted or unsubstituted C3-6 alkyl, or substituted or unsubstituted C3-6 heteroalkyl; and
R19 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, or substituted or unsubstituted C1-6 carboxy.
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (IV):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R18 is substituted C3-6 alkyl, unsubstituted C4-6 alkyl, or substituted or unsubstituted C3-6 heteroalkyl; and
R19 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, or substituted or unsubstituted C1-6 carboxy.
In some instances, R1 is H or methyl. In some instances, R18 is substituted C3-6 alkyl or unsubstituted C4-6 alkyl. In some instances, R18 is unsubstituted C4-6 alkyl. In some instances, R19 is substituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, or substituted or unsubstituted C1-6 carboxy. In some instances, R19 is substituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, or substituted or unsubstituted C1-6 alkoxy. In some instances, R18 is substituted or unsubstituted C3-6 alkyl and R19 is substituted or unsubstituted C1-6 alkoxy. In some instances, R18 is substituted or unsubstituted C3-6 alkyl and R19 is substituted or unsubstituted C1-6 alkyl. In some instances, R18 is substituted or unsubstituted C3-6 alkyl and R19 is substituted or unsubstituted C1-6 heteroalkyl. In some instances, R18 is substituted or unsubstituted C3-4 alkyl and R19 is substituted or unsubstituted C1-3 alkoxy. In some instances, R18 is substituted or unsubstituted C3-4 alkyl and R19 is substituted or unsubstituted C1-3 alkyl. In some instances, R18 is substituted or unsubstituted C3-4 alkyl and R19 is substituted or unsubstituted C1-3 heteroalkyl. In some instances, R18 is substituted C2-6 alkyl and R19 is unsubstituted C1-6 alkyl. In such instances, the polymerizable monomer can be:
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (V):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R20 and R22 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R28;
R21 and R23 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R29;
R24 and R26 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted
C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X3—(CH2)c—R30;
R25 and R27 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X4—(CH2)d—R31;
X1, X2, X3 and X4 are each independently a bond, O, or S;
a, b, c and d are each independently integers from 0 to 6; and
R28, R29, R30 and R31 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (V):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R20 and R22 are each independently substituted or unsubstituted C4-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R28;
R21 and R23 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R29;
R24 and R26 are each independently substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C2-6 carboxy, or —X3—(CH2)c—R30;
R25 and R27 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X4—(CH2)d—R31;
X1, X2, X3 and X4 are each independently a bond, O, or S;
a, b, c and d are each independently integers from 0 to 6; and
R28, R29, R30 and R31 are each independently substituted cyclo(C3-8) alkyl, substituted cyclo(C3-8) heteroalkyl, substituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, at least one of R20 and R22 is —X1—(CH2)a—R28; at least one of R21 and R23 is —X2—(CH2)b—R29; at least one of R24 and R26 is —X3—(CH2)c—R30; at least one of R25 and R27 is —X4—(CH2)d—R31; or a combination thereof.
In some instances, Cy is
In some instances, at least one of R20, R21, R22, and R23 is substituted or unsubstituted C1-6 alkoxy.
In some instances, Cy is
In some instances, at least one of R24, R25, R26, and R27 is substituted or unsubstituted C1-6 alkoxy.
In some instances, R20 and R22 are each independently substituted or unsubstituted C4-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, or —X1—(CH2)a—R28. In some instances, R20 and R22 are each independently substituted or unsubstituted C4-6 alkyl, substituted or unsubstituted C1-6 alkoxy, or —X1—(CH2)a—R28. In some instances, R20 and R22 are each independently substituted or unsubstituted C4-6 alkyl or unsubstituted C1-6 alkoxy.
In some instances, at least one of R21 and R23 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R29. In some instances, at least one of R21 and R23 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, or —X2—(CH2)b—R29. In some instances, at least two of R28, R29, R30 and R31 are each independently substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl. In some instances, at least one of R21 and R23 is —X2—(CH2)b—R29, and each R29 is independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some cases, each instance of a is independently 2-6. In some cases, each instance of a is 0.
In some instances, R24 and R26 are each independently substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C1-6 alkoxy, or —X3—(CH2)c—R30. In some instances, R24 and R26 are each independently substituted or unsubstituted C3-6 alkyl or unsubstituted C1-6 alkoxy.
In some cases, at least one of R25 and R27 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X4—(CH2)d—R31. In some cases, at least one of R25 and R27 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, or —X4—(CH2)d—R31. In some cases, at least one of R25 and R27 is substituted or unsubstituted C1-3 alkyl or unsubstituted C1-3 alkoxy. In some cases, each instance of c is independently 2-6. In some cases, each instance of c is 0.
In such instances. the polymerizable monomer can be selected from the group consisting of:
In various embodiments, a polymerizable monomer herein can be a compound according to Formula (VI):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R32 and R34 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X5—(CH2)e—R42;
R33 and R35 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43;
R36 and R38 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X7—CH2)g—R44;
R37 and R39 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X8—(CH2)h—R45;
R40 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 alkoxy, substituted or unsubstituted C3-6 thioalkoxy, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy, or —X9—(CH2)i—R46;
R41 is H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X10—(CH2)j—R47;
X5, X6, X7, X8, X9 and X10 are each independently a bond, O, or S;
e, f, g, h, i and j are each independently integers from 0 to 6; and
R42, R43, R44, R45, R46 and R47 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, Cy is
In some cases, Cy is
In some cases, at least one of R32, R33, R34, and R35 is substituted or unsubstituted C1-6 alkoxy or substituted or unsubstituted C1-6 thioalkoxy. In some cases, Cy is
In some cases, at least one of R36, R37, R38, and R39 is substituted or unsubstituted C1-6 alkoxy or substituted or unsubstituted C1-6 thioalkoxy. In some cases, Cy is
In some cases, R41 is substituted or unsubstituted C1-6 alkoxy or substituted or unsubstituted C1-6 thioalkoxy. In some cases, R40 is substituted or unsubstituted C3-6 alkoxy or substituted or unsubstituted C3-6 thioalkoxy.
In some cases, R33 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43. In some cases, R33 and R35 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43. In some cases, R37 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43. In some cases, R37 and R39 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43.
In various embodiments, a polymerizable monomer can be a compound according to Formula (VI):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R32 and R34 are each independently substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X5—(CH2)e—R42;
R33 and R35 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43;
R36 and R38 are each independently substituted or unsubstituted C3-6 alkyl, substituted C4-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X7—CH2)g—R44;
R37 and R39 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X8—(CH2)h—R45;
X5, X6, X7, and X8 are each independently a bond, O, or S;
e, f, g, and h are each independently integers from 0 to 6;
R42 and R43 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; and
R44 and R45 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, R1 is H or methyl. In such instances, the polymerizable monomer can be selected from the group consisting of:
In some cases, the polymerizable monomer can be selected from the group consisting of:
In some embodiments, any one or more of R1-R84 can be substituted by a halogen, OH, NH2, NH(C1-6 alkyl), N(C1-6 alkyl)(C1-6 alkyl), or C1-3 alkyl. In some cases, R1-R84 can be substituted by a halogen, OH, NH2, or C1-3 alkyl. In some cases, R1-R84 can be substituted by a fluoride, chloride, bromine, OH, or C1-3 alkyl. In some cases, R1-R84 can be substituted by a halogen, OH, or NH3.
In some embodiments, provided herein are polymerizable monomers according to Formula (IX):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R77 is nitrile, substituted or unsubstituted C1-6 alkyl cyanide, or substituted or unsubstituted C1-6 carbonyl;
R78 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R79 and R80 are each independently H, C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; and
R81 is substituted or unsubstituted C1-6 alkoxy.
In some cases, R77 is nitrile or substituted or unsubstituted C1-6 alkyl cyanide. In some cases, R79 and R80 are each independently H, substituted or unsubtituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, or substituted or unsubstituted cyclo(C3-8) heteroalkyl. In some cases, R79 and R80 are each independently H, unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted cyclo(C3-8) alkyl, or substituted or unsubstituted cyclo(C3-8) heteroalkyl. In some cases, R79 and R80 are each independently H, unsubstituted C1-4 alkyl or unsubstituted C1-4 alkoxy. In some cases, R81 is unsubstituted C1-6 alkoxy.
In some embodiments, a polymerizable monomers according to Formula (IX) can be vanillin, e.g., o-vanillin, or a derivative thereof. In such instances, R77 is nitrile. In such instances, R77 is a carbonyl or an aldehyde. In any of such instances, R81 can be methoxyl and R1 is H or methyl. In such cases, a polymerizable monomer according to Formula (IX) can has the following structure:
In some embodiments, provided herein is a polymeric material comprising a polymer that comprises a monomer. in its polymerized form. according to Formula (VII):
wherein:
X is N or CR59;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R48, R49, and R50 are each independently H, nitrile, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y1—(CH2)a—R60, or R48 and R49 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo-(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R51, R52, R53 and R54 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y2—(CH2)b—R61;
R55, R56, R57 and R58 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y3—(CH2)c—R62;
R59 is H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y4—(CH2)d—R63;
Y1, Y2, Y3, and Y4 are each independently a bond, O, or S;
a, b, c, and d are each independently integers from 0 to 6; and
R60, R61, R62 and R63 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formula (VII),
wherein:
X is N or CR59;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R48, R49, and R50 are each independently H, nitrile, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y1—(CH2)a—R60, or R48 and R49 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo-(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R59 is H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y4—(CH2)d—R63;
Y1 and Y4 are each independently a bond, O, or S;
a and d are each independently an integer from 0 to 6; and
R60 and R63 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, provided herein is a polymeric material comprising a polymer that comprises a monomer, in its polymerized form, according to Formula (VII):
wherein:
X is N or CH;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R48, R49, and R50 are each independently H, nitrile, substituted or unsubstituted C1-6 alkyl cyanide, substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y1—(CH2)a—R60; or R48 and R49 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo-(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein at most one of R48, R49, and R50 is H;
R51, R52, R53 and R54 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y2—(CH2)b—R61;
R55, R56, R57 and R58 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y3—(CH2)c—R62;
Y1, Y2, Y3 and Y4 are each independently a bond, O, or S;
a, b, c, and d are each independently integers from 0 to 6;
R60 and R62 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; and
R61 is substituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, R1 is H or methyl. In such instances, X is N or CR59, R49 is H, R48 and R50 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, or —Y1—(CH2)a—R60, wherein Y1 is a bond, O, or S, a is an integer from 0 to 6, R59 is H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, and R60 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, or, alternatively, R48 and R49 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo-(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some instances, X is N or CH, R49 is H, R48 and R50 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, or —Y1—(CH2)a—R60, wherein Y1 is a bond or O, a is 0, 1, or 2, and R60 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In yet other cases, X is N or CH, R49 is H, R48 and R50 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 alkoxy, or —Y1—(CH2)a—R60, wherein Y1 is a bond or O, a is 0, 1, or 2, and R60 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formula (VII),
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R51, R52, R53 and R54 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y2—(CH2)b—R61;
Y2 is a bond, O, or S;
b is an integer from 0 to 6; and
R61 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, R1 is H or methyl. In such instances, R51, R52, R53 and R54 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, or —Y2—(CH2)b—R61, wherein Y2 is a bond, O, or S, b is an integer from 0 to 6, and R61 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some cases, R52 and R54 are H, and R51 and R53 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, or —Y2—(CH2)b—R61, wherein Y2 is a bond, O, or S, b is an integer from 0 to 6, and R61 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In other cases, R52 and R54 are H, and R51 and R53 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, or —Y2—(CH2)b—R61, wherein Y2 is a bond or O, b is an integer from 0 to 3, and R61 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formula (VII),
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R55, R56, R57 and R58 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y3—(CH2)c—R62;
Y3 is a bond, O, or S;
c is an integer from 0 to 6; and
R62 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, R1 is H or methyl. In such instances, R55, R56, R57 and R58 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y3—(CH2)c—R62, wherein Y3 is a bond, O, or S, c is an integer from 0 to 6, and R62 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In some aspects, In some cases, R56 and R58 are H, and R55 and R57 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y3—(CH2)c—R62, wherein Y3 is a bond, O, or S, c is an integer from 0 to 6, and R62 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In other cases, R56 and R58 are H, and R55 and R57 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, or —Y3—(CH2)c—R62, wherein Y3 is a bond or O, c is an integer from 0 to 3, and R62 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, provided herein is a polymeric material comprising a polymer that comprises a monomer, in its polymerized form, according to Formula (VIII):
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R64, R65, R66 and R67 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R74;
R68, R69, R70 and R71 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R75;
R72 and R73 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X3—(CH2)c—R76;
X1, X2 and X3 are each independently a bond, O, or S;
a, b and c are each independently integers from 0 to 6; and
R74, R75 and R76 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, provided herein is a polymeric material comprising a polymer that comprises a monomer, in its polymerized form, according to Formula (VIII): (VIII)
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R64, R65, R66 and R67 are each independently H, substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R74, wherein at most two of R64, R65, R66 and R67 are H;
R68, R69, R70 and R71 are each independently H, substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R75, wherein at most two of R68, R69, R70 and R71 are H;
R72 and R73 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X3—(CH2)c—R76;
X1, X2 and X3 are each independently a bond, O, or S;
a, b and c are each independently integers from 0 to 6; and
R74, R75 and R76 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formula (VIII),
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R64, R65, R66 and R67 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R74;
X1 is a bond, O, or S;
a is an integer from 0 to 6; and
R74 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, R1 is H or methyl. In such instances, R65 and R67 are H, R64 and R66 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R74, X1 is a bond or O, a is an integer from 0 to 3, and R74 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formula (VIII),
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R68, R69, R70 and R71 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R75;
X2 is a bond, O, or S;
b is an integer from 0 to 6; and
R75 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, R1 is H or methyl. In such instances, R69 and R71 are H, R68 and R70 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R75, X2 is a bond or O, b is an integer from 0 to 3, and R75 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formula (VIII),
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R72 and R73 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X3—(CH2)c—R76;
X3 is a bond, O, or S;
c is an integer from 0 to 6; and
R76 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some cases, R1 is H or methyl. In such instances, R72 and R73 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, or —X3—(CH2)c—R76, X3 is a bond or O, c is an integer from 0 to 3, and R75 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. In other instances, R72 is H, and R73 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, or —X3—(CH2)c—R76, X3 is a bond or O, c is an integer from 0 to 3, and R75 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some instances, and with reference to Formulas (VII) and (VIII), one or more of R1 or R48-R81 are substituted by a halogen, OH, NH2, NH(C1-6 alkyl), N(C1-6 alkyl)(C1-6 alkyl), or C1-3 alkyl.
In some embodiments, a polymerizable monomer of the present disclosure can have a low vapor pressure at an elevated temperature and a high boiling point. Such low vapor pressure can be particularly advantageous for use of such monomer in curable (e.g., photocurable) compositions and additive manufacturing where elevated temperatures (e.g., 60° C., 80° C., 90° C., or higher) may be used. In various instances, a polymerizable monomer can have a vapor pressure of at most about 12 Pa at 60° C. In various instances, a polymerizable monomer can have a vapor pressure of at most about 2 Pa to 10 Pa at 60° C. In various instances, a polymerizable monomer can have a vapor pressure of at most about 2 Pa to 5 Pa at 60° C. Thus, in some embodiments, a polymerizable monomer of the present disclosure can have a low mass loss at an elevated temperature. As used herein, a mass loss of a compound at a certain temperature (e.g., 90° C.) for a certain time period (e.g., 2 hours) can be used as a measure for volatility of such compounds. Herein, “substantially no volaA phtility” can refer to a mass loss <1 wt % at the respective temperature, e.g., at 90° C. for 2 hours. In various instances, a polymerizable monomer of the present disclosure can have a mass loss <1 wt % at the respective temperature at 90° C. after heating at that temperature for 2 hours. In some embodiments, a polymerizable monomer can have a mass loss of less than about 0.5% after heating at 90° C. for 2 h. In some embodiments, a polymerizable monomer can have a mass loss of about 0.1% to about 0.45% after heating at 90° C. for 2 h. In some embodiments, a polymerizable monomer can have a mass loss of about 0.05% to about 0.25% after heating at 90° C. for 2 h.
In some embodiments, a polymerizable monomer of the present disclosure can have a molecular weight of at least about 150 Da, 200 Da, 250 Da, 300 Da, 350 Da, 400 Da, or at least about 450 Da. In some cases, the polymerizable monomer has a molecular weight of between 190 and 320 Daltons. In some cases, the polymerizable monomer has a molecular weight of between 200 and 280 Daltons.
In some embodiments, a polymerizable monomer of the present disclosure can have a melting point of at least about 20° C., 30° C., 40° C., 50° C., or higher. The polymerizable monomers according to the present disclosure, e.g., those according to any of Formulas (I)-(VI) and (IX), with regard to their possible use as reactive diluents in curable compositions, include having a melting point which is lower than the processing temperatures employed in current high temperature litho-graphy-based photo-polymerization processes, which are typically in the range of 50-120° C., such as 90-120° C. Therefore, polymerizable monomers provided herein that can be used as reactive diluents can have a melting point <120° C., <90° C., <70° C., or even <50° C. or <30° C., which provides for low viscosities of the melts and, consequently, for more pronounced viscosity-lowering effects when they are used as reactive diluents for resins to be cured by means of high temperature lithography-based polymerization. In some cases, they are liquid at room temperature, which, in addition to the above advantages, facilitates their handling.
In various embodiments, any of the polymerizable monomers described herein, e.g., a compound according to any one of Formulas (I)-(VI) and (IX), can be a photo-polymerizable monomer. In various cases, a photo-polymerizable monomer of the present disclosure can be a component of a photo-polymerizable composition (e.g., a photo-curable resin), which can be capble of being 3D printed as described herein.
