Embodiments of the present disclosure relate to calibration systems and methods for calibrating radio frequency (RF) power amplifiers (PAs), which may be used in RF communication systems.
As RF communications protocols evolve, data rates tend to increase, which tends to cause bandwidths of transmitted RF signals to increase to support the higher data rates. However, in comparison to the increased bandwidths of the transmitted RF signals, duplex frequency spacings between transmitted and received RF signals may be relatively small, thereby putting tight noise constraints on RF communications systems. Further, RF transmitters need to be as efficient as possible to maximize battery life. Therefore, transmitter power amplifiers may be powered from switching converter-based envelope power supplies to maximize efficiency. As such, noise generated by the envelope power supplies may need to be minimized to meet the noise requirements of the RF communications system.
Embodiments of the present disclosure relate to circuitry, which includes data memory and processing circuitry. The data memory is used to store look-up table (LUT)-based radio frequency (RF) power amplifier (PA) calibration data. The processing circuitry converts at least a portion of the LUT-based RF PA calibration data to provide monotonic response curve-based data. As such, a magnitude of an envelope power supply control signal is determined based on a magnitude of an RF input signal using the monotonic response curve-based data.
Due to inherent system noise during the calibration process, the LUT-based RF PA calibration data may be inherently noisy. As a result, when using the LUT-based RF PA calibration data to provide an envelope power supply signal to an RF PA of an RF system, noise may be introduced into the RF system, which may cause performance problems in the RF system, such as degrading receiver sensitivity. By converting at least a portion of the LUT-based RF PA calibration data to provide the monotonic response curve-based data, the noise in the RF system may be reduced.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
Embodiments of the present disclosure relate to circuitry, which includes data memory and processing circuitry. The data memory is used to store look-up table (LUT)-based radio frequency (RF) power amplifier (PA) calibration data. The processing circuitry converts at least a portion of the LUT-based RF PA calibration data to provide monotonic response curve-based data. As such, a magnitude of an envelope power supply control signal is determined based on a magnitude of an RF input signal using the monotonic response curve-based data.
Due to inherent system noise during the calibration process, the LUT-based RF PA calibration data may be inherently noisy. As a result, when using the LUT-based RF PA calibration data to provide an envelope power supply signal to an RF PA of an RF system, noise may be introduced into the RF system, which may cause performance problems in the RF system, such as degrading receiver sensitivity. By converting at least a portion of the LUT-based RF PA calibration data to provide the monotonic response curve-based data, the noise in the RF system may be reduced.
During the calibration of the calibration RF PA 14, the RF calibration circuitry 12 varies a magnitude of the calibration RF input signal CRFI and varies a magnitude of the calibration envelope power supply signal CEPS and measures a resulting magnitude of the calibration RF output signal CRFO. The magnitude of the calibration RF input signal CRFI is associated with an input power level and the magnitude of the calibration RF output signal CRFO is associated with an output power level. In this regard, the RF calibration circuitry 12 creates RF PA calibration data 16 based on the magnitudes of the calibration RF input signal CRFI, the calibration envelope power supply signal CEPS, and the calibration RF output signal CRFO.
In one embodiment of the calibration of the calibration RF PA 14, the RF PA calibration data 16 is based on calibrating the calibration RF PA 14 for approximately constant gain operation over a calibration RF power range. This constant gain operation is called isogain. Further, during isogain conditions, the calibration RF PA 14 may be driven into compression, such that the magnitude of the calibration envelope power supply signal CEPS is insufficient to keep the calibration RF PA 14 operating in a completely linear manner. As such, during compression, an incremental response of the calibration RF output signal CRFO to an incremental change of the calibration RF input signal CRFI is less than an incremental response of the calibration RF output signal CRFO during linear operation. Operating the calibration RF PA 14 with compression may increase the efficiency of the calibration RF PA 14, but may degrade the linearity of the calibration RF PA 14. Therefore, by operating the calibration RF PA 14 with both isogain and compression, an optimum balance between efficiency and linearity may be achieved.
A monotonic response curve is a response curve that does not have slope reversals. In general, a monotonic response curve has either a first characteristic or a second characteristic. A monotonic response curve having the first characteristic has a slope at any point on the curve that is either zero or positive, but never negative. A monotonic response curve having the second characteristic has a slope at any point on the curve that is either zero or negative, but never positive. The monotonic response curve 20 illustrated in
The monotonic response curve-based data 28 is based on the monotonic response curve 20 (
The RF calibration circuitry 12 may enhance accurate operation of the calibration RF PA 14 by providing the calibration envelope power supply signal CEPS using the monotonic response curve-based data 28, such that a magnitude of the calibration envelope power supply signal CEPS is based on a magnitude of the calibration RF input signal CRFI. In one embodiment of the calibration of the calibration RF PA 14, the LUT-based RF PA calibration data 26 is based on calibrating the calibration RF PA 14 for approximately constant gain operation over a calibration RF power range.
