1. Field of Invention
Embodiments of the invention relate to fortified food and dietary supplement products which may be administered to produce desirable physiological improvement. In particular, embodiments of the invention relates to the administration of products enhanced with Morinda citrifolia and iridoids.
2. Background
Nutraceuticals may generally be defined as dietary products fortified to provide health and medical benefits, including the prevention and treatment of disease. Nutraceutical products include a wide range of goods including isolated nutrients, dietary supplements, herbal products, processed foods and beverages. With recent breakthroughs in cellular-level nutraceuticals agents, researchers, and medical practitioners are developing therapies complimentary therapies into responsible medical practice and maintenance of good health. Generally, nutraceutical include a product isolated or purified from foods, and are generally sold in forms that demonstrate a physiological benefit or provide protection against chronic disease.
There are multiple types of products that fall under the category of nutraceuticals. Nutraceuticals may be manufactured as dietary supplements, functional foods or medical product. A dietary supplement is a product that contains nutrients derived from food products that are concentrated in liquid, powder or capsule form. A dietary supplement is a product taken by mouth that contains a dietary ingredient intended to supplement the diet. Dietary ingredients in these products may include: vitamins, minerals, herbs or other botanicals, and substances such as enzymes and metabolites. Dietary supplements can also be extracts or concentrates, and may be found in many forms such as tablets capsules, softgels, gelcaps, liquides or powders.
Functional foods include ordinary food that has components or ingredients added to give it a specific medical or physiological benefit, other than a purely nutritional effect. Functional foods may be designed to allow consumers to eat enriched foods close to their natural state, rather than by taking dietary supplements manufactured in liquid or capsule form. Functional foods may be produced in their naturally-occurring form, rather than a capsule, tablet, or powder, can be consumed in the diet as often as daily, and may be used to regulate a biological process in hopes of preventing or controlling disease.
Some embodiments relate to formulations that provide a specific physiological benefit. Some embodiments relate to formulations designed to prevent or control disease. Some embodiments comprise a processed Morinda citrifolia products and a source of iridoids and methods for manufacturing the same.
Some embodiments provide a processed Morinda citrifolia product selected from a group consisting of: extract from the leaves of Morinda citrifolia, leaf hot water extract, processed Morinda citrifolia leaf ethanol extract, processed Morinda citrifolia leaf steam distillation extract, Morinda citrifolia fruit juice, Morinda citrifolia extract, Morinda citrifolia dietary fiber, Morinda citrifolia puree juice, Morinda citrifolia puree, Morinda citrifolia fruit juice concentrate, Morinda citrifolia puree juice concentrate, freeze concentrated Morinda citrifolia fruit juice, Morinda citrifolia seeds, Morinda citrifolia seed extracts, extracts from defatted Morinda citrifolia seeds and evaporated concentration of Morinda citrifolia fruit juice, in combination with an amount of iridoids sourced from at least one of a variety of plants.
Preferred embodiments are formulated to provide a physiological benefit. For example some embodiments may selectively inhibit COX-1/COX-2, regulate TNF and Nitric oxide and 5-LOX, increases IFN- secretion, inhibit histamine release, inhibit human neutrophils, regulate elastase enzyme activity, inhibit the complement pathway, inhibits the growth microbials including gram − and gram + bacteria, inhibit DNA repair systems, inhibit cancer cell growth & cytotoxic to cancer cells, inhibits platelets aggregations, provide DPPH scavenging effects, provide antiviral activity including anti-HSV, anti-RSV, and anti-VSV activity, provide antispasmodic activity, provide wound-healing and neuroprotective activities.
In order that the matter in which the above-recited and other advantages of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
It will be readily understood that the components of the present invention, as generally described herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of embodiments of the compositions and methods of the present invention is not intended to limit the scope of the invention, as claimed, but is merely representative of the presently preferred embodiments of the invention. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Embodiments of the present invention feature methods and compositions designed to provide a physiological benefit comprising a combination of a processed Morinda citrifolia product and a source of iridoids. The physiological benefit arising from the synergistic combination of a component derived from the Indian Mulberry or Morinda citrifolia L. plant and a source of iridoids.
Embodiments of the present invention comprise Morinda citrifolia compositions, each of which include one or more processed Morinda citrifolia L. products. The Morinda citrifolia product preferably includes Morinda citrifolia fruit juice, which juice is preferably present in an amount capable of maximizing the desired physiological benefit without causing negative side effects when the composition is administered to a mammal. Products from Morinda citrifolia may include one more parts of the Morinda citrifolia L. plant, including but not limited to the: fruit, including the fruit juice and fruit pulp and concentrates thereof, leaves, including leaf extract, seeds, including the seed oil, flowers, roots, bark, and wood.
Some compositions of the present invention comprise Morinda citrifolia extracts present between about 1 and 5 percent of the weight of the total composition. Other such percentage ranges include: about 0.1 and 50 percent; about 85 and 99 percent; about 5 and 10 percent; about 10 and 15 percent; about 15 and 20 percent; about 20 and 50 percent; and about 50 and 100 percent.
In some Morinda citrifolia compositions of the present invention, Morinda citrifolia fruit juice evaporative concentrate is present, the evaporative concentrate having a concentration strength (described further herein) between about 8 and 12 percent. Other such percentage ranges include: about 4 and 12 percent; and about 0.5 and 12 percent.
In some Morinda citrifolia compositions of the present invention, Morinda citrifolia fruit juice freeze concentrate is present, the freeze concentrate having a concentration strength (described further herein) between about 4 and 6 percent. Other such percentage ranges include: about 0.5 and 2 percent; and about 0.5 and 6 percent.
One or more Morinda citrifolia extracts can be further combined with other ingredients or carriers (discussed further herein) to produce a pharmaceutical Morinda citrifolia product or composition (“pharmaceutical” herein referring to any drug or product designed to improve the health of living organisms such as human beings or mammals, including nutraceutical products) that is also a Morinda citrifolia of the present invention. Examples of pharmaceutical Morinda citrifolia products may include, but are not limited to, orally administered solutions and intravenous solutions.
Methods of the present invention also include the obtaining of Morinda citrifolia compositions and extracts, including Morinda citrifolia fruit juice and concentrates thereof. It will be noted that some of the embodiments of the present invention contemplate obtaining the Morinda citrifolia fruit juice pre-made. Various methods of the present invention shall be described in more detail further herein.
The following disclosure of the present invention is grouped into subheadings. The utilization of the subheadings is for convenience of the reader only and is not to be construed as limiting in any sense.
General Description of the Morinda citrifolia L. Plant
The Indian Mulberry or Morinda citrifolia plant is known scientifically as Morinda Citrifolia L. The plant is native to Southeast Asia and has spread in early times to a vast area from India to eastern Polynesia. It grows randomly in the wild, and it has been cultivated in plantations and small individual growing plots. Although the fruit has been eaten by several nationalities as food, the most common use of the Morinda citrifolia plant has traditionally been as a red and yellow dye source.
The Morinda citrifolia plant is rich in natural ingredients including: (from the leaves): alanine, anthraquinones, arginine, ascorbic acid, aspartic acid, calcium, beta-carotene, cysteine, cystine, glycine, glutamic acid, glycosides, histidine, iron, leucine, isoleucine, methionine, niacin, phenylalanine, phosphorus, proline, resins, riboflavin, serine, beta-sitosterol, thiamine, threonine, tryptophan, tyrosine, ursolic acid, and valine; (from the flowers): acacetin-7-o-beta-d(+)-glucopyranoside, 5,7-dimethyl-apigenin-4′-o-beta-d(+)-galactopyranoside, and 6,8-dimethoxy-3-methylanthraquinone-1-o-beta-rhamnosyl-glucopyranoside; (from the fruit): acetic acid, asperuloside, butanoic acid, benzoic acid, benzyl alcohol, 1-butanol, caprylic acid, decanoic acid, (E)-6-dodeceno-gamma-lactone, (Z,Z,Z)-8,11,14-eicosatrienoic acid, elaidic acid, ethyl decanoate, ethyl hexanoate, ethyl octanoate, ethyl palmitate, (Z)-6-(ethylthiomethyl) benzene, eugenol, glucose, heptanoic acid, 2-heptanone, hexanal, hexanamide, hexanedioic acid, hexanoic acid (hexoic acid), 1-hexanol, 3-hydroxy-2-butanone, lauric acid, limonene, linoleic acid, 2-methylbutanoic acid, 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, methyl decanoate, methyl elaidate, methyl hexanoate, methyl 3-methylthio-propanoate, methyl octanoate, methyl oleate, methyl palmitate, 2-methylpropanoic acid, 3-methylthiopropanoic acid, myristic acid, nonanoic acid, octanoic acid (octoic acid), oleic acid, palmitic acid, potassium, scopoletin, undecanoic acid, (Z,Z)-2,5-undecadien-1-ol, and vomifol; (from the roots): anthraquinones, asperuloside (rubichloric acid), damnacanthal, glycosides, morindadiol, morindine, morindone, mucilaginous matter, nor-damnacanthal, rubiadin, rubiadin monomethyl ether, resins, soranjidiol, sterols, and trihydroxymethyl anthraquinone-monomethyl ether; (from the root bark): alizarin, chlororubin, glycosides (pentose, hexose), morindadiol, morindanigrine, morindine, morindone, resinous matter, rubiadin monomethyl ether, and soranjidiol; (from the wood): anthragallol-2,3-dimethylether; (from the tissue culture): damnacanthal, lucidin, lucidin-3-primeveroside, and morindone-6beta-primeveroside; (from the plant): alizarin, alizarin-alpha-methyl ether, anthraquinones, asperuloside, hexanoic acid, morindadiol, morindone, morindogenin, octanoic acid, and ursolic acid.
Processing Morinda citrifolia Leaves
The leaves of the Morinda citrifolia plant are one possible component of the Morinda citrifolia plant that may be present in some compositions of the present invention. For example, some compositions comprise leaf extract and/or leaf juice as described further herein. Some compositions comprise a leaf serum that is comprised of both leaf extract and fruit juice obtained from the Morinda citrifolia plant. Some compositions of the present invention comprise leaf serum and/or various leaf extracts as incorporated into a nutraceutical product (“nutraceutical” herein referring to any product designed to improve the health of living organisms such as human beings or mammals).
In some embodiments of the present invention, the Morinda citrifolia leaf extracts are obtained using the following process. First, relatively dry leaves from the Morinda citrifolia L. plant are collected, cut into small pieces, and placed into a crushing device—preferably a hydraulic press—where the leaf pieces are crushed. In some embodiments, the crushed leaf pieces are then percolated with an alcohol such as ethanol, methanol, ethyl acetate, or other alcohol-based derivatives using methods known in the art. Next, in some embodiments, the alcohol and all alcohol-soluble ingredients are extracted from the crushed leaf pieces, leaving a leaf extract that is then reduced with heat to remove all the liquid therefrom. The resulting dry leaf extract will herein be referred to as the “primary leaf extract.”
In some embodiments, the primary leaf extract is subsequently pasteurized. The primary leaf extract may be pasteurized preferably at a temperature ranging from 70 to 80 degrees Celsius and for a period of time sufficient to destroy any objectionable organisms without major chemical alteration of the extract. Pasteurization may also be accomplished according to various radiation techniques or methods.
In some embodiments of the present invention, the pasteurized primary leaf extract is placed into a centrifuge decanter where it is centrifuged to remove or separate any remaining leaf juice therein from other materials, including chlorophyll. Once the centrifuge cycle is completed, the leaf extract is in a relatively purified state. This purified leaf extract is then pasteurized again in a similar manner as discussed above to obtain a purified primary leaf extract.
Preferably, the primary leaf extract, whether pasteurized and/or purified, is further fractionated into two individual fractions: a dry hexane fraction, and an aqueous methanol fraction. This is accomplished preferably in a gas chromatograph containing silicon dioxide and CH2Cl2-MeOH ingredients using methods well known in the art. In some embodiments of the present invention, the methanol fraction is further fractionated to obtain secondary methanol fractions. In some embodiments, the hexane fraction is further fractionated to obtain secondary hexane fractions.
