Monopole tip for ablation catheter

Information

  • Patent Grant
  • 7346399
  • Patent Number
    7,346,399
  • Date Filed
    Friday, November 12, 2004
    19 years ago
  • Date Issued
    Tuesday, March 18, 2008
    16 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Peffley; Michael
    Agents
    • Fenwick & West LLP
Abstract
An ablation catheter apparatus with a monopole antenna that is arranged to provide a relatively uniform electric field and a method for using such an ablation catheter apparatus are disclosed. According to one aspect of the present invention, an ablation catheter includes an elongated flexible tubular member that is adapted to be inserted into the body of a patient, and a transmission line that is disposed within the tubular member. The transmission line has a distal end and a proximal end which is arranged to be connected to an electromagnetic energy source. The catheter also includes a monopole antenna with tip section and a body section that includes a distal end and a proximal end. The tip section and the body section are arranged to produce a relatively uniform electric field around the monopole antenna which is sufficiently strong to cause tissue ablation. The proximal end of the body section of the monopole antenna is arranged to be electrically coupled to the transmission line.
Description
BACKGROUND OF THE INVENTION

1. Field of Invention


The present invention relates generally to ablation catheter systems that use electromagnetic energy in the microwave frequency range to ablate internal bodily tissues. More particularly, the present invention relates to a monopole tip for a catheter that enables distal fire capabilities while enabling a relatively even electromagnetic field to be created at the sides of the monopole tip to facilitate the ablation of cardiac tissue.


2. Description of the Related Art


Catheter ablation is a therapy that is becoming more widely used for the treatment of medical problems such as cardiac arrhythmias, cardiac disrhythmias, and tachycardia. Most presently approved ablation catheter systems utilize radio frequency (RF) energy as the ablating energy source. However, RF energy has several limitations which include the rapid dissipation of energy in surface tissues. This rapid dissipation of energy often results in shallow “burns,” as well as a failure to access deeper arrhythmic tissues. As such, catheters which utilize electromagnetic energy in the microwave frequency range as the ablation energy source are currently being developed. Microwave frequency energy has long been recognized as an effective energy source for heating biological tissues and has seen use in such hyperthermia applications as cancer treatment and the preheating of blood prior to infusions. Catheters which utilize microwave energy have been observed to be capable of generating substantially larger lesions than those generated by RF catheters, which greatly simplifies the actual ablation procedures. Some catheter systems which utilize microwave energy are described in the U.S. Pat. No. 4,641,649 to Walinsky; U.S. Pat. No. 5,246,438 to Langberg; U.S. Pat. No. 5,405,346 to Grundy, et al.; and U.S. Pat. No. 5,314,466 to Stem, et al., each of which is incorporated herein by reference in its entirety.


Cardiac arrhythmias, which may be treated using catheter ablation, are generally circuits, known as “reentry circuits,” which form within the chambers of the heart. As is known to those skilled in the art, reentry circuits are abnormal electrical pathways that may form in various areas of the heart. For example, reentry circuits may form around veins and/or arteries which lead away from and to the heart. Cardiac arrhythmias may occur in any area of the heart where reentry circuits are formed.


The catheters used for treatment of cardiac arrhythmias, disrhythmias, and tachycardia may have a variety of different antenna configurations to create electromagnetic fields used in ablation. Some catheters have antennas that essentially protrude from the distal ends of the catheters. In other words, some catheters have antennas which form the distal tips of the catheters. A monopole antenna is typically configured to form the distal tip of a catheter.



FIG. 1
a is a diagrammatic representation of a distal end of a catheter with a monopole antenna at its tip. A distal end 102 of a catheter has a monopole antenna 108 at its tip. As shown, monopole antenna 108 has a rounded shape, and is coupled to a center conductor 112 of a co-axial transmission line 116. Typically, monopole antenna 108 is formed from a metallic material. Distal end 102 of the catheter may also include electrodes 120, which may be used for mapping processes, that may be coupled to processing equipment (not shown) using ECG wires 122.


Monopole antenna 108 is often arranged to be used in ablating tissue. Center conductor 112 transmits energy, e.g., electromagnetic energy, to monopole antenna 108 to allow an electromagnetic field to be formed with respect to monopole antenna. FIG. 1b is a diagrammatic representation of a monopole antenna, i.e., monopole antenna 108 of FIG. 1a, shown with electromagnetic field lines. Electromagnetic field lines 130 generally radiate from monopole antenna 108 in a substantially ellipsoidal pattern. Hence, near sides 134, “hot spots” 138 of electromagnetic energy are typically formed. Hot spots 138 are generally associated with the highest amounts of electromagnetic energy radiated by monopole antenna 108. The existence of hot spots 138 causes certain portions of a myocardium of heart, for example, such as those that are substantially contacted by a hot spot to be ablated more than other portions.


When an ablation procedure is performed using monopole antenna 108, the depth of cuts formed may not be uniform, since electromagnetic field lines 130 are not uniform. That is, the shape, or profile, of electromagnetic field lines 130 are such that when ablation is performed, the depth associated with the ablation may not be even. The lack of even depth in an ablation procedure may cause the ablation, e.g., an ablation in the myocardium of a heart, to be unsuccessful, as all of the cardiac tissue may not be effectively ablated. Hence, the ablation procedure may have to be repeated, which is both time-consuming and inefficient.


Therefore, what is needed is a monopole antenna structure for use with an ablation catheter that efficiently allows tissue to be ablated. More specifically, what is desired is a monopole antenna structure that is capable of producing a relatively field, e.g., electromagnetic field, a deep lesion, and a microwave power deposition at the tip of a catheter, i.e., a tip-firing catheter.


SUMMARY OF THE INVENTION

The present invention relates generally to an ablation catheter with a monopole antenna that is arranged to provide an electric field that is able to produce a deep lesion, e.g., in the myocardium or a heart, and has a tip-firing capability. According to one aspect of the present invention, an ablation catheter includes an elongated flexible tubular member that is adapted to be inserted into the body of a patient, and a transmission line that is disposed within the tubular member. The transmission line has a distal end and a proximal end which is arranged to be connected to an electromagnetic energy source. The catheter also includes a monopole antenna with tip section and a body section that includes a distal end and a proximal end. The tip section and the body section are arranged to produce a relatively uniform electric field around the monopole antenna which is sufficiently strong to cause deep tissue ablation. The proximal end of the body section of the monopole antenna is arranged to be electrically coupled to the transmission line.