In some embodiments, a photo-polymerizable monomer of the present disclosure can be added to a photo-curable resin described herein to, e.g., modify (e.g., decrease) a viscosity of the resin, facilitate cross-linking between telechelic polymers during polymerization (e.g., during curing), extend chains of polymers during polymerization, initiate and/or enhance polymerization-induced phase separation during curing (e.g., photo-curing), control the size a formed of phase or domain during phase separation, increase toughness of a polymeric material produced from the resin, modify the glass transition temperature (Tg) of an amorphous region (e.g., an amorphous polymeric phase) of a polymeric material produced from the resin, modify the melting point temperature (Tm) of a crystalline region (e.g., a crystalline polymeric phase) of a polymeric material produced from the resin, or adjust a refractive index of an amorphous regions of a polymeric material produced from the resin.
The present disclosure provides curable resins that can comprise one or more of the polymerizable monomers described herein. In various embodiments, a curable resin herein is a photo-curable resin that can comprise one or more photo-polymerizable monomers, e.g., one or more compounds according to any one of Formulas (I)-(VI) and (IX).
Resin Components
A photo-curable resin of the present disclosure can comprise one or more components. One or more of such components can be photo-polymerizable components. In such instances, a photo-curable resin herein can comprise 1, 2, 3, 4, 5 or more different species of photo-polymerizable monomers described herein. In some cases, each monomer species can be a compound according to any one of Formulas (I)-(VI) and (IX).
In some cases, the photo-curable resin comprises 10-80 wt % of a compound according to any one of Formulas (I)-(VI) and (IX). In some cases, the photo-curable resin comprises 15-45 wt % of a compound according to any one of Formulas (I)-(VI) and (IX). In some cases, the photo-curable resin comprises 25-35 wt % of a compound according to any one of Formulas (I)-(VI) and (IX). In some cases, the photo-curable resin comprises 10-50 wt % of a second acrylate or methacrylate monomer. In some cases, the second acrylate or methacrylate monomer is an alkyl acrylate, an alkyl methacrylate, a homosalic acrylate, a homosalic methacrylate, or a combination thereof. In some cases, the second acrylate or methacrylate monomer is a homosalic acrylate, a homosalic methacrylate, or a combination thereof.
A photo-curable resin of the present disclosure can comprise one or more photo-polymerizable components in addition to the one or more photo-polymerizable monomers. Such one or more photo-polymerizable components can include one or more telechelic oligomers, one or more telechelic polymers, or a combination thereof. In such instances, a telechelic oligomer can have a number-average molecular weight of greater than 500 Da (0.5 kDa) but less than 5 kDa. A telechelic polymer can have a number-average molecular weight of greater than 10 kDa but less than 50 kDa. A telechelic polymer can have a number-average molecular weight of greater than 5 kDa but less than 50 kDa. A telechelic polymer can have a number-average molecular weight of greater than 5 kDa but less than 300 kDa. The telechelic oligomer(s) and/or polymer(s) can comprise photoreactive moieties at their termini. In some cases, the photoreactive moiety can be an acrylate, methacrylate, vinyl acrylate, vinyl methacrylate, allyl ether, silene, alkyne, alkene, vinyl ether, maleimide, fumarate, maleate, itoconate, or styrenyl moiety. In some cases, the photoreactive moiety can be an acrylate or a methacrylate. A telechelic polymer herein can include polyurethanes, polyesters, block copolymers or any other commercial polymers with reactive (e.g., photo-reactive) end groups.
In certain aspects, a photo-polymerizable monomer of the present disclosure and another, second photo-polymerizable component that may be present in a resin, e.g., a telechelic polymer, can be miscible in each other. In some aspects, a polymerizable monomer herein can be partially or fully immiscible in the second polymerizable component.
A photo-curable resin disclosed herein can comprise about 0.5-99.5 wt %, about 1-99 wt %, about 10-95 wt %, about 20-90 wt %, about 25-60 wt %, or about 35-50 wt % of one or more polymerizable monomers according to any one of Formulas (I)-(VI) and (IX), a telechelic polymer and/or oligomer, or any combination thereof.
A photo-curable resin described herein can further comprise one or more photoinitiators. Such photoinitiator, when activated with light of an appropriate wavelength (e.g., UV/VIS) can initiate a polymerization reaction (e.g., during photo-curing) between the telechelic polymers, monomers, and other potentially polymerizable components that may be present in the photo-curable resin, to form a polymeric material as further described herein. Generally, photoinitiators described in the present disclosure can include those that can be activated with light and initiate polymerization of the polymerizable components of the formulation. A “photoinitiator”, as used herein, may generally refer to a compound that can produce radical species and/or promote radical reactions upon exposure to radiation (e.g., UV or visible light).
In some embodiments, a photo-curable resin herein further comprises 0.05 to 1 wt %, 0.05 to 2 wt %, 0.05 to 3 wt %, 0.05 to 4 wt %, 0.05 to 5 wt %, 0.1 to 1 wt %, 0.1 to 2 wt %, 0.1 to 3 wt %, 0.1 to 4 wt %, 0.1 to 5 wt %, 0.1 to 6 wt %, 0.1 to 7 wt %, 0.1 to 8 wt %, 0.1 to 9 wt %, or 0.1 to 10 wt %, based on the total weight of the composition, of a photoinitiator. In some embodiments, the photoinitiator is a free radical photoinitiator. In certain embodiments, the free radical photoinitiator comprises an alpha hydroxy ketone moiety (e.g., 2-hydroxy-2-methylpropiophenone or 1-hydroxycyclohexyl phenyl ketone), an alpha-amino ketone (e.g., 2-benzyl-2-(dimethylamino)-4′-morpholinobutyrophenone or 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one), 4-methyl benzophenone, an azo compound (e.g., 4,4′-Azobis(4-cyanovaleric acid), 1,1′-Azobis(cyclohexanecarbonitrile, Azobisisobutyronitrile, 2,2′-Azobis(2-methylpropionitrile), or 2,2′-Azobis(2-methylpropionitrile)), an inorganic peroxide, an organic peroxide, or any combination thereof. In some embodiments, the composition comprises a photoinitiator comprising SpeedCure TPO-L (ethyl(2,4,6-trimethylbenzoyl)phenyl phosphinate). In some embodiments, a photo-curable composition comprises a photoinitiator selected from a benzophenone, a mixture of benzophenone and a tertiary amine containing a carbonyl group which is directly bonded to at least one aromatic ring, and an Irgacure (e.g., Irgacure 907 (2-methyl-1-[4-(methylthio)-phenyl]-2-morpholino-propanone-1) or Irgacure 651 (2,2-dimethoxy-1,2-diphenylethan-1-one). In some embodiments, the photoinitiator comprises an acetophenone photoinitiator (e.g., 4′-hydroxyacetophenone, 4′0phenoxyacetophenone, 4′-ethoxyaceto-phenone), a benzoin, a benzoin derivative, a benzil, a benzil derivative, a benzophenone (e.g., 4-benzoylbiphenyl, 3,4-(dimethylamino)benzophenone, 2-methylbenzophenone), a cationic photoinitiator (e.g., diphenyliodonium nitrate, (4-iodophenyl)diphenylsulfonium triflate, triphenylsulfonium triflate), an anthraquinone, a quinone (e.g., camphorquinone), a phosphine oxide, a phosphinate, 9,10-phenanthrenequinone, a thioxanthone, any combination thereof, or any derivative thereof.
In some embodiments, the photoinitiator can have a maximum wavelength absorbance between 200 and 300 nm, between 300 and 400 nm, between 400 and 500 nm, between 500 and 600 nm, between 600 and 700 nm, between 700 and 800 nm, between 800 and 900 nm, between 150 and 200 nm, between 200 and 250 nm, between 250 and 300 nm, between 300 and 350 nm, between 350 and 400 nm, between 400 and 450 nm, between 450 and 500 nm, between 500 and 550 nm, between 550 and 600 nm, between 600 and 650 nm, between 650 and 700 nm, or between 700 and 750 nm. In some embodiments, the photoinitiator has a maximum wavelength absorbance between 300 to 500 nm.
In some embodiments, a photo-curable resin of the present disclosure can comprise a crosslinking modifier (e.g., in addition to a polymerizable monomer that can act as a cross-linker, or in instances where the polymerizable monomer does not act as a cross-linker), a light blocker, a solvent, a glass transition temperature modifier, or a combination thereof. In some aspects, the photo-curable resin comprises 0-25 wt % of the crosslinking modifier, the crosslinking modifier having a number-average molecular weight equal to or less than 1,500 Da. In some aspects, the photo-curable resin comprises from 0 to 10 wt %, from 0 to 9 wt %, from 0 to 8 wt %, from 0 to 7 wt %, from 0 to 6 wt %, from 0 to 5 wt %, from 0 to 4 wt %, from 0 to 3 wt %, from 0 to 2 wt %, from 0 to 1 wt %, or from 0 to 0.5 wt % of the light blocker. In some embodiments, the photo-curable resin comprises a solvent. In some embodiments, the solvent comprises a nonpolar solvent. In certain embodiments, the nonpolar solvent comprises pentane, cyclopentane, hexane, cyclohexane, benzene, toluene, 1,4-dioxane, chloroform, diethyl ether, dichloromethane, a derivative thereof, or a combination thereof. In some embodiments, the solvent comprises a polar aprotic solvent. In certain embodiments, the polar aprotic solvent comprises tetrahydrofuran, ethyl acetate, acetone, dimethylformamide, acetonitrile, DMSO, propylene carbonate, a derivative thereof, or a combination thereof. In some embodiments, the solvent comprises a polar protic solvent. In certain embodiments, the polar protic solvent comprises formic acid, n-butanol, isopropyl alcohol, n-propanol, t-butanol, ethanol, methanol, acetic acid, water, a derivative thereof, or a combination thereof. In some embodiments, the photo-curable resin comprises less than 90% of the solvent by weight.
In some embodiments, the added resin component (e.g., a crosslinking modifier, a polymerization catalyst, a polymerization inhibitor, a glass transition temperature modifier, a light blocker, a plasticizer, a solvent, a surface energy modifier, a pigment, a dye, a filler, or a biologically significant chemical) is functionalized so that it can be incorporated into the polymeris material so that it cannot readily be extracted from the final cured material. In certain embodiments, the polymerization catalyst, polymerization inhibitor, light blocker, plasticizer, surface energy modifier, pigment, dye, and/or filler, are functionalized to facilitate their incorporation into the cured polymeric material.
In some embodiments, a resin herein comprises a component in addition to a polymerizable monomer described herein that can alter the glass transition temperature of the cured polymeric material. In such instances, a glass transition temperature modifier (also referred to herein as a Tg modifier or a glass transition modifier) can be present in a photo-curable composition from about 0 to 50 wt %, based on the total weight of the composition. The Tg modifier can have a high glass transition temperature, which leads to a high heat deflection temperature, which can be necessary to use a material at elevated temperatures. In some embodiments, the curable composition comprises 0 to 80 wt %, 0 to 75 wt %, 0 to 70 wt %, 0 to 65 wt %, 0 to 60 wt %, 0 to 55 wt %, 0 to 50 wt %, 1 to 50 wt%, 2 to 50 wt %, 3 to 50 wt %, 4 to 50 wt %, 5 to 50 wt %, 10 to 50 wt %, 15 to 50 wt %, 20 to 50 wt%, 25 to 50 wt %, 30 to 50 wt %, 35 to 50 wt %, 0 to 40 wt %, 1 to 40 wt %, 2 to 40 wt %, 3 to 40 wt%, 4 to 40 wt %, 5 to 40 wt %, 10 to 40 wt %, 15 to 40 wt %, or 20 to 40 wt % of a Tg modifier. In certain embodiments, the curable composition comprises 0-50 wt % of a glass transition modifier. In some instances, the number average molecular weight of the Tg modifier is 0.4 to 5 kDa. In some embodiments, the number average molecular weight of the Tg modifier is from 0.1 to 5 kDa, from 0.2 to 5 kDa, from 0.3 to 5 kDa, from 0.4 to 5 kDa, from 0.5 to 5 kDa, from 0.6 to 5 kDa, from 0.7 to 5 kDa, from 0.8 to 5 kDa, from 0.9 to 5 kDa, from 1.0 to 5 kDa, from 0.1 to 4 kDa, from 0.2 to 4 kDa, from 0.3 to 4 kDa, from 0.4 to 4 kDa, from 0.5 to 4 kDa, from 0.6 to 4 kDa, from 0.7 to 4 kDa, from 0.8 to 4 kDa, from 0.9 to 4 kDa, from 1 to 4 kDa, from 0.1 to 3 kDa, from 0.2 to 3 kDa, from 0.3 to 3 kDa, from 0.4 to 3 kDa, from 0.5 to 3 kDa, from 0.6 to 3 kDa, from 0.7 to 3 kDa, from 0.8 to 3 kDa, from 0.9 to 3 kDa, or from 1 to 3 kDa. A polymerizable monomer of the present disclosure (which can act by itself as a Tg modifier) and a separate Tg modifier compound can be miscible and compatible in the methods described herein. When used in the subject compositions, the Tg modifier may provide for high Tg and strength values, sometimes at the expense of elongation at break. In some cases, a toughness modifier may provide for high elongation at break and toughness via strengthening effects, and a polymerizable monomer described herein may improve the processability of the formulations, e.g., by acting as a reactive diluent, particularly of those compositions comprising high amounts of toughness modifiers, while maintaining high values for strength and Tg.
Resin Properties
A photo-curable resin herein can be characterized by having one or more properties. In some embodiments, a photo-polymerizable monomer of this disclosure, e.g., a compound according to any one of Formulas (I)-(VI) and (IX), can be used as a reactive diluent in curable resins disclosed herein. Hence, in some instances, a photo-polymerizable monomer can reduce a viscosity of the curable resin (e.g., a photo-curable resin). In such cases, a photo-polymerizable monomer can reduce the viscosity of the curable resin by at least about 5% compared to a resin that does not comprise the polymerizable monomer. In some instances, a photo-polymerizable monomer can reduce the viscosity of a photo-curable resin by at least about 5%, 10%, 20%, 30%, 40%, or 50%. In some instances, a photo-curable resin of this disclosure can have a viscosity from about 30 cP to about 50,000 cP at a printing temperature. In some embodiments, the photo-curable resin has a viscosity less than or equal to 30,000 cP, less than or equal to 25,000 cP, less than or equal to 20,000 cP, less than or equal to 19,000 cP, less than or equal to 18,000 cP, less than or equal to 17,000 cP, less than or equal to 16,000 cP, less than or equal to 15,000 cP, less than or equal to 14,000 cP, less than or equal to 13,000 cP, less than or equal to 12,000 cP, less than or equal to 11,000 cP, less than or equal to 10,000 cP, less than or equal to 9,000 cP, less than or equal to 8,000 cP, less than or equal to 7,000 cP, less than or equal to 6,000 cP, or less than or equal to 5,000 cP at 25° C. In some embodiments, the resin has a viscosity less than 15,000 cP at 25° C. In some embodiments, the photo-curable resin has a viscosity less than or equal to 100,000 cP, less than or equal to 90,000 cP, less than or equal to 80,000 cP, less than or equal to 70,000 cP, less than or equal to 60,000 cP, less than or equal to 50,000 cP, less than or equal to 40,000 cP, less than or equal to 35,000 cP, less than or equal to 30,000 cP, less than or equal to 25,000 cP, less than or equal to 20,000 cP, less than or equal to 15,000 cP, less than or equal to 10,000 cP, less than or equal to 5,000 cP, less than or equal to 4,000 cP, less than or equal to 3,000 cP, less than or equal to 2,000 cP, less than or equal to 1,000 cP, less than or equal to 750 cP, less than or equal to 500 cP, less than or equal to 250 cP, less than or equal to 100 cP, less than or equal to 90 cP, less than or equal to 80 cP, less than or equal to 70 cP, less than or equal to 60 cP, less than or equal to 50 cP, less than or equal to 40 cP, less than or equal to 30 cP, less than or equal to 20 cP, or less than or equal to 10 cP at a printing temperature. In some embodiments, the photo-curable resin has a viscosity from 50,000 cP to 30 cP, from 40,000 cP to 30 cP, from 30,000 cP to 30 cP, from 20,000 cP to 30 cP, from 10,000 cP to 30 cP, or from 5,000 cP to 30 cP at a printing temperature. In some embodiments, the printing temperature is from 0° C. to 25° C., from 25° C. to 40° C., from 40° C. to 100° C., or from 20° C. to 150° C. In some embodiments, the photo-curable resin has a viscosity from 30 cP to 50,000 cP at a printing temperature, wherein the printing temperature is from 20° C. to 150° C. In yet other embodiments, the photo-curable resin has a viscosity less than 20,000 cP at a print temperature. In some embodiments, the print temperature is from 10° C. to 200° C., from 15° C. to 175° C., from 20° C. to 150° C., from 25° C. to 125° C., or from 30° C. to 100° C. In preferred embodiments, the print temperature is from 20° C. to 150° C.
A photo-curable resin of the present disclosure can be capable of being 3D printed at a temperature greater than 25° C. In some cases, the printing temperature is at least about 30° C., 40° C., 50° C., 60° C., 80° C., or 100° C. As described herein, a photo-polymerizable monomer of this disclosure that can part of the photo-curable resin, can have a low vapor pressure and/or mass loss at the printing temperature, thereby providing improved printing conditions compared to conventional resins used in additive manufacturing.
In some embodiments, a photo-curable resin herein has a melting temperature greater than room temperature. In some embodiments, the photo-curable resin has a melting temperature greater than 20° C., greater than 25° C., greater than 30° C., greater than 35° C., greater than 40° C., greater than 45° C. greater than 50° C., greater than 55° C., greater than 60° C., greater than 65° C., greater than 70° C., greater than 75° C., or greater than 80° C. In some embodiments, the photo-curable resin has a melting temperature from 20° C. to 250° C., from 30° C. to 180° C., from 40° C. to 160° C., or from 50° C. to 140° C. In some embodiments, the photo-curable resin has a melting temperature greater than 60° C. In other embodiments, the photo-curable resin has a melting temperature from 80° C. to 110° C. In some instances, a photo-curable resin can have a melting temperature of about 80° C. before polymerization, and after polymerization, the resulting polymeric material can have a melting temperature of about 100° C.