One or more of the leaf extracts, including the primary leaf extract, the hexane fraction, methanol fraction, or any of the secondary hexane or methanol fractions may be combined with the fruit juice of the fruit of the Morinda citrifolia plant to obtain a leaf serum (the process of obtaining the fruit juice to be described further herein). In some embodiments, the leaf serum is packaged and frozen ready for shipment; in others, it is further incorporated into a nutraceutical product as explained herein.
Processing Morinda citrifolia Fruit
Some embodiments of the present invention include a composition comprising fruit juice of the Morinda citrifolia plant. In some embodiments the fruit may be processed in order to make it palatable for human consumption and included in the compositions of the present invention. Processed Morinda citrifolia fruit juice can be prepared by separating seeds and peels from the juice and pulp of a ripened Morinda citrifolia fruit; filtering the pulp from the juice; and packaging the juice. Alternatively, rather than packaging the juice, the juice can be immediately included as an ingredient in another product, frozen or pasteurized. In some embodiments of the present invention, the juice and pulp can be pureed into a homogenous blend to be mixed with other ingredients. Other processes include freeze drying the fruit and juice. The fruit and juice can be reconstituted during production of the final juice product. Still other processes may include air drying the fruit and juices prior to being masticated.
In a currently preferred process of producing Morinda citrifolia fruit juice, the fruit is either hand picked or picked by mechanical equipment. The fruit can be harvested when it is at least one inch (2-3 cm) and up to 12 inches (24-36 cm) in diameter. The fruit preferably has a color ranging from a dark green through a yellow-green up to a white color, and gradations of color in between. The fruit is thoroughly cleaned after harvesting and before any processing occurs.
The fruit is allowed to ripen or age from 0 to 14 days, but preferably for 2 to 3 days. The fruit is ripened or aged by being placed on equipment so that the fruit does not contact the ground. The fruit is preferably covered with a cloth or netting material during aging, but the fruit can be aged without being covered. When ready for further processing the fruit is light in color, such as a light green, light yellow, white or translucent color. The fruit is inspected for spoilage or for excessive green color and firmness. Spoiled and hard green fruit is separated from the acceptable fruit.
The ripened and aged fruit is preferably placed in plastic lined containers for further processing and transport. The containers of aged fruit can be held from 0 to 30 days, but preferably the fruit containers are held for 7 to 14 days before processing. The containers can optionally be stored under refrigerated conditions prior to further processing. The fruit is unpacked from the storage containers and is processed through a manual or mechanical separator. The seeds and peel are separated from the juice and pulp.
The juice and pulp can be packaged into containers for storage and transport. Alternatively, the juice and pulp can be immediately processed into a finished juice product. The containers can be stored in refrigerated, frozen, or room temperature conditions. The Morinda citrifolia juice and pulp are preferably blended in a homogenous blend, after which they may be mixed with other ingredients, such as flavorings, sweeteners, nutritional ingredients, botanicals, and colorings. The finished juice product is preferably heated and pasteurized at a minimum temperature of 181° F. (83° C.) or higher up to 212° F. (100° C.). Another product manufactured is Morinda citrifolia puree and puree juice, in either concentrate or diluted form. Puree is essentially the pulp separated from the seeds and is different than the fruit juice product described herein.
The product is filled and sealed into a final container of plastic, glass, or another suitable material that can withstand the processing temperatures. The containers are maintained at the filling temperature or may be cooled rapidly and then placed in a shipping container. The shipping containers are preferably wrapped with a material and in a manner to maintain or control the temperature of the product in the final containers.
The juice and pulp may be further processed by separating the pulp from the juice through filtering equipment. The filtering equipment preferably consists of, but is not limited to, a centrifuge decanter, a screen filter with a size from 1 micron up to 2000 microns, more preferably less than 500 microns, a filter press, a reverse osmosis filtration device, and any other standard commercial filtration devices. The operating filter pressure preferably ranges from 0.1 psig up to about 1000 psig. The flow rate preferably ranges from 0.1 g.p.m. up to 1000 g.p.m., and more preferably between 5 and 50 g.p.m. The wet pulp is washed and filtered at least once and up to 10 times to remove any juice from the pulp. The resulting pulp extract typically has a fiber content of 10 to 40 percent by weight. The resulting pulp extract is preferably pasteurized at a temperature of 181° F. (83° C.) minimum and then packed in drums for further processing or made into a high fiber product.
The filtered juice and the water from washing the wet pulp are preferably mixed together. The filtered juice may be vacuum evaporated to a brix of 40 to 70 and a moisture of 0.1 to 80 percent, more preferably from 25 to 75 percent. The resulting concentrated Morinda citrifolia juice may or may not be pasteurized. For example, the juice would not be pasteurized in circumstances where the sugar content or water activity was sufficiently low enough to prevent microbial growth.
Processing Morinda citrifolia Seeds
Some Morinda citrifolia compositions of the present invention include seeds from the Morinda citrifolia plant. In some embodiments of the present invention, Morinda citrifolia seeds are processed by pulverizing them into a seed powder in a laboratory mill. In some embodiments, the seed powder is left untreated. In some embodiments, the seed powder is further defatted by soaking and stirring the powder in hexane—preferably for 1 hour at room temperature (Drug:Hexane-Ratio 1:10). The residue, in some embodiments, is then filtered under vacuum, defatted again (preferably for 30 minutes under the same conditions), and filtered under vacuum again. The powder may be kept overnight in a fume hood in order to remove the residual hexane.
Still further, in some embodiments of the present invention, the defatted and/or untreated powder is extracted, preferably with ethanol 50% (m/m) for 24 hours at room temperature at a drug solvent ratio of 1:2.
Processing Morinda citrifolia Oil
Some embodiments of the present invention may comprise oil extracted from the Morinda Citrifolia plant. The method for extracting and processing the oil is described in U.S. patent application Ser. No. 09/384,785, filed on Aug. 27, 1999 and issued as U.S. Pat. No. 6,214,351 on Apr. 10, 2001, which is incorporated by reference herein. The Morinda citrifolia oil typically includes a mixture of several different fatty acids as triglycerides, such as palmitic, stearic, oleic, and linoleic fatty acids, and other fatty acids present in lesser quantities. In addition, the oil preferably includes an antioxidant to inhibit spoilage of the oil. Conventional food grade antioxidants are preferably used.
Embodiments of the present invention comprise a source of iridoids compositions, each of which include one or more processed plant or naturally occurring. Iridoids are a class of secondary metabolites found in a wide variety of plants and in some animals. Iridoids represent a large and still expanding group of cyclopenta[c]pyran monoterpenoids found in a number of folk medicinal plants used as bitter tonics, sedatives, hypotensives, antipyretics, cough medicines, remedies for wounds and skin disorder. Typical structural formulas for common iridoids are depicted in
The iridoid source may be selected from a variety of plant families and species including (referred to as “List A” below in the formulations section of this application): Scrophylariaceae, Rubiaceae, Gentianaceae, Apocynaceae, Adoxaceae, Lamiaceae, Bignoniaceae, Oleaceae, Verbenaceae, Hydrangeaceae, Orobancaceae, Eucommiaceae, Scrophulariaceae, Acanthaceae, Galium verum, Morinda officinalis, Galium melanantherum, Pyrola calliatha, Radix Morindae, Pyrola xinjiangensis, Pyrola elliptica, Coussarea platyphylla, Craibiodendron henryi, Crotalaria emarginella, Cranberry, Saprosma scortechinii, Galium rivale, Arbutus andrachne, G. humifusum, G. paschale, G. mirum, G. macedonicum, G. rhodopeum, G. aegeum, Galium aparine, Vaccinium myrtillus, Vaccinium bracteatum, Bilberry, Blueberry, Olive, Morinda lucida, Lingonberries, Morinda parvifolia, Saprosma scortechinii, Arbutus andrachne, Cornus Canadensis, Cornus suecica, Galium species, Liquidambar formasans, Arbutus andrachne, Rhododendron luteum, Arbutus unedo, Subfamily Rubioideae, S. sagittatum, S. convolvulifolium, Arctostaphylos uva-ursi, Andromeda polifolia, Tripetaleia paniculata, Asperula adorata, Randia canthioides, Tecomella undulate, Thunbergia alata, Thunbergia fragrans, Mentzelia albescens, Deutzia scabra, Verbascum lychnitis, Mentzelia linleyi, Mentzelia lindleyi, Mentzelia lindbeimerii, Mentzelia involucrate, Randia canthioides, Lamiastrum galeobdolon, Teucrium bircanicum, Teucrium arduini, Betonica officinalis, Barleria prionitis, Harpagophytum procumbens, Ajuga decumbens, Anarrhinum orientale, Linaria clementei, Kickxia spuria, Veronicastrum