In one embodiment, the transmission line is a coaxial cable, which has a center conductor and an outer conductor. In such an embodiment, the proximal end of the monopole antenna is arranged to be electrically coupled to the center conductor. In another embodiment, the body section of the monopole antenna is tapered such that the diameter at the proximal end of the body section of the monopole antenna is smaller than the diameter at the distal end of the body section of the monopole antenna.


According to another aspect of the present invention, an antenna structure arranged to be used in an ablation catheter has a longitudinal axis, and includes a body section with a first end and a second end, a tip section, and a transition section. The body section is sized such that the axial cross-sectional area about the longitudinal axis of the second end is smaller than the axial cross-sectional area about the longitudinal axis of the first end. The second end is arranged to be electrically coupled to a transmission line, and the body section is shaped to allow a relatively uniform electric field to be formed with respect to the antenna structure. The tip section has a proximal portion that has an axial cross-sectional area about the longitudinal axis which is greater than or approximately equal to the axial cross-sectional area of the first end, and the transition section is disposed between the proximal portion and the first end.


In one embodiment, the first end has a diameter that is greater than the diameter of the second end, and the proximal portion has a diameter that is greater than or equal to the diameter of the first end. In such an embodiment, the tip section may have a diameter that is less than the diameter of the first end.


In accordance with still another aspect of the present invention, a microwave ablation catheter includes an elongated flexible tubular member, which has a distal portion, a proximal portion, and a longitudinal catheter axis, and is adapted to be inserted into a vessel in the body of a patient. The microwave ablation catheter also includes a transmission line with a proximal end and a distal end. The transmission line is disposed within the tubular member, and the proximal end of the transmission line is suitable for connection to an electromagnetic energy source. A monopole antenna which is part of the microwave ablation catheter is coupled to the transmission line for generating an electric field sufficiently strong to cause tissue ablation, and includes a frusto-conically shaped emitting surface with an axis that is substantially parallel to the longitudinal catheter axis. In one embodiment, the monopole antenna further includes a rounded distal emitter surface. In such an embodiment, the antenna may also include a trough region between the frusto-conically shaped emitting surface and the distal emitter surface, as well as an encapsulating material that encapsulates the trough and frusto-conically shaped emitting surface such that the trough forms an anchor for the encapsulating material.


These and other advantages of the present invention will become apparent upon reading the following detailed descriptions and studying the various figures of the drawings.





DETAILED DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:



FIG. 1
a is a diagrammatic representation of a distal end of a catheter with a monopole tip.



FIG. 1
b is a diagrammatic representation of a monopole antenna, i.e., monopole antenna 108 of FIG. 1a, shown with electromagnetic field lines.



FIG. 2
a is a diagrammatic representation of an ablation catheter in accordance with an embodiment of the present invention.



FIG. 2
b is a perspective representation of a monopole antenna with a tapered configuration, i.e., monopole antenna 202 of FIG. 2a, in accordance with an embodiment of the present invention.



FIG. 3
a is a diagrammatic side view representation of a monopole antenna, shown with a contour plot of the magnitude of electric field lines, in accordance with an embodiment of the present invention.



FIG. 3
b is a diagrammatic side view representation of a monopole antenna, i.e., monopole antenna 302 of FIG. 3a, shown with relative specific absorption rates, in accordance with an embodiment of the present invention.



FIG. 4 is a diagrammatic cross-sectional representation of a distal end of a catheter which includes a monopole antenna in accordance with an embodiment of the present invention.





BRIEF DESCRIPTION OF THE EMBODIMENTS

When the electromagnetic field associated with an antenna in an ablation catheter is not uniform, the depth of an ablation formed in cardiac tissue using the catheter is often uneven. Ablation catheters with conventional monopole antennas generally do not emit uniform electric fields. Instead, the contour of electric field lines, as well as hot spots in the electric field around a monopole antenna, are such that ablation of cardiac tissue, as for example in a myocardium of a heart, are often uneven. As a result, the ablation of the tissue may not be successful.


An ablation catheter that has a monopole antenna which is shaped to enable a substantially uniform field, e.g., electromagnetic or electric field, to be formed around the monopole antenna allows the depth of an ablation of tissue to occur substantially uniformly In addition, such a monopole antenna allows the catheter to have forward firing, or tip-firing, capabilities. That is, the distal tip of the monopole antenna may also be used to ablate tissue.


When the depth of an ablation is relatively uniform, i.e., has a substantially uniform depth, an overall ablation process may be more efficiently performed, as it may be unnecessary to repeatedly ablate the same area of tissue to obtain an even depth of ablation. When an overall ablation process is more efficient, in that the time spent performing ablation may be reduced.


A monopole antenna which includes a tip section and a tapered body section enables hot spots in the electromagnetic field formed around the body section to be substantially eliminated. FIG. 2a is a diagrammatic representation of an ablation catheter with a monopole antenna, which includes a tip section and a tapered body section, in accordance with an embodiment of the present invention. An ablation catheter 180, which is suitable for use as a microwave ablation catheter, is generally arranged to be introduced into the body of a patient through a blood vessel, e.g., the femoral vein. Catheter 180 may be considered to be an overall elongated, flexible, tube. It should be appreciated that for ease of illustration, catheter 180 has not been drawn to scale.


Since catheter 180 is arranged to be used within the body of a patient, materials used to form catheter 180 are typically biocompatible materials. Suitable biocompatible materials used to form catheter 180 include, but are not limited to medical grade polyolefins, fluoropolymers, polyurethane, polyethylene, or polyvinylidene fluoride. In one embodiment, a PEBAX resin, which is available commercially from Elf Atochem of Germany, may be used in the formation of catheter 180.


Catheter 180 includes a monopole antenna 202 from which an electric field may be emitted to cause ablation. As shown, monopole antenna 202 is located at the distal end of catheter 180. Monopole antenna 202, which may be machined from a material such as stainless steel using a mill or a lathe, will be discussed below with reference to FIG. 2b. Typically, once catheter 180 is introduced into the body of a patient, catheter 180 is manipulated through a blood vessel and into the heart such that monopole antenna 202 may be positioned within a cardiac chamber in which an ablation procedure is to be performed.