In certain instances, it may be advantageous that a photo-curable resin is in a liquid phase at an elevated temperature. As an example, a conventional photo-curable resin can comprise polymerizable components that may be viscous at a process temperature, and thus can be difficult to use in the fabrication of objects (e.g., using 3D printing). As a solution for that technical problem, the present disclosure provides photo-curable resins comprising photo-polymerizable components such as monomers described herein that can melt at an elevated temperature, e.g., at a temperature of fabrication (e.g., during 3D printing), and can have a decreased viscosity at the elevated temperature, which can make such resin more applicable and usable for uses such as 3D printing. Hence, in some embodiments, provided herein are photo-curable resins that are a liquid at an elevated temperature. In some embodiments, the elevated temperature is at or above the melting temperature (Tm) of the photo-curable resin. In certain embodiments, the elevated temperature is a temperature in the range from about 40° C. to about 100° C., from about 60° C. to about 100° C., from about 80° C. to about 100° C., from about 40° C. to about 150° C., or from about 150° C. to about 350° C. In some embodiments, the elevated temperature is a temperature above about 40° C., above about 60° C., above about 80° C., or above about 100° C. In some embodiments, a photo-curable resin herein is a liquid at an elevated temperature with a viscosity less than about 50 PaS, less than 2 about 0 PaS, less than about 10 PaS, less than about 5 PaS, or less than about 1 PaS. In some embodiments, a photo-curable resin herein is a liquid at an elevated temperature of above about 40° C. with a viscosity less than about 20 PaS. In yet other embodiments, a photo-curable resin herein is a liquid at an elevated temperature of above about 40° C. with a viscosity less than about 1 PaS.
In some embodiments, at least a portion of a photo-curable resin herein has a melting temperature below about 100° C., below about 90° C., below about 80° C., below about 70° C., or below about 60° C. In some embodiments, at least a portion of a photo-curable resin herein melts at an elevated temperature between about 100° C. and about 20° C., between about 90° C. and about 20° C., between about 80° C. and about 20° C., between about 70° C. and about 20° C., between about 60° C. and about 20° C., between about 60° C. and about 10° C., or between about 60° C. and about 0° C.
In various embodiments, a photo-curable resin herein as well as its photo-polymerizable components can be biocompatible, bioinert, or a combination thereof. In various instances, the photo-polymerizable monomers of a resin herein can have biocompatible and/or bioinert metabolic (e.g., hydrolysis) products.
A photo-curable resin of the present disclosure can comprise less than about 20 wt % or less than about 10 wt % hydrogen bonding units. In some aspects, a photo-curable resin herein comprises less than about 15 wt %, less than about 10 wt %, less than about 9 wt %, less than about 8 wt %, less than about 7 wt %, less than about 6 wt %, less than about 5 wt %, less than about 4 wt %, less than about 3 wt %, less than about 2 wt %, or less than about 1 wt % hydrogen bonding units, wherein wt % is the weight percent of species, including monomeric units in polymerized, oligomerized, and monomeric form, capable of forming at least one hydrogen bond.
The present disclosure provides polymeric materials. Such polymeric materials can be generated by curing a curable composition or resin described herein. A polymeric material provided herein can be biocompatible, bioinert, or a combination thereof. In various instances, a polymeric material herein is generated by photo-curing a photo-curable composition described herein. Such photo-curable compositions can comprise one or more photo-polymerizable monomers of the present disclosure.
Phase Separation in Polymeric Materials
In some aspects herein, a photo-curable composition or resin herein can be cured by exposing such composition or resin to electromagnetic radiation of appropriate wavelength. Such curing or polymerization can induce phase separation in the photo-curable composition and/or in the forming polymeric material. Such polymerization-induced phase separation can occur along one or more lateral and vertical direction(s) (see, e.g.,
A polymeric phase of a polymeric material of the present disclosure can have a certain size or volume. In some embodiments, a polymeric phase is 3-dimensional, and can have at least one dimension with less than 1000 μm, less than 500 μm, less than 250 μm, less than 200 μm, less than 150 μm, less than 100 μm, less than 90 μm, less than 80 μm, less than 70 μm, less than 60 μm, less than 50 μm, less than 40 μm, less than 30 μm, less than 20 μm, or less than 10 μm. In certain embodiments, the polymeric phase can have at least two dimensions with less than 1000 μm, less than 500 μm, less than 250 μm, less than 200 μm, less than 150 μm, less than 100 μm, less than 90 μm, less than 80 μm, less than 70 μm, less than 60 μm, less than 50 μm, less than 40 μm, less than 30 μm, less than 20 μm, or less than 10 μm. In certain embodiments, the polymeric phase can have three dimensions with less than 1000 μm, less than 500 μm, less than 250 μm, less than 200 μm, less than 150 μm, less than 100 μm, less than 90 μm, less than 80 μm, less than 70 μm, less than 60 μm, less than 50 μm, less than 40 μm, less than 30 μm, less than 20 μm, or less than 10 μm. In some aspects, a polymeric material comprises an average polymeric phase size of less than about 5 μm in at least one spatial dimension.
In various aspects, the present disclosure provides a polymeric material that can comprise one or more polymeric phases, wherein at least one polymeric phase of the one or more polymeric phases is a crystalline phase. In various aspects, the present disclosure provides a polymeric material that can comprise one or more polymeric phases, wherein at least one polymeric phase of the one or more polymeric phases is an amorphous phase. In some instances, provided herein is a polymeric material that can comprise two or more polymeric phases, wherein at least one polymeric phase of the one or more polymeric phases is a crystalline phase, and at least one polymeric phase of the one or more polymeric phases an amorphous phase.
Hence, in some instance, provided herein is a polymeric material comprising: (i) at least one crystalline phase comprising at least one polymer crystal having a melting temperature above 20° C.; and (ii) at least one amorphous phase comprising at least one amorphous polymer having a glass transition temperature greater than 40° C. In some cases, the at least one crystalline phase can comprise, in a polymerized form, a photo-polymerizable monomer according to any one of Formulas (I)-(VI) and (IX). In some cases, the at least one amorphous phase can comprise, in a polymerized form, a photo-polymerizable monomer according to any one of Formulas (I)-(VI) and (IX). In some aspects, such amorphous phase has a glass transition temperature greater than 50° C., 60° C., 70° C., 80° C., 90° C., 100° C. or greater than 110° C. In some instances, such amorphous phase can comprise, in a polymerized form, a photo-polymerizable monomer according to any one of Formulas (I)-(VI) and (IX). In some aspects, the at least one polymer crystal has a melting temperature above 30° C., 40° C., 50° C., 60° C., or above 70° C. In some instances, such crystalline phase can comprise, in a polymerized form, a photo-polymerizable monomer according to any one of Formulas (I)-(VI) and (IX).
The present disclosure provides polymeric materials comprising one or more amorphous phases, e.g., generated by polymerization-induced phase separation. Such polymeric materials, or regions of such material that contain polymeric phases, can provide fast response times to external stimuli, which can confer favorable properties to the polymeric material comprising the crystalline phase and/or the amorphous phase, e.g., for using the polymeric material in a medical device (e.g., an orthodontic appliance). In some cases, a polymeric material comprising one or more amorphous polymeric phases can, for example, provide flexibility to the cured polymeric material, which can increase its durability (e.g., the material can be stretched or bent while retaining its structure, while a similar material without amorphous phases can crack). In certain embodiments, amorphous phases can be characterized by randomly oriented polymer chains (e.g., not stacked in parallel or in crystalline structures). In some embodiments, such amorphous polymeric phase of a polymeric material can have a glass transition temperature of greater than about 10° C., 20° C., 30° C., 40° C., 50° C., 60° C., 70° C., 80° C., 90° C., 100° C., or greater than about 110° C. In some embodiments, an amorphous polymeric phase can have a glass transition temperature from about 40° C. to about 60° C., from about 50° C. to about 70° C., from about 60° C. to about 80° C., or from about 80° C. to about 110° C. In some embodiments, the amourphous phase has a glass transition temperature less than 10° C., 0° C., −10° C., −30° C., −50° C. In some preferred aspects, one or more phases will have a glass transition temperature less than 0° C. In some embodiments, two or more phases have glass transition temperatures above 60° C. and below 10° C.
In some embodiments, an amorphous phase herein (also referred to herein as an amorphous domain) can comprise at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or at least about 90% amorphous polymeric material in an amorphous state. The percentage of amorphous polymeric material in an amorphous phase generally refers to total volume percent.
In some embodiments, an amorphous polymeric phase can comprise one or more polymer types that may have formed, during curing, from the polymerizable monomers, telechelic polymers and/or oligomers, and any other polymerizable component that may have been present in the curable composition used to produce the polymeric material that contains the amorphous polymeric phase. In some instances, such one or more polymer types can include one or more of comprises a homopolymer, a linear copolymer, a block copolymer, an alternating copolymer, a periodic copolymer, a statistical copolymer, a random copolymer, a gradient copolymer, a branched copolymer, a brush copolymer, a comb copolymer, a dendrimer, or any combination thereof. In some cases, the amorphous polymeric material comprises a random copolymer. In some embodiments, the amorphous polymeric material can comprise poly-(ethylene) glycol (PEG), poly(ethylene) glycol diacrylate, PEG-THF, polytetrahydrofuran, poly-(tert-butyl acrylate), poly(ethylene-co-maleic anhydride), any derivative thereof, or any combination thereof.
In some instances, polymerizable components of a resin that can form a crystalline material, can form an amorphous phase instead when exposed to conditions that prevent their crystallization. Hence, in some cases, materials that may conventionally be considered crystalline can be used as amorphous material. As a non-limiting example, polycaprolactone can be a crystalline polymer, but when mixed with other polymerizable monomers and telechelic polymers, crystal formation may be prevented and an amorphous phase can form.
An amorphous phase can comprise, in a polymerized form, and in addition to one or more polymerizable monomers according to any one of Formulas (I)-(VI) and (IX), one or more of the following moieties: an acrylic monomer, an acrylamide, a methacrylamide, an acrylonitrile, a bisphenol acrylic, a carbohydrate, a fluorinated acrylic, a maleimide, an acrylate, 4-acetoxyphenethyl acrylate, acryloyl chloride, 4-acryloylmorpholine, 2-(acryloyloxy)ethyl]-trimethylammonium chloride, 2-(4-benzoyl-3-hydroxyphenoxy)ethyl acrylate, benzyl 2-propylacrylate, butyl acrylate, tert-butyl acrylate, 2[[(butylamino)carbonyl]-oxy]ethyl acrylate, tert-butyl 2-bromoacrylate, 2-carboxyethyl acrylate, 2-chloroethyl acrylate, 2-(diethylamino)-ethyl acrylate, di(ethylene glycol) ethyl ether acrylate, 2-(dimethylamino)ethyl acrylate, 3-(dimethylamino)propyl acrylate, dipentaerythriol penta-/hexa-acrylate, ethyl acrylate, 2-ethylacryloyl chloride, ethyl 2-(bromomethyl)acrylate, ethyl cis-(beta-cyano)acrylate, ethylene glycol dicyclopentenyl ether acrylate, ethylene glycol methyl ether acrylate, ethylene glycol phenyl ether acrylate, ethyl 2-ethylacrylate, 2-ethylexyl acrylate, ethyl 2-propylacrylate, ethyl 2-(trimethylsilylmethyl)acrylate, hexyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, hydroxypropyl acrylate, isobornyl acrylate, isobutyl acrylate, isodecyl acrylate, isooctyl acrylate, lauryl acrylate, methyl 2-acetamidoacrylate, methyl acrylate, a methylene malonate (e.g., dibutyl methylene malonate, dihexyl methylene malonate, or dicyclohexyl methylene malonate), a methylene malonate macromerer (e.g, a polyester of 2-methylenemalonate such as Forza B3000 XP), methyl a-bromoacrylate, methyl 2-(bromo-methyl)acrylate, methyl 2-(chloromethyl)acrylate, methyl 3-hydroxy-2-methylenebutyrate, methyl 2-(trifluoromethyl)acrylate, octadecyl acrylate, pentabromobenzyl acrylate, penta-bromophenyl acrylate, pentafluorophenyl acrylate, poly(ethylene glycol) diacrylate, poly-(ethylene glycol) methyl ether acrylate, poly(propylene glycol) acrylate, epoxidized soybean oil acrylate, 3-sulfopropyl acrylate, tetrahydrofuryl acrylate, 2-tetrahydropyranyl acrylate, 3-(trimethoxysilyl)propyl acrylate, 3,5,5-trimethylhexyl acrylate, 10-undecenyl acrylate, urethane acrylate, urethane acrylate methacrylate, tricylcodecane diacrylate, isobornyl acrylate, a methacrylate,allyl methacrylate, benzyl methacrylate, (2-boc-amino)ethyl methacrylate, tert-butyl methacrylate, 9H-carbazole-9-ethylmethacrylate, 3-chloro-2-hydroxypropyl methacrylate, cyclohexyl methacrylate, 1,10-decamethylene glycol dimethacrylate, ethylene glycol dicyclopentenyl ether methacrylate, ethylene glycol methyl ether methacrylate, 2-ethylhexyl methacrylate, furfuryl methacrylate, glycidyl methacrylate, glycosyloxyethyl methacrylate, hexyl methacrylate, hydroxybutyl methacrylate, 2-hydroxy-5-N-methacrylamidobenzoic acid, isobutyl methacrylate, methacryloyl chloride, methyl methacrylate, mono-2-methacryloyloxy)ethyl succinate, 2-N-morpholinoethyl methacrylate, 1-naphthyl methacrylate, pentabromophenyl methacrylate, phenyl methacrylate, pentabromophenyl methacrylate, TEMPO methacrylate, 3-sulfopropyl methacrylate, triethylene glycol methyl ether methacrylate, 2-[(1′,1′,1′-trifluoro-2′-(trifluoromethyl)-2′0hdroxy)propyl]-3-norbornyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, (trimethylsilyl)methacrylate, vinyl methacrylate, isobornyl methacrylate, bisphenol A dimethacrylate, an Omnilane OC, tert-butyl acrylate, isodecyl acrylate, tricylcodecane diacrylate, a polyfunctional acrylate, N,N′-methylenebisacrylamide, 3-(acryloyloxy)-2-hydroxypropyl) methacrylate, bis[2-(methacryloyloxy)ethyl] phosphate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, diurethane dimethacrylate, N,N′-ethylenebis(acrylamide), glycerol 1,3-diglycerolate diacrylate, 1,6-hexanediol diacrylate, hydroxypivalyl hydroxypivalate bis[6-(acryloyloxy)hexanoate], neopentyl glycol diacrylate, pentaerythritol diacrylate, 1,3,6-triacryloyl hexahydro-1,3,5-triazine, trimethlolpropane ethoxylate, tris[2-(acryloyloxy)ethyl] isocyanurate, any derivative thereof, or a combination thereof.
A phase (e.g., an amorphous or a crystalline phase) of a polymeric material herein can comprise one or more reactive functional groups that can allow for further modification of the polymeric material, such as additional polymerization (e.g., post-curing). In some embodiments, an amorphous polymeric material comprises a plurality of reactive functional groups, and the reactive functional groups can be located at one or both terminal ends of the amorphous material, in-chain, at a pendant (e.g., a side group attached to the polymer backbone), or any combination thereof. Non-limiting examples of reactive functional groups include free radically polymerizable functionalities, photoactive groups, groups facilitating step growth polymerization, thermally reactive groups, and/or groups that facilitate bond formation (e.g., covalent bond formation). In some embodiments, the functional groups comprise an acrylate, a methacrylate, an acrylamide, a vinyl group, a vinyl ether, a thiol, an allyl ether, a norbornene, a vinyl acetate, a maleate, a fumarate, a maleimide, an epoxide, a ring-strained cyclic ether, a ring-strained thioether, a cyclic ester, a cyclic carbonate, a cyclic silane, a cyclic siloxane, a hydroxyl, an amine, an isocyanate, a blocked isocyanate, an acid chloride, an activated ester, an oxetane, a Diels-Alder reactive group, a furan, a cyclopentadiene, an anhydride, a group favorable toward photodimerization (e.g., an anthracene, an acenaphthalene, or a coumarin), a group that photodegrades into a reactive species (e.g., Norrish Type 1 and 2 materials), an azide, a derivative thereof, or a combination thereof.
As further described herein, a polymeric material of the present disclosure can comprise one or more crystalline phases, e.g., generated by polymerization-induced phase separation during curing. As described herein, a crystalline phase is a polymeric phase of a cured polymeric material that comprises at least one polymer crystal. As disclosed herein, a crystalline phase may consist of a single polymeric crystal, or may comprise a plurality of polymeric crystals.
In some embodiments, a crystalline polymeric phase can have a melting temperature equal to or greater than about 20° C., 30° C., 40° C., 50° C., 60° C., 70° C., 80° C., 90° C., 100° C., 120° C., or equal to or greater than about 150° C. In some cases, at least two crystalline phases of a plurality of crystalline phases can have a different melting temperature due to, e.g., differences in crystalline phase sizes, impurities, degree of cross-linking, chain lengths, thermal history, rates at which polymerization occurred, degree of phase separation, or any combination thereof. In some aspects, at least two crystalline phases of a polymeric material can each have a polymer crystal melting temperature within about 5° C. of each other. In some instances, such melting temperature difference can be less than about 5° C. In other instances, such melting temperature difference can be greater than about 5° C. In some aspects, each of the polymer crystal melting temperatures of a polymeric material can be from about 40° C. to about 100° C. In some aspects, at least about 80% of the crystalline domains of a polymeric material can comprise a polymer crystal having a melting temperature between about 40° C. and about 100° C.
In some embodiments, at least 80% of the crystalline phases have a crystal melting point at a temperature between 0° C. and 100° C. In some embodiments, at least 80% of the crystalline phases have a crystal melting point at a temperature between 40° C. and 60° C., between 40° C. and 80° C., between 40° C. and 100° C., between 60° C. and 80° C., between 60° C. and 100° C., between 80° C. and 100° C., or greater than 100° C. In some embodiments, at least 90% of the crystalline phases have a crystal melting point at a temperature between 0° C. and 100° C. In some embodiments, at least 90% of the crystalline phases have a crystal melting point at a temperature between 40° C. and 60° C., between 40° C. and 80° C., between 40° C. and 100° C., between 60° C. and 80° C., between 60° C. and 100° C., between 80° C. and 100° C., or greater than 100° C. In some embodiments, at least 95% of the crystalline phases have a crystal melting point at a temperature between 0° C. and 100° C. In some embodiments, at least 95% of the crystalline phases have a crystal melting point at a temperature between 40° C. and 60° C., between 40° C. and 80° C., between 40° C. and 100° C., between 60° C. and 80° C., between 60° C. and 100° C., between 80° C. and 100° C., or greater than 100° C.