sibiricum, Physostegia virginiana, Betonica officinalis, Clerodendrum thomsonae, Rebmannia glutinosa, Ajuga reptans, Rebmannia glutinosa, Penstemon nemorosus, Capraria biflora, Rogeria adenophylla, Ajuga spectabilis, Avecennia officinalis, Plantago asiatica, Vitex negundo, Penstemon cardwellii, Tecoma cbrysantha, Odontites verna, Verbascum sinuatum, Verbascum nigrum, Verbascum laxum, Buddleja globosa, Vitex agnuscastus, Penstemon eriantberus, Vitex rotundifolia, Euphrasia rostkoviana, Tecoma beptaphylla, Plantago media, Castilleja wightii, Rebmannia glutinosa, Tecoma beptaphylla, Castilleja rbexifolia, Utricularia australis, Verbascum saccatum, Verbascum sinuatum, Verbascum georgicum, Premna odorata, Premana japonica, Verbascum pulverulentum, Scrophularia scopolii, Scropbularia ningpoensis, Veronica officinalis, Besseya plantaginea, Veronicastrum sibiricum, Catalpa speciosa, Tabebuia rosea, Picrorbiza kurrooa, Veronica bellidioides, Penstemon nemorosus, Globularia alypum, Pinguicula vulgaris, Globularia Arabica, Antirrbinum orontium, Retzia capensis, Pbaulopsis imbricate, Macfadyena cynancboides, Paulownia tomentosa, Asystasia bella, Rebmannia glutinosa, Erantbemum pulcbellum, Hygropbila difformis, Boscbniakia rossica, Linaria cymbalaria, Satureja vulgaris, Lamium amplexicaule, Viburnum betulifolium, Viburnum bupebense, Tecoma stans, Plantago arenaria, Campsidium valdivianum, Campsis chinensis, Tecoma capensis, Penstemon pinifolius, Eupbrasia salisburgensis, Clerodendrum incisum, Clerodendrum incisum, Clerodendrum ugandense, Lamourouxia multifida, Nepeta cataria, Argylia radiate, Linaria cymbalaria, Monocbasma savatieri, Veronica anagallis-aquatica, Avicennia offinalis, Avicennia marina, Gentian, pedicellata, Alangium platanifolium, Lonicera coerulea, Swertica japonica, Melampyrum cristatum, Monochasma savatieri, Vitex negundo, Avicennia marina, Tarenna graveolens, Argylia radiate, Veronica anagallis-aquatica, Castilleja integra, Galium verum, Arbutus unedo, Galium mollugo, Andromeda polifolia, Gelsemium sempervirens, Verbena brasiliensis, Gelsemium sempervirens, Randia dumetorum, Penstemon barbatus, Odontites verna, Gentiana verna, Erytbraea centaurium, Gentiana pyrenaica, Desfontainia spinosa, Lonicera periclymenum, Strycbnos roborans, Pedicularis palustris, Penstemon nitidus, Citbarexylum fruticosum, Fouquieria diguetii, Nyctantbes arbortristis, Mussaenda, Besseya plantaginea, Stacbytarpbeta jamaicensis, Cantbium subcordatum, Barleria lupulina, Barleria prionitis, Plectronia odorata, Salvia digitaloides, Stacbytarpbeta mutabilis, Penstemon strictus, Duranta plumeri, Sesamum angolense, Rebmannia glutinosa, Parentucellia viscose, Melampyrum arvense, Gardenia jasminoides, Randia Formosa, Oldenlandia diffusa, Castilleja integra, Eupbrasia rostkoviana, Fouquieria diguetii, Penstemon nitidus, Feretia apodantbera, Randia cantbioides, Asystasia bella, Viburnum urceolatum, Gentiana depressa, Syring a reticulate, Deutzia scabra, Eccremocarpus scaber, Cistanche salsa, Rebmannia glutinosa, Catalpa ovate, Myoporum deserti, Teucrium marum, Gelsemium sempervirens, Viburnum urceolatum, Argylia radiate, Morinda lucida, Thunbergia gandiflora, Thunbergia alata, Thunbergia laurifolia, Mentzelia cordifolia, Angelonia integerrima, Linaria genstifolia, Caryopteris mongholica, Linaria arcusangeli, Leonurus persicus, Tubebuia impetiginosa, Phyllarthron madagascariense, Phsostegia virginiana, Harpagophytum procumbens, Caryopteris clandonensis, Cymbalaria muralis, Scrophularia buergeriana, Caryopteris mongholica, Caryopteris clandonensis, Verbascum undulatum, Globularia dumulosa, Pedicularis artselaeri, Utricularia vulgaris, Pedicularis chinensis, Verbascum phlomoides, Plantago subulata, Clerodendrum inerme, Scrophularia lepidota, Globularia davisiana, Globularia cordifolia, Holmskioldia sanguine, Gmelina philippensis, Scrophularia nodosa, Picrorhiza kurroa, Gmelina arborea, Penstemon newberryi, Asystasia intrusa, Catalpa fructus, Scrophularia scorodonia, Premna subscandens, Catalpa ovate, Verbascum spinosum, Scrophularia auriculata, Scrophularia lepidota, Veronica hederifolia, Tabebuia impetiginosa, Veronica pectinata var. glandulosa, Baleria strigosa, Pedicularis procera, Crescentia cujete, Thunbergia grandiflora, Thunbergia laurifolia, Viburnum suspensum, Pedicularis kansuensis, Nepeta Cilicia, Euphrasia pectinata, Penstemon parryi, Penstemon barrettiae, Tecoma capensis, Pedicularis plicata, Vitex altissima, Veronica anagallis-aquatica, Clerodendrum ineinie, Vitex agnus-castus, Dipsacus asperoides, Chioccoca alba, Alangium lamarckii, Cornus capitata, Strychnos nux-vomica, Alangium platanifolia var. trilobum, Gentiana linearis, Swertia franchetiana, Picconia excels, Clerodendrum inerme, Verbenoxylum reitzii, Leonurus persicus, Avicennia germinans, Canthium berberidifolium, Clerodendrum inerme, Avicennia officinalis, Lippia graveolens, Ajuga pseudoiva, Barleria lupulina, Calycophyllum spruceanum, Phlomis capitata, Phlomis nissolii, Premna barbata, Plantago alpine, Avicennia marina, Galium humifusum, Morinda coreia, Saprosma scortechinii, Plantago atrata, P. maritime, P. subulata, Erinus alpines, Paederia scandens, Tocoyena Formosa, Fagraea blumei, Hedyotis chrysotricha, Paederia scandens, Jasmium hemsleyi, Eucnide bartonioides, Rauwolfia serpentine, Picconi, excels, Gentiana kurroo, Nepeta cadmea, Gmelina philippensis, Penstemon mucronatus, Citharexylum caudatum, Phlomis aurea, Eremostachys glabra, Phlomis rigida, P. tuberose, Pedicularis plicata, Duranta erecta, Bouchea fluminensis, Phlomis brunneogaleata, Barleria lupulina, Zaluzianskya capensis, Thevetia peruviana, Plantago lagopus, Gardenoside (and its acid hydrolysis product), Asperuloside (and its acid hydrolysis product), Canthium schimperianum, Plantago arborescens, P. ovate, P. webbii, Plantago cornuti, Plantago hookeriana, Plantago altissima, Penstemon secudiflorus, Viburnum luzonicum, Galium lovcense, Nyetanthes arbor-tristis, Rothmania macrophylla, Myxopyrun smilacifolium, Nepeta racemosa, Linaria japonica, Viburnum ayavacense, Viburnum tinus, Viburnum rhytidophyllum, Viburnum lantana var. discolor, Viburnum prunifolium, Centranthus longiflorus, Viburnum sargenti, Plumeria obtuse, Dunnia sinensis, Morinda morindoides, Caryopteris clandonensis, Vitex rotundifolia, Globularia dumulosa, Pedicularis artselaeri, Cymbaria mongolica, Pedicularis kansuensis f. albiflora, Phlomis umbrosa, Dunnia sinensis, Gelsemium sempervirens, Verbena littoralis, Syringia afghanica, Tabebuia impetiginosa, Patrinia scabra, Catalpa fructus, Scrophularia lepidota, Lasianthus wallichii, Crescentia cujete, Kickxia elatine, K. spuria, K. commutate, Linaria arcusangeli, L. flava, Coelospermum billardieri, Randia spinosa, Asperula maximowiczii, Wulfenia carinthiaca, Fagraea blumei, Daphniphyllum calycinum, Penstemon ricbardsonii, Nardostachys chinensis, Sambucus ebulus, Penstemon confertus, Sambucus ebulus, Penstemon serrulatus, Penstemon birsutus, Viburnum furcatum, Viburnum betulifolium, Viburnum japonicum, Allamanda neriifolia, Plumeria acutifolia, Allamanda catbartica, Alstonia boonei, Actinidia polygama, Patrinia villosa, Patrinia gibbosa, Posoqueria latifolia, Strycbnos spinosa, Kigelia pinnata, Centrantbus ruber, Cerbera mangbas, Mentzelia spp., Teucrium marum, Eucommia ulmoides, Aucuba japonica, Gelsemium sempervirens, Syring a amurensis, Strychnos spinosa, Lonicera alpigena, Nauclea diderrichii, Olea europaea, Ligustrum japonicum, Swertia japonica, Swertia mileensis, Crucksbanksia verticillata, Gentiana asclepiadea, Jasminum multiflorum, Menyantbes trifoliate, Jasminum mesnyi, Jasminum azoricum, Jasminum sambac, Centaurium erythraea, Centaurium littorale, Gentiana gelida, Gentiana scabra, Jasmium burnile var. revolutum, Syring a vulgaris, Osmantbus ilicifolius, Ligustrum ovalifolium, Ligustrum obtusifolium, Gentiana pyrenaica, Isertia baenkeana, Olea europaea, Osmantbus fragrans, Exacum tetragonum, Hydrangea macrophylla, Hydrangea scandens, Abelia grandiflora, Dipsacus laciniatus, Scaevola racemigera, Erytbraea centaurium, Lisiantbus jefensis, Alyxia reinwardtii, Desfontainia spinosa, Patrinia saniculaefolia, Plantago asiatica, Plantago species, Gentiana species, Hapagophytum species, Pterocephalus perennis subsp. Perennis, Morinda citrifolia, Campsis grandiflora, Heracleum rapula, Syring a dilatata , Bartsia alpine, Hedyotis diffusa, Sickingia williamsii, Buddleja cordobensis, Borreria Verticillata and combinations thereof.
Some embodiments may utilize an iridoid source from any of the parts of the listed plants plant alone, in combination with each other or in combination with other ingredients. For example the leaves including leaf extracts, fruit, bark, seeds including seed oil, roots, oils, juice including the fruit juice and fruit pulp and concentrates thereof, or other product from the list of plants may be utilized as an iridoid source. Thus, while some of the parts of the plants are not mentioned above, some embodiments may use of one or more parts selected from all of the parts of the plant.
Some compositions of the present invention comprise a source of iridoids present between about 1 and 5 percent of the weight of the total composition. Other such percentage ranges include: about 0.01 and 0.1 percent; about 0.1 and 50 percent; about 85 and 99 percent; about 5 and 10 percent; about 10 and 15 percent; about 15 and 20 percent; about 20 and 50 percent; and about 50 and 100 percent.
In some embodiments the source of iridoids may be combined with other ingredients or carriers (discussed further herein) to produce a pharmaceutical grade source of iridoids (“pharmaceutical” herein referring to any drug or product designed to improve the health of living organisms such as human beings or mammals, including nutraceutical products).
