The invention relates to an arrangement for mooring, loading and unloading of a vessel, comprising a structure connected to the seabed and a Y-formed yoke with a first and a second yoke arm for connecting the vessel to the structure, the structure comprising a stationary bottom element adapted to be fixedly connected to the sea bed and a top element having a rotatable fastening to the bottom element, the element having a receptacle for fixing the yoke, wherein the yoke is provided with a pitch articulation to fix the yoke tip to said receptacle of the top element and a roll articulation positioned between the pitch articulation and the first and second yoke arms to allow the yoke arms to rotate along the longitudinal axis of the yoke with respect to the pitch articulation.
The mooring arrangement according to the present invention is typically used to moor a FPSO type vessel at a mooring location. The vessel will be connected to the mooring arrangement by means of a series of hoses and mooring legs connected to the bow of the vessel.
Hoses for the transfer of fluids, including cables for the transfer of electric power and signals, will extend out of the vessel and hang as catenary lines towards the top of the mooring arrangement according to the invention. The mooring arrangement will be partially geo-stationary in that the mooring arrangement comprises a bottom element which is to be fixed to the sea bed. The mooring arrangement further comprises a top element, rotatable connected to said bottom element. The top element is provided with connecting means, in the form of a receptacle, to allow the connecting of a yoke to the top element.
The yoke used for connecting the vessel to the connector of the outer element has typically a Y-shaped form. The yoke tip is adapted to be connected to the top element. From this yoke tip, two arms extend in the direction of the vessel, these yoke arms form the V-shaped part of the Y-shaped yoke.
The arrangement is adapted to allow the top element and the connected yoke to rotate around the geo-stationary bottom element. With the vessel connected to the yoke, the arrangement will allow the vessel to weathervane with respect to the seabed.
A mooring arrangement as described in the introduction, is known in the prior art. The mooring arrangement is for instance disclosed in the document U.S. Pat. No. 6,932,015.
Mooring arrangements which are typically used in the prior art comprise a pitch articulation for connecting the yoke to the top element. Moreover, they have a roll articulation for allowing rotation of the yoke arms with respect to this pitch articulation. The roll articulation of mooring arrangements according to the prior art are typically provided with a roller bearing.
Roller bearings are adapted to withstand relatively large forces and often provide a long service lifetime. However, the specific use of a roller bearing for the roll articulation for the mooring arrangement described in the introduction may lead to inconveniences. The main disadvantage related to the use of a roller bearing is the fact that the roller bearing may suffer from lack of maintenance due to poor access and poor lubrication.
Lubrication issues come from the unusual bearing orientation of the roll articulation in the mooring arrangement. The effect of this orientation is that the rollers and raceways may not be properly lubricated. Moreover, because of the harsh environments where the mooring arrangements are used, in combination with the accumulation of debris, possible water ingress and the presence of foreign particles may accelerate possible damages to rollers and race ways.
It is the object of the present invention to avoid some of the problems related to mooring arrangements according to the prior art.
An arrangement for mooring, loading and unloading of a vessel, comprising a structure connected to the seabed and a Y-formed yoke having a first and a second arm for connecting the vessel to the structure, the structure comprising a stationary bottom element adapted to be fixedly connected to the sea bed and a top element having a rotatable fastening to the bottom element, the top element being connected to the yoke, through both a yoke tip pitch articulation, positioned between a turntable and the yoke tip, and a roll articulation positioned between the pitch articulation and the first and second yoke arms, to allow the yoke arms to rotate along the longitudinal axis of the yoke with respect to the pitch articulation, the roll articulation comprising a first and a second articulation element rotatable fixed one around the other wherein the first and the second articulation elements are connected by means of friction pads.
According to a possible embodiment of the invention, the first articulation element of said roll articulation is rigidly connected to the yoke tip and wherein the second articulation element of said roll articulation is rigidly connected to said first and second yoke arms.
According to a possible embodiment of the invention, the first and the second articulation elements of the roll articulation are connected to each other by means of at least a first series of friction pads for transferring radial forces and a second series of friction pads for transferring axial forces.
According to a possible embodiment of the invention, the first and the second roll articulation elements are essentially conically shaped.
According to a preferred embodiment, both yoke pitch and roll articulations are combined into one assembly.
According to a preferred embodiment, the frictions pads are adapted to be removed and replaced one at a time, in situ, without requiring shutdown.
According to a second aspect, the invention relates to a yoke adapted for the mooring arrangement according to the invention.
According to a third aspect, the invention relates to a roll articulation adapted for the yoke according to the invention.
The mooring legs 41, 41′ are at their upper ends connected to a support structure 21 via articulation joints 221, 221′allowing rotation of the arms 41, 41′ around the horizontal transverse axis and a horizontal longitudinal axis.
The roller bearing 16 is fixed between the elements 15 and 18 by means of bolts 17. The roller bearing 16 comprises two series of roller elements for transferring forces in the axial direction and one series of roller elements for transferring radial forces. The second end of the intermediate element 15 (right in
The roller bearing 16 provides a roll articulation between the part 18 rigidly fixed on one side to the two arms of the yoke 10 and on the other side to part 15, which is including the pitch articulation with the turntable 2. The roller bearing 16 thereby allows rotation of the yoke 10 with respect to longitudinal axis of the yoke 10.