In certain embodiments, the temperature at which a crystalline phase of a cured polymeric material melts can be controlled, e.g., by using different amounts and types of polymerizable components in the curable resin, e.g., different amounts and types of polymerizable monomers described herein (e.g., those being a compound according to any one of Formulas (I)-(VI) and (IX)), different amounts and types of telechelic polymer(s) and/or oligomer(s), and/or by using blocks of polymers (i.e., in copolymers) that have different crystal melting points.
In some embodiments, the curing of a resin can occur at an elevated temperature (e.g., at about 90° C.), and as the cured polymeric material cools to room temperature (e.g., 25° C.), the cooling can trigger the formation and/or growth of polymeric crystals in the polymeric material. In some instances, a polymeric material can be a solid at room temperature and can be crystalline-free, but can form crystalline phase over time. In such cases, a crystalline phase can form within 1 hour, within 2 hours, within 4 hours, within 8 hours, within 12 hours, within 18 hours, within 1 day, within 2 days, within 3 days, within 4 days, within 5 days, within 6 days, or within 7 days after cooling. In some embodiments, a crystalline phase can form while the cured polymeric material is in a cooled environment, e.g., an environment having a temperature from about 40° C. to about 30° C., from about 30° C. to about 20° C., from about 20° C. to about 10° C., from about 10° C. to about 0° C., from about 0° C. to about −10° C., from about −10° C. to about −20° C., from about −20° C. to about −30° C., or below about −30° C. In some instances, a polymeric material can be heated to an elevated temperature in order to induce crystallization or formation of crystalline phases. As a non-limiting example, a polymeric material that is near its glass transition temperature can comprise polymer chains that may not be mobile enough to organize into crystals, and thus further heating the material can increase chain mobility and induce formation of crystals.
In some embodiments, the generation, formation, and/or growth of a polymeris phase is spontaneous. In some embodiments, the generation, formation, and/or growth of a polymer crystal is facilitated by a trigger. In some embodiments, the trigger comprises the addition of a seeding particle (also referred to herein as a “seed”), which can induce crystallization. Such seeds can include, for example, finely ground solid material that has at least some properties similar to the forming crystals. In some embodiments, the trigger comprises a reduction of temperature. In certain embodiments, the reduction of temperature can include cooling the cured material to a temperature from 40° C. to 30° C., from 30° C. to 20° C., from 20° C. to 10° C., from 10° C. to 0° C., from 0° C. to −10° C., from −10° C. to −20° C., from −20° C. to −30° C., or below −30° C. In some embodiments, the trigger can comprise an increase in temperature. In certain embodiments, the increase of temperature can include heating the polymeric cured material to a temperature from 20° C. to 40° C., from 40° C. to 60° C., from 60° C. to 80° C., from 80° C. to 100° C., or above 100° C. In some embodiments, the trigger comprises a force placed on the cured polymeric material. In certain embodiments, the force includes squeezing, compacting, pulling, twisting, or providing any other physical force to the material. In some embodiments, the trigger comprises an electrical charge and/or electrical field applied to the material. In some embodiments, formation of one or more crystalline phases may be induced by more than one trigger (i.e., more than one type of trigger can facilitate the generation, formation, and/or growth of crystals). In some embodiments, the polymeric material comprises a plurality of crystalline phases, and at least two of the crystalline phase may be induced by different triggers.
In some embodiments, a polymeric material herein comprises a crystalline phase that has discontinuous phase transitions (e.g., first-order phase transitions). In some cases, a polymeric material has discontinuous phase transitions, due at least in part to the presence of one or more crystalline domains. As a non-limiting example, a cured polymeric material comprising one or more crystalline domains can, when heated to an elevated temperature, have one or more portions that melt at such elevated temperature, as well as one or more portions that remain solid.
In some embodiments, a cured polymeric material comprises crystalline phases that are continuous and/or discontinuous phases. A continuous phase can be a phase that can be traced or is connected from one side of a polymeric material to another side of the material; for instance, a closed-cell foam has material comprising the foam that can be traced across the sample, whereas the closed cells (bubbles) represent a discontinuous phase of air pockets. In some embodiments, the at least one crystalline phase forms a continuous phase while the at least one amorphous phase is discontinuous across the material. In another embodiment, the at least one crystalline phase is discontinuous and the at least one amorphous phase is continuous across the material. In another embodiment, both the at least one crystalline and the at least one amorphous phases are continuous across the material. In some embodiments, a polymeric material comprises a plurality of crystalline phases, wherein one or more crystalline phases of the plurality of crystalline phases have a high melting point (e.g., at least about 50° C., 70° C., or 90° C.) and are in a discontinuous phase, while another one or more crystalline phases of the plurality of crystalline phases have a low melting point (e.g., at less than about 50° C., 70° C., or 90° C.) and are in a continuous phase. In some embodiments, two continuous amorphous phases are present. In other embodiments, one continuous and one discontinuous amorphous phase is present
In some aspects, a polymeric material comprises an average crystalline phase size of less than about 100 μm, 50 μm, 20 μm, 10 μm, or less then about 5 μm in at least one spatial dimension.
In some aspects, a polymer crystal of a crystalline phase can comprise greater than about 40 wt %, greater than about 50 wt %, greater than about 60 wt %, greater than about 70 wt %, greater than about 80 wt %, or greater than about 90 wt % of linear polymers and/or linear oligomers.
In some aspects, a polymeric material described herein can have a crystalline phase content from about 10% to about 90%, from about 20% to about 80%, from about 30% to about 70%, from about 40% to about 95%, or from about 50% to about 95%, as measured by X-ray diffraction. In some aspects, a polymeric material herein can comprise a weight ratio of crystalline phases to amorphous phases from about 1:99 to about 99:1.
In various aspects, the present disclosure provides a polymeric material comprising: an amorphous phase; and a crystalline phase comprising a polymer having a tactic property. In some aspects, the tactic property comprises being isotactic, being syndiotactic, having a plurality of meso diads, having a plurality of racemo diads, having a plurality of isotactic triads, having a plurality of syndiotactic triads, or having a plurality of heterotactic triads. In some aspects, the polymeric material comprising the crystalline phase comprising the polymer having the tactic property has increased crystallinity compared to a comparable polymeric material comprising a comparable atactic polymer. In some aspects, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, or greater than 99% of the crystalline phase comprises the tactic property. In some aspects, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, or greater than 99% of the polymeric material comprises the tactic property. In some aspects, the polymeric material comprising the polymer having the tactic property is characterized by at least one of: an elongation at break greater than or equal to 5%; a storage modulus greater than or equal to 500 MPa; a tensile modulus greater than or equal to 500 MPa; and a flexural stress remaining greater than or equal to 0.01 MPa. In some aspects, a comparable polymeric material comprising an atactic polymer comparable to the polymer having the tactic property is characterized by at least one of: an elongation at break less than 5%; a storage modulus less than 500 MPa; a tensile modulus less than 500 MPa; and a flexural stress remaining less than 0.01 MPa. In some aspects, the polymeric material is at least partially cross-linked. In some aspects, the polymeric material is a thermoset or a thermoplastic. In some aspects, the polymeric material comprises semi-crystalline segments.
In some embodiments, a cured polymer such as a crosslinked polymer, can be characterized by a tensile stress-strain curve that displays a yield point after which the test specimen continues to elongate, but there is no (detectable) or only a very low increase in stress. Such yield point behavior can occur “near” the glass transition temperature, where the material is between the glassy and rubbery regimes and may be characterized as having viscoelastic behavior. In some embodiments, viscoelastic behavior is observed in the temperature range from about 20° C. to about 40° C. The yield stress is determined at the yield point. In some embodiments, the modulus is determined from the initial slope of the stress-strain curve or as the secant modulus at 1% strain (e.g. when there is no linear portion of the stress-strain curve). The elongation at yield is determined from the strain at the yield point. When the yield point occurs at a maximum in the stress, the ultimate tensile strength is less than the yield strength. For a tensile test specimen, the strain is defined by ln (l/l0), which may be approximated by (l-l0)/l0 at small strains (e.g. less than approximately 10%) and the elongation is l/l0, where l is the gauge length after some deformation has occurred and lo is the initial gauge length. The mechanical properties can depend on the temperature at which they are measured. The test temperature may be below the expected use temperature for a dental appliance such as 35° C. to 40° C. In embodiments, the test temperature is 23±2° C.
As provided further herein, the polymeric material comprising a crystalline phase (can also referred to herein as a crystalline domain) and an amorphous phase (can also referred to herein as an amorphous domain) can have improved characteristics, such as the ability to act quickly (e.g., vibrate quickly and react upon application of strain, from the elastic characteristics of the amorphous domain) and also provide strong modulus (e.g., are stiff and provide strength, from the crystalline domain). The polymer crystals disclosed herein can comprise closely stacked and/or packed polymer chains. In some embodiments, the polymer crystals comprise long oligomer or long polymer chains that are stacked in an organized fashion, overlapping in parallel. The polymer crystals can in some cases be pulled out of a crystalline phase, resulting in an elongation as the polymer chains of the polymer crystal are pulled (e.g., application of a force can pull the long polymer chain of the polymer crystal, thus introducing disorder to the stacked chains, pulling at least a portion out of its crystalline state without breaking the polymer chain). This is in contrast with fillers that are traditionally used in the formation of resins for materials with high flexural modulus, which can simply slip through the amorphous phase as forces are applied to the polymeric material or when the fillers are covalently bonded to the polymers causing a reduction in the elongation to break for the material. The use of polymer crystals in the resulting polymeric material can thus provide a less brittle product that can retain more of the original physical properties following use (i.e., are more durable), and retains elastic characteristics through the combination of amorphous and crystalline phases.
In some embodiments, a polymeric material herein comprises a ratio of crystalline polymeric phases to amorphous polymeric phases (wt/wt) of greater than about 1:10, greater than about 1:9, greater than about 1:8, greater than about 1:7, greater than about 1:6, greater than about 1:5, greater than about 1:4, greater than about 1:3, greater than about 1:2, greater than about 1:1, greater than about 2:1, greater than about 3:1, greater than about 4:1, greater than about 5:1, greater than about 6:1, greater than about 7:1, greater than about 8:1, greater than about 9:1, greater than about 10:1, greater than about 20:1, greater than about 30:1, greater than about 40:1, greater than about 50:1, or greater than about 99:1. In some embodiments, the polymeric material comprises a ratio of the crystallizable polymeric material to the amorphous polymeric material (wt/wt) of at least 1:10, at least 1:9, at least 1:8, at least 1:7, at least 1:6, at least 1:5, at least 1:4, at least 1:3, at least 1:2, at least 1:1, at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 6:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 20:1, at least 30:1, at least 40:1, at least 50:1, or at least 99:1. In certain embodiments, the polymeric material comprises a ratio of crystalline polymeric phases to amorphous polymeric phases (wt/wt) of between 1:9 and 99:1, between 1:9 and 9:1, between 1:4 and 4:1, between 1:4 and 1:1, between 3:5 and 1:1, between 1:1 and 5:3, or between 1:1 and 4:1.
In some embodiments, a polymeric material of this disclosure comprises a ratio of crystalline polymeric phases to amorphous polymeric phases (vol/vol) of greater than about 1:10, greater than about 1:9, greater than about 1:8, greater than about 1:7, greater than about 1:6, greater than about 1:5, greater than about 1:4, greater than about 1:3, greater than about 1:2, greater than about 1:1, greater than about 2:1, greater than about 3:1, greater than about 4:1, greater than about 5:1, greater than about 6:1, greater than about 7:1, greater than about 8:1, greater than about 9:1, greater than about 10:1, greater than about 20:1, greater than about 30:1, greater than about 40:1, greater than about 50:1, or greater than about 99:1. In some embodiments, the polymeric material comprises a ratio of crystalline polymeric phases to amorphous polymeric phases (vol/vol) of at least 1:10, at least 1:9, at least 1:8, at least 1:7, at least 1:6, at least 1:5, at least 1:4, at least 1:3, at least 1:2, at least 1:1, at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 6:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 20:1, at least 30:1, at least 40:1, at least 50:1, or at least 99:1. In certain embodiments, the polymeric material comprises a ratio of crystalline polymeric phases to amorphous polymeric phases (vol/vol) of between 1:9 and 99:1, between 1:9 and 9:1, between 1:4 and 4:1, between 1:4 and 1:1, between 3:5 and 1:1, between 1:1 and 5:3, or between 1:1 and 4:1.
Properties of Polymeric Materials
A polymeric material of this disclosure formed from the polymerization of a curable resin disclosed herein can provide advantageous characteristics compared to conventional polymeric materials. In some instances, and as described herein, a polymeric material can contain some percentage of crystallinity, which can impart an increased toughness and high modulus to the polymeric material, while in some circumstances being a 3D printable material. Furthermore, a polymeric material herein can further comprise one or more amorphous phases that can provide increased durability, prevention of crack formation, as well as the prevention of crack propagation. In some instances, a polymeric material can also have low amounts of water uptake, and can be solvent resistant. In some cases, a polymeric material can be characterized by one or more of the properties selected from the group consisting of elongation at break, storage modulus, tensile modulus, flexural stress remaining, glass transition temperature, water uptake, hardness, color, transparency, hydrophobicity, lubricity, surface texture, percent crystallinity, phase composition ratio, phase domain size, and phase domain size and morphology. Further, as described herein, the polymeric materials provided herein can be used for a multitude of applications, including 3D printing, to form materials having favorable properties of both elasticity and stiffness.
In some embodiments, a polymeric material of the present disclosure can have one or more of the following characteristics: (A) a storage modulus greater than or equal to 200 MPa; (B) a flexural stress and/or flexural stress and/or flexural modulus of greater than or equal to 1.5 MPa remaining after 24 hours in a wet environment at 37° C.; (C) an elongation at break greater than or equal to 5% before and after 24 hours in a wet environment at 37° C.; (D) a water uptake of less than 25 wt % when measured after 24 hours in a wet environment at 37° C.; (E) transmission of at least 30% of visible light through the polymeric material after 24 hours in a wet environment at 37° C.; and (F) comprises a plurality of polymeric phases, wherein at least one polymeric phase of the one or more polymeric phases has a Tg of at least 60° C., 80° C., 90° C., 100° C., or at least 110° C. In some instances, a polymeric material herein has at least two, three, four, five, or all characteristics of (A), (B), (C), (D), (E) and (F).
In some instances, the polymeric material can be characterized by a storage modulus of 0.1 MPa to 4000 MPa, a storage modulus of 300 MPa to 3000 MPa, or a storage modulus of 750 MPa to 3000 MPa after 24 hours in a wet environment at 37° C. In some instances, the polymeric material is characterized by a flexural stress and/or flexural modulus of greater than or equal to 5 MPa, greater than or equal to 10 MPa, greater than or equal to 20 MPa, greater than or equal to 30 MPa, greater than or equal to 40 MPa, greater than or equal to 50 MPa, greater than or equal to 60 MPa, greater than or equal to 80 MPa, or greater than or equal to 100 MPa remaining after 24 hours in a wet environment at 37° C.
In some instances, the polymeric material herein can have a flexural stress and/or flexural modulus of 400 MPa or more, 300 MPa or more, 200 MPa or more, 180 MPa or more, 160 MPa or more, 120 MPa or more, 100 MPa or more, 80 MPa or more, 70 MPa or more, 60 MPa or more, after 24 hours in a wet environment at 37° C.
In some instances, the polymeric material can be characterized by an elongation at break greater than 10%, an elongation at break greater than 20%, an elongation at break greater than 30%, an elongation at break of 5% to 250%, an elongation at break of 20% to 250%, or an elongation at break value between 40% and 250% before and after 24 hours in a wet environment at 37° C.
A polymeric material can be characterized by a water uptake of less than 20 wt %, less than 15 wt %, less than 10 wt %, less than 5 wt %, less than 4 wt %, less than 3 wt %, less than 2 wt %, less than 1 wt %, less than 0.5 wt %, less than 0.25 wt %, or less than 0.1 wt % when measured after 24 hours in a wet environment at 37° C. In some cases, a polymeric material can have greater than 50%, 60%, or 70% conversion of double bonds to single bonds compared to the photo-curable resin, as measured by FTIR.
In some instances, a polymeric material can have an ultimate tensile strength from 10 MPa to 100 MPa, from 15 MPa to 80 MPa, from 20 MPa to 60 MPa, from 10 MPa to 50 MPa, from 10 MPa to 45 MPa, from 25 MPa to 40 MPa, from 30 MPa to 45 MPa, or from 30 MPa to 40 MPa after 24 hours in a wet environment at 37° C.
In some instances, a polymeric material can have a low amount of hydrogen bonding which can facilitate a decreased uptake of water in comparison with conventional polymeric materials having greater amounts of hydrogen bonding. Thus, in some instances, a polymeric material herein can comprise less than about 10 wt %, less than about 9 wt %, less than about 8 wt %, less than about 7 wt %, less than about 6 wt %, less than about 5 wt %, less than about 4 wt %, less than about 3 wt %, less than about 2 wt %, less than about 1 wt %, or less than about 0.5 wt % water when fully saturated at use temperature (e.g., about 20° C., 25° C., 30° C., or 35° C.). In some instances, the use temperature can include the temperature of a human mouth (e.g., approximately 35-40° C.). The use temperature can be a temperature selected from −100-250° C., 0-90° C., 0-80° C., 0-70° C., 0-60° C., 0-50° C., 0-40° C., 0-30° C., 0-20° C., 0-10° C., 20-90° C., 20-80° C., 20-70° C., 20-60° C., 20-50° C., 20-40° C., 20-30° C., or below 0° C.