In some embodiments various extracts may be utilized from one or more of the plants listed above. In some embodiments the extracts may comprise 7b-Acetoxy-10-O -acetyl-8a-hydroxydecapetaloside (Compound 2),10-Acetoxymajoroside, 7-O-Acetyl-10-O-acetoxyloganin, 6-O-Acetylajugol, 6-O(2_-O-Acetyl-3_-O-cinnamoyl-4_-O-p-methoxy cinnamoyl-a-Lrhamnopyranosyl) catalpol, 6-O-(3_-O-Acetyl-2_-O-trans-cinnamoyl)-a-L-rhamnopyranosyl catalpol, 8-O-Acetylclandonoside, 8-O-Acetyl-6-O-(p-coumaroyl)harpagide, 8-O-Acetyl-6-O-trans-p-coumaroylshanzhiside, 6-Acetyl deacetylasperuloside, 8-O-Acetyl-1-epi-shanzhigenin methyl ester, Acetylgaertneroside, 10-O-Acetylgeniposidic acid, 10-O-Acetyl-8a-hydroxydecapetaloside, 8-O-Acetyl-6b-hydroxyipolamide, 2-O-Acetyllamiridoside, 3-O-Acetylloganic acid, 4-O-Acetylloganic acid, 6-O-Acetylloganic acid, 6b-Acetyl-7b-(E)-p-methoxycinnamoyl-myxopyroside, 6b -Acetyl-7b-(Z)-p-methoxycinnamoyl-myxopyroside, 10-O-Acetylmonotropein, 8-O-Acetylmussaenoside, 10-O-Acetylpatrinoside, 3-O-Acetylpatrinoside, 6-O-Acetylplumieride-p-E-coumarate, 6-O-Acetylplumieride-p-Z-coumarate, 6-O-Acetylscandoside, 8-O-Acetylshanzhigenin methyl ester, 8-O-Acetylshanzhiside, Acuminatuside, Agnucastoside A (6-O-Foliamenthoylmussaenosidic acid), Agnucastoside B (6-O-(6,7-Dihydrofoliamenthoyl)-mussaenosidic acid), Agnucastoside C (7-O-trans-p-Coumaroyl-6-O-trans-caffeoyl-8-epi-loganic acid), Alatoside, Alboside I, Alboside II, Alboside III, Alpinoside, Angeloside, 6-O-b-D-Apiofuranosylmussaenosidic acid, 2-O-Apiosylgardoside, Aquaticoside A (6-O-Benzoyl-8-epi-loganic acid), Aquaticoside B (6-O-p-Hydroxybenzoyl-8-epi-log-anic acid), Aquaticoside C (6-O-Benzoylgardoside), Arborescoside, Arborescosidic acid, Arborside D, Arcusangeloside, Artselaenin A, Artselaenin C, Artselaenin B, Asperuloide A, Asperuloide B, Asperuloide C, Asperulosidic acid ethyl ester, 6-O-a-L-(2-O-Benzoyl,3-O-trans-p-coumaroyl) rhamnopyranosylcatalpol, 10-O-Benzoyldeacetylasperulosidic acid, 6-O-Benzoyl-8-epi-loganic acid, 6-O-Benzoylgardoside, 10-O-Benzoylglobularigenin, 10-Bisfoliamenthoylcatalpol, Blumeoside A Blumeoside B, Blumeoside C, Blumeoside D, Boucheoside, Brunneogaleatoside, 3b-Butoxy-3,4-dihydroaucubin, 6-O-Butylaucubin, 6-O-Butyl-epi-aucubin, 6-O-Caffeoylajugol, 10-O-Caffeoylaucubin, 6-O-trans-Caffeoylcaryoptosidic acid, 10-O-trans-p-Caffeoylcatalpol, 10-O-E-Caffeoylgeniposidic acid, 2-Caffeoylmussaenosidic acid, 6-O-trans-Caffeoylnegundoside, Caryoptosidic acid, Caudatoside A, Caudatoside B, Caudatoside C, Caudatoside D, Caudatoside E, Caudatoside F, Chlorotuberoside, 10-O-(Cinnamoyl)-6-(desacetyl-alpinosidyl)catalpol, 10-O-E-Cinnamoylgeniposidic acid, 8-O-Cinnamoylmussaenosidic acid, 8-Cinnamoylmyoporoside, 7b-Cinnamoyloxyugandoside (Serratoside A), 7-O-trans-p-Coumaroyl-6-O-trans-caffeoyl-8-epi-loganic acid, 6-O-a-L-(2-O-trans-Cinnamoyl)-rhamnopyranosylcatalpol, 6-O-a-L-(3-O-trans-Cinnamoyl)-rhamnopyranosylcatalpol, 6-O-a-L-(4-O-trans-Cinnamoyl)-rhamnopyranosylcatalpol, Citrifolinin A, Citrifolinoside A, Clandonensine, Clandonoside, Clandonoside II, Coelobillardin, 6-O-trans-p-Coumaroyl-8-O-acetylshanzhiside methyl ester, 6-O-cis-p-Coumaroyl-8-O-acetylshanzhiside methyl ester, 6-O-(p-Coumaroyl)antirrinoside, 10-O-cis-p-Coumaroylasystasioside E, 10-O-trans-p-Coumaroylasystasioside E, 6-O-p-Coumaroylaucubin, 6-O-p-trans-Coumaroylcaryoptosidic acid, 6-O-cis-p-Coumaroylcatalpol, 10-O-cis-p-Coumaroylcatalpol, 6-O-trans-p-Coumaroyl-7-deoxyrehmaglutin A, 6-O-cis-p-Coumaroyl-7-deoxyrehmaglutin A, 2-trans-p-Coumaroyldihydropenstemide, 2-O-Coumaroyl-8-epi-tecomoside, 1 0-O-trans-Coumaroyleranthemoside, 10-O-E-p-Coumaroylgeniposidic acid, 7-O-Coumaroylloganic acid, Crescentin I, Crescentin II, Crescentin III, Crescentin IV, Crescentin V, 6-O-trans-p-Coumaroylloganin, 6-O-cis-p-Coumaroylloganin, 7-O-p-Coumaroylpatrinoside, 2-O-Coumaroylplantarenaloside, 6-O-(4-O-p-Coumaroyl-b-D-xylopyranosyl)-aucubin, 7b-Coumaroyloxyugandoside, Crescentoside A, Crescentoside B, Crescentoside C, Cyanogenic glycoside of geniposidic acid, Daphcalycinosidine A, Daphcalycinosidine B, Davisioside, Deacetylalpinoside (Arborescosidic acid), Dehydrogaertneroside, Dehydromethoxygaertneroside, 5-Deoxyantirrhinoside, 4-Deoxykanokoside A, 4-Deoxykanokoside C, 6-Deoxymelittoside, 5-Deoxysesamoside, Desacetylhookerioside, Des-p-hydroxybenzoylkisasagenol B, 2,3-Diacetylisovalerosidate, 2,3-Diacetylvalerosidate, 6-O-a-L-(2-O-,3-O-Dibenzoyl,4-O-cis-p-coumaroyl) rhamnopyranosylcatalpol, 6-O-a-L-(2-O-,3-O-Dibenzoyl,4-O-trans-p-coumaroyl) rhamnopyranosylcatalpol, 6-O-a-L-(2-O-,3-O-Dibenzoyl)rhamnopyranosylcatalpol, 6a-Dihydrocornic acid, 6b-Dihydrocornic acid, 6-O-(6,7-Dihydrofoliamenthoyl)-mussaenosidic acid, 3,4-Dihydro-3a-methoxypaederoside, 3,4-Dihydro-3b-methoxypaederoside, 3,4-Dihydro-6-O-methylcatalpol, 5,6b-Dihydroxyadoxoside, 2-(2,3-Dihydroxybenzoyloxy)-7-ketologanin, 5b,6b-Dihydroxyboschnaloside, Dimer of paederosidic acid, Dimer of paederosidic acid and paederoside, Dimer of paederosidic acid and paederosidic acid methyl ester, 6-O-(3,4-Dimethoxybenzoyl)crescentin IV 3-O-b -D-glucopyranoside, 10-O-(3,4-Dimethoxy-(E)-cinnamoyl)-aucubin, 10-O-(3,4-Dimethoxy-(Z)-cinnamoyl)-catalpol, 10-O-(3,4-Dimethoxy-(E)-cinnamoyl)-catalpol, 6-O -[3-O-(trans-3,4-Dimethoxycinnamoyl)-a-L-rhamnopyranosyl]-aucubin, Dumuloside, Dunnisinin, Dunnisinoside, Duranterectoside A, Duranterectoside B, Duranterectoside C, Duranterectoside D, 6-epi-8-O-Acetylharpagide, 6-O-epi-Acetylscandoside, 6,9-epi-8-O-Acetylshanzhiside methyl ester, 8-epi-Apodantheroside, 1,5,9-epi-Deoxyloganic acid glucosyl ester, 5,9-epi-7,8-Didehydropenstemoside, (5a-H)-6a-8-epi-Dihydrocornin, 8-epi-Grandifloric acid, 7-epi-Loganin, 8-epi-Muralioside, 5,9-epi-Penstemoside, 3-epi-Phlomurin, 1-epi-Shanzhigenin methyl ester, 8-epi-Tecomoside (7b-Hydroxyplantarenaloside), 7b,8b-Epoxy-8a-dihydrogeniposide, 7,8-Epoxy-8-epi-loganic acid, 6b,7b-Epoxy-8-epi-splendoside, Epoxygaertneroside, Epoxymethoxygaertneroside, Erinoside, 8-O-Feruloylharpagide, 7-O-E-Feruloylloganic acid, 7-O-Z-Feruloylloganic acid, 6-O-E-Feruloylmonotropein, 10-O-E-Feruloylmonotropein, 6-O-trans-Feruloylnegundoside, 6-O-a-L-(4-O-cis-Feruloyl)-rhamnopyranosylcatalpol, 6-O-Foliamenthoylmussaenosidic acid, 2-O-Foliamenthoylplantarenaloside, Formosinoside, 10-O-b-D-Fructofuranosyltheviridoside, Gaertneric acid, Gaertneroside, 6-O-a-D-Galctopyranosylharpagoside, 6-O-a-D-Galactopyranosylsyringopicroside, Gelsemiol-6-trans-caffeoyl-1-glucoside, Globuloside A, Globuloside B, Globuloside C, 3-O-b-D-Glucopyranosylcatalpol, 6-O-(4-O-b-Glucopyranosyl)-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester, 6-O-a-D-Glucopyranosylloganic acid, 3-O-b-Glucopyranosylstilbericoside, 6-O-a-D-Glucopyranosylsyringopicroside, 3-O-b-D-Glucopyranosylsyringopicroside, 4-O-b-D-Glucopyranosylsyringopicroside, 3-O-b-D-Glucopyranosyltheviridoside, 6-O-b-D-Glucopyranosyltheviridoside, 10-O-b-D-Glucopyranosyltheviridoside, 4-O-Glucoside of linearoside (7-O-(4-O-Glucosyl)-coumaroylloganic acid), Glucosylmentzefoliol, Gmelinoside A, Gmelinoside B, Gmelinoside C, Gmelinoside D, Gmelinoside E, Gmelinoside F, Gmelinoside G, Gmelinoside H, Gmelinoside I, Gmelinoside J, Gmelinoside K, Gmelinoside L, Gmephiloside (1-O-(8-epi-Loganoyl)-b-D-glucopyranose), Grandifloric acid, GSIR-1, Hookerioside, 6a-Hydroxyadoxoside, 6-O-p-Hydroxybenzoylasystasioside, 2-O-p-Hydroxybenzoyl-6-O-trans-caffeoyl-8-epi-loganic acid, 2-O-p-Hydroxybenzoyl-6-O-trans-caffeoylgardoside, 6-0-p-Hydroxybenzoylcatalposide, 3-O-(4-Hydroxybenzoyl)-10-deoxyeucommiol-6-O-b-D-glucopyranoside, 2-O-p-Hydroxybenzoyl-8-epi-loganic acid, 6-O-p-Hydroxybenzoyl-8-epi-loganic acid, 2-O-p-Hydroxybenzoylgardoside, 6-O-p-Hydroxybenzoylglntinoside, 7-O-p-Hydroxybenzoylovatol-1-O-(6_-O-p-hydroxybenzoyl)-b-D-glucopyranoside, 8-0(−2-Hydroxycinnamoyl)harpagide, 5-Hydroxydavisioside, 10-Hydroxy-(5a-H)-6-epi-dihydrocornin, 1b-Hydroxy-4-epi-gardendiol, 6b-Hydroxy-7-epi-loganin, (5a-H)-6a-Hydroxy-8-epi-loganin, 7b-Hydroxy-11-methylforsythide, 6b-Hydroxygardoside methyl ester, 6a-Hydroxygeniposide, 4-Hydroxy-E-globularinin, 7b-Hydroxyharpagide, 5-Hydroxyloganin, 7b-Hydroxyplantarenaloside, Humifusin A, Humifusin B, Inerminoside A, Inerminoside A1, Inerminoside B, Inerminoside C, Inerminoside D, Ipolamidic acid, Iridoid dimer of asperuloside and asperulosidic acid, Iridolactone, Iridolinarin A, Iridolinarin B, Iridolinarin C, Iridolinaroside A, 6-O-Isoferuloyl ajugol, 10-O-trans-Isoferuloylcatalpol, Isosuspensolide E, Isosuspensolide F, Isounedoside, Isovibursinoside II, Isoviburtinoside III, Jashemsloside A, Jashemsloside B, Jashemsloside C, Jashemsloside D, Jashemsloside E (6S-7-O-{6-O-[b-D-apiofuranosyl-(1→6)-b-Dglucopyranosyl]menthiafolioyl}-loganin, Kansuenin, Kansuenoside, 7-Ketologanic acid, Kickxin, Lamidic acid, Lantanoside, Linearoside (7-O-Coumaroylloganic acid), Lippioside I (6-O-p-trans-Coumaroylcaryoptosidic acid), Lippioside II (6-O-trans-Caffeoylcaryoptosidic acid), Loganic acid-6-O-b-D-glucoside, Lupulinoside, Luzonoid A, Luzonoid B, Luzonoid C, Luzonoid D, Luzonoid E, Luzonoid F, Luzonoid G, Luzonoside A, Luzonoside B, Luzonoside C, Luzonoside D, Macedonine, Macrophylloside, 7-O-(6-O-Malonyl)-cachinesidic acid (Malonic ester of 8-hydroxy-8-epiloganic acid), Melittoside 3-O-b-glucopyranoside, 5-O-Menthiafoloylkickxioside, 6-O-Menthiafoloylmussaenosidic acid, Mentzefoliol, 6-O-(4-Methoxybenzoyl)-5,7-bisdeoxycynanchoside, 6-m-Methoxybenzoylcatalpol, 6-O-(4-Methoxybenzoyl)crescentin IV (3-O-b-D-glucopyranoside), 10-044-Methoxybenzoyl)impetiginoside A, 7-O-(p-Methoxybenzoyl)-tecomoside, 6-O-p-Methoxy-trans-cinnamoyl-8-O-acetylshanzhiside methyl ester, 6-O-p-Methoxy-cis-cinnamoyl-8-O-acetylshanzhiside methyl ester, 10-O-trans-p-Methoxycinnamoylasystasioside