Catheter 180 also includes electrodes 204 which are positioned on catheter 180 such that they are located proximally with respect to monopole antenna 202. Electrodes 204 are generally arranged to detect electro-physiological signals from cardiac tissue. Hence, electrodes 204, which are generally electrode bands, may be used to map the relevant region of the heart, i.e., the portion of the heart with which an ablation procedure is associated, prior to or after an ablation procedure. Electrodes 204 may also be used to aid in positioning catheter 180 during an ablation procedure. In general, although electrodes 204 may be formed from any suitable material which has biocompatible characteristics, electrodes 204 are typically formed from materials which include, but are not limited to, stainless steel and iridium platinum.


A handle 205 is often located near a proximal end of catheter 180, although it should be appreciated that handle 205 is not necessarily included as a part of catheter 180. Handle 205 is arranged to enable a user, ie., an individual who is performing an ablation procedure on a patient, to grip and to manipulate catheter 180. In the described embodiment, a connector 206 is located on catheter 180 such that connector 206 is proximal to handle 205. Connector 206 is arranged to couple a transmission line (not shown), which is located within catheter 180, to a power supply, or similar device, that is designed to generate controlled electromagnetic energy.


As mentioned above, monopole antenna 202 is arranged to provide an electric field, e.g., an electromagnetic field, to allow tissue to be ablated. In the described embodiment, monopole antenna 202 is shaped such that the electric field which is generated is effectively confined to the monopole region associated with monopole antenna 202. With reference to FIG. 2b, a monopole antenna with a tapered body section will be described in accordance with an embodiment of the present invention. FIG. 2b is a perspective representation of monopole antenna 202 of FIG. 2a. Monopole antenna 202 includes a body section 208, an intermediate section 210, and a tip section 214. In the described embodiment, body section 208 has a tapered shape, e.g., body section 208 is shaped substantially as a conical structure with no single apex point. That is, body section 208, which includes an emitting surface, may have a frusto-conical shape. A proximal end 218 of body section 208 generally has the smallest axial cross-sectional area, about a longitudinal axis of monopole antenna 202, associated with body section 208. By way of example, the diameter of proximal end 218, about the longitudinal axis of monopole antenna 202, is typically smaller than any other diameter, along the same axis, that is associated with body section 208.


Intermediate section 210 effectively separates body section 208 from tip section 214. One purpose of intermediate, or “trough,” section 210 is to allow a material which is used to encase body section 208 to be anchored with respect to monopole antenna 202. In other words, intermediate section 210 is shaped such that a material which effectively encapsulates body section 208 and, further, at least part of intermediate section 210, is generally prevented from “peeling away” from intermediate section 210 and body section 208. The encapsulating material serves as a plug that holds monopole antenna 202 against a catheter, e.g., catheter 180 of FIG. 2a. In general, any suitable material may be used to form a plug that essentially encases body section 208. Such materials include, but are not limited to, Teflon, such as PolyTetraFluoroEthylene (PTFE), and Polyethylene (PE).


As shown, intermediate section 210 has an axial cross-sectional area that is less than the largest axial cross-sectional area associated with body section 208, ie., the axial cross-sectional area associated with a distal end 222 of body section 208. In one embodiment, since intermediate section 210 and body section 208 have substantially circular cross-sectional areas, the diameter of intermediate section 210 is less than the diameter of distal end 222 of body section 208.


Tip section 214 typically includes a distal portion 214a and a proximal portion 214b. Distal portion 214a generally has a rounded shape. In the described embodiment, distal portion 214a has an approximately hemispherical shape. Proximal portion 214b has a substantially cylindrical shape, although it should be appreciated that the shape of proximal portion 214b may vary widely. In some embodiments, tip section 214 may include only distal portion 214a.


Generally, the dimensions associated with monopole antenna 202 may vary, depending upon the overall configuration of a catheter in which monopole antenna 202 is used. By way of example, the dimensions may vary in order to achieve electric field lines of a particular shape. Typically, body section 208 has a longitudinal length in the range of approximately 0.25 inches to approximately 0.4 inches, e.g., approximately 0.3 inches. The longitudinal length of intermediate section 210 may range from approximately 0.07 inches to approximately 0.10 inches, e.g., the longitudinal length of intermediate section 210 may be approximately 0.09 inches. Finally, the longitudinal length of tip section 214 may range from total length of approximately 0.08 inches to approximately 0.1 inches. In one embodiment, distal portion 214a of tip section 214 may have a longitudinal length of approximately 0.06 inches.


In addition to having a longitudinal length that may vary, monopole antenna 202 has diameters that may also be widely varied. As discussed above, body section 208 may have a tapered shape, e.g., a frusto-conical shape; Accordingly, the diameters along the longitudinal axis of body section 208 will generally vary. For example, the proximal end 218 of body section 208 may have a diameter which ranges between approximately 0.025 inches to approximately 0.04 inches, while the distal end 222 of body section 208 may have a diameter which ranges from approximately 0.06 inches to approximately 0.08 inches. It should be appreciated that the ranges of diameters may vary widely depending upon the requirements of an overall catheter system.


The diameter of intermediate section 210 may also be widely varied. In general, the diameter of intermediate section 210 may be any suitable diameter that is less than or equal to the diameter of distal end 222 of body section 208. However, the diameter of intermediate section 210 is preferably less than the diameter of distal end 222 of body section 208, in order for a plug to be securely formed around body section 208, as previously mentioned. By way of example, when distal end 222 of body section 208 has a diameter which ranges between approximately 0.6 inches and approximately 0.8 inches, then intermediate section 210 may have a diameter which ranges between approximately 0.04 inches to approximately 0.06 inches.


Like the other diameters associated with monopole antenna 202, the diameter associated with tip section 214 may also vary. In the described embodiment, the diameter associated with proximal portion 214b is substantially the same as a diameter associated with distal portion 214a. That is, when proximal portion 214b is approximately cylindrical in shape, and distal portion 214a is substantially hemispherical in shape, the diameters of proximal portion 214b and distal portion 214a may be approximately the same. For instance, the diameters may be in the range of approximately 0.08 inches to approximately 0.1 inches, although it should be understood that the diameters may be widely varied.


A monopole antenna such as monopole antenna 202 may be formed from substantially any conductive material. In general, monopole antennas are preferably formed from materials with relatively high conductivity characteristics. Since catheters which include monopole antennas are typically arranged to be inserted into human bodies, the monopole antennas are further formed from biocompatible materials, or are coated with a conductive biocompatible material, e.g., silver or platinum.