In some embodiments, a polymeric material herein comprises at least one crystalline phase and at least one amorphous phase, wherein the at least one crystalline phase, the at least one amorphous phase, or both, contain a polymerizable monomer of the present disclosure, which can be a compound according to any one of Formulas (I)-(VI) and (IX). In some instance, a combination of these two types of phases or domains can create a polymeric material that has a high modulus phase (e.g., the crystalline polymeric material can provide a high modulus) and a low modulus phase (e.g., provided by the presence of the amorphous polymeric material). By having these two phases, the polymeric material can have a high modulus and a high elongation, as well as high flexural stress remaining following stress relaxation.
In various instances, the one or more amorphous phases of the polymeric material can have a glass transition temperature of at least about 30° C., 40° C., 50° C., 60° C., 70° C., 80° C., 90° C., 100° C., or at least about 110° C. In such cases, at least one amorphous phase of the one or more amorphous phases having a glass transition temperature of at least about 50° C. comprises, integrated in its polymeric structure, a polymerizable monomer of the present disclosure such as a compound according to any one of Formulas (I)-(VI) and (IX).
In some cases, a polymeric material can comprise a polymer crystal attached to the amorphous polymer. As non-limiting examples, the polymer crystal can be covalently bonded to, entangled with, cross-linked to, and/or otherwise associated with (e.g., through hydrophobic interactions, pi-stacking, or hydrogen bonding interactions) the amorphous polymeric material.
In some embodiments, a polymeric material herein can comprise crystalline and/or amorphous phases having a smaller size (e.g., less than about 5 μm). Smaller polymeric phases in a polymeric material can facilitate light passage and provide a polymeric material that appears clear. In contrast, larger polymeric phases (e.g., those larger than about 1 μm) can scatter light, for example when the refractive index of the polymer crystal is different from the refractive index of the amorphous phase adjacent to the polymer crystal (e.g., the amorphous material). In some cases, at least 40%, 50%, 60%, or 70% of visible light passes through the polymeric material after 24 hours in a wet environment at 37° C.
Thus, in some cases, it may be advantageous to have a polymeric material that comprises small polymeric phases such as crystalline or amorphous phases, e.g., as measured by the longest length of the phases. In some embodiments, such polymeric material comprises an average polymeric phase size that is less than 5 μm. In some cases, the maximum polymeric phase size of the polymeric materials can be about 5 μm. In some embodiments, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 99% of the polymeric phases of the polymeric material have a size of less than about 5 μm. In yet other embodiments, a polymeric material comprises an average polymeric phase size that is less than about 1 μm. In some embodiments, the maximum polymer polymeric phase size of the cured polymeric materials is 1 μm. In some embodiments, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 99% of the polymeric phases of the polymeric material have a size less than about 1 μm. In yet other embodiments, the polymeric material comprises an average polymeric phase size that is less than about 500 nm. In some embodiments, the maximum polymeric phase size of the cured polymeric materials is about 500 nm. In some embodiments, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 99% of the polymeric phases of the polymeric material have a size less than 500 nm.
In some embodiments, the size of at least one or more of the polymeric phases (e.g., crystalline phases and amorphous phases) of a polymeric material can be controlled. Non-limiting examples of ways in which the size of the polymeric phases can be controlled includes: rapidly cooling the cured polymeric material, annealing the cured polymeric material at an elevated temperature (i.e., above room temperature), annealing the cured polymeric material at a temperature below room temperature, controlling the rate of polymerization, controlling the intensity of light during the curing step using light, controlling and/or adjusting polymerization temperature, exposing the cured polymeric material to sonic vibrations, and/or controlling the presence and amounts of impurities, and in particular for crystalline phases, adding crystallization-inducing chemicals or particles (e.g., crystallization seeds).
In some embodiments, the refractive index of the one or more crystalline phases and/or one or more amorphous phases of a polymeric material herein can be controlled. A reduction in difference of refractive index between different phases (e.g., reduction in the difference of refractive index between the crystalline polymer and the amorphous polymer) can increase clarity of the cured polymeric material, providing a clear or nearly clear material. Light scatter can be decreased by minimizing polymer crystal size, as well as by reducing the difference of refractive index across an interface between an amorphous polymeric phase and a crystalline phase. In some embodiments, the difference of refractive index between a given polymeric phase and a neighboring phase (e.g., crystalline and a neighboring amorphous phase) can be less than about 0.1, less than about 0.01, or less than about 0.001.
Further provided herein are polymeric films comprising a polymeric material of the present disclosure. In some cases, such polymeric film can have a thickness of at least about 50 μm, 100 μm, 250 μm, 500 μm, 1 mm, 2 mm and not more than 3 mm.
Polymeric Materials in Medical Devices
The present disclosure provides devices that comprise a polymeric material of the present disclosure. As described herein, such polymeric material can comprise, incorporated in its polymeric structure, one or more species of polymerizable monomers of this disclosure, e.g., compounds according to Formulas (I)-(VI) and (IX). In some embodiments, such polymeric material can comprise a polymer that comprises a monomer according to Formulas (VII) or (VIII) described herein. In various cases, the device can be a medical device. The medical device can be an orthodontic appliance. The orthodontic appliance can be a dental aligner, a dental expander or a dental spacer.
The present disclosure provides methods for synthesizing the polymerizable monomers of the present disclosure, methods of using compositions (e.g., resins and polymeric materials) comprising such monomers, as well as methods for using the same in devices such as medical devices. The photo-polymerizable monomers of the present disclosure, e.g., those according to any one of Formulas (I)-(VIII), can be used as components in materials used in many different industries such as transportation (e.g., planes, trains, boats, automobiles, etc.), hobbyist, prototyping, medical, art and design, microfluidics, molds, among others. Such medical devices include, in various embodiments herein, orthodontic appliances.
Synthetic Methods
The present disclosure provides synthetic methods for producing the polymerizable monomers described herein. In some embodiments, a polymerizable monomer according to Formula (I) of the present disclosure can be prepared as shown below in exemplary SCHEME 1:
wherein:
X is O, S, NR6, or SiR7R8;
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R2 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted C3-6 carbonyl, substituted or unsubstituted C3-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R3, R4, and R5 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —Y—(CH2)n—R9, or R4 and R5 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein Y is O, S, NH, or C(O)O;
n is an integer from 0 to 6;
R6, R7, and R8 are independently H or substituted or unsubstituted C1-6 alkyl; and
R9 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, a polymerizable monomer according to Formula (II) of the present disclosure can be prepared as shown below in exemplary SCHEME 2:
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R10 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R11 and R12 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R13, or R11 and R12 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R13 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, a polymerizable monomer according to Formula (III) of the present disclosure can be prepared as shown below in exemplary SCHEME 3:
wherein:
PG is a suitable phenolic alcohol protecting group;
LG is a suitable leaving group, e.g., hydroxy, chloride, bromide, etc.
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R14 is substituted or unsubstituted C3-6 alkyl, substituted or unsubstituted C3-6 heteroalkyl, substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R15 and R16 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X—(CH2)n—R17, or R15 and R16 together form a 4-, 5-, 6-, 7-, or 8-membered ring selected from substituted or unsubstituted cyclo(C4-8) alkyl, substituted or unsubstituted cyclo(C4-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
wherein X is O, S, NH, or C(O)O;
n is an integer from 0 to 6; and
R17 is substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo-(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, a polymerizable monomer according to Formula (IV) of the present disclosure can be prepared as shown below in exemplary SCHEME 4:
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R18 is substituted C2-6 alkyl, substituted or unsubstituted C3-6 alkyl, or substituted or unsubstituted C3-6 heteroalkyl; and
R19 is substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, or substituted or unsubstituted C1-6 carboxy.
In some embodiments, a polymerizable monomer according to Formula (V) of the present disclosure can be prepared as shown below in exemplary SCHEME 5:
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen; R20 and R22 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X1—(CH2)a—R28;
R21 and R23 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X2—(CH2)b—R29;
X1 and X2 are each independently a bond, O, or S;
a and b are each independently integers from 0 to 6; and
R28 and R29 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, a polymerizable monomer according to Formula (VI) of the present disclosure can be prepared as shown below in exemplary SCHEME 6:
wherein:
R1 is H, substituted or unsubstituted C1-3 alkyl, or halogen;
R32 and R34 are each independently substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X5—(CH2)e—R42;
R33 and R35 are each independently H, substituted or unsubstituted C1-6 alkyl, substituted or unsubstituted C1-6 heteroalkyl, substituted or unsubstituted C1-6 alkoxy, substituted or unsubstituted C1-6 thioalkoxy, substituted or unsubstituted C1-6 carbonyl, substituted or unsubstituted C1-6 carboxy, or —X6—(CH2)f—R43;
X5 and X6 are each independently a bond, O, or S;
e and f are each independently integers from 0 to 6; and
R42 and R43 are each independently substituted or unsubstituted cyclo(C3-8) alkyl, substituted or unsubstituted cyclo(C3-8) heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
In some embodiments, any of such methods can comprise isolating the polymerizable monomer with a chemical yield of at least about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or at least about 95%, and a chemical purity of at least about 90%, 95%, or 99%.
One of skill in the art may appreciate that the substituents (e.g., R1-R23, R28-R29, R32-R35 and R42-R43) can be altered before, during or after preparation of the phenyl acrylate scaffolding and that suitable adjustments in the exemplary conditions (e.g., temperatures, solvents, etc.) can be made. Additionally, one of skill in the art may recognize that protecting groups may be necessary for the preparation of certain compounds and may be aware of those conditions compatible with a selected protecting group.
Methods of Forming Polymeric Materials
Further provided herein is a method of polymerizing (e.g., photo-curing) a curable composition (e.g., a photo-curable resin) comprising at least one species of a polymerizable monomer described herein (e.g., those according to Formulas (I)-(VI) and (IX)), and optionally one or more further components selected from the group consisting of telechelic polymers, telechelic oligomers, polymerization initiators, polymerization inhibitors, solvents, fillers, antioxidants, pigments, colorants, surface modifiers, and mixtures thereof, to obtain an optionally cross-linked polymer, the method comprising a step of mixing the curable composition, optionally after heating, with a reactive diluent before inducing polymerization by heating and/or irradiating the composition; wherein the reactive diluent is selected from the polymerizable monomers, e.g., those according to any of Formulas (I)-(VI) and (IX), according to the first aspect of the disclosure, and mixtures thereof.
The present disclosure provides methods for producing polymeric materials using curable resins described herein. In various embodiments, provided herein are methods for photo-curing photo-curable resins. Hence, in various instances, provided herein is a method of forming a polymeric material, the method comprising: (i) providing a photo-curable resin of the present disclosure; (ii) exposing the photo-curable resin to a light source; and curing the photo-curable resin to form the polymeric material.
In some embodiments, the photo-curing comprises a single curing step. In some embodiments, the photo-curing comprises a plurality of curing steps. In yet other embodiments, the photo-curing comprises at least one curing step which exposes the curable resin to light. Exposing the curable resin to light can initiate and/or facilitate photo-polymerization. In some instances, a photoinitiator can be used as part of the resin to accelerate and/or initiate photo-polymerization. In some embodiments, the resin is exposed to UV (ultraviolet) light, visible light, IR (infrared) light, or any combination thereof. In some embodiments, the cured polymeric material is formed from the photo-curable resin using at least one step comprising exposure to a light source, wherein the light source comprises UV light, visible light, and/or IR light. In some embodiments, the light source comprises a wavelength from 10 nm to 200 nm, from 200 nm to 350 nm, from 350 nm to 450 nm, from 450 nm to 550 nm, from 550 nm to 650 nm, from 650 nm to 750 nm, from 750 nm to 850 nm, from 850 nm to 1000 nm, or from 1000 nm to 1500 nm.
In some embodiments, a method of forming a polymeric material from a photo-polymerizable resin described herein can further comprise inducing phase separation in the forming polymeric material (i.e., during photo-curing), wherein such phase separation can be polymerization-induced. The polymerization-induced phase separation can comprise generating one or more polymeric phases in the polymeric material during photo-curing. In some cases, at least one polymeric phase of the one or more polymeric phases is an amorphous polymeric phase. Such at least one amorphous polymeric phase can have a glass transition temperature (Tg) of at least about 40° C., 50° C., 60° C., 80° C., 90° C., 100° C., 110° C. or at least about 120° C. In some cases, at least 25%, 50%, or 75% of polymeric phases generated during photo-curing have a glass transition temperature (Tg) of at least about 40° C., 50° C., 60° C., 80° C., 90° C., 100° C., 110° C. or at least about 120° C. In some instances, at least one polymeric phase that has the glass transition temperature (Tg) of at least about 40° C., 50° C., 60° C., 80° C., 90° C., 100° C., 110° C. or at least about 120° C. comprises, integrated in its polymeric structure (i.e., in a polymerized form), a polymerizable monomer according to any one of Formulas (I)-(VI) and (IX). In some instances, at least one polymeric phase that has the glass transition temperature (Tg) of at least about 40° C., 50° C., 60° C., 80° C., 90° C., 100° C., 110° C. or at least about 120° C. comprises a polymer that comprises a monomer according to Formula (VII) or Formula (VIII). In various cases, at least one polymeric phase of the one or more polymeric phases generated during photo-curing comprises a crystalline polymeric material. Hence, in some cases, at least one polymeric phase of the one or more polymeric phases is a crystalline polymeric phase. The crystalline polymeric material (e.g., as part of a crystalline phase) can have a melting point of at least about 40° C., 50° C., 60° C., 80° C., 90° C., 100° C., 110° C. or at least about 120° C.
In some embodiments, a method of forming a polymeric material from a photo-polymerizable resin described herein can further comprise initiating and/or enhancing formation of crystalline phases in the forming polymeric material. In certain embodiments, the triggering comprises cooling the cured material, adding seeding particles to the resin, providing a force to the cured material, providing an electrical charge to the resin, or any combination thereof. In some cases, polymer crystals can yield upon application of a strain (e.g., a physical strain, such as twisting or stretching a material). The yielding may include unraveling, unwinding, disentangling, dislocation, coarse slips, and/or fine slips in the crystallized polymer. In some embodiments, the methods disclosed herein further comprise the step of growing polymer crystals. As described further herein, polymer crystals comprise the crystallizable polymeric material.
Thus, in various embodiments, a method of forming a polymeric material from a photo-polymerizable resin described herein can comprise inducing phase separation in the forming polymeric material (i.e., during photo-curing), wherein such phase separation can yield polymeric materials that comprise one or more amorphous phases, one or more crystalline phases, or both one or more amorphous phases and one or more crystalline phases.
As described herein, a polymeric material produced by the methods provided herein can be characterized by one or more of: (i) a storage modulus greater than or equal to 200 MPa; (ii) a flexural stress and/or flexural modulus of greater than or equal to 1.5 MPa remaining after 24 hours in a wet environment at 37° C.; (iii) an elongation at break greater than or equal to 5% before and after 24 hours in a wet environment at 37° C.; (iv) a water uptake of less than 25 wt % when measured after 24 hours in a wet environment at 37° C.; and (v) transmission of at least 30% of visible light through the polymeric material after 24 hours in a wet environment at 37° C. In various cases, such polymeric material can be characterized by at least 2, 3, 4, or all of these properties.
Fabrication and Use of Orthodontic Appliances
Provided herein are methods for using the polymerizable monomers, curable resins and compositions comprising such monomers, as well as polymeric materials produced from such resins and composition for the fabrication of a medical device, such as an orthodontic appliance (e.g., a dental aligner, a dental expander or a dental spacer).
Thus, in some embodiments, a method herein further comprises the step of fabricating a device or an object using an additive manufacturing device, wherein the additive manufacturing device facilitates the curing. In some embodiments, the curing of a polymerizable resin produces the cured polymeric material. In certain embodiments, a polymerizable resin is cured using an additive manufacturing device to produce the cured polymeric material. In some embodiments, the method further comprises the step of cleaning the cured polymeric material. In certain embodiments, the cleaning of the cured polymeric material includes washing and/or rinsing the cured polymeric material with a solvent, which can remove uncured resin and undesired impurities from the cured polymeric material.
In some embodiments, a polymerizable resin herein can be curable and have melting points <100° C. in order to be liquid and, thus, processable at the temperatures usually employed in currently available additive manufacturing techniques. As described herein, the polymerizable monomers of the present disclosure that are used as components in the curable resins can have a low vapor pressure at an elevated temperature compared to conventional reactive diluents or other polymerizable components used in curable resins. Such low vapor pressure of the monomers described herein can be particularly advantageous for use of such monomer in the curable (e.g., photocurable) compositions and additive manufacturing where elevated temperatures (e.g., 60° C., 80° C., 90° C., or higher) may be used. In various instances, a polymerizable monomer can have a vapor pressure of at most about 12 Pa at 60° C., or lower, as further described herein.
In some embodiments, a curable resin herein can comprise at least one photo-polymerization initiator (i.e., a photoinitiator) and may be heated to a predefined elevated process temperature ranging from about 50° C. to about 120° C., such as from about 90° C. to about 120° C., before becoming irradiated with light of a suitable wavelength to be absorbed by the photoinitiator, thereby causing activation of the photoinitiator to induce polymerization of the curable resin to obtain a cured polymeric material, which an optionally be cross-linked. In some embodiments, the curable resin can comprise at least one multivalent polymerizable monomer that can provide a cross-linked polymer.
In some embodiments, the methods disclosed herein for forming a polymeric material are part of a high temperature lithography-based photo-polymerization process, wherein a curable composition (e.g., a photo-curable resin) that can comprise at least one photo-polymerization initiator is heated to an elevated process temperature (e.g., from about 50° C. to about 120° C., such as from about 90° C. to about 120° C.). Thus, a method for forming a polymeric material according to the present disclosure can offer the possibility of quickly and facilely producing devices, such as orthodontic appliances, by additive manufacturing such as 3D printing using curable resins as disclosed herein. In various embodiments, such curable resin is a photo-curable resin comprising one or more photo-polymerizable monomers according to any one of Formulas (I)-(VI) and (IX).