E, 10-O-cis-p-Methoxycinnamoyl asystasioside E, 10-O -cis-p-Methoxycinnamoylcatalpol, 10-O-trans-p-Methoxycinnamoylcatalpol, 8-O-Z-p-Methoxycinnamoylharpagide, 6-O-Z-p-Methoxycinnamoylharpagide, 8-O-E-p-Methoxycinnamoylharpagide, 6-O-E-p-Methoxycinnamoylharpagide, 1b-Methoxy-4-epi-gardendiol, 1b-Methoxy-4-epi-mussaenin A, 1a-Methoxy-4-epi-mussaenin A, Methoxygaertneroside, 1b-Methoxygardendiol, 4-Methoxy-Z-globularimin, 4-Methoxy-Z-globularinin, 4-Methoxy-E-globularimin, 4-Methoxy-E-globularinin, 6-O-[3-O-(trans-p-Methoxycinnamoyl)-a -L-rhamnopyranosyl]-aucubin, 1b-Methoxylmussaenin A, 6-O-Methyl-epi-aucubin, Muralioside (7b-Hydroxyharpagide), Myxopyroside, Nepetacilicioside, Nepetanudoside, Nepetanudoside B, Nepetanudoside C, Nepetanudoside D, Nepetaracemoside A, Nepetaracemoside B, Ningpogenin (revision of 1-dehydroxy-3,4-dihydroaucubingenin), Officinosidic acid (5-Hydroxy-10-O-(p-methoxycinnamoyl)-adoxosidic acid), Ovatic acid methyl ester-7-046-O-p-Hydroxybenzoye-b -D-glucopyranoside, Ovatolactone-7-O-(6-O-p-hydroxybenzoyl)-b-D-glucopyranoside, 7-Oxocarpensioside, Paederoscandoside, Paederosidic acid methyl ester, Patrinioside, Pedicularis-lactone, Phlomiside, Phlomoidoside (6-O-(4-O-p-Coumaroyl-b-D-xylopyranosyl)-aucubin), Phlomurin, Phlorigidoside A (2-O-Acetyllamiridoside), Phlorigidoside B (8-O-Acetyl-6b-hydroxyipolamide), Phlorigidoside C (5-Deoxysesamoside), Picconioside 1, Picroside IV, Picroside V (6-m-Methoxybenzoylcatalpol), Pikuroside, Plicatoside A, Plicatoside B, Premnaodoroside D, Premnaodoroside E, Premnaodoroside F [isomeric mixture of A and B in ratio (1:1)], Premnaodoroside G (isomeric mixture of (C) and (D)), Premnosidic acid, Proceroside (7-Oxocarpensioside), Randinoside, Saletpangponoside A [6-O-(4-O-b-Glucopyranosyl)-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester], Saletpangponoside B, Saletpangponoside C, Sammangaoside C (Melittoside 3-O-b-glucopyranoside), Saprosmoside A, Saprosmoside B, Saprosmoside C, Saprosmoside D, Saprosmoside E, Saprosmoside F, Saprosmoside G, Saprosmoside H, Scorodioside (6-O-(3-O-Acetyl-2_-O-trans-cinnamoyl)-a-L-rhamnopyranosyl catalpol), Scrolepidoside, Scrophuloside A1, Scrophuloside A2, Scrophuloside A3, Scrophuloside A4, Scrophuloside A5, Scrophuloside A6, Scrophuloside A7, Scrophuloside A8, Scrophuloside B4 [6-O-(2_-O-Acetyl-3_-O-cinnamoyl-4_-O-p-methoxy cinnamoyl-a-L rhamnopyranosyl)catalpol], Scrovalentinoside, Senburiside III, Senburiside IV, Serratoside A, Serratoside B, Shanzhigenin methyl ester, 6-O-Sinapoyl scandoside methyl ester, Sintenoside, Stegioside I, Stegioside II, Stegioside III, Syringafghanoside, 7,10,2,6-Tetra-O-acetylisosuspensolide F, 7,10,2,3-Tetra-O-acetylisosuspensolide F, 7,10,2—,3_-Tetra-O-acetylsuspensolide F, Thunaloside, 7,10,2-Tri-O-acetylpatrinoside, 7,10, 2-Tri-O-acetylsuspensolide F, 6-O-a-L-(2-O-,3-O-,4-O-Tribenzoyl)-rhamnopyranosylcatalpol, 6-O-(3—,4—,5_-Trimethoxybenzoyl)ajugol, Unbuloside (6-O-[(2-O-trans-Feruloyl)-a-L-rhamnopyranosyl]-aucubin), Urphoside A, Urphoside B, Verbaspinoside (6-O-[(2_-O-trans-Cinnamoyl)-a -L-rhamnopyranosyl]-catalpol), Viburtinoside I, Viburtinoside II, Viburtinoside III, Viburtinoside IV, Viburtinoside V, Viteoid I, Viteoid II, Wulfenoside [(10-O-(Cinnamoylalpinosidyl)-6-(desacetyl-alpinosidyl)-catalpol)], Yopaaoside A, Yopaaoside B, Yopaaoside C, Zaluzioside (6b-Hydroxygardoside methyl ester), Abelioside A, Abelioside A dimethyl acetal, Abelioside B, 10-Acetoxyoleuropein, 2′-O -Acetyldihydropensternide, 2′-O-Acetylpatrinoside, 13-0-Acetylplurnieride, 7-O-Acetylsecologanol, 2′-O-Acetylswert˜amain1, 10-0-Acetylviburnalloside, Actinidialactone, Allarnancin I, Allarncidin A, Allarncidin B, Allamcidin B P-c-glucose, Allarncin, Allaneroside, Allodolicholactone, 3-0-AllosylcerberidoI, 3-O-Allosylcyclocerberidol, 3-0-Allosylepoxycerbeeridol, Alpigenoside, Arnarogentin, Amaroswerin, 6′-O-Apiosylebuloside m, Azoricin, 3, IO-Bis-O-allosylcerberidol, Boonein, 13-0-Caffeoylplurnieride, Centauroside, Cerberic acid, Cerberidol, Cerberinic acid, Cerbinal, Confertoside, 4′-O-cis-p-Cournaroyl-7a-rnorronisi, 4′-O-truns-p-Coumaroyl-7a-rnorronisi, 4′-O-cis-p-Cournaroyl-7P-rnorronisi, 4′-O-truns-p-Cournaroyl-7-morronisi, 13-O-Coumaroylplurnieride, Cyclocerberidol, Decentapicrin A, kentapicrin B, Decentapicrin C, Deglucoserrulatoside, Deglucosyl plumieride, Dehydroiridodialo-P-D-gentiobioside, Dehydroiridomyrrnecin, 5,6-Dehydrojasrninin, Demethyloleuropein, 1-Deoxyeucomrniol, 9′-hxyjasrninigenin, 10-Deoxyptrinoside, 10-Deoxyptrinoside aglycone, 10-Deoxypensternide, 13-Deoxyplumieride, Desacetylcentapicrin, Desfontainic acid, Desfontainoside, 2′,3′-O-Diacetylfurcatoside C, 8,9-Didehydro-7-hydroxydolichodial, Diderroside, 7,7-O-Dihydroebuloside, Dihydrcepinepetalactone, Dihydrofoliamenthin, 8.9-Dihydrojasrninin, Dihydropensternide, P-Dihydroplurnericinic acid glucosyl ester, Dihydroserruloside, Dolichodial, Dolicholactone, Ebuloside, 8-epi-Dihydropensternide, 7-epi-Hydrangenoside A, 7-epi-Hydrangenoside C, 7-epi-Hydrangenoside E, 8-epi-Kingiside, 8-epi-Valerosidate, 7-rpt-Vogeloside, Epoxycerberidol, 11-Ethoxyviburtinal, Eucommioside 1, Eucommioside II, Fliederoside 1,2′-O-Foliarnenthoyldihydropensternide, Furcatoside A, Furcatoside B, Furcatoside C, Gelidoside I, Gelserniol, Gelserniol-1-glucoside, Gelsemiol-3-glucoside, Gentiogenal, Gentiopicral, Gentiopicroside, 7-O-Gentiroylsecologanol, Gibboside, G′-O-˜-˜-Glucosylgentiopicrosid, (7iR)-Haenkeanoside I, (7S)-Haenkeanoside I, Hiiragilide, Hydrangenoside A Hydrangenoside B, Hydrangenoside C, Hydrangenoside D, Hydrangrnoside E, Hydrangenoside F, Hydrangenoside G, 9″-Hydroxyasrnesoside, 9″-Hydroxyjasrnesosldic acid, (7R)-IO-Hydroxyrnorroniside, (7s)-IO-Hydroxymorroniside, 10-Hydroxyoleoside dimethyl ester, 10-Hydroxyoleuropein, Ibotalactone A, Ibotalactone B, Iridodialo-P-D-gentiobioside, Lsoactinidialactone, lsoallarnandicin, lsodehydroiridornyrmecin, Isodihydroepinepetalacton, Isodolichodial, Isoepiiridomyrmecin, (7R)-lsohaenkeanoside, (7S)-lsohaenkeanoside, Lsoligustroside, isoneonepetalactone, Isonuezhenide, Lsooleuropein, 8-lsoplumieride, Isosweroside, Jasrnesoside, Jasminin-10″-O-glucoside, Jasminoside, Jasmisnyiroside, Jasmolactone A, Jasmolactone B, Jasmolactone B dimethylare, Jasmolactone C, Jasmolactone D, Jasmolactone D tetramethylare, Jasmoside, Jiofuran, Jioglutolide, Kingiside aglycone, Laciniatoside V, Latifonin, Ligustaloside A, Ligusraloside B, Ligusraloside B dimethyl acetal, Ligustrosidic acid, Ligustrosidic acid methyl ester, Lilacoside, Lisianthoside, Menthiafolin, Mentzerriol, 7a-Methoxysweroside, 3-0-Methylallamancin, 3-0-Mrthylallamcin, Methyl glucooleoside, Methylgrandifloroside, (7R)-O -Methylhaenkeanoside, (7S)-O-Methylhaenkeanoside, (7R)-O-Methylisohaenkeanosidel, (7S)-O-Mrthylisohaenkranoside, (7R)-O-Methylmorronisidr, (7S)-O-Methylmorroniside, Methyl syramuraldehydate, 6′-O-[(2R)-Methyl-3-veratroyloxypropanoyl, 6′-0-[(2R)-MethyI-3-veratroyloxypropanoyl, 7a-Morroniside, 7P-Morroniside, Nardosrachin, Neonuezhenide, Neooleuropein, 4aa,7a,7a-Nepetalactone, 4aa, 7a, 7a P-Nepetalactone, 4ap, 70,7a P-Nepetalactone, Nepetariasidc, Nepetaside, Norviburtinal, Oleoactcosidr, 7a-morroniside, 7P-morronisidr, Olebechinacoside, Olmnuezhenide, Oleoside dimethyl ester, Oleuropeinic acid, Oleuropeinic acid methyl ester, Oleuroside, Oruwacin, Oxysporone, Patrinalloside, Penstebioside, Penstemide aglycone, Plumenoside, Plumiepoxide, 1a-Plumieride, Plumieride coumarare, Plumieride coumarate glucoside, Plumieridine, Posoquenin, 1a-Protoplumericin A, Protoplumericin A, Protoplumericin B, Pulorarioside, Rehmaglutin, Sambacin, Sambacolignoside, Sambacoside A, Sambacoside E, Sambacoside F, Scabraside, Scaevoloside, Secologanin dimethyl acetal, Secologanol, Secologanoside, Secologanoside dimethyl ester, Secoxyloganin, Serrulatoloside, Serrulatoloside aglycon, Serrulatoside, Serruloside, Stryspinolactone, Suspensolide A, Suspensolide A aglycone, Suspensolide B, Suspensolide C, Swertiamarin, Syringalactonr A, Syringalactonr B, 6′-0-Vanilloyl-8-ept-kingiside, Viburnalloside, Villosol, Villosoloside, Adoxoside, Agnuside, Allarnnmdin, Allamdin, Amaropentin, Antirride, Antirrinoside, Asperuloside, Asperulosidic acid, Aucubin, Aucubin Acetate, Aucuboside, Aucubieenin-1-P-i˜onialtopidc, Haldrinal, Darlerin, Dartsioeide, Iloschnalosiile, Cantleyoside, Caryoptoeide, Catalpol, Catalpol Yonoacetate, Catalposide, Centapicrin, 7-Chlorodeutziol, Cornin, Uaphylloslde, Deacetyl-Asperuloside, Decaloside, Decapetaloside, 5-9 Dehydro-nepetalactcne, Deoxl-amaropentin, 10-Deoxy Aucubin, Deoxyloeanin, Deutziol, Didrovaltrate, Dihydrofoliamenthin, Dihydropenstemide, Dihydroplumericin, 8-Dihydro Plumericinic acid, Durantoride-I, Elenolide, Epoxydeculoside, Erythroccntaurine, IO-Ethylapodanthoside, Eucommiol, Eustomoruside, Eustomoside, Eustoside, Feretoside, Foliamenthin, Forsythide, Forsythide Methyl Ester, llethyl Grandiiloroside, 11-llethyl Isoside, Lllneroeide, Jlioporoeide, 31ononielittoeirle, 316notropein, Monotronein, Jlorroniside, 31uesaenoside, Saucledd, Seomatatabiol, Sepetalactcne, Suzhenide, Jdontoride, Odontosidc Aretate, I Jleuropein, Opulus Iridoid, Opului lridoid, Onin-arin, 7-Clxologanin, I'aederoelde, I'nederoaidic, I'atrinoside, I'lumericin, Lieptoside, Sarracenin, Scabroside, Scandoside, Scandoride, Srrophularioride, Cutellariosid, ecoealioside, Secologanir, Secolopanin, Ecoivloeanin, Shanzhiside llethyl Ester, Specioside, Stilberiecside, Strictoside, Sn-eroside 1, Swertiamnrin, S-lvestroside-I, yl-estroside-II, Svl-estroside-III, Svrineoside, TLretnoeide, Tecomoside, Tecoside, Teucrium, Teucriuni Lactone B, Teucrium Lactone C, Teucriuni Lactone D, Vaccinioside, Valechlorine, Valeridine, Valerosidate and Taltrate, Haqnlpol.