Monopole antenna 202, as mentioned above, is shaped to enable a substantially elliptical electromagnetic field to be formed around antenna 202. FIG. 3a is a diagrammatic side view representation of a monopole antenna, shown with contour lines associated with the magnitude of an associated electric field, in accordance with an embodiment of the present invention. Contour lines 304 are shown with respect to field propagation at ninety degrees of a cycle. As will be appreciated by those skilled in the art, a cycle is a phase shift of 360 degrees. The number of cycles per second will generally vary depending upon the frequency that is being used, which often varies depending upon the needs of a particular system. By way of example, in one embodiment, at a frequency of approximately 2.45 GigaHertz (GHz), the number of cycles per second is approximately 2.45×109.


For purposes of illustration, representative contour lines 304 of the magnitude of an electric field have been shown, although it should be appreciated that many more contour lines 304 associated with the magnitude of an electric field will generally exist. The magnitude of an electric field generally varies with the distance from monopole antenna 202. Specifically, the magnitude of an electric field decreases as the distance from monopole antenna 202 increases. For example, the magnitude of the portion of the electric field represented by contour line 304a is greater than the magnitude of the portion of the electric field represented by contour line 304c. In the described embodiment, the output power associated with monopole antenna 202 is approximately one Watt (W), and the magnitude of the electric field represented by contour line 304a is approximately 1000 Volts per meter (V/m). In such an embodiment, the magnitude of electric field line 304c may be approximately 500 V/m.


Ablation procedures that are performed with monopole antenna 202 may be more efficient than those performed using a conventional monopole antenna, in that the ablation of tissue is generally more even, e.g., the depth of an ablation made in cardiac tissue may be uniform. Specifically, the tip-firing capabilities of monopole antenna 202, as well as the deep penetration of the energy which emanates from monopole antenna 202, may allow for a more efficient treatment of flutters and tachycardias, for example.


Monopole antenna 202 has an associated specific absorption rate (SAR), as will be understood by those skilled in the art. FIG. 3b is a diagrammatic side view representation of a monopole antenna, ie., monopole antenna 302 of FIG. 3a, shown with a pattern specific absorption rates, in accordance with an embodiment of the present invention. The specific absorption rate associated with an antenna may be expressed as follows:






SAR
=


σ






E
2


2






where σ is the associated electrical conductivity at a particular frequency, e.g., approximately 2.45 GHz, and E2 is the square of the magnitude of the electric field. As the magnitude of the electric field varies with distance from monopole antenna 202, the specific absorption rate also varies. Since the specific absorption rate is a function of the magnitude of the electric field, the specific absorption rate decreases as the distance from monopole antenna 202 increases.


In the described embodiment, specific absorption rate 354a is the highest rate associated with monopole antenna 202, while specific absorption rate 354c is the lowest rate associated with monopole antenna 202. The pattern of specific absorption rates have been shown as including three rates 354, it should be appreciated that more rates generally exist although, in some embodiments, fewer rates may be in existence.



FIG. 4 is a diagrammatic cross-sectional representation of a distal end of a catheter which includes a monopole antenna in accordance with an embodiment of the present invention. A distal end 400 of a catheter includes a monopole antenna 402 which has a tapered body section 408, an intermediate section 410, and a tip section 414. For illustrative purposes, distal end 400 of catheter has not been drawn to scale. In the embodiment as shown, monopole antenna 402 also includes a surface finish 418, or coating, that covers the exterior of tip section 414. Surface finish 418 may be formed from a variety of different materials. By way of example, surface finish 418 may be a silver plating. It should be appreciated that in another embodiment, monopole antenna 402 may not include a surface finish.


In the described embodiment, monopole antenna 402 is coupled to an electromagnetic wave generator that is external to the catheter (not shown) through a coaxial cable 430. Specifically, a center conductor 432 is electrically coupled to a proximal end of body section 408. As shown, body section 408 is bored out, e.g., includes a proximal bore 409, that is arranged to allow center conductor 432 to be electrically coupled to monopole antenna 402. In order to facilitate coupling of center conductor 432 to body section 408, center conductor 432 extends past an outer conductor 436, or a shield, of coaxial cable 430. A variety of different methods may be used to couple center conductor 432 to body section 408. By way of example, center conductor 432 may be coupled to body section 408 using a crimping process. An inner dielectric 434 of coaxial cable 430 serves to separate center conductor 432, which is arranged to carry electrical current, from shield 436 of coaxial cable 430. As will be appreciated by those skilled in the art, outer conductor 436 is often used for grounding purposes. Although coaxial cable 430 is arranged to provide power to monopole antenna 402, it should be appreciated that substantially any transmission line may be used in lieu of coaxial cable 430.


A flexible tubing 440, is effectively an outer sleeve that is formed over coaxial cable 430. Typically, flexible tubing 440 may be made from any flexible, biocompatible material including, but not limited to, Teflon, polyethylene, and polyurethane. The thickness of flexible tubing 440 may vary widely depending upon the requirements of a particular catheter. By way of example, the thickness of flexible tubing 440 may vary between approximately 0.005 inches and approximately 0.015 inches.


Electrode bands 444 are often “pressed into” flexible tubing 440 such that electrode bands 444 may make contact with fluids and tissue that are external to the catheter. In general, electrode bands are electrically coupled to an external power supply (not shown) through electrode wires 448 which are located between flexible tubing 440 and co-axial cable 430. Electrode bands 444 may be used to monitor electrocardiogram signals from a patient during an ablation procedure. As shown, electrode band 444b, which is the electrode band which is most distally positioned with respect to distal end 400 of catheter, is substantially electrically coupled to outer conductor 436 through wires 462. Such a connection to outer conductor 436 is generally made as close to the distal end of outer conductor 436 as possible, as will be understood by those skilled in the art.


In one embodiment, electrode bands 444 may each have a width of approximately 0.004 inches, or approximately 1 millimeter, although the width of each electrode band 444 may vary. As previously mentioned, electrode bands 444 may be formed from substantially any suitable biocompatible, material including, but not limited to, stainless steel and iridium platinum. Typically, the location of electrode bands 444 is such that electrode bands 444 are relatively close to monopole antenna 402.


