Claims
- 1. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of the water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation of a certain magnitude in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprising,means for generating a displacement signal representative of displacement of said vessel from said quiescent position, and means responsive to said displacement signal for applying a force to said arm in a direction to move said vessel toward said quiescent position, whereby said magnitude of said oscillations of said vessel and peak mooring loads are reduced.
- 2. The mooring system of claim 1 wherein said body is a bottom founded tower.
- 3. The mooring system of claim 1 wherein said body is a mooring buoy.
- 4. The mooring system of claim 2 wherein said arm is coupled to said bottom founded tower at a submerged location.
- 5. The mooring system of claim 2 wherein said arm is coupled to said bottom founded tower at an above sea-surface position.
- 6. The mooring system of claim 1 further comprising apassive damping means coupled between said arms and said vessel for damping said magnitude of oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm.
- 7. The mooring system of claim 1 further comprisingpassive damping means coupled between said arm and said body for damping the oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm.
- 8. The mooring system of claim 1 whereinsaid means responsive to said displacement signal for applying said force to said arm includes a PID controller.
- 9. The mooring system of claim 1 whereinsaid connecting means includes a rocker arm (12) having top, middle and bottom portions with said middle portion pivotably coupled to said vessel, said bottom portion pivotably coupled to said second end of said arm and an actuating device (28) pivotably coupled to said top portion (17) of said rocker arm and to said vessel and which is automatically forced to pull or push the top portion (17) of said rocker arms (12) in a direction to oppose the direction of motion of said vessel.
- 10. The mooring system of claim 9 wherein said actuating device includesan angular position sensing device (22) disposed at said top portion (17) of said rocker arm (12) for producing an angular signal representative of angular position of said rocker arm. a hydraulic cylinder (30) and piston arm (32) coupled between said top portion (17) of said rocker arm (12) and said vessel (20), and a PID controller (24) responsive to said angular signal and to a signal representative of a quiescent position of said rocker arm for applying pressurized hydraulic fluid to one of opposite ends of said cylinder (30) to force said arm (32) in a direction to force said rocker arm toward a quiescent position thereby to oppose the direction of motion of said vessel.
- 11. The mooring system of claim 6 whereinsaid passive damping means includes a damping cylinder (47) coupled between said second end of said arm (14) and said vessel.
- 12. The mooring system of claim 11 further comprisinga buoyant strut (48) coupled between said hydraulic cylinder (47) and said vessel.
- 13. The mooring system of claim 12 whereinsaid damping cylinder (47) includes a damping mechanism and a spring to provide a direct spring restoring force and damping force to reduce vessel motion and mooring loads due to environmental forces.
- 14. The mooring system of claim 12 whereinsaid body is a bottom founded tower having a submerged turntable (44) disposed thereon, and said first end of said arm (14) is pivotably connected to said turntable.
- 15. The mooring system of claim 14 whereinsaid tower includes a top portion which extends above the sea surface, and further including a product swivel (60) mounted on said above-water top portion of said tower, and a hydrocarbon fluid conductor (62) running directly from said swivel (60) to said vessel (20) without being supported by a ship super structure or said arms.
- 16. The mooring system of claim 1 whereinsaid connecting means includes a shaft (72) rotatably supported on said vessel (20), and a first torque arm (78) secured to said shaft (72) and to said second end of said arm (82), and said means responsive to said displacement signal includes a hydraulic cylinder coupled between said vessel (20) and a second torque arm (78) secured to said shaft (72).
- 17. The mooring system of claim 16 further including passive damping means coupled between said vessel (20) and said torque arm (78).
- 18. The mooring system of claim 16 whereinsaid shaft (72) is disposed generally horizontally.
- 19. The mooring system of claim 16 whereinsaid shaft (72) is disposed generally vertically.
- 20. The mooring system of claim 1 whereintwo arms are coupled between said body and said vessel, with each of said two arms having a first end coupled to said body, each of said two arms having a second end coupled by connecting means to opposite sides of said vessel, each of said connecting means including a shaft (72) rotatably supported on said vessel and a torque arm (78) secured to said shaft (72) and to a respective second end of said first or second arm (82), said means responsive to said displacement signal including first and second hydraulic cylinders coupled between said vessel (20) and said respective shaft torque arm (78).
- 21. The mooring system of claim 20 further comprisingfirst and second passive damping means coupled between said vessel (20) and said respective torque arm (78).