In one embodiment of the monotonic response curve-based data 28, the monotonic response curve-based data 28 is based on a high order polynomial interpolation of at least a portion of the of the LUT-based RF PA calibration data 26. In a first embodiment of the high order polynomial interpolation, a number of data points used in the interpolation is at least two times an order of the high order polynomial interpolation. In a second embodiment of the high order polynomial interpolation, the number of data points used in the interpolation is at least five times the order of the high order polynomial interpolation. In a third embodiment of the high order polynomial interpolation, the number of data points used in the interpolation is at least ten times the order of the high order polynomial interpolation. In a fourth embodiment of the high order polynomial interpolation, the number of data points used in the interpolation is at least fifty times the order of the high order polynomial interpolation. In a fifth embodiment of the high order polynomial interpolation, the number of data points used in the interpolation is at least 100 times the order of the high order polynomial interpolation. In a sixth embodiment of the high order polynomial interpolation, the number of data points used in the interpolation is at least 500 times the order of the high order polynomial interpolation. In a seventh embodiment of the high order polynomial interpolation, the number of data points used in the interpolation is less than 1000 times the order of the high order polynomial interpolation.
During calibration of the calibration RF PA 14, the calibration envelope power supply 30 provides the calibration envelope power supply signal CEPS to the calibration RF PA 14, the RF combiner and amplifier 32 provides the calibration RF input signal CRFI to the calibration RF PA 14, and the RF load, attenuator, and splitter 34 receives the calibration RF output signal CRFO from the calibration RF PA 14. The local oscillator 36 provides an in-phase local oscillator signal LOI to the first in-phase mixer 38 and to the second in-phase mixer 42. The local oscillator 36 provides a quadrature-phase local oscillator signal LOQ to the first quadrature-phase mixer 40 and to the second quadrature-phase mixer 44. During calibration, the quadrature-phase local oscillator signal LOQ is phase-shifted from the in-phase local oscillator signal LOI by about 90 degrees.
The in-phase DAC 46 receives and digital-to-analog converts an in-phase digital input signal DII to feed the first in-phase mixer 38. The quadrature-phase DAC 48 receives and digital-to-analog converts a quadrature-phase digital input signal DQI to feed the first quadrature-phase mixer 40. During calibration, the first in-phase mixer 38 and the first quadrature-phase mixer 40 up-convert the in-phase and the quadrature-phase DAC output signals using the local oscillator signals LOI, LOQ to feed the RF combiner and amplifier 32. The RF combiner and amplifier 32 combines and amplifies the up-converted signals to provide the calibration RF input signal CRFI.
During calibration, the RF load, attenuator, and splitter 34 presents an RF load to the calibration RF PA 14. Further, the RF load, attenuator, and splitter 34 receives and splits the calibration RF output signal CRFO to feed the second in-phase mixer 42 and the second quadrature-phase mixer 44. The second in-phase mixer 42 and the second quadrature-phase mixer 44 down-convert the split RF signals using the local oscillator signals LOI, LOQ to feed the in-phase ADC 50 and the quadrature-phase ADC 52. The in-phase ADC 50 analog-to-digital converts the signal from the second in-phase mixer 42 to provide an in-phase digital output signal DIO. The quadrature-phase ADC 52 analog-to-digital converts the signal from the second quadrature-phase mixer 44 to provide a quadrature-phase digital output signal DQO.
During calibration, the RF calibration circuitry 12 may vary the calibration envelope power supply signal CEPS, the in-phase local oscillator signal LOI, the quadrature-phase local oscillator signal LOQ, the in-phase digital input signal DII, the quadrature-phase digital input signal DQI, or any combination thereof, and measure the calibration results via the in-phase digital output signal DIO and the quadrature-phase digital output signal DQO to provide the RF PA calibration data 16.
However, noise may be introduced during calibration from a number of noise sources. Examples of noise sources during calibration may include leakage of the local oscillator signals LOI, LOQ into any unintended paths, leakage of signals from the local oscillator 36 into any unintended paths, imbalance between the in-phase local oscillator signal LOI and the quadrature-phase local oscillator signal LOQ, conversion mismatch between the in-phase DAC 46 and the quadrature-phase DAC 48, conversion mismatch between the in-phase ADC 50 and the quadrature-phase ADC 52, conversion mismatch between the first in-phase mixer 38 and the first quadrature-phase mixer 40, conversion mismatch between the second in-phase mixer 42 and the second quadrature-phase mixer 44, noise introduced into the up-conversion path, noise introduced into the down-conversion path, or any combination thereof.