A plug 460, which is formed around body section 408 and intermediate section 410 of monopole antenna 402, is arranged to hold monopole antenna 402 with respect to flexible tubing 440. Such a plug may be molded around at least a portion of monopole antenna 402 in order to hold monopole antenna 402. As discussed above, plug 460 may be formed from any suitable, preferably biocompatible, material, which is capable of withstanding electromagnetic fields that may be produced using monopole antenna 402. By way of example, plug 460 may be formed from a material such as Teflon or polyethylene. The configuration of intermediate section 410, with respect to body section 408 and tip section 414, is arranged to hold plug 460 securely in place with respect to monopole antenna 402.


Although only a few embodiments of the present invention have been described, it should be understood that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the present invention. By way of example, an ablation catheter that includes a monopole antenna which generates a substantially deep electric field with respect to the monopole antenna has been generally described as being a microwave ablation catheter. However, such a monopole antenna may be use with various other catheters including, but not limited, to catheters which operate using radio frequency waves.


While a monopole antenna has been described as being formed from a material such as stainless steel, it should be appreciated that materials used in the fabrication of a monopole antenna may vary widely. In general, monopole antenna may be formed from substantially any material having a good electrical conductivity.


The sections of a monopole antenna, namely, the tip section, the intermediate section, and the body section, may take on various shapes without departing from the spirit or the scope of the present invention. By varying the shapes of the different sections, the shape of the electric field which emanates from the monopole antenna may be varied. For example, in one embodiment, the body section of a monopole antenna may not have a tapered shape. In some cases, varying the shapes associated with a monopole antenna may still enable the generated electric field to be substantially uniform. In other cases, varying the shapes may result in the generation of relatively non-uniform electric fields. The generation of relatively non-uniform electric fields may be desirable, for instance, when a monopole antenna is to be used for an ablation procedure that requires a specifically shaped electric field. That is, the tip section, the intermediate section, and the body section of a monopole antenna may be shaped to provide electric fields of particular shapes as required for specific ablation procedures.


A transmission line, e.g., the center conductor of a co-axial cable, has generally been described as being crimped, or otherwise coupled, to the proximal end of a monopole antenna. It should be appreciated that a transmission line may be electrically coupled to the monopole antenna using various other methods, and at different locations with respect to the monopole antenna. Therefore, the present examples are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope of the appended claims.

Claims
  • 1. An antenna structure, comprising: an elongated flexible tubular member adapted to be inserted into a patient's body and having a distal end attached to the monopole antenna near the proximal end thereof;a monopole antenna formed of electrically conductive material and including a substantially hemispherical distal tip operably disposed at a distal end of the ablation device and having a substantially conical shape converging proximally from the distal tip toward a proximal end for forming an outer emission surface from which electromagnetic energy is emitted between the distal and proximal ends in a uniform electromagnetic field pattern about the monopole antenna in response to electromagnetic energy applied to the proximal end thereof; andan electromagnetic energy conductor disposed within the tubular member and connected to the proximal end of the monopole antenna for transmitting ablation energy thereto, the outer surface of the insulating material encasing the monopole antenna forming a smooth surface transition with an outer surface of the tubular member.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 09/904,156, filed on Jul. 31, 2001, now issued as U.S. Pat. No. 6,823,218, which is a continuation of U.S. patent application Ser. No. 09/321,666, filed May 28, 1999, now issued as U.S. Pat. No. 6,277,113, which are incorporated herein by reference, in their entirety.