- 22. The mooring system of claim 1 whereintwo arms are coupled between said body and said vessel, with each of said two arms having a first end coupled to said body, each of said two arms having a second end coupled by connecting means to opposite sides of said vessel, said vessel having a single horizontal shaft (100) rotatably supported on said vessel, each said connecting means including a torque arm (102) secured to said shaft and to a respective second end of said first or second arm (82), said means responsive to said displacement signal including first and second hydraulic cylinders coupled between said vessel (20) and said respective shaft torque arm (102).
- 23. The mooring system of claim 1 whereintwo arms are coupled between said body and said vessel, with each of said two arms having a first end coupled to said body, each of said two arms having a second end coupled by connecting means to opposite sides of said vessel, said vessel having a single horizontal shaft (100) rotatably supported on said vessel, each said connecting means including a torque arm (102) secured to said shaft and to a respective second end of said first or second arm (82), said means responsive to said displacement signal including a first hydraulic cylinder (170) coupled between said vessel (20) and a first torque arm (102), and further comprising a passive damping means coupled between said vessel (20) and a second torque arm (102).
- 24. The mooring system of claim 1 whereinsaid at least one arm is a single arm coupled between said body and said vessel, said vessel having a horizontal shaft (164) rotatably supported on said vessel, said second end of said single arm being coupled to said shaft (164) by a hull torque arm, first and second torque arms (172) mounted on said horizontal shaft, said means responsive to said displacement signal including a first hydraulic cylinder coupled between said vessel (20) and a first torque arm (172), and further comprising a passive damping means coupled between said vessel (20) and said second torque arm (172).
- 25. The mooring system of claim 1 whereinsaid at least one arm (150) is a single arm coupled between said body and said vessel, said vessel having a horizontal shaft (164) rotatably supported on said vessel, said connecting means including a torque arm (180) secured to said horizontal shaft (184), and said means responsive to said displacement signal including a hydraulic cylinder (182) coupled between said second end of said arm (150) and said torque arm (180).
- 26. The mooring system of claim 25 further comprisinga passive damping means coupled between said second end of said arm (150) and said torque arm.
- 27. The mooring system of claim 25 wherein said horizontal shaft extends through an interior portion of said vessel.
- 28. The mooring system of claim 1 whereinsaid at least one arm (150) is coupled between said body and said vessel, said vessel having an externally mounted horizontal shaft (190) rotatably supported on said vessel, said connecting means including a torque arm (188) secured to said horizontal shaft (190), said means responsive to said displacement signal including a first hydraulic cylinder coupled between said vessel (20) and said torque arm (188).
- 29. The mooring system of claim 28 further comprising,a passive damping means coupled between said torque arm (188) and said vessel (20).
- 30. The mooring system of claim 1 whereinsaid at least one arm (150′) is coupled between said body and said vessel, said vessel having an externally mounted horizontal shaft (190) rotatably supported on said vessel, said connecting means including a torque arm (188) having lower, middle and top portions, said middle portion being secured to said horizontal shaft (190), said lower portion being secured to said second end of said arm (150′), said means responsive to said displacement signal including a first hydraulic cylinder coupled between said top portion of said torque arm (188) and said arm (150′).
- 31. The mooring system of claim 30 further comprising,a passive damping means coupled between said top portion of said torque arm (188) and said arm (150′).
- 32. The mooring system of claim 1 whereinsaid at least one arm (150″) is coupled between said body and said vessel (20′), said arm (150″) being buoyant and connected to said vessel by a pull-in coupling, said body including a turntable (44) having a horizontal shaft rotatably supported thereon, said connecting means including a torque arm (188′) having lower, middle and top portions, said lower portion being rotatably supported on said horizontal shaft, said middle portion of said torque arm (188′) rotatably supporting said first end of said arm (150″), said means responsive to said displacement signal including a first hydraulic cylinder coupled between said top portion of said torque arm (188′) and said arm (150″).
- 33. The mooring system of claim 32 further comprising,a passive damping means coupled between said top portion of said torque arm (188′) and said arm (150″).
- 34. The mooring system of claim 1 whereinsaid connecting means includes a torsion spring element (514) mounted on said vessel, and an active torque actuator (512) arrangement is coupled to said torsion spring element (514) and pivotably coupled to said second end of said arm.