In one embodiment of the circuitry 10, the RF front-end circuitry 58 receives via the RF antenna 60, processes, and forwards an RF receive signal RFR to the RF system control circuitry 56. The RF system control circuitry 56 provides an envelope power supply control signal VRMP and a transmitter configuration signal PACS to the transmitter control circuitry 64. The RF system control circuitry 56 provides an RF input signal RFI to the RF PA 66. The DC power source 62 provides a DC source signal VDC to the envelope tracking power supply 68. In one embodiment of the DC power source 62, the DC power source 62 is a battery.
The transmitter control circuitry 64 is coupled to the envelope tracking power supply 68 and to the PA bias circuitry 70. The envelope tracking power supply 68 provides an envelope power supply signal EPS to the RF PA 66 based on the envelope power supply control signal VRMP. The DC source signal VDC provides power to the envelope tracking power supply 68. As such, the envelope power supply signal EPS is based on the DC source signal VDC. The envelope power supply control signal VRMP is representative of a setpoint of the envelope power supply signal EPS. In general, the envelope power supply signal EPS is based on the envelope power supply control signal VRMP. The RF PA 66 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the envelope power supply signal EPS. The envelope power supply signal EPS provides power for amplification.
The RF system control circuitry 56 may enhance accurate operation of the RF PA 66 by providing the envelope power supply control signal VRMP using the monotonic response curve-based data 28, such that a magnitude of the envelope power supply control signal VRMP is based on a magnitude of the RF input signal RFI. In one embodiment of the monotonic response curve-based data 28, the monotonic response curve-based data 28 is a pre-distortion of the LUT-based RF PA calibration data 26 (
The RF front-end circuitry 58 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 60. In one embodiment of the RF transmitter circuitry 54, the transmitter control circuitry 64 configures the RF transmitter circuitry 54 based on the transmitter configuration signal PACS. The PA bias circuitry 70 provides a PA bias signal PAB to the RF PA 66. In this regard, the PA bias circuitry 70 biases the RF PA 66 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 70, the PA bias circuitry 70 biases the RF PA 66 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 58, the RF front-end circuitry 58 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, at least one RF amplifier, the like, or any combination thereof. In one embodiment of the RF system control circuitry 56, the RF system control circuitry 56 is RF transceiver circuitry, which may include an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof. In one embodiment of the RF transmitter circuitry 54, the envelope power supply signal EPS provides power for amplification and envelope tracks the RF transmit signal RFT.
The monotonic response curve-based data 28 is based on the monotonic response curve 20 (
The RF system control circuitry 56 may enhance accurate operation of the RF PA 66 by providing the envelope power supply control signal VRMP using the monotonic response curve-based data 28, such that a magnitude of the envelope power supply control signal VRMP is based on a magnitude of the RF input signal RFI. In one embodiment of the circuitry 10, the LUT-based RF PA calibration data 26 is based on operating the RF PA 66 for approximately constant gain operation over an RF power range.
The monotonic response curve-based data 28 is based on the monotonic response curve 20 (
The transmitter control circuitry 64 may enhance accurate operation of the RF PA 66 by providing the envelope power supply control signal VRMP (not shown) to the envelope tracking power supply 68 using the monotonic response curve-based data 28, such that a magnitude of the envelope power supply control signal VRMP (not shown) is based on a magnitude of the RF input signal RFI and the unmodified envelope power supply control signal VRPU. The RF transmitter circuitry 54 provides the envelope power supply signal EPS to the RF PA 66 based on the envelope power supply control signal VRMP (not shown). In one embodiment of the circuitry 10, the LUT-based RF PA calibration data 26 is based on operating the RF PA 66 for approximately constant gain operation over an RF power range.