US Referenced Citations (533)
Number Name Date Kind
1586645 Bierman Jun 1926 A
3598108 Jamshidi et al. Aug 1971 A
3827436 Stumpf et al. Aug 1974 A
3831607 Lindemann Aug 1974 A
3886944 Jamshidi Jun 1975 A
3976082 Schmitt Aug 1976 A
4011872 Komiya Mar 1977 A
4033357 Helland et al. Jul 1977 A
4045056 Kandakov et al. Aug 1977 A
4073287 Bradley et al. Feb 1978 A
4204549 Paglione May 1980 A
4244371 Farin Jan 1981 A
4245624 Komiya Jan 1981 A
4268937 Grimshaw May 1981 A
4312364 Convert et al. Jan 1982 A
4409993 Furihata Oct 1983 A
4416276 Newton et al. Nov 1983 A
4445892 Hussein et al. May 1984 A
4448198 Turner May 1984 A
4462412 Turner Jul 1984 A
4465079 Dickhudt Aug 1984 A
4476872 Perlin Oct 1984 A
4494539 Zenitani et al. Jan 1985 A
4522212 Gelinas et al. Jun 1985 A
4564200 Loring et al. Jan 1986 A
4565200 Cosman Jan 1986 A
4573473 Hess Mar 1986 A
4583556 Hines et al. Apr 1986 A
4601296 Yerushalmi Jul 1986 A
4611604 Botvidsson et al. Sep 1986 A
4640983 Comte Feb 1987 A
4641646 Schultz et al. Feb 1987 A
4641649 Walinsky et al. Feb 1987 A
4643186 Rosen et al. Feb 1987 A
4655219 Petruzzi Apr 1987 A
4657015 Irnich Apr 1987 A
4660571 Hess et al. Apr 1987 A
4681122 Winters et al. Jul 1987 A
4685459 Koch et al. Aug 1987 A
4699147 Chilson et al. Oct 1987 A
4700716 Kasevich et al. Oct 1987 A
4763668 Macek et al. Aug 1988 A
4785815 Cohen Nov 1988 A
4800899 Elliott Jan 1989 A
4823812 Eshel et al. Apr 1989 A
4825880 Stauffer et al. May 1989 A
4832048 Cohen May 1989 A
4841988 Fetter et al. Jun 1989 A
4841990 Kikuchi et al. Jun 1989 A
4881543 Trembly et al. Nov 1989 A
4891483 Kikuchi et al. Jan 1990 A
4920978 Colvin May 1990 A
4924863 Sterzer May 1990 A
4924864 Danzig May 1990 A
4932420 Goldstein Jun 1990 A
4938217 Lele Jul 1990 A
4945912 Langberg Aug 1990 A
4960134 Webster, Jr. Oct 1990 A
4966597 Cosman Oct 1990 A
4976711 Parins et al. Dec 1990 A
5007437 Sterzer Apr 1991 A
RE33590 Dory May 1991 E
5019076 Yamanashi et al. May 1991 A
5044375 Bach, Jr. et al. Sep 1991 A
5057106 Kasevich et al. Oct 1991 A
5078713 Varney Jan 1992 A
5080101 Dory Jan 1992 A
5080102 Dory Jan 1992 A
5085659 Rydell Feb 1992 A
5097845 Fetter et al. Mar 1992 A
5100388 Behl et al. Mar 1992 A
5104393 Isner et al. Apr 1992 A
5108390 Potocky et al. Apr 1992 A
5111822 Dory May 1992 A
5114403 Clarke et al. May 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5147355 Friedman et al. Sep 1992 A
5147357 Rose et al. Sep 1992 A
5150717 Rosen et al. Sep 1992 A
5156151 Imran Oct 1992 A
5158092 Glace Oct 1992 A
5171255 Rydell Dec 1992 A
5172699 Svenson et al. Dec 1992 A
5188122 Phipps et al. Feb 1993 A
5190054 Fetter et al. Mar 1993 A
5192278 Hayes et al. Mar 1993 A
5207672 Roth et al. May 1993 A
5207674 Hamilton May 1993 A
5222501 Ideker et al. Jun 1993 A
5230334 Klopotek Jul 1993 A
5230349 Langberg Jul 1993 A
5242441 Avitall Sep 1993 A
5246438 Langberg Sep 1993 A
5248312 Langberg Sep 1993 A
5263493 Avitall Nov 1993 A
5281213 Milder et al. Jan 1994 A
5281215 Milder Jan 1994 A
5281217 Edwards et al. Jan 1994 A
5293869 Edwards et al. Mar 1994 A
5295484 Marcus et al. Mar 1994 A
5295955 Rosen et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5300099 Rudie Apr 1994 A
5301687 Wong et al. Apr 1994 A
5304207 Stromer Apr 1994 A
5313943 Houser et al. May 1994 A
5314466 Stern et al. May 1994 A
5318525 West et al. Jun 1994 A
5323781 Ideker et al. Jun 1994 A
5327889 Imran Jul 1994 A
5334168 Hemmer Aug 1994 A
5341807 Nardella Aug 1994 A
5344431 Merritt et al. Sep 1994 A
5344441 Gronauer Sep 1994 A
5348554 Imran et al. Sep 1994 A
5358515 Hürter et al. Oct 1994 A
5364336 Carr Nov 1994 A
5364351 Heinzelman et al. Nov 1994 A
5364352 Cimino et al. Nov 1994 A
5364392 Warner et al. Nov 1994 A
5366490 Edwards et al. Nov 1994 A
5368592 Stern et al. Nov 1994 A
5369251 King et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5370677 Rudie et al. Dec 1994 A
5370678 Edwards et al. Dec 1994 A
5374287 Rubin Dec 1994 A
5376094 Kline Dec 1994 A
5383876 Nardella Jan 1995 A
5383922 Zipes et al. Jan 1995 A
5391147 Imran et al. Feb 1995 A
5397304 Truckai Mar 1995 A
5398683 Edwards et al. Mar 1995 A
5402772 Moll et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5405375 Ayers et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5415656 Tihon et al. May 1995 A
5417208 Winkler May 1995 A
5423807 Milder Jun 1995 A
5431649 Mulier et al. Jul 1995 A
5437665 Munro Aug 1995 A
5439006 Brennen et al. Aug 1995 A
5443489 Ben-Haim Aug 1995 A
5445193 Koeninger et al. Aug 1995 A
5450846 Goldreyer Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5454370 Avitall Oct 1995 A
5454733 Watanabe et al. Oct 1995 A
5454807 Lennox et al. Oct 1995 A
5462544 Saksena et al. Oct 1995 A
5462545 Wang et al. Oct 1995 A
5464404 Abela et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5482037 Borghi Jan 1996 A
5484433 Taylor et al. Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5492126 Hennige et al. Feb 1996 A
5494039 Onik et al. Feb 1996 A
5496271 Burton et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5507743 Edwards et al. Apr 1996 A
5514131 Edwards et al. May 1996 A
5520188 Hennige et al. May 1996 A
5529820 Nomi et al. Jun 1996 A
5531677 Lundquist et al. Jul 1996 A
5536247 Thornton Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5545193 Fleischman et al. Aug 1996 A
5545200 West et al. Aug 1996 A
5549638 Burdette Aug 1996 A
5549644 Lundquist et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5569242 Lax et al. Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578030 Levin Nov 1996 A
5578067 Ekwall et al. Nov 1996 A
5581905 Huelsman et al. Dec 1996 A
5584830 Ladd et al. Dec 1996 A
5590657 Cain et al. Jan 1997 A
5593404 Costello et al. Jan 1997 A
5593405 Osypka Jan 1997 A
5599295 Rosen et al. Feb 1997 A
5599346 Baker et al. Feb 1997 A
5603697 Grundy et al. Feb 1997 A
5606974 Castellano et al. Mar 1997 A
5607389 Edwards et al. Mar 1997 A
5628771 Mizukawa et al. May 1997 A
5630837 Crowley May 1997 A
5640955 Ockuly et al. Jun 1997 A
5643255 Organ Jul 1997 A
5658280 Issa Aug 1997 A
5672172 Zupkas Sep 1997 A