The presence of both the pitch articulation, by means of the bar 3, and the roll articulation, by means of the roller bearings 16, will allow the yoke arms (not shown) of the yoke 10 sufficient freedom to follow any roll and pitch movement of the moored vessel, while the yoke tip is being connected to the turntable 2, and the yoke arms are connected to a vessel. Said vessel will also be able to weathervane around the geo-stationary element thanks to the rotatable fastening between the top and bottom elements.
Field experience has revealed that the arrangement according to
Moreover, accumulation of debris, water ingress and foreign particles at the bottom side of the bearing cavity may accelerate the damage of the rollers/raceways at this location. The lack of continuous or complete revolutions also affects the fatigue capacity of such a roller bearing 16. In case one would need to replace the roller bearing 16, the mooring yoke 10 should be completely disconnected from the turntable 2. Only after the disconnection of the mooring yoke 10, the roller bearing is accessible for maintenance or replacement.
It is an object of the invention to avoid the above mentioned problems relating to the prior art. To realize this, an alternative arrangement is proposed, which is shown is
In
The internal conical element 41 is connected to a bar 30. The bar 30 is used to form a pitch articulation between the yoke 20 and a receptacle of the top element (not shown).
The conical elements 40 and 41 are rotatable fixed. This means that the element 40 and 41 together provide the roll articulation for the yoke 20.
To allow the relative rotation of the elements 40 and 41, friction pads 50 and 51 are used. The friction pads 50 are used for transferring forces in the radial direction and friction pads 51 are used for transferring forces in axial direction. The positioning of said friction pads 50 and 51 is more clearly visible in
A further series of friction pads 50 is provided on the opposite side of the inner conical element 41. The exact positioning of the friction pads 50 on both ends of the conical elements 40 and 41 is more clearly visible in
The provision of a first conical element 40 and a second conical element 41 with series of friction pads 50 and 51 allows for radial and axial force transfer between the elements 40 and 41. This will allow the yoke 20 to have roll articulation in order to allow rotation of the yoke 20 with regards to the yoke's longitudinal axis. The use of 15 the series of friction pads 50 and 51 allows for a roll articulation which is basically maintenance free because of the fact that the friction pads allow movement of the elements 40 and 41, one with respect to the other, without the need of lubrication.
Another aspect of the arrangement according to the invention is the fact that the friction pads 50 and 51 can be removed and replaced one at a time. At a given time, the friction pads 50, 51 can be removed and replaced in order to safeguard proper functioning of the roll articulation. It might be useful to replace, for instance, every other friction pad while keeping the intermediate friction pads. The removal and the replacement of the friction pad can take place in situ. That means that for a replacement of the friction pads, no shutdown is required. Moreover, the replacement of the friction pad does not need heavy tooling, neither heavy lifts nor other expensive and voluminous apparatuses.
The friction pads 50, 51 are for instance friction pads of the Xytex456 type. The friction pads are maintenance free, wear resistant and suitable for offshore applications. The pad cavities for the friction pads 50 and 51 are normally closed and watertight. This means that a risk for ingress of particles is limited. The wear of the individual pads 50, 51 can be monitored by controlling the alignment (concentricity) of the articulation without opening or dismantling any of the elements of the roll articulation. The pads 50, 51 could, for instance, run on corrosion resistant overlay such as Inconel 625. The wear rate under normal bearing pressure could be in the range of 0.003 mm/km. The anticipated wear should not exceed a couple of millimeters over the full system lifetime. Several millimeters of wear are normally acceptable. Therefore, the selected pads 50, 51 are suitable to meet the required design life of the overall system.
In
In
In
Element 130 is provided with two opposite extensions to allow the element 130 to form a pitch articulation in combination with the element 131. In use, the end part of the yoke formed by elements 115 and 118 will be able to provide rotational freedom of the yoke with respect to intermediate element 130. The element 130 itself will also be able to provide pitch articulation, between the yoke and the turntable in the top element.
As shown in
Number | Date | Country | Kind |
---|---|---|---|
13188631 | Oct 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/063221 | 6/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/055327 | 4/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4516942 | Pedersen | May 1985 | A |
5381750 | Pollack | Jan 1995 | A |
6932015 | Storvoll et al. | Aug 2005 | B2 |
8998662 | Deckard | Apr 2015 | B2 |
20080108446 | Faude | May 2008 | A1 |
20140014017 | Balleraud | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
87201244 | Jan 1988 | CN |
2 087 819 | Jun 1982 | GB |
2 198 407 | Jun 1988 | GB |
2 330 566 | Apr 1999 | GB |
2010042074 | Apr 2010 | WO |
Entry |
---|
International Search Report, dated Oct. 9, 2014, from corresponding PCT Application. |
Number | Date | Country | |
---|---|---|---|
20160251061 A1 | Sep 2016 | US |