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application No. 61/565,138, filed Nov. 30, 2011, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3969682 | Rossum | Jul 1976 | A |
3980964 | Grodinsky | Sep 1976 | A |
4587552 | Chin | May 1986 | A |
4692889 | McNeely | Sep 1987 | A |
4831258 | Paulk et al. | May 1989 | A |
4996500 | Larson et al. | Feb 1991 | A |
5099203 | Weaver et al. | Mar 1992 | A |
5146504 | Pinckley | Sep 1992 | A |
5187396 | Armstrong, II et al. | Feb 1993 | A |
5311309 | Ersoz et al. | May 1994 | A |
5317217 | Rieger et al. | May 1994 | A |
5351087 | Christopher et al. | Sep 1994 | A |
5414614 | Fette et al. | May 1995 | A |
5420643 | Romesburg et al. | May 1995 | A |
5486871 | Filliman et al. | Jan 1996 | A |
5532916 | Tamagawa | Jul 1996 | A |
5541547 | Lam | Jul 1996 | A |
5581454 | Collins | Dec 1996 | A |
5646621 | Cabler et al. | Jul 1997 | A |
5715526 | Weaver, Jr. et al. | Feb 1998 | A |
5767744 | Irwin et al. | Jun 1998 | A |
5822318 | Tiedemann, Jr. et al. | Oct 1998 | A |
5898342 | Bell | Apr 1999 | A |
5905407 | Midya | May 1999 | A |
5936464 | Grondahl | Aug 1999 | A |
6043610 | Buell | Mar 2000 | A |
6043707 | Budnik | Mar 2000 | A |
6055168 | Kotowski et al. | Apr 2000 | A |
6070181 | Yeh | May 2000 | A |
6118343 | Winslow | Sep 2000 | A |
6133777 | Savelli | Oct 2000 | A |
6141541 | Midya et al. | Oct 2000 | A |
6147478 | Skelton et al. | Nov 2000 | A |
6198645 | Kotowski et al. | Mar 2001 | B1 |
6204731 | Jiang et al. | Mar 2001 | B1 |
6256482 | Raab | Jul 2001 | B1 |
6300826 | Mathe et al. | Oct 2001 | B1 |
6313681 | Yoshikawa | Nov 2001 | B1 |
6348780 | Grant | Feb 2002 | B1 |
6483281 | Hwang | Nov 2002 | B2 |
6559689 | Clark | May 2003 | B1 |
6566935 | Renous | May 2003 | B1 |
6583610 | Groom et al. | Jun 2003 | B2 |
6617930 | Nitta | Sep 2003 | B2 |
6621808 | Sadri | Sep 2003 | B1 |
6624712 | Cygan et al. | Sep 2003 | B1 |
6658445 | Gau et al. | Dec 2003 | B1 |
6681101 | Eidson et al. | Jan 2004 | B1 |
6690652 | Sadri | Feb 2004 | B1 |
6701141 | Lam | Mar 2004 | B2 |
6703080 | Reyzelman et al. | Mar 2004 | B2 |
6728163 | Gomm et al. | Apr 2004 | B2 |
6744151 | Jackson et al. | Jun 2004 | B2 |
6819938 | Sahota | Nov 2004 | B2 |
6958596 | Sferrazza et al. | Oct 2005 | B1 |
6995995 | Zeng et al. | Feb 2006 | B2 |
7038536 | Cioffi et al. | May 2006 | B2 |
7043213 | Robinson et al. | May 2006 | B2 |
7058373 | Grigore | Jun 2006 | B2 |
7099635 | McCune | Aug 2006 | B2 |
7200365 | Watanabe et al. | Apr 2007 | B2 |
7233130 | Kay | Jun 2007 | B1 |
7253589 | Potanin et al. | Aug 2007 | B1 |
7254157 | Crotty et al. | Aug 2007 | B1 |
7279875 | Gan et al. | Oct 2007 | B2 |
7394233 | Trayling et al. | Jul 2008 | B1 |
7405618 | Lee et al. | Jul 2008 | B2 |
7411316 | Pai | Aug 2008 | B2 |
7414330 | Chen | Aug 2008 | B2 |
7515885 | Sander et al. | Apr 2009 | B2 |
7528807 | Kim et al. | May 2009 | B2 |
7529523 | Young et al. | May 2009 | B1 |
7539466 | Tan et al. | May 2009 | B2 |
7595569 | Amerom et al. | Sep 2009 | B2 |
7609114 | Hsieh et al. | Oct 2009 | B2 |
7615979 | Caldwell | Nov 2009 | B2 |
7627622 | Conrad et al. | Dec 2009 | B2 |
7646108 | Paillet et al. | Jan 2010 | B2 |
7653366 | Grigore | Jan 2010 | B2 |
7679433 | Li | Mar 2010 | B1 |
7684216 | Choi et al. | Mar 2010 | B2 |
7696735 | Oraw et al. | Apr 2010 | B2 |
7715811 | Kenington | May 2010 | B2 |
7724837 | Filimonov et al. | May 2010 | B2 |
7773691 | Khlat et al. | Aug 2010 | B2 |
7777459 | Williams | Aug 2010 | B2 |
7782036 | Wong et al. | Aug 2010 | B1 |
7783269 | Vinayak et al. | Aug 2010 | B2 |
7800427 | Chae et al. | Sep 2010 | B2 |
7805115 | McMorrow et al. | Sep 2010 | B1 |
7859336 | Markowski et al. | Dec 2010 | B2 |
7880547 | Lee et al. | Feb 2011 | B2 |
7894216 | Melanson | Feb 2011 | B2 |
7898268 | Bernardon et al. | Mar 2011 | B2 |
7898327 | Nentwig | Mar 2011 | B2 |
7907010 | Wendt et al. | Mar 2011 | B2 |
7915961 | Li | Mar 2011 | B1 |
7923974 | Martin et al. | Apr 2011 | B2 |
7965140 | Takahashi | Jun 2011 | B2 |
7994864 | Chen et al. | Aug 2011 | B2 |
8000117 | Petricek | Aug 2011 | B2 |
8008970 | Homol et al. | Aug 2011 | B1 |
8022761 | Drogi et al. | Sep 2011 | B2 |
