The invention relates to a method and a device in accordance with the preamble of claim 1.
Radar systems typically measure the distance and/or speed of remote objects. In many cases, additional information regarding the position of the remote object, especially its angular position (e.g. an angular deviation from a reference direction), is useful.
One possible way of determining the angular position of a remote object is to use two receiving antennas EA1, EA2, which are located a distance d from each other, as shown in
For example, the angular position α of an object can be calculated from the phase difference of two signals S that have been received from two receiving antennas EA1, EA2, by
with φ as the phase difference at the position of both receiving antennas EA1, EA2 being a signal reflected from the remote object. This method is normally known as the phase-monopulse method.
A difficultly with this is distinguishing between objects which are at the same distance but at a different angular position relative to the radar system. By using more than two receiving antennas and by means of digital beam forming, it is possible to not only achieve an angular measurement but also a bearing discrimination. Targets with different angular positions but at the same distance can be distinguished in this way.
In many applications, for example for road vehicles, radar systems are necessary which generate a radar beam with a small angle of aperture (e.g. of only a few degrees). Because with radar it is always assumed that the transmitted signal is reflected at one point and therefore received again from the same direction in which it has been transmitted, the product of the transmission and reception directivity characteristic (two-way characteristic) is used to characterize the coverage. The angle of aperture of an antenna is in principle directly dependent on the size of the aperture of the antenna, i.e. narrow beams require a large antenna aperture.
There is often a requirement for the smallest possible radar systems with the smallest possible antenna areas at the same time. This is, for example, the case with radar systems for road vehicles, which have to locate other vehicles during the journey, in order to warn the vehicle driver of a possible danger of collision. A reason for this is the limited availability of space on the vehicle, which must also allow room for other systems. A small radar system for measuring the angular position of a remote object is enabled by simultaneous use of receiving antennas EA1, EA2 as a transmitting antenna A, as shown in
A further difficulty for a phase-monopulse system can be the area of ambiguity of the angular position. A phase shift of an angular position is uniquely assigned within the area of unambiguity. In a case of a phase-monopulse receiver with a main beam direction vertical to the axis through both receivers, the area of unambiguity lies between
Because the accuracy of the angular measurement is better if there is a greater distance between the phase-monopulse receiving antennas, distances greater than λ/2 are chosen for radar systems with narrow angles of aperture. This of course also means that the area of unambiguity is less than 180° and therefore it must be ensured by means of the directivity diagram (two-way) that no incorrect angular measurements occur. In order to avoid incorrect measurements of the angular position α, it must be guaranteed that the receiving antennas do not register signals from the area of ambiguity. To do this, the product of the transmitting and receiving characteristic (two-way) must have the following characteristics.
The suppression (relative to antenna gain in the main beam direction) outside the area of unambiguity must be greater than the dynamic range required by the system. In road traffic, the dynamic range is, for example, due to the difference in backscatter between an extremely large target (such as a truck) and an extremely small target (such as a motor cycle or pedestrian).
The unambiguity area is greater the smaller the distance between the receiving antennas, which is in contrast to the requirement for a small angle of aperture of the beam required by large-area antennas. To use the receiving antennas as a transmitting antenna at the same time, the distance between the receiving antenna and transmitting antenna is linked. The distance between the receiving antennas can not therefore be independently chosen i.e. the unambiguity area and angle of aperture cannot be separately optimized.
EP 0 713 581 B1and DE 694 33 113 T2 describe a vehicle radar system for determining the deviation of a target object relative to a reference azimuth. In this case, an antenna with a pair of lobes is used for sending transmitted signals. The purpose of the lobes is to send a transmitted signal with a phase difference and to detect two doppler signals at two spatially separate positions. An aggregate signal and a differential signal are formed from the two doppler signals. The deviation relative to the reference azimuth is determined by comparing the aggregate and differential signals, by forming a quotient in both lobes. The doppler signals are superimposed to determine the aggregate and differential signals. A disadvantage of this solution is that the amplitudes of the received doppler signals are usually exposed to substantial fluctuations in the lobes. This is due on one hand to the different paths that have been traveled and on the other hand also to fluctuations which can occur between the lobes, e.g. due to different temperatures.
The object of this invention is therefore to reliably determine the angular position of a remote object.
This object is achieved by the measures given in claim 1. Advantageous embodiments of the invention are given in further claims.
The invention relates to a radar system for measuring the angular position of a remote object, comprising
In that
Fluctuations in the amplitude have no effect on the determination of the phase difference of the received signals, especially for a radar system according to the invention. To determine the phase difference of the first phase and of the second phase, the radar system can, for example, have a microcontroller connected to the receivers. The angular position can also be determined in the microcontroller by using the phase difference. As an alternative to digital circuits such as microcontrollers, analog circuits with operational amplifiers can, for example, also be used.