5672174 Gough et al. Sep 1997 A
5673694 Rivers Oct 1997 A
5673695 McGee et al. Oct 1997 A
5676692 Sanghvi et al. Oct 1997 A
5676693 LaFontaine Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5683382 Lenihan et al. Nov 1997 A
5683384 Gough et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693078 Desai et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5694701 Huelsman et al. Dec 1997 A
5697928 Walcott et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5718226 Riza Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5720718 Rosen et al. Feb 1998 A
5720775 Larnard Feb 1998 A
5725523 Mueller Mar 1998 A
5730127 Avitall Mar 1998 A
5733280 Avitall Mar 1998 A
5733281 Nardella Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5737384 Fenn Apr 1998 A
5738096 Ben-Haim Apr 1998 A
5741225 Lax et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743239 Iwase Apr 1998 A
5755760 Maguire et al. May 1998 A
5762066 Law et al. Jun 1998 A
5762626 Lundquist et al. Jun 1998 A
5769790 Watkins et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5782747 Zimmon Jul 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5785707 Boyd et al. Jul 1998 A
5788692 Campbell et al. Aug 1998 A
5797905 Fleischman et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800378 Edwards et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800413 Swartz et al. Sep 1998 A
5800428 Nelson et al. Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5807309 Lundquist et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5814028 Swartz et al. Sep 1998 A
5823197 Edwards Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5823962 Schaetzle et al. Oct 1998 A
5826576 West Oct 1998 A
5827216 Igo et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5836990 Li Nov 1998 A
5840027 Swartz et al. Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5842037 Haartsen Nov 1998 A
5843026 Edwards et al. Dec 1998 A
5843075 Taylor Dec 1998 A
5843171 Campbell et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5852860 Lorraine et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5853368 Solomon et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860920 McGee et al. Jan 1999 A
5861002 Desai Jan 1999 A
5861021 Thome et al. Jan 1999 A
5863290 Gough et al. Jan 1999 A
5868737 Taylor et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873828 Fujio et al. Feb 1999 A
5873896 Ideker Feb 1999 A
5882302 Driscoll, Jr. et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5895355 Schaer Apr 1999 A
5897553 Mulier et al. Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899899 Arless et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906580 Kline-Schoder et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5919188 Shearon et al. Jul 1999 A
5921924 Avitall Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5931810 Grabek Aug 1999 A
5938600 Van Vaals et al. Aug 1999 A
5938612 Kline-Schoder et al. Aug 1999 A
5938692 Rudie Aug 1999 A
5954662 Swanson et al. Sep 1999 A
5954665 Ben-Haim Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5964727 Edwards et al. Oct 1999 A
5964732 Willard Oct 1999 A
5964756 McGaffigan et al. Oct 1999 A
5971983 Lesh Oct 1999 A
5978714 Zadini et al. Nov 1999 A
5980697 Kolb et al. Nov 1999 A
5993389 Driscoll, Jr. et al. Nov 1999 A
5993445 Issa Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5995875 Blewett et al. Nov 1999 A
6002955 Willems et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6012457 Lesh Jan 2000 A
6016811 Knopp et al. Jan 2000 A
6016848 Egres, Jr. Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6027497 Daniel et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030382 Fleischman et al. Feb 2000 A
6032077 Pomeranz Feb 2000 A
6056735 Okada et al. May 2000 A
6059778 Sherman May 2000 A
6063077 Schaer May 2000 A
6063081 Mulier et al. May 2000 A
6064902 Haissaguerre et al. May 2000 A
6066094 Ben-Haim May 2000 A
6068628 Fanton et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071274 Thompson et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6076012 Swanson et al. Jun 2000 A
6083159 Driscoll, Jr. et al. Jul 2000 A
6086583 Ouchi Jul 2000 A
6090104 Webster, Jr. Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6097985 Kasevich et al. Aug 2000 A
6102886 Lundquist et al. Aug 2000 A
6106517 Zupkas Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6106522 Fleischman et al. Aug 2000 A
6106524 Eggers et al. Aug 2000 A
6117101 Diederich et al. Sep 2000 A
6119041 Pomeranz et al. Sep 2000 A
6135971 Hutchinson et al. Oct 2000 A
6142994 Swanson et al. Nov 2000 A
6146378 Mukus et al. Nov 2000 A
6146379 Fleischman et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6161543 Cox et al. Dec 2000 A
6162216 Guziak et al. Dec 2000 A
6164283 Lesh Dec 2000 A
6165174 Jacobs et al. Dec 2000 A
6171303 Ben-Haim et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6178354 Gibson Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6182664 Cosgrove Feb 2001 B1
6190382 Ormsby et al. Feb 2001 B1
6200315 Gaiser et al. Mar 2001 B1
6206831 Suorsa et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6216027 Willis et al. Apr 2001 B1
6217530 Martin et al. Apr 2001 B1
6217573 Webster Apr 2001 B1
6224587 Gibson May 2001 B1
6231518 Grabek et al. May 2001 B1
6233490 Kasevich May 2001 B1
6235025 Swartz et al. May 2001 B1
6235796 Niazi May 2001 B1
6237605 Vaska et al. May 2001 B1
6241722 Dobak et al. Jun 2001 B1
6241728 Gaiser et al. Jun 2001 B1
6241754 Swanson et al. Jun 2001 B1
6245062 Berube et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277113 Berube Aug 2001 B1
6283955 Pacala et al. Sep 2001 B1
6287302 Berube Sep 2001 B1
6289249 Arndt et al. Sep 2001 B1
6290699 Hall et al. Sep 2001 B1
6302880 Schaer Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
6306132 Moorman et al. Oct 2001 B1
6309388 Fowler Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6312425 Simpson et al. Nov 2001 B1
6312427 Berube et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6315741 Martin et al. Nov 2001 B1
6322558 Taylor et al. Nov 2001 B1
6325796 Berube et al. Dec 2001 B1