8026765 | Giovannotto | Sep 2011 | B2 |
8044639 | Tamegai et al. | Oct 2011 | B2 |
8068622 | Melanson et al. | Nov 2011 | B2 |
8081199 | Takata et al. | Dec 2011 | B2 |
8093951 | Zhang et al. | Jan 2012 | B1 |
8159297 | Kumagai | Apr 2012 | B2 |
8164388 | Iwamatsu | Apr 2012 | B2 |
8174313 | Vice | May 2012 | B2 |
8183917 | Drogi et al. | May 2012 | B2 |
8183929 | Grondahl | May 2012 | B2 |
8198941 | Lesso | Jun 2012 | B2 |
8204456 | Xu et al. | Jun 2012 | B2 |
8242813 | Wile et al. | Aug 2012 | B1 |
8274332 | Cho et al. | Sep 2012 | B2 |
8289084 | Morimoto et al. | Oct 2012 | B2 |
8362837 | Koren et al. | Jan 2013 | B2 |
8541993 | Notman et al. | Sep 2013 | B2 |
8542061 | Levesque et al. | Sep 2013 | B2 |
8548398 | Baxter et al. | Oct 2013 | B2 |
8558616 | Shizawa et al. | Oct 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8611402 | Chiron | Dec 2013 | B2 |
8618868 | Khlat et al. | Dec 2013 | B2 |
8624576 | Khlat et al. | Jan 2014 | B2 |
8624760 | Ngo et al. | Jan 2014 | B2 |
8626091 | Khlat et al. | Jan 2014 | B2 |
8638165 | Shah et al. | Jan 2014 | B2 |
8648657 | Rozenblit | Feb 2014 | B1 |
8659355 | Henshaw et al. | Feb 2014 | B2 |
8718582 | See et al. | May 2014 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20030031271 | Bozeki et al. | Feb 2003 | A1 |
20030062950 | Hamada et al. | Apr 2003 | A1 |
20030137286 | Kimball et al. | Jul 2003 | A1 |
20030198063 | Smyth | Oct 2003 | A1 |
20030206603 | Husted | Nov 2003 | A1 |
20030220953 | Allred | Nov 2003 | A1 |
20030232622 | Seo et al. | Dec 2003 | A1 |
20040047329 | Zheng | Mar 2004 | A1 |
20040051384 | Jackson et al. | Mar 2004 | A1 |
20040124913 | Midya et al. | Jul 2004 | A1 |
20040184569 | Challa et al. | Sep 2004 | A1 |
20040196095 | Nonaka | Oct 2004 | A1 |
20040219891 | Hadjichristos | Nov 2004 | A1 |
20040239301 | Kobayashi | Dec 2004 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20040267842 | Allred | Dec 2004 | A1 |
20050008093 | Matsuura et al. | Jan 2005 | A1 |
20050032499 | Cho | Feb 2005 | A1 |
20050047180 | Kim | Mar 2005 | A1 |
20050064830 | Grigore | Mar 2005 | A1 |
20050093630 | Whittaker et al. | May 2005 | A1 |
20050110562 | Robinson et al. | May 2005 | A1 |
20050122171 | Miki et al. | Jun 2005 | A1 |
20050156582 | Redl et al. | Jul 2005 | A1 |
20050156662 | Raghupathy et al. | Jul 2005 | A1 |
20050157778 | Trachewsky et al. | Jul 2005 | A1 |
20050200407 | Arai et al. | Sep 2005 | A1 |
20050286616 | Kodavati | Dec 2005 | A1 |
20060006946 | Burns et al. | Jan 2006 | A1 |
20060062324 | Naito et al. | Mar 2006 | A1 |
20060097711 | Brandt | May 2006 | A1 |
20060128324 | Tan et al. | Jun 2006 | A1 |
20060178119 | Jarvinen | Aug 2006 | A1 |
20060181340 | Dhuyvetter | Aug 2006 | A1 |
20060220627 | Koh | Oct 2006 | A1 |
20060244513 | Yen et al. | Nov 2006 | A1 |
20070008804 | Lu et al. | Jan 2007 | A1 |
20070014382 | Shakeshaft et al. | Jan 2007 | A1 |
20070024360 | Markowski | Feb 2007 | A1 |
20070063681 | Liu | Mar 2007 | A1 |
20070082622 | Leinonen et al. | Apr 2007 | A1 |
20070146076 | Baba | Jun 2007 | A1 |
20070182392 | Nishida | Aug 2007 | A1 |
20070183532 | Matero | Aug 2007 | A1 |
20070259628 | Carmel et al. | Nov 2007 | A1 |
20080003950 | Haapoja et al. | Jan 2008 | A1 |
20080044041 | Tucker et al. | Feb 2008 | A1 |
20080081572 | Rofougaran | Apr 2008 | A1 |
20080104432 | Vinayak et al. | May 2008 | A1 |
20080150619 | Lesso et al. | Jun 2008 | A1 |
20080205095 | Pinon et al. | Aug 2008 | A1 |
20080242246 | Minnis et al. | Oct 2008 | A1 |
20080252278 | Lindeberg et al. | Oct 2008 | A1 |
20080258831 | Kunihiro et al. | Oct 2008 | A1 |
20080280577 | Beukema et al. | Nov 2008 | A1 |
20090004981 | Eliezer et al. | Jan 2009 | A1 |
20090097591 | Kim | Apr 2009 | A1 |
20090160548 | Ishikawa et al. | Jun 2009 | A1 |
20090167260 | Pauritsch et al. | Jul 2009 | A1 |
20090174466 | Hsieh et al. | Jul 2009 | A1 |
20090184764 | Markowski et al. | Jul 2009 | A1 |
20090190699 | Kazakevich et al. | Jul 2009 | A1 |
20090218995 | Ahn | Sep 2009 | A1 |
20090230934 | Hooijschuur et al. | Sep 2009 | A1 |
20090261908 | Markowski | Oct 2009 | A1 |
20090284235 | Weng et al. | Nov 2009 | A1 |