Photo-polymerization can occur when a photo-curable resin herein is exposed to radiation (e.g., UV or visible light) of a wavelength sufficient to initiate polymerization. The wavelengths of radiation useful to initiate polymerization may depend on the photoinitiator used. “Light” as used herein includes any wavelength and power capable of initiating polymerization. Some wavelengths of light include ultraviolet (UV) or visible. UV light sources include UVA (wavelength about 400 nanometers (nm) to about 320 nm), UVB (about 320 nm to about 290 nm) or UVC (about 290 nm to about 100 nm). Any suitable source may be used, including laser sources. The source may be broadband or narrowband, or a combination thereof. The light source may provide continuous or pulsed light during the process. Both the length of time the system is exposed to UV light and the intensity of the UV light can be varied to determine the ideal reaction conditions.
In some embodiments, the methods disclosed herein include the use of additive manufacturing to produce a device comprising the cured polymeric material. Such device can be an orthodontic appliance. The orthodontic appliance can be a dental aligner, a dental expander or a dental spacer. In certain embodiments, the methods disclosed herein use additive manufacturing to produce a device comprising, consisting essentially of, or consisting of the cured polymeric material. Additive manufacturing includes a variety of technologies which fabricate three-dimensional objects directly from digital models through an additive process. In some aspects, successive layers of material are deposited and “cured in place”. A variety of techniques are known to the art for additive manufacturing, including selective laser sintering (SLS), fused deposition modeling (FDM) and jetting or extrusion. In many embodiments, selective laser sintering involves using a laser beam to selectively melt and fuse a layer of powdered material according to a desired cross-sectional shape in order to build up the object geometry. In many embodiments, fused deposition modeling involves melting and selectively depositing a thin filament of thermoplastic polymer in a layer-by-layer manner in order to form an object. In yet another example, 3D printing can be used to fabricate an orthodontic appliance herein. In many embodiments, 3D printing involves jetting or extruding one or more materials (e.g., the crystallizable resins disclosed herein) onto a build surface in order to form successive layers of the object geometry. In some embodiments, a photo-curable resin described herein can be used in inkjet or coating applications. Cured polymeric materials may also be fabricated by “vat” processes in which light is used to selectively cure a vat or reservoir of the curable resin. Each layer of curable resin may be selectively exposed to light in a single exposure or by scanning a beam of light across the layer. Specific techniques that can be used herein can include stereolithography (SLA), Digital Light Processing (DLP) and two photon-induced photo-polymerization (TPIP).
In some embodiments, the methods disclosed herein use continuous direct fabrication to produce a device comprising the cured polymeric material. Such device can be an orthodontic appliance as described herein. In certain embodiments, the methods disclosed herein can comprise the use of continuous direct fabrication to produce a device (e.g., an orthodontic appliance) comprising, consisting essentially of, or consisting of the cured polymeric material. A non-limiting exemplary direct fabrication process can achieve continuous build-up of an object geometry by continuous movement of a build platform (e.g., along the vertical or Z-direction) during an irradiation phase, such that the hardening depth of the irradiated photo-polymer (e.g., an irradiated photo-curable resin, hardening during the formation of a cured polymeric material) is controlled by the movement speed. Accordingly, continuous polymerization of material (e.g., polymerization of a photo-curable resin into a cured polymeric material) on the build surface can be achieved. Such methods are described in U.S. Pat. No. 7,892,474, the disclosure of which is incorporated herein by reference in its entirety. In yet another example, a continuous direct fabrication method utilizes a “heliolithography” approach in which a liquid resin (e.g., a photo-curable resin) is cured with focused radiation while the build platform is continuously rotated and raised. Accordingly, the object geometry can be continuously built up along a spiral build path. Such methods are described in U.S. Patent Publication No. 2014/0265034, the disclosure of which is incorporated herein by reference in its entirety. Continuous liquid interface production of 3D objects has also been reported (J. Tumbleston et al., Science, 2015, 347 (6228), pp 1349-1352), which reference is hereby incorporated by reference in its entirety for description of the process. Another example of continuous direct fabrication method can involve extruding a material composed of a curable liquid material or resin surrounding a solid strand. The material can be extruded along a continuous three-dimensional path in order to form the object. Such methods are described in U.S. Patent Publication No. 2014/0061974, the disclosure of which is incorporated herein by reference in its entirety.
In some embodiments, the methods disclosed herein can comprise the use of high temperature lithography to produce a device comprising the cured polymeric material. Such device can be an orthodontic appliance as described herein. In certain embodiments, the methods disclosed herein use high temperature lithography to produce a device comprising, consisting essentially of, or consisting of the cured polymeric material. “High temperature lithography,” as used herein, may refer to any lithography-based photo-polymerization processes that involve heating photo-polymerizable material(s) (e.g., a photo-curable resin disclosed herein). The heating may lower the viscosity of the photo-curable resin before and/or during curing. Non-limiting examples of high-temperature lithography processes include those processes described in WO 2015/075094, WO 2016/078838 and WO 2018/032022. In some implementations, high-temperature lithography may involve applying heat to material to temperatures from about 50° C. to about 120° C., such as from about 90° C. to about 120° C., from about 100° C. to about 120° C., from about 105° C. to about 115° C., from about 108° C. to about 110° C., etc. The material may be heated to temperatures greater than about 120° C. It is noted other temperature ranges may be used without departing from the scope and substance of the inventive concepts described herein.
Since, in some cases, the polymerizable monomers of the present disclosure can, as part of a photo-curable resin, become co-polymerized in the polymerization process of a method according to the present disclosure, the result can be an optionally cross-linked polymer comprising moieties of one or more species of polymerizable monomer(s) as repeating units. In some cases, such polymer is a cross-linked polymer which, typically, can be suitable and useful for applications in orthodontic appliances.
In further embodiments, a method herein can comprise polymerizing a curable composition which comprises at least one multivalent monomer, which, upon polymerization, can furnish a cross-linked polymer which can comprise moieties originating from the polymerizable monomer(s) of the present disclosure as repeating units. In order to obtain cross-linked polymers which can be particularly suitable as orthodontic appliances, the at least one polymerizable species used in the method according to the present disclosure can be selected with regard to several thermomechanical properties of the resulting polymers. In some instances, a curable resin of the present disclosure can comprise one or more species of multivalent polymerizable monomers. In some cases, a polymerizable monomer of the present disclosure can also have cross-linking functionalities, and thus not only act as a reactive diluent with low vapor pressure, but also as a cross-linking agent during polymerization of a curable resin described herein. In other embodiments, a resin comprises a polymerizable monomer as described herein and a cross-linking monomer, wherein both monomers are different species (i.e., chemical entities).
The polymerizable monomers according to the present disclosure, e.g., those according to any one of Formulas (I)-(VI) and (IX), can be used as components for viscous or highly viscous photo-curable resins and can result in polymeric materials that can have favorable thermomechanical properties as described herein (e.g., stiffness, flexural stress remaining, etc.) for use in orthodontic appliances, for example, for moving one or more teeth of a patient.
As described herein, the present disclosure provides a method of repositioning a patient's teeth, the method comprising: (i) generating a treatment plan for the patient, the plan comprising a plurality of intermediate tooth arrangements for moving teeth along a treatment path from an initial tooth arrangement toward a final tooth arrangement; (ii) producing a dental appliance comprising a polymeric material described herein, e.g., a polymeric material that comprises monomers according to Formulas (VII)-(VIII); and moving on-track, with the dental appliance, at least one of the patient's teeth toward an intermediate tooth arrangement or the final tooth arrangement. Such dental appliance can be produced using processes that include 3D printing, as further described herein. The method of repositioning a patient's teeth can further comprise tracking progression of the patient's teeth along the treatment path after administration of the dental appliance to the patient, the tracking comprising comparing a current arrangement of the patient's teeth to a planned arrangement of the patient's teeth. In such instances, greater than 60% of the patient's teeth can be on track with the treatment plan after 2 weeks of treatment. In some instances, the dental appliance has a retained repositioning force to the at least one of the patient's teeth after 2 days that is at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, or at least 70% of repositioning force initially provided to the at least one of the patient's teeth.
As used herein, the terms “rigidity” and “stiffness” can be used interchangeably, as are the corresponding terms “rigid” and “stiff” As used herein a “plurality of teeth” encompasses two or more teeth.
In many embodiments, one or more posterior teeth comprises one or more of a molar, a premolar or a canine, and one or more anterior teeth comprising one or more of a central incisor, a lateral incisor, a cuspid, a first bicuspid or a second bicuspid.
In some embodiments, the compositions and methods described herein can be used to couple groups of one or more teeth to each other. The groups of one or more teeth may comprise a first group of one or more anterior teeth and a second group of one or more posterior teeth. The first group of teeth can be coupled to the second group of teeth with the polymeric shell appliances as disclosed herein.
The embodiments disclosed herein are well suited for moving one or more teeth of the first group of one or more teeth or moving one or more of the second group of one or more teeth, and combinations thereof.
The embodiments disclosed herein are well suited for combination with one or more known commercially available tooth moving components such as attachments and polymeric shell appliances. In many embodiments, the appliance and one or more attachments are configured to move one or more teeth along a tooth movement vector comprising six degrees of freedom, in which three degrees of freedom are rotational and three degrees of freedom are translation.
The present disclosure provides orthodontic systems and related methods for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement.
Although reference is made to an appliance comprising a polymeric shell appliance, the embodiments disclosed herein are well suited for use with many appliances that receive teeth, for example appliances without one or more of polymers or shells. The appliance can be fabricated with one or more of many materials such as metal, glass, reinforced fibers, carbon fiber, composites, reinforced composites, aluminum, biological materials, and combinations thereof, for example. In some cases, the reinforced composites can comprise a polymer matrix reinforced with ceramic or metallic particles, for example. The appliance can be shaped in many ways, such as with thermoforming or direct fabrication as described herein, for example. Alternatively, or in combination, the appliance can be fabricated with machining such as an appliance fabricated from a block of material with computer numeric control machining. In some cases, the appliance is fabricated using a polymerizable monomer according to the present disclosure, for example, using the monomers as reactive diluents for curable resins.
Turning now to the drawings, in which like numbers designate like elements in the various figures,
The various embodiments of the orthodontic appliances presented herein can be fabricated in a wide variety of ways. In some embodiments, the orthodontic appliances herein (or portions thereof) can be produced using direct fabrication, such as additive manufacturing techniques (also referred to herein as “3D printing”) or subtractive manufacturing techniques (e.g., milling). In some embodiments, direct fabrication involves forming an object (e.g., an orthodontic appliance or a portion thereof) without using a physical template (e.g., mold, mask etc.) to define the object geometry. Additive manufacturing techniques can be categorized as follows: (1) vat photo-polymerization (e.g., stereolithography), in which an object is constructed layer by layer from a vat of liquid photo-polymer resin; (2) material jetting, in which material is jetted onto a build platform using either a continuous or drop on demand (DOD) approach; (3) binder jetting, in which alternating layers of a build material (e.g., a powder-based material) and a binding material (e.g., a liquid binder) are deposited by a print head; (4) fused deposition modeling (FDM), in which material is drawn though a nozzle, heated, and deposited layer by layer; (5) powder bed fusion, including but not limited to direct metal laser sintering (DMLS), electron beam melting (EBM), selective heat sintering (SHS), selective laser melting (SLM), and selective laser sintering (SLS); (6) sheet lamination, including but not limited to laminated object manufacturing (LOM) and ultrasonic additive manufacturing (UAM); and (7) directed energy deposition, including but not limited to laser engineering net shaping, directed light fabrication, direct metal deposition, and 3D laser cladding. For example, stereolithography can be used to directly fabricate one or more of the appliances herein. In some embodiments, stereolithography involves selective polymerization of a photosensitive resin (e.g., a photo-polymer) according to a desired cross-sectional shape using light (e.g., ultraviolet light). The object geometry can be built up in a layer-by-layer fashion by sequentially polymerizing a plurality of object cross-sections. As another example, the appliances herein can be directly fabricated using selective laser sintering. In some embodiments, selective laser sintering involves using a laser beam to selectively melt and fuse a layer of powdered material according to a desired cross-sectional shape in order to build up the object geometry. As yet another example, the appliances herein can be directly fabricated by fused deposition modeling. In some embodiments, fused deposition modeling involves melting and selectively depositing a thin filament of thermoplastic polymer in a layer-by-layer manner in order to form an object. In yet another example, material jetting can be used to directly fabricate the appliances herein. In some embodiments, material jetting involves jetting or extruding one or more materials onto a build surface in order to form successive layers of the object geometry.
Alternatively, or in combination, some embodiments of the appliances herein (or portions thereof) can be produced using indirect fabrication techniques, such as by thermoforming over a positive or negative mold. Indirect fabrication of an orthodontic appliance can involve producing a positive or negative mold of the patient's dentition in a target arrangement (e.g., by rapid prototyping, milling, etc.) and thermoforming one or more sheets of material over the mold in order to generate an appliance shell.
In some embodiments, the direct fabrication methods provided herein build up the object geometry in a layer-by-layer fashion, with successive layers being formed in discrete build steps. Alternatively, or in combination, direct fabrication methods that allow for continuous build-up of an object geometry can be used, referred to herein as “continuous direct fabrication.” Various types of continuous direct fabrication methods can be used. As an example, in some embodiments, the appliances herein are fabricated using “continuous liquid interphase printing,” in which an object is continuously built up from a reservoir of photo-polymerizable resin by forming a gradient of partially cured resin between the building surface of the object and a polymerization-inhibited “dead zone.” In some embodiments, a semi-permeable membrane is used to control transport of a photo-polymerization inhibitor (e.g., oxygen) into the dead zone in order to form the polymerization gradient. Continuous liquid interphase printing can achieve fabrication speeds about 25 times to about 100 times faster than other direct fabrication methods, and speeds about 1000 times faster can be achieved with the incorporation of cooling systems. Continuous liquid interphase printing is described in U.S. Patent Publication Nos. 2015/0097315, 2015/0097316, and 2015/0102532, the disclosures of each of which are incorporated herein by reference in their entirety.
As another example, a continuous direct fabrication method can achieve continuous build-up of an object geometry by continuous movement of the build platform (e.g., along the vertical or Z-direction) during the irradiation phase, such that the hardening depth of the irradiated photo-polymer is controlled by the movement speed. Accordingly, continuous polymerization of material on the build surface can be achieved. Such methods are described in U.S. Pat. No. 7,892,474, the disclosure of which is incorporated herein by reference in its entirety.
In another example, a continuous direct fabrication method can involve extruding a composite material composed of a curable liquid material surrounding a solid strand. The composite material can be extruded along a continuous three-dimensional path in order to form the object. Such methods are described in U.S. Patent Publication No. 2014/0061974, the disclosure of which is incorporated herein by reference in its entirety.
In yet another example, a continuous direct fabrication method utilizes a “heliolithography” approach in which the liquid photo-polymer is cured with focused radiation while the build platform is continuously rotated and raised. Accordingly, the object geometry can be continuously built up along a spiral build path. Such methods are described in U.S. Patent Publication No. 2014/0265034, the disclosure of which is incorporated herein by reference in its entirety.
The direct fabrication approaches provided herein are compatible with a wide variety of materials, including but not limited to one or more of the following: a polyester, a co-polyester, a polycarbonate, a thermoplastic polyurethane, a polypropylene, a polyethylene, a polypropylene and polyethylene copolymer, an acrylic, a cyclic block copolymer, a polyetheretherketone, a polyamide, a polyethylene terephthalate, a polybutylene terephthalate, a polyetherimide, a polyethersulfone, a polytrimethylene terephthalate, a styrenic block copolymer (SBC), a silicone rubber, an elastomeric alloy, a thermoplastic elastomer (TPE), a thermoplastic vulcanizate (TPV) elastomer, a polyurethane elastomer, a block copolymer elastomer, a polyolefin blend elastomer, a thermoplastic co-polyester elastomer, a thermoplastic polyamide elastomer, a thermoset material, or combinations thereof. The materials used for direct fabrication can be provided in an uncured form (e.g., as a liquid, resin, powder, etc.) and can be cured (e.g., by photo-polymerization, light curing, gas curing, laser curing, cross-linking, etc.) in order to form an orthodontic appliance or a portion thereof. The properties of the material before curing may differ from the properties of the material after curing. Once cured, the materials herein can exhibit sufficient strength, stiffness, durability, biocompatibility, etc. for use in an orthodontic appliance. The post-curing properties of the materials used can be selected according to the desired properties for the corresponding portions of the appliance.
In some embodiments, relatively rigid portions of the orthodontic appliance can be formed via direct fabrication using one or more of the following materials: a polyester, a co-polyester, a polycarbonate, a thermoplastic polyurethane, a polypropylene, a polyethylene, a polypropylene and polyethylene copolymer, an acrylic, a cyclic block copolymer, a polyetheretherketone, a polyamide, a polyethylene terephthalate, a polybutylene terephthalate, a polyetherimide, a polyethersulfone, and/or a polytrimethylene terephthalate.
In some embodiments, relatively elastic portions of the orthodontic appliance can be formed via direct fabrication using one or more of the following materials: a styrenic block copolymer (SBC), a silicone rubber, an elastomeric alloy, a thermoplastic elastomer (TPE), a thermoplastic vulcanizate (TPV) elastomer, a polyurethane elastomer, a block copolymer elastomer, a polyolefin blend elastomer, a thermoplastic co-polyester elastomer, and/or a thermoplastic polyamide elastomer.
Machine parameters can include curing parameters. For digital light processing (DLP)-based curing systems, curing parameters can include power, curing time, and/or grayscale of the full image. For laser-based curing systems, curing parameters can include power, speed, beam size, beam shape and/or power distribution of the beam. For printing systems, curing parameters can include material drop size, viscosity, and/or curing power. These machine parameters can be monitored and adjusted on a regular basis (e.g., some parameters at every 1-x layers and some parameters after each build) as part of the process control on the fabrication machine. Process control can be achieved by including a sensor on the machine that measures power and other beam parameters every layer or every few seconds and automatically adjusts them with a feedback loop. For DLP machines, gray scale can be measured and calibrated before, during, and/or at the end of each build, and/or at predetermined time intervals (e.g., every nth build, once per hour, once per day, once per week, etc.), depending on the stability of the system. In addition, material properties and/or photo-characteristics can be provided to the fabrication machine, and a machine process control module can use these parameters to adjust machine parameters (e.g., power, time, gray scale, etc.) to compensate for variability in material properties. By implementing process controls for the fabrication machine, reduced variability in appliance accuracy and residual stress can be achieved.