6325797 Stewart et al. Dec 2001 B1
6332881 Carner et al. Dec 2001 B1
6346104 Daly et al. Feb 2002 B2
6355033 Moorman et al. Mar 2002 B1
6356790 Maguire et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6379348 Onik Apr 2002 B1
6383182 Berube et al. May 2002 B1
6402556 Lang et al. Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6423057 He et al. Jul 2002 B1
6423059 Hanson et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6430426 Avitall Aug 2002 B2
6432067 Martin et al. Aug 2002 B1
6432069 Godo et al. Aug 2002 B1
6433464 Jones Aug 2002 B2
6454758 Thompson et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6464700 Koblish et al. Oct 2002 B1
6467138 Aimé Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6471697 Lesh Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475179 Wang et al. Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6488639 Ribault et al. Dec 2002 B1
6488679 Swanson et al. Dec 2002 B1
6488680 Francischelli et al. Dec 2002 B1
6490474 Willis et al. Dec 2002 B1
6500133 Martin et al. Dec 2002 B2
6502575 Jacobs et al. Jan 2003 B1
6508774 Acker et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6514246 Swanson et al. Feb 2003 B1
6514249 Maguire et al. Feb 2003 B1
6517536 Hooven et al. Feb 2003 B2
6517568 Sharkey et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6527767 Wang et al. Mar 2003 B2
6527768 Berube Mar 2003 B2
6529756 Phan et al. Mar 2003 B1
6533780 Laird et al. Mar 2003 B1
6537224 Mauchamp et al. Mar 2003 B2
6542781 Koblish et al. Apr 2003 B1
6546935 Hooven Apr 2003 B2
6576875 Kleffner et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6586040 Von Falkenhausen Jul 2003 B1
6610055 Swanson et al. Aug 2003 B1
6645200 Koblish et al. Nov 2003 B1
6645202 Pless et al. Nov 2003 B1
6648883 Francischelli et al. Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6663622 Foley et al. Dec 2003 B1
6663627 Francischelli et al. Dec 2003 B2
6673068 Berube Jan 2004 B1
6685715 Danitz et al. Feb 2004 B2
6689062 Mesallum Feb 2004 B1
6689128 Sliwa, Jr. et al. Feb 2004 B2
6692491 Phan Feb 2004 B1
6696844 Wong et al. Feb 2004 B2
6699240 Francischelli Mar 2004 B2
6701931 Sliwa, Jr. et al. Mar 2004 B2
6706038 Francischelli et al. Mar 2004 B2
6719755 Sliwa, Jr. et al. Apr 2004 B2
6723092 Brown et al. Apr 2004 B2
6740080 Jain et al. May 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6802840 Chin et al. Oct 2004 B2
6805709 Schaldach et al. Oct 2004 B1
6805898 Wu et al. Oct 2004 B1
6807968 Francischelli et al. Oct 2004 B2
6808483 Ortiz et al. Oct 2004 B1
6808484 Peters et al. Oct 2004 B1
6808529 Fulkerson Oct 2004 B2
6808536 Wright et al. Oct 2004 B2
6808739 Sitz et al. Oct 2004 B2
20010031961 Hooven Oct 2001 A1
20010039416 Moorman et al. Nov 2001 A1
20020001655 Kuechle et al. Jan 2002 A1
20020017306 Cox et al. Feb 2002 A1
20020032440 Hooven et al. Mar 2002 A1
20020042610 Silwa, Jr. et al. Apr 2002 A1
20020042611 Sliwa et al. Apr 2002 A1
20020045895 Sliwa, Jr. et al. Apr 2002 A1
20020058932 Moorman et al. May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020087157 Sliwa, Jr. et al. Jul 2002 A1
20020091382 Hooven Jul 2002 A1
20020091383 Hooven Jul 2002 A1
20020091384 Hooven et al. Jul 2002 A1
20020095145 Holzapfel et al. Jul 2002 A1
20020103484 Hooven Aug 2002 A1
20020107513 Hooven Aug 2002 A1
20020107514 Hooven Aug 2002 A1
20020111613 Berube Aug 2002 A1
20020115993 Hooven Aug 2002 A1
20020120263 Brown et al. Aug 2002 A1
20020120267 Phan Aug 2002 A1
20020120316 Hooven et al. Aug 2002 A1
20020128639 Pless et al. Sep 2002 A1
20020128642 Berube et al. Sep 2002 A1
20020173784 Sliwa, Jr. et al. Nov 2002 A1
20020193783 Gauthier et al. Dec 2002 A1
20020193786 Berube et al. Dec 2002 A1
20030014046 Edwards et al. Jan 2003 A1
20030024537 Cox et al. Feb 2003 A1
20030028187 Vaska et al. Feb 2003 A1
20030029462 Cox et al. Feb 2003 A1
20030032952 Hooven Feb 2003 A1
20030050630 Mody et al. Mar 2003 A1
20030050631 Mody et al. Mar 2003 A1
20030065327 Wellman et al. Apr 2003 A1
20030069572 Wellman et al. Apr 2003 A1
20030069574 Sliwa, Jr. et al. Apr 2003 A1
20030069575 Fatt et al. Apr 2003 A1
20030069577 Vaska et al. Apr 2003 A1
20030073988 Berube et al. Apr 2003 A1
20030073992 Sliwa, Jr. et al. Apr 2003 A1
20030078571 Sliwa, Jr. et al. Apr 2003 A1
20030079753 Vaska et al. May 2003 A1
20030083654 Fatt et al. May 2003 A1
20030093068 Hooven May 2003 A1
20030097126 Woloszko et al. May 2003 A1
20030109868 Fatt et al. Jun 2003 A1
20030125725 Woodard et al. Jul 2003 A1
20030128729 Hooven et al. Jul 2003 A1
20030136951 Hung Jul 2003 A1
20030163128 Patil et al. Aug 2003 A1
20030171745 Francischelli et al. Sep 2003 A1
20030176764 Fiegel et al. Sep 2003 A1
20040049179 Francischelli et al. Mar 2004 A1
20040106918 Cox et al. Jun 2004 A1
Foreign Referenced Citations (48)
Number Date Country
0048402 Mar 1982 EP
0139607 May 1985 EP
0248758 Dec 1987 EP
0358 336 Mar 1990 EP
0628322 Dec 1994 EP
0655 225 Mar 2000 EP
0738501 May 2000 EP
1005838 Jun 2000 EP
1042990 Oct 2000 EP
1118310 Jul 2001 EP
0839547 Sep 2003 EP
WO9308757 May 1993 WO
WO9315664 Aug 1993 WO
WO9320767 Oct 1993 WO
WO9320768 Oct 1993 WO
WO9320886 Oct 1993 WO
WO9320893 Oct 1993 WO
WO 9324065 Dec 1993 WO
WO9402204 Feb 1994 WO
WO 9505212 Feb 1995 WO
WO 0016850 May 1995 WO
WO 9518575 Jul 1995 WO
WO 9626675 Sep 1996 WO
WO 9635469 Nov 1996 WO
WO9636397 Nov 1996 WO
WO9742893 Nov 1997 WO
WO 9744092 Nov 1997 WO
WO9806341 Feb 1998 WO
WO9817185 Apr 1998 WO
WO9817187 Apr 1998 WO
WO9844857 Oct 1998 WO
WO 9904696 Feb 1999 WO
WO9908613 Feb 1999 WO
WO9934860 Jul 1999 WO
WO 9959486 Nov 1999 WO
WO0024463 May 2000 WO
WO0035363 Jun 2000 WO
WO0056239 Sep 2000 WO
WO0105306 Jan 2001 WO
WO 0115616 Mar 2001 WO
WO 0141664 Jun 2001 WO
WO 0158373 Aug 2001 WO
WO 0180755 Nov 2001 WO
WO 0182814 Nov 2001 WO
WO0201655 Jan 2002 WO
WO 0205722 Jan 2002 WO
WO0238052 May 2002 WO
WO 02060523 Aug 2002 WO
Related Publications (1)
Number Date Country
20060206107 A1 Sep 2006 US
Continuations (2)
Number Date Country
Parent 09904156 Jul 2001 US
Child 10988028 US
Parent 09321666 May 1999 US
Child 09904156 US