20090289720 | Takinami et al. | Nov 2009 | A1 |
20090319065 | Risbo | Dec 2009 | A1 |
20100001793 | Van Zeijl et al. | Jan 2010 | A1 |
20100019749 | Katsuya et al. | Jan 2010 | A1 |
20100019840 | Takahashi | Jan 2010 | A1 |
20100026250 | Petty | Feb 2010 | A1 |
20100045247 | Blanken et al. | Feb 2010 | A1 |
20100171553 | Okubo et al. | Jul 2010 | A1 |
20100253309 | Xi et al. | Oct 2010 | A1 |
20100266066 | Takahashi | Oct 2010 | A1 |
20100301947 | Fujioka et al. | Dec 2010 | A1 |
20100308654 | Chen | Dec 2010 | A1 |
20100311365 | Vinayak et al. | Dec 2010 | A1 |
20100321127 | Watanabe et al. | Dec 2010 | A1 |
20100327825 | Mehas et al. | Dec 2010 | A1 |
20110018626 | Kojima | Jan 2011 | A1 |
20110058601 | Kim et al. | Mar 2011 | A1 |
20110084760 | Guo et al. | Apr 2011 | A1 |
20110148375 | Tsuji | Jun 2011 | A1 |
20110234182 | Wilson | Sep 2011 | A1 |
20110235827 | Lesso et al. | Sep 2011 | A1 |
20110279180 | Yamanouchi et al. | Nov 2011 | A1 |
20110298539 | Drogi et al. | Dec 2011 | A1 |
20120025907 | Koo et al. | Feb 2012 | A1 |
20120025919 | Huynh | Feb 2012 | A1 |
20120034893 | Baxter et al. | Feb 2012 | A1 |
20120049953 | Khlat | Mar 2012 | A1 |
20120068767 | Henshaw et al. | Mar 2012 | A1 |
20120074916 | Trochut | Mar 2012 | A1 |
20120133299 | Capodivacca et al. | May 2012 | A1 |
20120139516 | Tsai et al. | Jun 2012 | A1 |
20120154035 | Hongo et al. | Jun 2012 | A1 |
20120154054 | Kaczman et al. | Jun 2012 | A1 |
20120170334 | Menegoli et al. | Jul 2012 | A1 |
20120176196 | Khlat | Jul 2012 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200354 | Ripley et al. | Aug 2012 | A1 |
20120236444 | Srivastava et al. | Sep 2012 | A1 |
20120244916 | Brown et al. | Sep 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130034139 | Khlat et al. | Feb 2013 | A1 |
20130094553 | Paek et al. | Apr 2013 | A1 |
20130169245 | Kay et al. | Jul 2013 | A1 |
20130214858 | Tournatory et al. | Aug 2013 | A1 |
20130229235 | Ohnishi | Sep 2013 | A1 |
20130307617 | Khlat et al. | Nov 2013 | A1 |
20130328613 | Kay et al. | Dec 2013 | A1 |
20140009200 | Kay et al. | Jan 2014 | A1 |
20140009227 | Kay et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
0755121 | Jan 1997 | EP |
1492227 | Dec 2004 | EP |
1569330 | Aug 2005 | EP |
2214304 | Aug 2010 | EP |
2244366 | Oct 2010 | EP |
2372904 | Oct 2011 | EP |
2462204 | Feb 2010 | GB |
2465552 | May 2010 | GB |
2484475 | Apr 2012 | GB |
0048306 | Aug 2000 | WO |
2004002006 | Dec 2003 | WO |
2004082135 | Sep 2004 | WO |
2005013084 | Feb 2005 | WO |
2006021774 | Mar 2006 | WO |
2006070319 | Jul 2006 | WO |
2006073208 | Jul 2006 | WO |
2007107919 | Sep 2007 | WO |
2007149346 | Dec 2007 | WO |
2012151594 | Nov 2012 | WO |
2012172544 | Dec 2012 | WO |
Entry |
---|
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages. |
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 7 pages. |
International Preliminary Report on Patentability for PCT/US2011/054106 mailed Apr. 11, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2011/061007 mailed May 30, 2013, 11 pages. |
International Preliminary Report on Patentability for PCT/US2011/061009 mailed May 30, 2013, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages. |
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages. |
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages. |
Choi, J. et al., “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802. |
Cidronali, A. et al., “A 240W Dual-Band 870 and 2140 MHz Envelope Tracking GaN PA Designed by a Probability Distribution Conscious Approach,” IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages. |
Dixon, N., “Standardisation Boosts Momentum for Envelope Tracking,” Microwave Engineering, Europe, Apr. 20, 2011, 2 pages, http://www.mwee.com/en/standardisation-boosts-momentum-for-envelope-tracking.html?cmp—ids=71&news13 ids=222901746. |
Hekkala, A. et al., “Adaptive Time Misalignment Compensation in Envelope Tracking Amplifiers,” 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765. |
Kim et al., “High Efficiency and Wideband Envelope Tracking Power Amplifiers with Sweet Spot Tracking,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258. |