Methods of the present invention comprise the administration and/or consumption of a combination of a processed Morinda citrifolia product and a source of iridoids in an amount designed to produce a desirable physiological response. It will be understood that specific dosage levels of any compositions that will be administered to any particular patient will depend upon a variety of factors, including the patient's age, body weight, general health, gender, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular diseases undergoing therapy or in the process of incubation.
Studies performed have revealed that Iridoids in combination with a processed Morinda citrifolia product exhibit unexpected synergistic bioactivity including; neuroprotective, anti-tumor, anti-inflammatory, anti-oxidant, cardiovascular, anti-hepatotoxic, choleretic, hypoglycemic, hypolipidemic, antispasmodic, antiviral, antimicrobial, immunomodulator, antiallergic, anti-leishmanial, and molluscicidal effect.
Preferred embodiments are formulated to provide a physiological benefit. For example, some embodiments may provide an anti-inflammatory activity selectively inhibit COX-1/COX-2 and/or by regulating regulate TNF□, Nitric oxide and 5-LOX; regulate immunomodulation by increases IFN- secretion; provide antiallergic activity by inhibiting histamine release; provide anti-arthritic activity by inhibiting human neutrophils, regulating elastase enzyme activity, inhibiting the complement pathway; provide antimicrobial activity by inhibiting the growth of various microbials including gram − and gram + bacteria; providing antifungal activity by inhibiting DNA repair systems; provide anticancer activity by inhibiting cancer cell growth and by being cytotoxic to cancer cells; provide anticoagulant activity by inhibiting platelets aggregations; provide antioxidant activity by providing DPPH scavenging effects; provide antiviral activity including anti-HSV, anti-RSV, and anti-VSV activity; provide antispasmodic activity; provide wound-healing activity by stimulating the growth of human dermal fibroblasts; and provide neuroprotective activities by blocking the release of lactate dehydrogenase (LDH), and enhancing Nerve Growth Factor-potentiating (NGF) activity.
Methods of the present invention also include manufacturing a composition comprising an iridoid source and/or extracts. Each of the methods described above in the discussion relevant to processing the Morinda citrifolia plant products may likewise be utilized to process the constitutive elements of plant being utilized as a source of iridoids.
For example the leaves of one or more of the plants listed above may be processed. For example, some compositions comprise leaf extract and/or leaf juice. Some compositions comprise a leaf serum that is comprised of both leaf extract and fruit juice obtained from one or more plants. Some compositions of the present invention comprise leaf serum and/or various leaf extracts as incorporated into a nutraceutical product (“nutraceutical” herein referring to any product designed to improve the health of living organisms such as human beings or mammals).
In some embodiments of the present invention, the leaf extracts are obtained using the following process. First, relatively dry leaves from the selected plant or plants are collected, cut into small pieces, and placed into a crushing device—preferably a hydraulic press—where the leaf pieces are crushed. In some embodiments, the crushed leaf pieces are then percolated with an alcohol such as ethanol, methanol, ethyl acetate, or other alcohol-based derivatives using methods known in the art. Next, in some embodiments, the alcohol and all alcohol-soluble ingredients are extracted from the crushed leaf pieces, leaving a leaf extract that is then reduced with heat to remove all the liquid therefrom. The resulting dry leaf extract will herein be referred to as the “primary leaf extract.”
In some embodiments, the primary leaf extract is subsequently pasteurized. The primary leaf extract may be pasteurized preferably at a temperature ranging from 70 to 80 degrees Celsius and for a period of time sufficient to destroy any objectionable organisms without major chemical alteration of the extract. Pasteurization may also be accomplished according to various radiation techniques or methods.
In some embodiments of the present invention, the pasteurized primary leaf extract is placed into a centrifuge decanter where it is centrifuged to remove or separate any remaining leaf juice therein from other materials, including chlorophyll. Once the centrifuge cycle is completed, the leaf extract is in a relatively purified state. This purified leaf extract is then pasteurized again in a similar manner as discussed above to obtain a purified primary leaf extract.
Preferably, the primary leaf extract, whether pasteurized and/or purified, is further fractionated into two individual fractions: a dry hexane fraction, and an aqueous methanol fraction. This is accomplished preferably in a gas chromatograph containing silicon dioxide and CH2Cl2-MeOH ingredients using methods well known in the art. In some embodiments of the present invention, the methanol fraction is further fractionated to obtain secondary methanol fractions. In some embodiments, the hexane fraction is further fractionated to obtain secondary hexane fractions.
One or more of the leaf extracts, including the primary leaf extract, the hexane fraction, methanol fraction, or any of the secondary hexane or methanol fractions may be combined with the processed Morinda citrifolia product to obtain a leaf serum. In some embodiments, the leaf serum is packaged and frozen ready for shipment; in others, it is further incorporated into a nutraceutical product as explained herein.
Some embodiments of the present invention include a composition comprising fruit juice from one or more of the listed plants. Each of the methods described above in the discussion relevant to processing the Morinda citrifolia juice products may likewise be utilized to process the fruit of the plant being utilized as a source of iridoids.
Some embodiments comprise the use of seeds from the list of plants provided. Each of the methods described above in the discussion relevant to processing seeds from the Morinda citrifolia plant may likewise be utilized to process the seeds of plant being utilized as a source of iridoids.
Some embodiments of the present invention may comprise oil extracted from the plant and/or plants selected as the source of iridoids. Each of the methods described above in the discussion relevant to processing the Morinda citrifolia plant to produce an oil extract may likewise be utilized to process the constitutive elements of plant being utilized as a source of iridoids.
The present invention features compositions and methods for providing a desirable physiological effect. Several embodiments of the Morinda citrifolia and iridoid compositions comprise various different ingredients, each embodiment comprising one or more forms of a processed Morinda citrifolia and a source of iridoids as explained herein.
Compositions of the present invention may comprise any of a number of Morinda citrifolia components such as: extract from the leaves of Morinda citrifolia, leaf hot water extract, processed Morinda citrifolia leaf ethanol extract, processed Morinda citrifolia leaf steam distillation extract, Morinda citrifolia fruit juice, Morinda citrifolia extract, Morinda citrifolia dietary fiber, Morinda citrifolia puree juice, Morinda citrifolia puree, Morinda citrifolia fruit juice concentrate, Morinda citrifolia puree juice concentrate, freeze concentrated Morinda citrifolia fruit juice, Morinda citrifolia seeds, Morinda citrifolia seed extracts, extracts taken from defatted Morinda citrifolia seeds, and evaporated concentration of Morinda citrifolia fruit juice in combination with a source of iridoids. Compositions of the present invention may also include various other ingredients. Examples of other ingredients include, but are not limited to: artificial flavoring, other natural juices or juice concentrates such as a natural grape juice concentrate or a natural blueberry juice concentrate; carrier ingredients; and others as will be further explained herein.
Any compositions having the leaf extract from the plant or plants being utilized a as source of iridoids and the Morinda citrifolia leaves, may comprise one or more of the following: the primary leaf extract, the hexane fraction, methanol fraction, the secondary hexane and methanol fractions, the leaf serum, or the nutraceutical leaf product.
In some embodiments of the present invention, active ingredients from the plant or plants being utilized as a source of iridoids and the Morinda citrifolia plant may be extracted out using various procedures and processes. For instance, the active ingredients may be isolated and extracted out using alcohol or alcohol-based solutions, such as methanol, ethanol, and ethyl acetate, and other alcohol-based derivatives using methods known in the art. These active ingredients or compounds may be isolated and further fractioned or separated from one another into their constituent parts. Preferably, the compounds are separated or fractioned to identify and isolate any active ingredients that might help to prevent disease, enhance health, or perform other similar functions. In addition, the compounds may be fractioned or separated into their constituent parts to identify and isolate any critical or dependent interactions that might provide the same health-benefiting functions just mentioned.
Any components and compositions of Morinda citrifolia and/or ingredients from the plant or plants being utilized as a source of iridoids may be further incorporated into a nutraceutical product (again, “nutraceutical” herein referring to any product designed to improve the health of living organisms). Examples of nutraceutical products may include, but are not limited to: topical products, oral compositions and various other products as may be further discussed herein.
Oral compositions may take the form of, for example, tablets, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, syrups, or elixirs. Such compositions may contain one or more agents such as sweetening agents, flavoring agents, coloring agents, and preserving agents. They may also contain one or more additional ingredients such as vitamins and minerals, etc. Tablets may be manufactured to contain one or more Morinda citrifolia components and ingredient(s) from the plant or plants being utilized as a source of iridoids in admixture with non-toxic, pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be used.
Aqueous suspensions may be manufactured to contain the Morinda citrifolia components and ingredient(s) from the plant or plants being utilized as a source of iridoids in admixture with excipients suitable for the manufacture of aqueous suspensions. Examples of such excipients include, but are not limited to: suspending agents such as sodium carboxymethyl-cellulose, methylcellulose, hydroxy-propylmethycellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as a naturally-occurring phosphatide like lecithin, or condensation products of an alkylene oxide with fatty acids such as polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols such as heptadecaethylene-oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitor monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides such as polyethylene sorbitan monooleate.
Typical sweetening agents may include, but are not limited to: natural sugars derived from corn, sugar beets, sugar cane, potatoes, tapioca, or other starch-containing sources that can be chemically or enzymatically converted to crystalline chunks, powders, and/or syrups. Also, sweeteners can comprise artificial or high-intensity sweeteners, some of which may include aspartame, sucralose, stevia, saccharin, etc. The concentration of sweeteners may be between from 0 to 50 percent by weight of the composition, and more preferably between about 1 and 5 percent by weight.
