This invention relates to detection of changes in depth and particularly, but not exclusively, to the detection of failure in mooring lines.
Marine vessels and structures are typically moored using one or more mooring lines, usually chains. Evidently failure of such a mooring line can result in unwanted movement of such a vessel or structure, potentially causing considerable damage. If a plurality of mooring lines are used (oil exploration platforms may have ten or more mooring lines) breakage of one, or a small number of lines may go undetected, significantly compromising the stability or station keeping of such a vessel or structure. There is therefore a requirement to provide a surveillance or monitoring system for detecting the breakage of mooring lines.
In many marine applications, the environment in which such a system would be required to operate is very harsh, resulting in data links and power supplies being difficult to install and maintain, and expensive. Furthermore, such a system may remain dormant for many years, should require little or no maintenance, and be fully reliable when called into operation.
It is therefore an object of a first aspect of the present invention to provide a simple and reliable mooring failure detector.
According to a first aspect of the invention there is provided a mooring failure detector, comprising a power source, a rupture element adapted to rupture at a predetermined pressure, and a signal transmitter; wherein rupture of said rupture disk causes activation of said power source, enabling said transmitter to emit a signal.
In this way, there is advantageously provided an autonomous device that can be permanently attached to a catenary or other mooring or riser that will indicate loss of integrity or breakage of the mooring or riser when the part to which the device is attached sinks to the sea bed, or below a predetermined depth. Permanent monitoring of the integrity of moorings of floating offshore structures can be provided with minimal intervention or disruption to the moored vessel. Deployment of the device will typically be by remotely operated vehicle.
Because the battery is only activated on failure of the mooring (ie the device is passive and unpowered until the rupture element fails) the device requires minimal or no maintenance during normal passive surveillance, and avoids problems associated with conventional batteries with finite shelf lives.
In one embodiment the power source is a sea water battery. A sea water battery uses salt water as an electrolyte, and in such an embodiment, the device is activated by the ingress of sea water into a compartment housing the battery. The sea water battery is preferably a magnesium-silver chloride battery, providing high energy density and affording excellent electrode stability. Such batteries can advantageously be stored almost indefinitely in a wide variety of conditions without any appreciable deterioration of capacity or performance.
Preferably the transmitter is an acoustic transmitter, however a buoyant radio frequency transmitter may be employed in certain embodiments.
There is also provided a mooring failure detection system comprising one or more such detectors and a receiver adapted to receive said transmitted signal.
Embodiments of the present invention can advantageously be used in conjunction with inclined moorings such that a device can detect failure of the mooring above or below the point of attachment, as illustrated in
Embodiments according to this aspect of the invention, may employ a pressure switch to activate an emitter powered by a conventional battery when the device exceeds a certain depth. Similarly, a simpler but less robust device is provided by replacing the rupture element of other aspects of the invention with a pressure switch, providing as a separate aspect of the invention a mooring failure detector including a signal transmitter and pressure switch, wherein activation of the pressure switch caused by a predetermined change in depth causes said transmitter to emit a signal. Embodiments of such a device are adapted to be secured in position on a mooring, and can be powered by a conventional battery.
A further aspect of the invention provides a device for detecting changes in depth, said device comprising a power source, a rupture element adapted to rupture at a predetermined depth, and a signal transmitter; wherein said device is unpowered until rupture of said rupture disk causes activation of said power source, enabling said transmitter to emit a signal.
The invention extends to methods and/or apparatus substantially as herein described with reference to the accompanying drawings.
Any feature in one aspect of the invention may be applied to other aspects of the invention, in any appropriate combination. In particular, method aspects may be applied to apparatus aspects, and vice versa.
Preferred features of the present invention will now be described, purely by way of example, and with reference to the accompanying drawings, in which:
Referring to
A DC-DC power supply 108 is located in an upper compartment of the device, and is connected to the seawater battery. Also located in the upper compartment are a signal generator and encoder 110, and a power amplifier 112. The output of the amplifier is connected to an acoustic transmitter 114 mounted at the top of the device.
In operation, the device is attached to a mooring line at a certain depth. At this depth, the rupture disk can withstand the static pressure, and remains intact, keeping the seawater battery dry. Because the battery is kept inert in this steady state, the device has a very long service life.
When the pressure acting on the rupture disk exceeds a predetermined threshold, for example if its depth is sufficiently increased, the disk fails and allows sea water into the chamber housing the battery. This activates the battery and provides power, to the acoustic transponder that emits a predetermined acoustic signal. The signal generator, encoder and amplifier are also powered by the sea water activated battery combined with a suitable power supply/regulator circuit.
The predetermined acoustic signal is detected by a hydrophone attached to the moored vessel or other suitable control location, to indicate that the mooring has failed. In a system where there are a plurality of moorings, the signal can be encoded to identify the particular device from which it was transmitted, and therefore to identify which mooring has failed. By attaching a number of devices at different lengths along a single mooring, an indication of the position of the break can also be identified.
In an alternative embodiment, rupture of the disk and activation of the battery can trigger the release of a buoyant radio frequency transmitter, which floats to the surface and emits an encoded RF signal in an analogous fashion. In such an embodiment, the signal would be detected by a suitable antenna.
In
The pressure failure range of the rupture disk corresponds to the depth range indicated at 312, sufficiently below the point of attachment of the device to prevent rupture during normal movement of the mooring.
A commercially available rupture disk or diaphragm is shown in
It will be understood that the present invention has been described above purely by way of example, and modification of detail can be made within the scope of the invention. Each feature disclosed in the description, and (where appropriate) the claims and drawings may be provided independently or in any appropriate combination.
Number | Date | Country | Kind |
---|---|---|---|
0617716.6 | Sep 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/003338 | 9/6/2007 | WO | 00 | 2/19/2009 |