Kim, N. et al, “Ripple Feedback Filter Suitable for Analog/Digital Mixed-Mode Audio Amplifier for Improved Efficiency and Stability,” 2002 IEEE Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49. |
Knutson, P, et al., “An Optimal Approach to Digital Raster Mapper Design,” 1991 IEEE International Conference on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752. |
Le, Hanh-Phuc et al., “A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mm2 at 81% Efficiency,” 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212. |
Li, Y. et al., “A Highly Efficient SiGe Differential Power Amplifier Using an Envelope-Tracking Technique for 3GPP LTE Applications,” 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124. |
Sahu, B. et al., “Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets—An Integrated System Design Approach,” submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages. |
Unknown, “Nujira Files 100th Envelope Tracking Patent,” CS: Compound Semiconductor, Apr. 11, 2011, 1 page, http://www.compoundsemiconductor.net/csc/news-details.php?cat=news&id=19733338&key=Nujira%20Files%20100th%20Envelope%20Tracking%20Patent&type=n. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 1, 2008, 17 pages. |
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jul. 30, 2008, 19 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Nov. 26, 2008, 22 pages. |
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed May 4, 2009, 20 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 3, 2010, 21 pages. |
Notice of Allowance for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jun. 9, 2010, 7 pages. |
International Search Report for PCT/US06/12619 mailed May 8, 2007, 2 pages. |
Extended European Search Report for application 06740532.4 mailed Dec. 7, 2010, 7 pages. |
Non-final Office Action for U.S. Appl. No. 12/112,006 mailed Apr. 5, 2010, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/112,006 mailed Jul. 19, 2010, 6 pages. |
Non-final Office Action for U.S. Appl. No. 13/089,917 mailed Nov. 23, 2012, 6 pages. |
International Search Report for PCT/US11/033037, mailed Aug. 9, 2011, 10 pages. |
International Preliminary Report on Patentability for PCT/US2011/033037 mailed Oct. 23, 2012, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages. |
International Search Report for PCT/US2011/044857, mailed Oct. 24, 2011, 10 pages. |
International Preliminary Report on Patentability for PCT/US2011/044857 mailed Mar. 7, 2013, 6 pages. |
Non-final Office Action for U.S. Appl. No. 13/218,400 mailed Nov. 8, 2012, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/218,400 mailed Apr. 11, 2013, 7 pages. |
International Search Report for PCT/US11/49243, mailed Dec. 22, 2011, 9 pages. |
International Preliminary Report on Patentability for PCT/US11/49243 mailed Nov. 13, 2012, 33 pages. |
International Search Report for PCT/US2011/054106 mailed Feb. 9, 2012, 11 pages. |
International Search Report for PCT/US2011/061007 mailed Aug. 16, 2012, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470 mailed May 8, 2013, 15 pages. |
International Search Report for PCT/US2011/061009 mailed Feb. 8, 2012, 14 pages. |
International Search Report for PCT/US2012/023495 mailed May 7, 2012, 13 pages. |
Non-final Office Action for U.S. Appl. No. 13/222,453 mailed Dec. 6, 2012, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,453 mailed Feb. 21, 2013, 7 pages. |
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124 mailed Jun. 1, 2012, 7 pages. |
International Search Report for PCT/US2012/024124 mailed Aug. 24, 2012, 14 pages. |
Notice of Allowance for U.S. Appl. No. 13/316,229 mailed Nov. 14, 2012, 9 pages. |
International Search Report for PCT/US2011/064255 mailed Apr. 3, 2012, 12 pages. |
International Search Report for PCT/US2012/40317 mailed Sep. 7, 2012, 7 pages. |
International Search Report for PCT/US2012/046887 mailed Dec. 21, 2012, 12 pages. |
Non-final Office Action for U.S. Appl. No. 13/222,484 mailed Nov. 8, 2012, 9 pages. |
Final Office Action for U.S. Appl. No. 13/222,484 mailed Apr. 10, 2013, 10 pages. |