- 35. The mooring system of claim 34 whereinsaid torque actuator (512) is an active control hydraulic torque actuator means.
- 36. Mooring apparatus for mooring a vessel in a body of water comprisinga mooring body substantially fixed to the floor of the body of water, an arm rotatably coupled at one end to said mooring body and coupled at its second end to said vessel by a coupling arrangement, means for generating a signal representative of displacement away from a quiescent position of said vessel, and means responsive to said signal for applying a force to said arm in a direction to cause said vessel to return to said quiescent position.
- 37. The apparatus of claim 36 whereinsaid force applied to said arm is substantially constant.
- 38. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled to a frame secured to said vessel, said arm having a pendular weight coupled to said frame, said vessel moving closer to and away from said body about a neutral position in response to environmental conditions of said body of water, said pendular weight providing increasing force to said arm in a direction to move said vessel toward said neutral position as a function of increasing distance that said vessel has moved from said neutral position, an improvement comprisinga damping element (310) coupled between said frame and said arm, said damping element being in addition to the damping effect of water acting against the vessel or the arm.
- 39. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environment conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and means for generating a displacement signal representative of displacement of said vessel from said quiescent position, and means responsive to said displacement signal for applying a substantially constant force to said arm in a direction to move said vessel toward said quiescent position, whereby magnitude of said oscillations of said vessel are reduced.
- 40. The mooring system of claim 39 whereinsaid passive damping means is coupled between said arm and said vessel.
- 41. The mooring system of claim 39 whereinsaid passive damping means is coupled between said arm and said body.
- 42. The mooring system of claim 39 wherein said body is a bottom founded tower.
- 43. The mooring system of claim 39 wherein said body is a mooring buoy.
- 44. The mooring system of claim 42 wherein said arm is coupled to said bottom founded tower at a submerged location.
- 45. The mooring system of claim 42 wherein said arm is coupled to said bottom founded tower at an above sea surface position.
- 46. The mooring system of claim 39 whereinsaid means responsive to said displacement signal for applying a substantially constant force to said arm includes a PID controller.
- 47. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein said connecting means includes a rocker arm (12) having top, middle and bottom portions with said middle portion pivotably coupled to said vessel, said bottom portion pivotably coupled to said second end of said arm and said passive damping device is a hydraulic cylinder pivotably coupled to said top portion of said rocker arm and to said vessel.
- 48. The mooring system of claim 47 further comprisingan actuating device (28) pivotably coupled to said top portion of said rocker arm and to said vessel and which is arranged and designed to automatically force the top portion (13) of said rocker arm (12) in a direction to oppose the direction of motion of said vessel.
- 49. The mooring system of claim 48 whereinan angular position sensing device (22) dispersed at said top portion (17) of said rocker arm (12) for producing an angular signal representative of angular position of said rocker arm, a hydraulic cylinder (30) and piston arm (32) coupled between said top portion (17) of said rocker arm (12) and said vessel (20), and a PID controller (24) responsive to said angular signal and to a signal representative of a quiescent position of said rocker arm for applying pressurized hydraulic fluid to one of opposite ends of said cylinder (30) to force said arm (32) in a direction to force said rocker arm toward a quiescent position thereby opposing the direction of motion of said vessel.
- 50. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, said passive damping means includes a hydraulic cylinder (47) coupled between said second end of said arm (14) and said vessel, and a buoyant strut (48) is coupled between said hydraulic cylinder (47) and said vessel.
- 51. The mooring system of claim 50 in whichsaid body is a bottom founded tower having a submerged turntable (14) disposed thereon, and said first end of said arm (14) is pivotably connected to said turntable.
- 52. The mooring system of claim 51 in whichsaid tower includes a top portion which extends above the sea surface, and further including a product swivel (60) mounted on said top portion of said tower, and a hydrocarbon fluid conductor (62) running directly from said swivel (60) to said vessel (20) without being supported by a ship super structure or said arm.
- 53. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, said passive damping means includes a hydraulic cylinder (47) coupled between said second end of said arm (14) and said vessel, and said damping cylinder (47) includes a damping mechanism and a coiled spring to provide a direct spring restoring force and damping to reduce vessel motion due to environmental forces.