Typical flavoring agents can include, but are not limited to, artificial and/or natural flavoring ingredients that contribute to palatability. The concentration of flavors may range, for example, from 0 to 15 percent by weight of the composition. Coloring agents may include food-grade artificial or natural coloring agents having a concentration ranging from 0 to 10 percent by weight of the composition.
Typical nutritional ingredients may include vitamins, minerals, trace elements, herbs, botanical extracts, bioactive chemicals, and compounds at concentrations from 0 to 10 percent by weight of the composition. Examples of vitamins include, but are not limited to, vitamins A, B1 through B12, C, D, E, Folic Acid, Pantothenic Acid, Biotin, etc. Examples of minerals and trace elements include, but are not limited to, calcium, chromium, copper, cobalt, boron, magnesium, iron, selenium, manganese, molybdenum, potassium, iodine, zinc, phosphorus, etc. Herbs and botanical extracts may include, but are not limited to, alfalfa grass, bee pollen, chlorella powder, Dong Quai powder, Echinacea root, Gingko Biloba extract, Horsetail herb, Indian mulberry, shitake mushroom, spirulina seaweed, grape seed extract, etc. Typical bioactive chemicals may include, but are not limited to, caffeine, ephedrine, L-carnitine, creatine, lycopene, etc.
The ingredients to be utilized in a topical dermal product may include any that are safe for internalizing into the body of a mammal and may exist in various forms, such as gels, lotions, creams, ointments, etc., each comprising one or more carrier agents.
In one exemplary embodiment, a composition of the present invention comprises one or more of a processed Morinda citrifolia component present in an amount by weight between about 0.01 and 100 percent by weight, and preferably between 0.01 and 95 percent by weight in combination with a processed iridoid source present in an amount by weight between about 0.01 and 100 percent by weight, and preferably between 0.01 and 95 percent by weight. Several embodiments of formulations are included in U.S. Pat. No. 6,214,351, issued on Apr. 10, 2001, which are herein incorporated by reference. However, these compositions are only intended to be exemplary, as one ordinarily skilled in the art will recognize other formulations or compositions comprising the processed Morinda citrifolia product.
In another exemplary embodiment, the internal composition comprises the ingredients of: processed Morinda citrifolia fruit juice or puree juice present in an amount by weight between about 0.1-80 percent; a processed source of iridoids present in an amount by weight between about 0.1-20 percent; and a carrier medium present in an amount by weight between about 20-90 percent.
The processed Morinda citrifolia product and/or processed source of iridoids is the active ingredient or contains one or more active ingredients, such as quercetin, rutin, scopoletin, octoanoic acid, potassium, vitamin C, terpenoids, alkaloids, anthraquinones (such as nordamnacanthal, morindone, rubiandin, B-sitosterol, carotene, vitamin A, flavone glycosides, linoleic acid, Alizarin, amino acides, acubin, L-asperuloside, caproic acid, caprylic acid, ursolic acid, and a putative proxeronine and others. Active ingredients may be extracted utilizing aqueous or organic solvents including various alcohol or alcohol-based solutions, such as methanol, ethanol, and ethyl acetate, and other alcohol-based derivatives using any known process in the art. The active iridoid ingredients and/or quercetin and rutin may be present in amounts by weight ranging from 0.01-10 percent of the total formulation or composition. These amounts may be concentrated as well into a more potent concentration in which they are present in amounts ranging from 10 to 100 percent.
The composition comprising Morinda citrifolia and a source of iridoids may be manufactured for oral consumption. It may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents, preserving agents, and other medicinal agents as directed.
The following compositions or formulations represent some of the preferred embodiments contemplated by the present invention.
1.0-50
0.5-30
0.5-25
0.5-20
Konjac/Xanthan Gum
0.1-35
Konjac/Xanthan Gum
1.0-90
0.5-60
0.5-60
0.5-60
Konjac/Xanthan Gum
Morinda citrifolia fruit nectar from pure noni puree from
Vitis vinifera (White Grape) Juice Concentrate
Olea europaea (Olive) Leaf Extract
Vaccinium macrocarpum (Cranberry) Juice Concentrate
Morinda citrifolia Fruit Nectar From Pure Noni Puree From
Vitis labrusca (Concord Grape) Juice Concentrate
Vitis vinifera (White Grape) Juice Concentrate
Morinda citrifolia Fruit Nectar From Pure Noni Puree From
Malus pumila (Apple) Juice Concentrate
Mangifera indica (Mango) Juice Concentrate
Passiflora edulis (Passionfruit) Juice Concentrate
Morinda citrifolia (Noni) Fruit Puree
Morinda citrifolia (Noni) Leaf Tea
Morinda citrifolia Fruit Nectar From Pure Noni Puree From
Morinda citrifolia (Noni) Fruit Nectar from Pure Noni Puree
Cornus mas (Cornelian Cherry) Puree
Cornus officinalis Reconstituted Juice
Vitis vinifera (White Grape) Juice Concentrate
Vaccinium corymbosum (Blueberry) Juice from Concentrate
Prunus cerasus (Red Sour Cherry) Juice Concentrate
Vitis labrusca (Concord Grape) Juice Concentrate
Olea europea (Olive) Leaf Extract
Vaccinium macrocarpum (Cranberry) Juice Conc.
Morinda citrifolia Fruit Nectar From Pure Noni Puree From
Vitis vinifera (White Grape) Juice Concentrate
Malus domestica (Apple) Juice Concentrate
Ribes nigrum (Black Currant) Juice Concentrate
Vitis labrusca (Concord Grape) Juice Concentrate
Vaccinium corymbosum (Blueberry) Juice Concentrate
Rubus idaeus (Red Raspberry) Juice Concentrate
Morinda citrifolia (Noni) Leaf Juice
Avena sativa (Oat) Kernel Extract
Tropaeolum majus Flower Extract
Morinda citrifolia (Noni) Seed Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Aloe barbadensis Leaf Juice
Sinorhizobium meliloti Ferment Filtrate
Carthamus tinctorius (Safflower) Seed Oil
Prunus armeniaca (Apricot) Kernel Oil
Morinda citrifolia (Noni) Fruit Juice
Avena sativa (Oat) Kernel Extract
Hordeum distichon (Barley) Extract
Santalum album (Sandalwood) Extract
Phellodendron amurense Bark Extract
Morinda citrifolia (Noni) Seed Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Morinda citrifolia (Noni) Leaf Juice
Gardenia jasminoides Meristem Cell Culture
Olea europaea (Olive) Leaf Extract
Camellia oleifera Leaf Extract
Rosmarinus officinalis (Rosemary) Leaf Extract
Stevia
Morinda citrifolia (Noni) Fruit Fiber
Stevia
Morinda citrifolia (Noni) Fruit Fiber
Stevia
Morinda citrifolia (Noni) Fruit Fiber
Morinda citrifolia (Noni) Fruit Puree
Aloe barbadensis (Aloe Vera) Gel
Taraxacum officinale (Dandelion)
Psyllium Husk Fiber
Stevia
Morinda citrifolia (Noni) Fruit Fiber
Psyllium Husk Fiber
Morinda citrifolia (Noni) Fruit Fiber
Stevia
Vanilla Extract
Morinda citrifolia (Noni) Fruit Juice
Vanilla
Vanilla
Morinda citrifolia (Noni) Fruit juice
Morinda citrifolia (Noni) Fruit pulp
Morinda citrifolia (Noni) Fruit Pulp
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Leaf Extract
Camellia sinensis (Green Tea) Leaf
Morinda citrifolia (Noni) Leaf Tea
Jasminum odoratissimum (Jasmine) Flowers
Morinda citrifolia (Noni) Leaf
Morinda citrifolia (Noni) Leaf Juice
Vanilla tahitensis (Vanilla) Fruit Extract
Morinda citrifolia (Noni) Leaf Extract
Morinda citrifolia (Noni) Leaf Juice
Morinda citrifolia (Noni) Leaf Extract
Vanilla tahitensis (Vanilla) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Pulp
Morinda citrifolia (Noni) Pulp
Morinda citrifolia (Noni) Pulp
Morinda citrifolia (Noni) Fruit Powder
Morinda citrifolia (Noni) Fruit Juice
Hypericum perforatum (St. Johns Wort) Extract
Passiflora incarnata (Passion Flower) Extract
Morinda citrifolia (Noni) Fruit Pulp
Morinda citrifolia (Noni) Fruit Juice
Panax ginseng Root Extract
Eleutherococcus senticosus Root Extract
Schisandra chinensis Fruit Extract
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Fruit Pulp
Crataegus pinnatifida (Chinese Hawthorn) Berry Extract
Commiphora mukul (Guggul) Resin Extract
Zingiber officinale (Ginger) Rhizome Extract
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Fruit Pulp
Curcuma longa (Curcumin) Root Extract
Morinda citrifolia (Noni) Fruit Juice Concentrate
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Fruit Pulp
Bacopa monnieri (Bacopa) Plant Extract
Ginkgo biloba (Ginkgo) Leaf Extract
Lycopodium serratum (Huperzine) Plant Extract
Cocos nucifera (Coconut) Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Butyrospermum parkii (Shea Butter)
Theobroma cacao (Cocoa) Seed Butter
Mangifera indica (Mango) Seed Butter
Morinda citrifolia (Noni) Seed Oil
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Cocos nucifera (Coconut) Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Butyrospermum parkii (Shea Butter)
Mangifera indica (Mango) Seed Butter
Theobroma cacao (Cocoa) Seed Butter
Morinda citrifolia (Noni) Seed Oil
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Carica papaya (Papaya) Fruit Extract
Vanilla tahitensis Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Cocos nucifera (Coconut) Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Butyrospermum parkii (Shea Butter)
Theobroma Cacao (Cocoa) Seed Butter
Mangifera indica (Mango) Seed Butter
Morinda citrifolia (Noni) Seed Oil
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Mangifera indica (Mango) Fruit Extract
Bougainvillea glabra (Bougainvillea) Flower
Gardenia tahitensis (Tiare) Flower
Cocos nucifera (Coconut) Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Butyrospermum parkii (Shea Butter)
Threobroma cacao (Cocoa) Seed Butter
Mangifera indica (Mango) Seed Butter
Morinda citrifolia (Noni) Seed Oil
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Prunus persica (Peach) Fruit Extract
Carica papaya (Papaya) Fruit Extract
Vanilla tahitensis (Vanilla) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Pikea robusta (Red Algae) Extract
Macadamia integrifolia (Macadamia) Seed Oil
Adiantum pedatum (Tropical Fern) Extract
Citrus aurantifolia (Lime) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Gardenia tahitensis (Tiare) Flower
Glycine Soja (Soybean) Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Carica papaya (Papaya) Fruit Extract
Vanilla tahitensis (Vanilla) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Bougainvillea glabra (Bougainvillea) Flower Extract
Mangifera indica (Mango) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Carica papaya (Papaya) Fruit Extract
Prunus persica (Peach) Fruit Extract
Vanilla tahitensis (Vanilla) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Cocos nucifera (Coconut) Oil
Elaeis guineensis (Palm) Oil