The following advantages can also additionally result:
In that,
the first receiver and/or the second receiver is an IQ receiver,
the phase of received signals can be directly and easily measured. An IQ receiver consists of two mixers in which the input signal is mixed with the local oscillator signal in the baseband. In one of the two mixers, the local oscillator signal in this case has a 90° phase shift. This enables complex baseband signals, i.e. amount and phase, to be measured. IQ receivers can be used in all radar systems but are used particularly in pulse radar systems.
In that,
the first receiver and/or the second receiver includes a mixer and the radar operates on the continuous wave (CW) or frequency modulator continuous wave (FMCW) principle, the phase of the received signals can be directly and easily measured after a Fourier transformation of the received signals.
The receiver can also be designed as an IF sampling receiver. With an IF sampling receiver, the received signal is sampled at an intermediate frequency. This means that the wanted signal including the carrier signal and therefore the phase, are present in the microcontroller. In that the first receiver and/or the second receiver is an IF sampling receiver, the phase of the received signals can be directly measured.
In that,
the antenna includes an even number of similar receiving antennas,
all the receiving antennas can have an identical directivity characteristic with an optimized directivity of transmission characteristic at the same time.
In that,
the radar system includes a control means, which controls the antenna in such a way that a directivity characteristic optimized for the transmitted signal or for the combined transmitted-received signal results,
the side lobes can be substantially reduced, which enables incorrect measurements of the angular position to be avoided.
In that,
the antenna is arranged on a side of a circuit board and the control means includes conductor tracks and splitters,
a control means, which can be implemented particularly easily and cost-effectively, with a high service life results.
In that,
the antenna includes an array of patches and that a receiving antenna includes a patch or a part array of the array,
a radar system that can be produced particularly easily and cost-effectively results.
In that,
the array includes a linear array and an aperture coverage of the linear array in a central area of the array has a pronounced amplitude maximum,
a directed radiation of the transmitted signal can result, which has a high side-lobe suppression.
In that,
transmitted signals with a frequency of more than 20 GHz can be generated by the radar system,
radar systems of a size suitable for road vehicles can be produced.
For more than two receiving antennas, phase differences, for example in pairs, between the receivers can be determined. More reliable information on the angular position can be obtained in this way. In particular, if there are several remote objects within the range of the radar sensor, false angular positions of remote objects, or the absence of remote objects, can be rejected, for example by using statistical methods.
In that the antenna includes more than two receiving antennas to each of which a receiver with a means for determining a phase of a received signal is connected, it is possible to not only achieve an angular measurement but also a bearing discrimination. This means that a discrimination can be made between several objects with different angles but at the same distance.
The invention is explained in more detail in the following by means of examples and drawings. The drawings are as follows:
Thanks to the use of circulators Z1, Z2, the radar system shown in
Because non-ideal circulators, as shown in the exemplary embodiment in
Instead of dissipating half of the transmission power in the terminating term in
The transmitting antenna in
The relative amplification in dB relative to the angular position α in degrees is shown in
A radar system described in
Similar to the gaps Spat of a patch array, the amplitude distribution of the rows of the patch array can be optimized, in that the outer rows have a smaller aperture coverage than the inner rows of the array. In this way, an additional, increased side-lobe suppression can be achieved which is lower in unwanted directions.
The directivity characteristic of the transmitting antenna has much smaller side lobes on the second radar system than on the first radar system, therefore the reception diagram is at first sight less optimal. The complete diagram (two-way), however, shows better characteristics for the second radar system. In the comparison, the second radar system has a suppression of the first side lobes of appreciably more than 30 dB compared with the main lobes, with the relative suppression of the first side lobes of the first radar system not even amounting to 20 dB.
The advantage of the second radar system compared with the first radar system becomes particularly clear when
For both radar systems, different angular positions α of the remote object can result in identical phase differences φ. If the reflected signals, however, have distinctly different signal intensities (difference greater than the required dynamic range) for the different angular positions α, the angular position α can nevertheless be clearly determined. A comparison of
The advantages of a radar system which has a control means which controls the antenna in such a way that an optimized directivity characteristic results for the transmitted signal or for the combined transmitted-received signal, such as, for example, is the case for the radar system shown in
In a further embodiment, not to be regarded as representing a final one, the radar system can, for example, be designed as a CW or FMCW radar system, as a pulse radar system, as a pseudo-noise radar system or as a frequency shift keying radar system.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 044 884.4 | Sep 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/066517 | 9/20/2006 | WO | 00 | 9/24/2008 |