International Search Report and Written Opinion for PCT/US2012/053654 mailed Feb. 15, 2013, 11 pages. |
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages. |
International Search Report and Written Opinion for PCT/US2012/067230 mailed Feb. 21, 2013, 10 pages. |
Wu, Patrick Y. et al., “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556. |
Yousefzadeh, Vahid et al., “Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers,” 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7. |
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages. |
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages. |
Lie, Donald Y.C. et al., “Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications,” IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350. |
Lie, Donald Y.C. et al., “Highly Efficient and Linear Class E SiGe Power Amplifier Design,” 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529. |
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages. |
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/602,856, mailed Sep. 24, 2013, 9 pages. |
Hassan, Muhammad, et al., “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, No. 5, May 1, 2012, pp. 1185-1198. |
Hoversten, John, et al., “Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 2010-2020. |
Notice of Allowance for U.S. Appl. No. 12/836,307 mailed May 5, 2014, 6 pages. |
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858 mailed May 27, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/367,973 mailed Apr. 25, 2014, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 13/486,012, mailed Jul. 28, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages. |
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/647,815 mailed May 2, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/689,883 mailed Mar. 27, 2014, 13 pages. |
International Preliminary Report on Patentability for PCT/US2012/062070 mailed May 8, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/661,552, mailed Jun. 13, 2014, 5 pages. |
International Search Report and Written Opinion for PCT/US2012/062110 issued Apr. 8, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2012/062110 mailed May 8, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/692,084 mailed Apr. 10, 2014, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/692,084, mailed Jul. 23, 2014, 7 pages. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed May 9, 2014, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 13/951,976 mailed Apr. 4, 2014, 7 pages. |
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages. |
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages. |
European Search Report for Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages. |
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014/028178, mailed Jul. 24, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No.. 14/072,140, mailed Aug. 27, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 15, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/548,283, mailed Sep. 3, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Aug. 27, 2014, 12 pages. |
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Sep. 3, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/782,142, mailed Sep. 4, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages. |
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/647,815, mailed Sep. 19, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages. |
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Oct. 15, 2014, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/914,888, mailed Oct. 17, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/486,012, mailed Nov. 21, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/747,749, mailed Nov. 12, 2014, 32 pages. |
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Dec. 2, 2014, 8 pages. |
Extended European Search Report for European Patent Application No. 12794149.0, issued Oct. 29, 2014, 6 pages. |
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages. |
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20130135045 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61565138 | Nov 2011 | US |