- 54. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environment conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein said connecting means including a shaft (72) rotatably supported on said vessel (20) and first and second torque arms (78, 75) secured to said shaft (72), said second end of said arm (82) secured to said first torque arm (75) and said passive damping means is coupled between said vessel (20) and said second torque arm (78).
- 55. The mooring system of claim 54 further includingmeans for generating a displacement signal representative of displacement of said vessel from said quiescent position, and means responsive to said displacement signal is coupled between said vessel (20) and said torque arm (78) for applying a force to said arm in a direction to move said vessel toward said quiescent position, whereby magnitude of said oscillations of said vessel are reduced.
- 56. The mooring system of claim 54 wherein said shaft is disposed generally horizontally.
- 57. The mooring system of claim 54 wherein said shaft is disposed generally vertically.
- 58. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprising passive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and whereintwo arms are coupled between said body and said vessel, with each of said two arms having a first end coupled to said body, each of said two arms having a second end coupled by connecting means to opposite sides of said vessel, each of said connecting means including a shaft (72) rotatably supported on said vessel and a torque arm (78) secured to said shaft (72) and to a respective second end of said first or second arm (82), and said passive damping means including first and second hydraulic cylinders coupled between said vessel and said respective shaft torque arm.
- 59. The mooring system of claim 58 further comprisingmeans for generating a displacement signal representative of displacement of said vessel from said quiescent position, and means responsive to said displacement signal for applying a force to said arm is coupled between said vessel and said respective torque arm to move said vessel in a direction toward said quiescent position, whereby magnitude of said oscillations of said vessel are reduced.
- 60. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein two arms are coupled between said body and said vessel, with each of said two arms having a first end coupled to said body, each of said two arms having a second end coupled by said connecting means to opposite sides of said vessel, said vessel having a single horizontal shaft (100) rotatably supported on said vessel, said connecting means including first and second torque arms (102) secured to said shaft and to a respective second end of said first or second arm (82).
- 61. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein, two arms are coupled between said body and said vessel, with each of said two arms having a first end coupled to said body, each of said two arms having a second end coupled by connecting means to opposite sides of said vessel, said vessel having a single horizontal shaft (100) rotatably supported on said vessel, said connecting means including first and second torque arms (102) secured to said shaft and to a respective second end of said first or second arm (82), said passive damping means including a first cylinder coupled between said vessel (20) and a first torque arm (102), and further comprising, an active system means including a hydraulic cylinder coupled between said vessel (20) and a second torque arm (102) for applying a force to cause said vessel to return to said quiescent position.
- 62. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein said at least one arm is a single arm (150) coupled between said body and said vessel, said vessel having a horizontal shaft (164) rotatably supported on said vessel, said second end of said single arm (150) being coupled to said shaft (164) by a hull torque arm (162), first and second torque arms (172) mounted on said horizontal shaft, said passive damping means including a first hydraulic cylinder coupled between said vessel (20) and a first torque arm (172) and further comprising an active forcing means coupled between said vessel (20) and said second torque arm (172) and including a second hydraulic cylinder.
- 63. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein said at least one arm (150) is a single arm coupled between said body and said vessel, said vessel having a horizontal shaft (184) rotatably supported on said vessel, said connecting means including a torque arm (180) secured to said horizontal shaft (184), and said passive damping means including a hydraulic cylinder (182) coupled between said second end of said arm (150) and said torque arm (180).
- 64. The mooring system of claim 63 further comprisingan active forcing system coupled between said second end of said arm (150) and said torque arm.
- 65. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and in which said at least one arm (150) is coupled between said body and said vessel, said vessel having an externally mounted horizontal shaft (190) rotatably supported on said vessel, said connecting means including a torque arm (188) secured to said horizontal shaft (190), said passive damping means including a first hydraulic cylinder coupler between said vessel (20) and said torque arm (188).
- 66. The mooring system of claim 65 further comprising,an active forcing system coupled between said torque arm (188) and said vessel (20).
- 67. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein said at least one arm (150′) is coupled between said body and said vessel, said vessel having an externally mounted horizontal shaft (190) rotatably supported on said vessel, said connecting means including a torque arm (188) having lower, middle and top portions, said middle portion being secured to said horizontal shaft (190), said lower portion being secured to said second end of said arm (150′), and said passive damping means is coupled between said top portion of said torque arm (188) and said arm (150′).
- 68. The mooring system of claim 67 further comprising,an active forcing system coupled between said top portion of said torque arm (188) and said arm (150′).