Optionally, the direct fabrication methods described herein allow for fabrication of an appliance including multiple materials, referred to herein as “multi-material direct fabrication.” In some embodiments, a multi-material direct fabrication method involves concurrently forming an object from multiple materials in a single manufacturing step. For instance, a multi-tip extrusion apparatus can be used to selectively dispense multiple types of materials from distinct material supply sources in order to fabricate an object from a plurality of different materials. Such methods are described in U.S. Pat. No. 6,749,414, the disclosure of which is incorporated herein by reference in its entirety. Alternatively, or in combination, a multi-material direct fabrication method can involve forming an object from multiple materials in a plurality of sequential manufacturing steps. For instance, a first portion of the object can be formed from a first material in accordance with any of the direct fabrication methods herein, then a second portion of the object can be formed from a second material in accordance with methods herein, and so on, until the entirety of the object has been formed.
Direct fabrication can provide various advantages compared to other manufacturing approaches. For instance, in contrast to indirect fabrication, direct fabrication permits production of an orthodontic appliance without utilizing any molds or templates for shaping the appliance, thus reducing the number of manufacturing steps involved and improving the resolution and accuracy of the final appliance geometry. Additionally, direct fabrication permits precise control over the three-dimensional geometry of the appliance, such as the appliance thickness. Complex structures and/or auxiliary components can be formed integrally as a single piece with the appliance shell in a single manufacturing step, rather than being added to the shell in a separate manufacturing step. In some embodiments, direct fabrication is used to produce appliance geometries that would be difficult to create using alternative manufacturing techniques, such as appliances with very small or fine features, complex geometric shapes, undercuts, interproximal structures, shells with variable thicknesses, and/or internal structures (e.g., for improving strength with reduced weight and material usage). For example, in some embodiments, the direct fabrication approaches herein permit fabrication of an orthodontic appliance with feature sizes of less than or equal to about 5 μm, or within a range from about 5 μm to about 50 μm, or within a range from about 20 μm to about 50 μm.
The direct fabrication techniques described herein can be used to produce appliances with substantially isotropic material properties, e.g., substantially the same or similar strengths along all directions. In some embodiments, the direct fabrication approaches herein permit production of an orthodontic appliance with a strength that varies by no more than about 25%, about 20%, about 15%, about 10%, about 5%, about 1%, or about 0.5% along all directions. Additionally, the direct fabrication approaches herein can be used to produce orthodontic appliances at a faster speed compared to other manufacturing techniques. In some embodiments, the direct fabrication approaches herein allow for production of an orthodontic appliance in a time interval less than or equal to about 1 hour, about 30 minutes, about 25 minutes, about 20 minutes, about 15 minutes, about 10 minutes, about 5 minutes, about 4 minutes, about 3 minutes, about 2 minutes, about 1 minutes, or about 30 seconds. Such manufacturing speeds allow for rapid “chair-side” production of customized appliances, e.g., during a routine appointment or checkup.
In some embodiments, the direct fabrication methods described herein implement process controls for various machine parameters of a direct fabrication system or device in order to ensure that the resultant appliances are fabricated with a high degree of precision. Such precision can be beneficial for ensuring accurate delivery of a desired force system to the teeth in order to effectively elicit tooth movements. Process controls can be implemented to account for process variability arising from multiple sources, such as the material properties, machine parameters, environmental variables, and/or post-processing parameters.
Material properties may vary depending on the properties of raw materials, purity of raw materials, and/or process variables during mixing of the raw materials. In many embodiments, resins or other materials for direct fabrication should be manufactured with tight process control to ensure little variability in photo-characteristics, material properties (e.g., viscosity, surface tension), physical properties (e.g., modulus, strength, elongation) and/or thermal properties (e.g., glass transition temperature, heat deflection temperature). Process control for a material manufacturing process can be achieved with screening of raw materials for physical properties and/or control of temperature, humidity, and/or other process parameters during the mixing process. By implementing process controls for the material manufacturing procedure, reduced variability of process parameters and more uniform material properties for each batch of material can be achieved. Residual variability in material properties can be compensated with process control on the machine, as discussed further herein.
Machine parameters can include curing parameters. For digital light processing (DLP)-based curing systems, curing parameters can include power, curing time, and/or grayscale of the full image. For laser-based curing systems, curing parameters can include power, speed, beam size, beam shape and/or power distribution of the beam. For printing systems, curing parameters can include material drop size, viscosity, and/or curing power. These machine parameters can be monitored and adjusted on a regular basis (e.g., some parameters at every 1-x layers and some parameters after each build) as part of the process control on the fabrication machine. Process control can be achieved by including a sensor on the machine that measures power and other beam parameters every layer or every few seconds and automatically adjusts them with a feedback loop. For DLP machines, gray scale can be measured and calibrated at the end of each build. In addition, material properties and/or photo-characteristics can be provided to the fabrication machine, and a machine process control module can use these parameters to adjust machine parameters (e.g., power, time, gray scale, etc.) to compensate for variability in material properties. By implementing process controls for the fabrication machine, reduced variability in appliance accuracy and residual stress can be achieved.
In many embodiments, environmental variables (e.g., temperature, humidity, Sunlight or exposure to other energy/curing source) are maintained in a tight range to reduce variability in appliance thickness and/or other properties. Optionally, machine parameters can be adjusted to compensate for environmental variables.
In many embodiments, post-processing of appliances includes cleaning, post-curing, and/or support removal processes. Relevant post-processing parameters can include purity of cleaning agent, cleaning pressure and/or temperature, cleaning time, post-curing energy and/or time, and/or consistency of support removal process. These parameters can be measured and adjusted as part of a process control scheme. In addition, appliance physical properties can be varied by modifying the post-processing parameters. Adjusting post-processing machine parameters can provide another way to compensate for variability in material properties and/or machine properties.
The configuration of the orthodontic appliances herein can be determined according to a treatment plan for a patient, e.g., a treatment plan involving successive administration of a plurality of appliances for incrementally repositioning teeth. Computer-based treatment planning and/or appliance manufacturing methods can be used in order to facilitate the design and fabrication of appliances. For instance, one or more of the appliance components described herein can be digitally designed and fabricated with the aid of computer-controlled manufacturing devices (e.g., computer numerical control (CNC) milling, computer-controlled rapid prototyping such as 3D printing, etc.). The computer-based methods presented herein can improve the accuracy, flexibility, and convenience of appliance fabrication.
In step 210, a movement path to move one or more teeth from an initial arrangement to a target arrangement is determined. The initial arrangement can be determined from a mold or a scan of the patient's teeth or mouth tissue, e.g., using wax bites, direct contact scanning, x-ray imaging, tomographic imaging, sonographic imaging, and other techniques for obtaining information about the position and structure of the teeth, jaws, gums and other orthodontically relevant tissue. From the obtained data, a digital data set can be derived that represents the initial (e.g., pretreatment) arrangement of the patient's teeth and other tissues. Optionally, the initial digital data set is processed to segment the tissue constituents from each other. For example, data structures that digitally represent individual tooth crowns can be produced. Advantageously, digital models of entire teeth can be produced, including measured or extrapolated hidden surfaces and root structures, as well as surrounding bone and soft tissue.
The target arrangement of the teeth (e.g., a desired and intended end result of orthodontic treatment) can be received from a clinician in the form of a prescription, can be calculated from basic orthodontic principles, and/or can be extrapolated computationally from a clinical prescription. With a specification of the desired final positions of the teeth and a digital representation of the teeth themselves, the final position and surface geometry of each tooth can be specified to form a complete model of the tooth arrangement at the desired end of treatment.
Having both an initial position and a target position for each tooth, a movement path can be defined for the motion of each tooth. In some embodiments, the movement paths are configured to move the teeth in the quickest fashion with the least amount of round-tripping to bring the teeth from their initial positions to their desired target positions. The tooth paths can optionally be segmented, and the segments can be calculated so that each tooth's motion within a segment stays within threshold limits of linear and rotational translation. In this way, the end points of each path segment can constitute a clinically viable repositioning, and the aggregate of segment end points can constitute a clinically viable sequence of tooth positions, so that moving from one point to the next in the sequence does not result in a collision of teeth.
In step 220, a force system to produce movement of the one or more teeth along the movement path is determined. A force system can include one or more forces and/or one or more torques. Different force systems can result in different types of tooth movement, such as tipping, translation, rotation, extrusion, intrusion, root movement, etc. Biomechanical principles, modeling techniques, force calculation/measurement techniques, and the like, including knowledge and approaches commonly used in orthodontia, may be used to determine the appropriate force system to be applied to the tooth to accomplish the tooth movement. In determining the force system to be applied, sources may be considered including literature, force systems determined by experimentation or virtual modeling, computer-based modeling, clinical experience, minimization of unwanted forces, etc.
The determination of the force system can include constraints on the allowable forces, such as allowable directions and magnitudes, as well as desired motions to be brought about by the applied forces. For example, in fabricating palatal expanders, different movement strategies may be desired for different patients. For example, the amount of force needed to separate the palate can depend on the age of the patient, as very young patients may not have a fully-formed suture. Thus, in juvenile patients and others without fully-closed palatal sutures, palatal expansion can be accomplished with lower force magnitudes. Slower palatal movement can also aid in growing bone to fill the expanding suture. For other patients, a more rapid expansion may be desired, which can be achieved by applying larger forces. These requirements can be incorporated as needed to choose the structure and materials of appliances; for example, by choosing palatal expanders capable of applying large forces for rupturing the palatal suture and/or causing rapid expansion of the palate. Subsequent appliance stages can be designed to apply different amounts of force, such as first applying a large force to break the suture, and then applying smaller forces to keep the suture separated or gradually expand the palate and/or arch.
The determination of the force system can also include modeling of the facial structure of the patient, such as the skeletal structure of the jaw and palate. Scan data of the palate and arch, such as Xray data or 3D optical scanning data, for example, can be used to determine parameters of the skeletal and muscular system of the patient's mouth, so as to determine forces sufficient to provide a desired expansion of the palate and/or arch. In some embodiments, the thickness and/or density of the mid-palatal suture may be measured, or input by a treating professional. In other embodiments, the treating professional can select an appropriate treatment based on physiological characteristics of the patient. For example, the properties of the palate may also be estimated based on factors such as the patient's age—for example, young juvenile patients will typically require lower forces to expand the suture than older patients, as the suture has not yet fully formed.
In step 230, an arch or palate expander design for an orthodontic appliance configured to produce the force system is determined. Determination of the arch or palate expander design, appliance geometry, material composition, and/or properties can be performed using a treatment or force application simulation environment. A simulation environment can include, e.g., computer modeling systems, biomechanical systems or apparatus, and the like. Optionally, digital models of the appliance and/or teeth can be produced, such as finite element models. The finite element models can be created using computer program application software available from a variety of vendors. For creating solid geometry models, computer aided engineering (CAE) or computer aided design (CAD) programs can be used, such as the AutoCAD® software products available from Autodesk, Inc., of San Rafael, Calif. For creating finite element models and analyzing them, program products from a number of vendors can be used, including finite element analysis packages from ANSYS, Inc., of Canonsburg, Pa., and SIMULIA(Abaqus) software products from Dassault Systèmes of Waltham, Mass.
Optionally, one or more arch or palate expander designs can be selected for testing or force modeling. As noted above, a desired tooth movement, as well as a force system required or desired for eliciting the desired tooth movement, can be identified. Using the simulation environment, a candidate arch or palate expander design can be analyzed or modeled for determination of an actual force system resulting from use of the candidate appliance. One or more modifications can optionally be made to a candidate appliance, and force modeling can be further analyzed as described, e.g., in order to iteratively determine an appliance design that produces the desired force system.
In step 240, instructions for fabrication of the orthodontic appliance incorporating the arch or palate expander design are generated. The instructions can be configured to control a fabrication system or device in order to produce the orthodontic appliance with the specified arch or palate expander design. In some embodiments, the instructions are configured for manufacturing the orthodontic appliance using direct fabrication (e.g., stereolithography, selective laser sintering, fused deposition modeling, 3D printing, continuous direct fabrication, multi-material direct fabrication, etc.), in accordance with the various methods presented herein. In alternative embodiments, the instructions can be configured for indirect fabrication of the appliance, e.g., by thermoforming.
Method 200 may comprise additional steps: 1) The upper arch and palate of the patient is scanned intraorally to generate three dimensional data of the palate and upper arch; 2) The three dimensional shape profile of the appliance is determined to provide a gap and teeth engagement structures as described herein.
Although the above steps show a method 200 of designing an orthodontic appliance in accordance with some embodiments, a person of ordinary skill in the art will recognize some variations based on the teaching described herein. Some of the steps may comprise sub-steps. Some of the steps may be repeated as often as desired. One or more steps of the method 200 may be performed with any suitable fabrication system or device, such as the embodiments described herein. Some of the steps may be optional, and the order of the steps can be varied as desired.
In step 310, a digital representation of a patient's teeth is received. The digital representation can include surface topography data for the patient's intraoral cavity (including teeth, gingival tissues, etc.). The surface topography data can be generated by directly scanning the intraoral cavity, a physical model (positive or negative) of the intraoral cavity, or an impression of the intraoral cavity, using a suitable scanning device (e.g., a handheld scanner, desktop scanner, etc.).
In step 320, one or more treatment stages are generated based on the digital representation of the teeth. The treatment stages can be incremental repositioning stages of an orthodontic treatment procedure designed to move one or more of the patient's teeth from an initial tooth arrangement to a target arrangement. For example, the treatment stages can be generated by determining the initial tooth arrangement indicated by the digital representation, determining a target tooth arrangement, and determining movement paths of one or more teeth in the initial arrangement necessary to achieve the target tooth arrangement. The movement path can be optimized based on minimizing the total distance moved, preventing collisions between teeth, avoiding tooth movements that are more difficult to achieve, or any other suitable criteria.
In step 330, at least one orthodontic appliance is fabricated based on the generated treatment stages. For example, a set of appliances can be fabricated, each shaped according a tooth arrangement specified by one of the treatment stages, such that the appliances can be sequentially worn by the patient to incrementally reposition the teeth from the initial arrangement to the target arrangement. The appliance set may include one or more of the orthodontic appliances described herein. The fabrication of the appliance may involve creating a digital model of the appliance to be used as input to a computer-controlled fabrication system. The appliance can be formed using direct fabrication methods, indirect fabrication methods, or combinations thereof, as desired.
In some instances, staging of various arrangements or treatment stages may not be necessary for design and/or fabrication of an appliance. As illustrated by the dashed line in
On-Track Treatment
Referring to
The process further includes generating customized treatment guidelines (408). The treatment plan may include multiple phases of treatment, with a customized set of treatment guidelines generated that correspond to a phase of the treatment plan. The guidelines can include detailed information on timing and/or content (e.g., specific tasks) to be completed during a given phase of treatment, and can be of sufficient detail to guide a practitioner, including a less experienced practitioner or practitioner relatively new to the particular orthodontic treatment process, through the phase of treatment. Since the guidelines are designed to specifically correspond to the treatment plan and provide guidelines on activities specifically identified in the treatment information and/or generated treatment plan, the guidelines can be customized. The customized treatment guidelines are then provided to the practitioner so as to help instruct the practitioner as how to deliver a given phase of treatment. As set forth above, appliances can be generated based on the planned arrangements and can be provided to the practitioner and ultimately administered to the patient (410). The appliances can be provided and/or administered in sets or batches of appliances, such as 2, 3, 4, 5, 6, 7, 8, 9, or more appliances, but are not limited to any particular administrative scheme. Appliances can be provided to the practitioner concurrently with a given set of guidelines, or appliances and guidelines can be provided separately.
After the treatment according to the plan begins and following administration of appliances to the patient, treatment progress tracking, e.g., by teeth matching, is done to assess a current and actual arrangement of the patient's teeth compared to a planned arrangement (412). If the patient's teeth are determined to be “on-track” and progressing according to the treatment plan, then treatment progresses as planned and treatment progresses to the next stage of treatment (414). If the patient's teeth have substantially reached the initially planned final arrangement, then treatment progresses to the final stages of treatment (414). Where the patient's teeth are determined to be tracking according to the treatment plan, but have not yet reached the final arrangement, the next set of appliances can be administered to the patient.
The threshold difference values of a planned position of teeth to actual positions selected as indicating that a patient's teeth have progressed on-track are provided below in TABLE 1. If a patient's teeth have progressed at or within the threshold values, the progress is considered to be on-track. If a patient's teeth have progressed beyond the threshold values, the progress is considered to be off-track.
The patient's teeth are determined to be on track by comparison of the teeth in their current positions with teeth in their expected or planned positions, and by confirming the teeth are within the parameter variance disclosed in TABLE 1. If the patient's teeth are determined to be on track, then treatment can progress according to the existing or original treatment plan. For example, a patient determined to be progressing on track can be administered one or more subsequent appliances according to the treatment plan, such as the next set of appliances. Treatment can progress to the final stages and/or can reach a point in the treatment plan where bite matching is repeated for a determination of whether a patient's teeth are progressing as planned or if the teeth are off track.
In some embodiments, as further disclosed herein, this disclosure provides methods of treating a patient using a 3D printed orthodontic appliance. As a non-limiting example, orthodontic appliances comprising crystalline domains, polymer crystals, and/or materials that can form crystalline domains or polymer crystals can be 3D printed and used to reposition a patient's teeth. In certain embodiments, the method of repositioning a patient's teeth (or, in some embodiments, a singular tooth) comprises: generating a treatment plan for the patient, the plan comprising a plurality of intermediate tooth arrangements for moving teeth along a treatment path from an initial arrangement toward a final arrangement; producing a 3D printed orthodontic appliance; and moving on-track, with the orthodontic appliance, at least one of the patient's teeth toward an intermediate arrangement or a final tooth arrangement. In some embodiments, producing the 3D printed orthodontic appliance uses the crystallizable resins disclosed further herein. On-track performance can be determined, e.g., from TABLE 1, above.