- 69. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environment conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and in which said at least one arm (150″) is coupled between said body and said vessel (20′), said arm (150″) being buoyant and connected to said vessel by a pull-in coupling (210), said body including a turntable (44) having a horizontal shaft rotatably supported thereon, said connecting means including a torque arm (188′) having lower, middle and top portions, said lower portion being rotatably supported on said horizontal shaft, said middle portion of said torque arm (188′) rotatably supporting said first end of said arm (150″), said passive damping means coupled between said top portion of said torque arm (188′) and said arm (150″).
- 70. The mooring system of claim 69 further comprising an active forcing system coupled between said top portion of said torque arm (188′) and said arm (150″).
- 71. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the body of water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprisingpassive damping means for damping said oscillation of said vessel about said quiescent position, said passive damping means being in addition to the damping effect of water acting against the vessel or the arm, whereby magnitude of said oscillation of said vessel is reduced, and wherein said connecting means includes a torsion spring element (514) mounted on said vessel, and a torque actuator (512) is coupled to said torsion spring element (514) and pivotably coupled to said second end of said arm.
- 72. The mooring system of claim 71 whereinsaid torque actuator is a passive control hydraulic torque actuator means.
- 73. The mooring system of claim 71 whereinsaid torque actuator is a passive elastomeric torque actuator means.
- 74. The mooring system of claim 71 wherein said torque actuator is a passive disk brake torque actuator means.
- 75. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body (10′″) which is secured to the bottom of the body of water, where the mooring system includes at least one arm (311) coupled at a first end of the arm to the body (10′″), said arm (311) having a second end coupled to a frame (300) secured to said vessel, said arm having a pendular weight (302) coupled to said frame (300) by means of a tension member(304), said vessel characterized by oscillating displacements about a neutral position in response to environmental conditions of said body of water, said pendular weight (302) providing increasing force to said arm (311) in a direction to move said vessel toward said neutral position as a function of increasing distance that said vessel moves from said neutral position, and where the improvement comprisesa damping element (310, 315) coupled between said frame (300) and said arm (311).
- 76. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body (10′″) which is secured to the bottom of the body of water, where the mooring system includes at least one arm (311) coupled at a first end of the arm to the body (10′″), said arm (311) having a second end coupled to a frame (300) secured to said vessel, said arm having a pendular weight (302) coupled to said frame (300) by means of a tension member(304), said vessel characterized by oscillating displacements about a neutral position in response to environmental conditions of said body of water, said pendular weight (302) providing increasing force to said arm (311) in a direction to move said vessel toward said neutral position as a function of increasing distance that said vessel has moved from said neutral position, an improvement comprising,means for generating a displacement signal representative of displacement of said vessel from said neutral position, and means responsive to said displacement signal for applying a force to said arm in a direction to move said vessel toward said quiescent position.
- 77. The mooring system of claim 76 whereinsaid means responsive to said displacement signal includes a first motor driven winch (380) disposed on said vessel and a first flexible tension member coupled between said second end of said arm (311) and a second motor driven winch on said vessel coupled to said second end of said arm (311), by a second flexible tension member via a turning block coupled between said second winch and said vessel.
- 78. In a mooring system for maintaining a vessel at the surface of a body of water in a position in relation to a body which is secured to the bottom of the water, where the mooring system includes at least one arm coupled at a first end of the arm to the body, said arm having a second end coupled by connecting means to said vessel, said vessel experiencing oscillation of a certain magnitude in displacement about a quiescent position in response to environmental conditions of said body of water, an improvement comprising,coupling said first end of said arm to said body at a vertical position of said body which is at the intersection of a projection of an average roll axis of said vessel on said body.
- 79. The system of claim 78 whereinsaid body is a tower and said coupling at said first end of said body is a pivotable connection of a turntable on said tower.
- 80. The system of claim 79 whereinsaid connecting means for connecting said second end of said arm includes a damping mechanism.
CROSS REFERENCE TO RELATED APPLICATION
This Non-Provisional Application claims priority from Provisional Application 60/175,150 filed on Jan. 7, 2000.
US Referenced Citations (27)
Foreign Referenced Citations (2)
Number |
Date |
Country |
0798206 |
Oct 1997 |
EP |
8602806 |
Jun 1988 |
NL |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/175150 |
Jan 2000 |
US |