In some embodiments, the method further comprises tracking the progression of the patient's teeth along the treatment path after administration of the orthodontic appliance. In certain embodiments, the tracking comprises comparing a current arrangement of the patient's teeth to a planned arrangement of the teeth. As a non-limiting example, following the initial administration of the orthodontic appliance, a period of time passes (e.g., two weeks), a comparison of the now-current arrangement of the patient's teeth (i.e., at two weeks of treatment) can be compared with the teeth arrangement of the treatment plan. In some embodiments, the progression can also be tracked by comparing the current arrangement of the patient's teeth with the initial configuration of the patient's teeth. The period of time can be, for example, greater than 3 days, greater than 4 days, greater than 5 days, greater than 6 days, greater than 7 days, greater than 8 days, greater than 9 days, greater than 10 days, greater than 11 days, greater than 12 days, greater than 13 days, greater than 2 weeks, greater than 3 weeks, greater than 4 weeks, or greater than 2 months. In some embodiments, the period of time can be from at least 3 days to at most 4 weeks, from at least 3 days to at most 3 weeks, from at least 3 days to at most 2 weeks, from at least 4 days to at most 4 weeks, from at least 4 days to at most 3 weeks, or from at least 4 days to at most 2 weeks. In certain embodiments, the period of time can restart following the administration of a new orthodontic appliance.
In some embodiments, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 91%, greater than 92%, greater than 93%, greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, or greater than 99% of the patient's teeth are on track with the treatment plan after a period of time of using an orthodontic appliance as disclosed further herein. In some embodiments, the period of time is 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, or greater than 4 weeks.
As disclosed further herein, orthodontic appliances disclosed herein have advantageous properties, such as increased durability, and an ability to retain resilient forces to a patient's teeth for a prolonged period of time. In some embodiments of the method disclosed above, the 3D printed orthodontic appliance has a retained repositioning force (i.e., the repositioning force after the orthodontic appliance has been applied to or worn by the patient over a period of time), and the retained repositioning force to at least one of the patient's teeth after the period of time is at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the repositioning force initially provided to the at least one of the patient's teeth (i.e., with initial application of the orthodontic appliance). In some embodiments, the period of time is 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, or greater than 4 weeks. In some embodiments, the repositioning force applied to at least one of the patient's teeth is present for a time period of less than 24 hours, from about 24 hours to about 2 months, from about 24 hours to about 1 month, from about 24 hours to about 3 weeks, from about 24 hours to about 14 days, from about 24 hours to about 7 days, from about 24 hours to about 3 days, from about 3 days to about 2 months, from about 3 days to about 1 month, from about 3 days to about 3 weeks, from about 3 days to about 14 days, from about 3 days to about 7 days, from about 7 days to about 2 months, from about 7 days to about 1 month, from about 7 days to about 3 weeks, from about 7 days to about 2 weeks, or greater than 2 months. In some embodiments, the repositioning force applied to at least one of the patient's teeth is present for about 24 hours, for about 3 days, for about 7 days, for about 14 days, for about 2 months, or for more than 2 months.
In some embodiments, the orthodontic appliances disclosed herein can provide on-track movement of at least one of the patient's teeth. On-track movement has been described further herein, e.g., at TABLE 1. In some embodiments, the orthodontic appliances disclosed herein can be used to achieve on-track movement of at least one of the patient's teeth to an intermediate tooth arrangement. In some embodiments, the orthodontic appliances disclosed herein can be used to achieve on-track movement of at least one of the patient's teeth to a final tooth arrangement.
In some embodiments, prior to moving, with the orthodontic appliance, at least one of the patient's teeth toward an intermediate arrangement or a final tooth arrangement, the orthodontic appliance has characteristics which are retained following the use of the orthodontic appliance. In some embodiments, prior to the moving step, the orthodontic appliance comprises a first flexural modulus. In certain embodiments, after the moving step, the orthodontic appliance comprises a second flexural modulus. In some embodiments, the second flexural modulus is at least 99%, at least 98%, at least 97%, at least 96%, at least 95%, at least 94%, at least 93%, at least 92%, at least 91%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 50%, or at least 40% of the first flexural modulus. In some embodiments, the second flexural modulus is greater than 50% of the first flexural modulus. In some embodiments, this comparison is performed following a period of time in which the appliance is applied. In some embodiments, the period of time is 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, or greater than 4 weeks.
In some embodiments, prior to the moving step, the orthodontic appliance comprises a first elongation at break. In certain embodiments, after the moving step, the orthodontic appliance comprises a second elongation at break. In some embodiments, the second elongation at break is at least 99%, at least 98%, at least 97%, at least 96%, at least 95%, at least 94%, at least 93%, at least 92%, at least 91%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 50%, or at least 40% of the first elongation at break. In some embodiments, the second elongation at break is greater than 50% of the first elongation at break. In some embodiments, this comparison is performed following a period of time in which the appliance is applied. In some embodiments, the period of time is 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, or greater than 4 weeks.
As provided herein, the methods disclosed can use the orthodontic appliances further disclosed herein. The orthodontic appliances can be directly fabricated using, e.g., the crystallizable resins disclosed herein. In certain embodiments, the direct fabrication comprises cross-linking the crystallizable resin.
The appliances formed from the crystallizable resins disclosed herein provide improved durability, strength, and flexibility, which in turn improve the rate of on-track progression in treatment plans. In some embodiments, greater than 60%, greater than 70%, greater than 80%, greater than 90%, or greater than 95% of patients treated with the orthodontic appliances disclosed herein (e.g., an aligner) are classified as on-track in a given treatment stage. In certain embodiments, greater than 60%, greater than 70%, greater than 80%, greater than 90%, or greater than 95% of patients treated with the orthodontic appliances disclosed herein (e.g., an aligner) have greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, or greater than 95% of their tooth movements classified as on-track.
As disclosed further herein, the cured polymeric material contains favorable characteristics that, at least in part, stem from the presence of polymeric crystals. These cured polymeric materials can have increased resilience to damage, can be tough, and can have decreased water uptake when compared to similar polymeric materials. The cured polymeric materials can be used for devices within the field of orthodontics, as well as outside the field of orthodontics. For example, the cured polymeric materials disclosed herein can be used to make devices for use in aerospace applications, automobile manufacturing, the manufacture of prototypes, and/or devices for use in durable parts production.
All chemicals were purchased from commercial sources and were used without further purification, unless otherwise stated.
1H NMR and 13C NMR spectra were recorded on a BRUKER AC-E-200 FT-NMR spectrometer or a BRUKER Avance DRX-400 FT-NMR spectrometer. The chemical shifts are reported in ppm (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet). The solvents used were deuterated chloroform (CDCl3, 99.5% deuteration) and deuterated DMSO (d6-DMSO, 99.8% deuteration).
In some embodiments, the stress relaxation of a material or device can be measured by monitoring the time-dependent stress resulting from a steady strain. The extent of stress relaxation can also depend on the temperature, relative humidity and other applicable conditions (e.g., presence of water). In embodiments, the test conditions for stress relaxation are a temperature of 37±2° C. at 100% relative humidity or a temperature of 37±2° C. in water.
The dynamic viscosity of a fluid indicates its resistance to shearing flows. The SI unit for dynamic viscosity is the Poiseuille (Pa·s). Dynamic viscosity is commonly given in units of centipoise, where 1 centipoise (cP) is equivalent to 1 mPa·s. Kinematic viscosity is the ratio of the dynamic viscosity to the density of the fluid; the SI unit is m2/s. Devices for measuring viscosity include viscometers and rheometers. For example, an MCR 301 rheometer from Anton Paar may be used for rheological measurement in rotation mode (PP-25, 50 s-1, 50-115° C., 3° C./min).
Determining the water content when fully saturated at use temperature can comprise exposing the polymeric material to 100% humidity at the use temperature (e.g., 40° C.) for a period of 24 hours, then determining water content by methods known in the art, such as by weight.
In some embodiments, the presence of a crystalline phase and an amorphous phase provide favorable material properties to the polymeric materials. Property values of the cured polymeric materials can be determined, for example, by using the following methods:
flexural modulus, remaining flexural stress, and stress relaxation properties can be assessed using an RSA-G2 instrument from TA Instruments, with a 3-point bending, according to ASTM D790; for example, stress relaxation can be measured at 30° C. and submerged in water, and reported as the remaining load after 24 hours, as either the percent (%) of initial load, and/or in MPa;
storage modulus can be measured at 37° C. and is reported in MPa;
Tg of the cured polymeric material can be assessed using dynamic mechanical analysis (DMA) and is provided herein as the tan δ peak;
tensile modulus, tensile strength, elongation at yield and elongation at break can be assessed according to ISO 527-2 5B; and tensile strength at yield, elongation at break, tensile strength, and Young's modulus can be assessed according to ASTM D1708;
molecular weight can be measured by size exclusion chromatography or gel permeation chromatography .
Additive manufacturing or 3D printing processes for generating a device herein (e.g., an orthodontic appliance) can be conducted using a Hot Lithography apparatus prototype from Cubicure (Vienna, Austria), which can substantially be configured as schematically shown in
The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of some embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.
This example describes the synthesis of Guaiacyl methacrylate 2 furnishing the final product in chemical yields of at least 25%.
Guaiacol (1, 1 equiv.) and dimethylaminopyridine (0.02 equiv.) were added to a round-bottom flask and sparged with N2 for 1 h. The flask was cooled in an ice-water bath, and methacrylic anhydride (1.2 equiv.) was added to the mixture. The reaction was stirred at 45° C. overnight. Then, the cooled mixture was diluted with dichloromethane and washed with saturated sodium bicarbonate solution followed by 1 M NaOH solution. The organic layer was dried and concentrated, affording guaiacyl methacrylate 2 in 29% yield.
This example describes the synthesis of Syringyl (meth)acrylate 4 furnishing the final product in chemical yields of at least about 25%.
Syringol (3, 1 equiv.) was dissolved in chloroform in a roumd-bottom flask. Lithium carbonate (1.1 equiv.) was added followed by methacrylic anhydride (1.1 equiv.). The reaction mixture was stirred at 50 or 60° C. overnight. Then, the solids were removed by filtration, and the filtrate was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate, and concentrated. Column chromatography (eluting with 80% dichloromethane in hexanes) of the crude afforded the product 4 in >95% yield.
An alternative synthetic pathway involves the addition of 4-dimethyl-amino pyridine DMAP for >95% yield. In this process, syringol (3, 1 equiv.), methacrylic anhydride (1.3 equiv.), triethylamine (1 equiv.), and butylated hydroxy toluene BHT (1 wt % total mass)—an equivalent amount of DMAP was added equal to the amount of BHT added. The resulting mixture was dissolved in chloroform and reacted overnight at 60C. The next day the solids were removed by filtration, and the filtrate washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate, and concentrated. Column chromatography with dichloromethane of the crude afforded the product 4 in >95% yield.
As described herein, a polymerizable monomer of the present disclosure can be in the liquid state at a processing temperature, e.g., for 3D printing. This implies that the lower limit of the processing window of polymerizable monomers is defined either by viscosity (if still liquid) or by the melting point of the substance.
Therefore, polymerizable monomers that are solid at room temperature are analyzed using an OptiMelt melting point apparatus from Stanford Research Systems using a heating rate of 1 K/min. The melting point interval is determined by an optical sensor. Additionally, STA (simultaneous thermal analyzer) measurements are performed on a DSC apparatus STA 449F1 Jupiter from Netzsch, which covers a temperature range from −50° C. to 400° C., using a heating rate of 10 K/min. For the purposes herein, the DSC data are used to determine the melting points of the synthesized compounds. Due to the rather high heating rate, the onset of melting was used as the point of reference.
The results of this study show that at least some of the compounds tested in this example are solids at room temperature.
Volatility and thermal stability are tested of selected polymerizable monomers by means of simultaneous thermal analysis (STA), which represents a combination of thermogravimetry (TG) and differential-scanning calorimetry (DSC). In order to determine the volatility and thermal stability of the compounds, STA measurements are performed on an STA 449F1 Jupiter from Netzsch covering a temperature range from −50° C. to 400° C. using a heating rate of 10 K/min. The temperatures at which 5% mass loss or 10% mass loss, respectively, are detected for the monomers are taken as a measure for volatility. Thermal stability is derived from the recorded DSC data, i.e., the temperature at which a release of energy triggered by thermal polymerization of the monomers is detected. Herein, the temperature at the onset of exothermic thermal polymerization is taken as a measure for thermal stability. Additionally, the mass loss of the reactive diluents at a constant temperature of 90° C. is observed over a time period of 2 h. In this case, a mass loss less than 1% is established to identify monomers most suitable as reactive diluents for high temperature applications.
This example describes experiments determining the viscosity of exemplary photo-polymerizable monomers as well as resin formulations comprising such monomers, as described herein. To that end, rheology measurements of the neat monomers are performed covering a temperature range from 25° C. to 100° C. The measurements are performed on an Anton Paar MCR 301 apparatus equipped with a CTD 450 oven and a CP-25-1 measuring system, using a gap distance between stamp (cone) and bottom plate of 48 μm and a constant shear rate of 50 s−1.
In order to determine the photoreactivities of polymerizable monomers described herein, photo-differential scanning calorimetry (photo-DSC) measurements are carried out for some of the synthesized substances. To this end, the monomers are mixed with 1 wt % of a commercially available photoinitiator (TPO-L, ethyl (2,4,6-trimethylbenzoyl) phenyl-phosphinate) in an ultrasonic bath at 50° C. (or above the melting temperature) for 15 min. Then, 10±1 mg of the respective monomer are weighed into an aluminum DSC pan and put into a DSC 204 Fl device from Netzsch using an autosampler, coupled with a broadband UV-light source (320-500 nm) from an Exfo OmniCure™ series 2000. The sample is irradiated under N2 atmosphere (N2 flow: 20 mL/min) using an intensity of 1 W/cm2 at the exit of the light guide, which corresponds to about 20 mW/cm2 on the sample surface, for 5 min. After the measurement, some of cured samples are dissolved in CDCl3 and 1H NMR spectra are recorded by means of a BRUKER Avance DRX-400 FT-NMR spectrometer. The double bond conversions (DBC; in %) of the respective monomers are calculated on the basis of the corresponding integrated double bond peak areas.
This example describes experiments and the obtained results from tensile strength, stress relaxation, and dynamic mechanical analyses of photo-cured compositions comprising, in a polymerized from, one of the monomers 5, 2, or 4:
TABLE 3 below shows the composition of three photo-curable resins R1-R3, comprising the polymerizable monomers 5, 2, and 4, respectively, and homosalic methacrylate (HSMA) and the curing conditions.
The results from the experiments investigating tensile strength of the cured polymeric materials P1-P3 generated from the photo-curable resins R1-R3, respectively, are shown in
Furthermore, stress relaxation experiments were conducted using polymeric materials P1-P3. The results are shown in
Taken together, these results demonstrate that the photo-polymerizable monomers of the present disclosure (e.g., compounds 2 and 4 shown in this example) may not only allow elevated temperature 3D printing due to the comparatively low vapor pressure of the herein described compounds, but also provide polymeric materials with advantageous mechanical and physical properties.
This example demonstrates that the polymerizable monomers of the present disclosure can be used as reactive diluents in photo-curable resins. To that end, compounds 5, 2, and 4 are mixed with highly viscous, commercially available resins and the viscosity of the resins with and without these compounds were then measured. The results demonstrate that particularly compound 4, which has a reduced rotational freedom around the C—O bond connecting the aryl moiety with the methacrylate moiety, reduced the viscosity of the resin while having a relatively low vapor pressure at elevated temperatures (e.g., >80° C.) compared to compounds 2 and 5.
This example describes the use of a directly 3D printed orthodontic appliance to move a patient's teeth according to a treatment plan. This example also describes the characteristics that the orthodontic appliance can have following its use, in contrast to its characteristics prior to use.
A patient in need of, or desirous of, a therapeutic treatment to rearrange at least one tooth has their teeth arrangement assessed. An orthodontic treatment plan is generated for the patient. The orthodontic treatment plan comprises a plurality of intermediate tooth arrangements for moving teeth along a treatment path, from the initial arrangement (e.g., that which was initially assessed) toward a final arrangement. The treatment plan includes the use of an orthodontic appliance, fabricated using photo-curable resins and methods disclosed further herein, to provide orthodontic appliances having low levels of hydrogen bonding units. In some embodiments, a plurality of orthodontic appliances is used, each of which can be fabricated using the photo-curable resins comprising one or more polymerizable monomers and methods disclosed further herein.
The orthodontic appliances are provided, and iteratively applied to the patient's teeth to move the teeth through each of the intermediate tooth arrangements toward the final arrangement. The patient's tooth movement is tracked. A comparison is made between the patient's actual teeth arrangement and the planned intermediate arrangement. Where the patient's teeth are determined to be tracking according to the treatment plan, but have not yet reached the final arrangement, the next set of appliances can be administered to the patient. The threshold difference values of a planned position of teeth to actual positions selected as indicating that a patient's teeth have progressed on-track are provided above in TABLE 1. If a patient's teeth have progressed at or within the threshold values, the progress is considered to be on-track. Favorably, the use of the appliances disclosed herein increases the probability of on-track tooth movement.
The assessment and determination of whether treatment is on-track can be conducted, for example, 1 week (7 days) following the initial application of an orthodontic appliance. Following this period of application, additional parameters relating to assessing the durability of the orthodontic appliance can also be conducted. For example, relative repositioning force (compared to that which was initially provided by the appliance), remaining flexural stress, relative flexural modulus, and relative elongation at break can be determined.
The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by some embodiments, exemplary embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims. The specific embodiments provided herein are examples of useful embodiments of the present invention and it will be apparent to one skilled in the art that the present invention may be carried out using a large number of variations of the devices, device components, methods steps set forth in the present description. As will be obvious to one of skill in the art, methods and devices useful for the present methods can include a large number of optional composition and processing elements and steps.
The present application is a continuation of U.S. Provisional Patent Application No. 63/179,004, filed on Apr. 23, 2021, and U.S. Provisional Patent Application No. 63/179,007, filed on Apr. 23, 2021, which are hereby incorporated by reference in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63179004 | Apr 2021 | US | |
63179007 | Apr 2021 | US |