Morinda citrifolia (Noni) Fruit Juice
Citris Aurantium dulcis (Orange) Oil
Glycine soja (Soybean) Oil
Cananga odorata (Ylang Ylang) Oil
Aleurites moluccana (Kukui) Seed Oil
Mangifera indica (Mango) Seed Oil
Macadamia
ternifolia (Macadamia) Seed Oil
Morinda citrifolia (Noni) Seed Oil
Jasminum officinale (Jasmine) Oil
Calophyllum tacamahaca (Tamanu) Seed Oil
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Fruit Juice
Mangifera indica (Mango) Seed Butter
Pikea robusta (Red Algae) Extract
Gardenia tahitensis (Tiare) Flower
Morinda citrifolia (Noni) Seed Oil
Citrus grandis (Grapefruit) Fruit Extract
Rosmarinus officinalis (Rosemary) Leaf Extract
Macadamia integrifolia (Macadamia) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Cocos nucifera (Coconut) Oil
Mangifera indica (Mango) Seed Butter
Pikea robusta (Red Algae) Extract
Gardenia tahitensis (Tiare) Flower
Morinda citrifolia (Noni) Seed Oil
Hedychium coronium (Awapuhi) Root Extract
Aleurites moluccana (Kukui) Seed Extract
Plumeria rubra (Plumeria) Flower Extract
Colocasia antiquorum (Taro) Root Extract
Macadamia integrifolia (Macadamia) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Cocos nucifera (Coconut) Oil
Mangifera indica (Mango) Seed Butter
Threobroma cacao (Cocoa) Seed Butter
Pikea robusta (Red Algae) Extract
Morinda citrifolia (Noni) Seed Oil
Ficus carica (Fig) Fruit Extract
Hedychium coronarium (Awapuhi) Root Extract
Citrus aurantifolia (Lime) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Pikea robusta (Red Algae) Extract
Citrus grandis (Grapefruit) Fruit Extract
Hedychium coronarium (White Ginger) Root Extract
Saponaria officinalis (Soapwort) Extract
Morinda citrifolia (Noni) Fruit Juice
Cocos nucifera (Coconut) Oil
Pikea robusta (Red Algae) Extract
Morinda citrifolia (Noni) Seed Oil
Hedychium coronarium (Awapuhi) Root Extract
Saponaria officinalis (Soapwort) Root Extract
Aleurites moluccana (Kukui) Seed Extract
Plumeria rubra (Plumeria) Flower Extract
Colocasia antiquorum (Taro) Root Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Pikea robusta (Red Algae) Extract
Hedychium coronarium (Awapuhi) Root Extract
Ficus carica (Fig) Fruit Extract
Citrus aurantifolia (Lime) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Ananas sativus (Pineapple) Fruit Extract
Carica papaya (Papaya) Fruit Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Prunus amygdalus dulcis (Sweet Almond) Oil
Elaeis guineensis (Palm) Oil
Butyrospermum parkii (Shea Butter)
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Seed Oil
Vitis vinifera (Grape) Seed Extract
Gardenia tahitensis Flower
Morinda citrifolia (Noni) Fruit Juice
Aleurites moluccana (Kukui) Seed Oil
Morinda citrifolia (Noni) Seed Oil
Pyrus malus (Apple) Fruit Extract
Carthamus tinctorius (Safflower) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Pyrus malus (Apple) Fruit Extract
Morinda citrifolia (Noni) Seed Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Fiber
Morinda citrifolia (Noni) Fruit Fiber
Garcinia Cambogia Fruit Extract
Morinda citrifolia (Noni) Fruit Fiber
Morinda citrifolia (Noni) Fruit Juice
Carthamus tinctorius (Safflower) Seed Oil
Helianthus annuus (Sunflower) Seed Oil
Morinda citrifolia (Noni) Seed Oil
Morinda citrifolia (Noni) Fruit Fiber
Morinda citrifolia (Noni) Seed Oil
Morinda citrifolia (Noni) Fruit Fiber
Morinda citrifolia (Noni) Fruit Fiber
Morinda citrifolia (Noni) Fruit Fiber
Calendula Flower Extract (Calendula officinalis)
Ricinus communis (Castor) Seed Oil
Euphorbia cerifera (Candelilla) Wax
Butyrospermum parkii (Shea Butter)
Morinda citrifolia (Noni) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia
ternifolia (Macadamia) Seed Oil
Prunus amygdalus dulcis (Sweet Almond) Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Ricinus communis (Castor) Seed Oil
Euphorbia cerifera (Candelilla) Wax
Butyrospermum parkii (Shea Butter)
Morinda citrifolia (Noni) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia
ternifolia (Macadamia) Seed Oil
Prunus amygdalus dulcis (Sweet Almond) Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Ricinus communis (Castor) Seed Oil
Euphorbia cerifera (Candelilla) Wax
Butyrospermum parkii (Shea Butter)
Morinda citrifolia (Noni) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia ternifolia (Macadamia) Seed Oil
Prunus amygdalus dulcis (Sweet Almond) Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Carthamus tinctorius (Safflower) Seed Oil
Helianthus annuus (Sunflower) Seed Oil
Morinda citrifolia (Noni) Seed Oil
Rosmarinus officinalis (Rosemary) Leaf Extract
Avena sativa (Oat) Kernel Flour
Morinda citrifolia (Noni) Fruit Juice
Aloe barbadensis (Aloe) Leaf Juice
Morinda citrifolia (Noni) Puree
Aloe barbadensis (Aloe) Leaf Juice
Cocos nucifera (Coconut) Extract
Cyamopsis tetragonoloba (Guar) Gum
Morinda citrifolia (Noni) Fruit Puree
Aloe barbadensis (Aloe) Leaf Juice
Carica papaya (Papaya) Fruit Extract
Helianthus annuus (Sunflower) Seed Oil
Morinda citrifolia (Noni) Fruit Puree
Aloe barbadensis (Aloe) Leaf Juice
Laminaria digitata (Seaweed) Extract
Morinda citrifolia (Noni) Fruit Puree
Aloe barbadensis (Aloe) Leaf Juice
Laminaria digitata (Seaweed) Extract
Morinda citrifolia (Noni) Fruit Juice
Prunus amygdalus dulcis (Sweet Almond) Oil
Butyrospermum parkii (Shea Butter)
Elaeis guineensis (Palm) Oil
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Vitis vinifera (Grape) Seed Extract
Gardenia tahitensis (Tiare) Flower
Morinda citrifolia (Noni) Fruit Juice
Pikea robusta (Red Algae) Extract
Macrocystis pyrifera (Sea Kelp) Extract
Avena sativa (Oat) Kernel Extract
Morinda citrifolia (Noni) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Pikea robusta (Red Algae) Extract
Macrocystis pyrifera (Sea Kelp) Extract
Avena sativa (Oat) Kernel Extract
Morinda citrifolia (Noni) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Pikea robusta (Red Algae) Extract
Adiantum pedatum (Maidenhair) Extract
Citrus aurantifolia (Lime) Fruit Extract.
Morinda citrifolia (Noni) Fruit Juice
Salix nigra (Willow) Bark Extract
Morinda citrifolia (Noni) Leaf Juice
Curcuma longa (Tumeric) Root Extract
Morinda citrifolia (Noni) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Chondrus crispus (Carrageenan)
Pikea robusta (Red Algae) Extract
Salix nigra (Willow) Bark Extract
Amorphophallus konjac (Konjac) Root Powder
Ocimum basilicum (Basil) Leaf Extract
Citrus grandis (Grapefruit) Fruit Extract
Moringa pterygosperma (Moringa) Seed Extract
Macrocystis pyrifera (Kelp) Extract
Helianthus annuus (Sunflower) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Seed Oil
Calophyllum inophyllum (Tamanu) Seed Oil
Moringa oleifera Seed Oil
Laminaria digitata (Algae) Extract
Macrocystis pyrifera (Kelp) Extract
Gardenia tahitensis (Tiare) Flower
Morinda citrifolia (Noni) Fruit Juice Concentrate
Rosmarinus officinalis (Rosemary) Leaf Extract
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Glycine soja (Soybean) Seed Extract
Glycine soja (Soybean) Sterol
Pikea robusta (Red Algae) Extract
Gardenia tahitensis (Tiare) Flower
Macrocystis pyrifera (Kelp) Extract
Morinda citrifolia (Noni) Leaf Extract
Avena sativa (Oat) Kernel Extract
Rosmarinus officinalis (Rosemary) Leaf Extract
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Glycine soja (Soybean) Seed Extract
Glycine soja (Soybean) Sterols
Morinda citrifolia (Noni) Leaf Juice
Pikea robusta (Red Algae) Extract
Calophyllum inophyllum (Tamanu) Seed Oil
Macrocystis pyrifera (Kelp) Extract
Avena sativa (Oat) Kernel Extract
Morinda citrifolia (Noni) Leaf Extract
Gardenia tahitensis (Tiare) Flower
Musa sapientum (Banana) Flower Extract
Centella asiatica (Hydrocotyl) Extract
Rosmarinus officinalis (Rosemary) Leaf Extract
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Moringa oleifera Seed Oil
Glycine soja (Soybean) Seed Extract
Glycine soja (Soybean) Sterol
Morinda citrifolia (Noni) Leaf Juice
Cocos nucifera (Coconut) Oil
Pikea robusta (Red Algae) Extract
Macrocystis pyrifera (Kelp) Extract
Morinda citrifolia (Noni) Leaf Extract
Curcuma longa (Turmeric) Root Extract
Vanilla tahitensis (Vanilla) Fruit Extract
Centella asiatica (Hydrocotyl) Extract
Musa sapientum (Banana) Extract
Gardenia tahitensis (Tiare) Flower
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Moringa oleifera Seed Oil
Glycine soja (Soybean) Seed Extract
Glycine soja (Soybean) Sterol
Morinda citrifolia (Noni) Leaf Juice
Cocos nucifera (Coconut) Oil
Pikea robusta (Red Algae) Extract
Macrocystis pyrifera (Kelp) Extract
Morinda citrifolia (Noni) Leaf Extract
Curcuma longa (Turmeric) Root Extract
Vanilla tahitensis (Vanilla) Fruit Extract
Centella asiatica (Hydrocotyl) Extract
Musa sapientum (Banana) Extract
Gardenia tahitensis (Tiare) Flower
Hordeum distichon (Barley) Extract
Morinda citrifolia (Noni) Fruit Juice
Glycine soja (Soybean) Seed Extract
Santalum album (Sandalwood) Extract
Phellodendron amurense Bark Extract
Glycine soja (Soybean) Sterols
Morinda citrifolia (Noni) Leaf Juice
Pikea robusta (Red Algae) Extract
Macrocystis pyrifera (Kelp) Extract
Avena sativa (Oat) Kernel Extract
Morinda citrifolia (Noni) Leaf Extract
Musa sapientum (Banana) Flower Extract
Centella asiatica (Hydrocotyl) Extract
Butyrospermum parkii (Shea Butter)
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Cocos nucifera (Coconut) Oil
Plumeria rubra Flower Extract
Colocasia antiquorum (Taro) Root Extract
Aleurites moluccana (Kukui) Seed Extract
Gardenia tahitensis Flower
Macadamia integrifolia (Macadamia) Seed Oil
Moringa oleifera (Moringa) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Leaf Juice
Pisum sativum (Pea) Extract
Bambusa vulgaris (Bamboo) Extract
Morinda citrifolia (Noni) Leaf Extract
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Macadamia integrifolia (Macadamia) Seed Oil
Moringa oleifera Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Seed Oil
Cocos nucifera (Coconut) Oil
Tropaeolum majus (Nasturtium) Flower/Leaf/Stem Extract
Morinda citrifolia (Noni) Leaf Juice
Arctostaphylos uva ursi (Bearberry) Leaf Extract
Gardenia tahitensis (Tiare) Flower
Morinda citrifolia (Noni) Leaf Extract
Rosmarinus officinalis (Rosemary) Leaf Extract
Macadamia integrifolia (Macadamia) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Morinda citrifolia (Noni) Fruit Juice
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Seed Oil
Glycine soja (Soybean) Seed Extract
Glycine soja (Soybean) Sterols
Morinda citrifolia (Noni) Leaf Juice
Pikea robusta (Red Algae) Extract
Pisum sativum (Pea) Extract
Calophyllum inophyllum (Tamanu) Seed Oil
Chlorella vulgaris Extract
Bambusa vulgaris (Bamboo) Leaf/Stem Extract
Macrocystis pyrifera (Kelp) Extract
Morinda citrifolia (Noni) Leaf Extract
Gardenia tahitensis Flower
Musa sapientum (Banana) Flower Extract
Centella asiatica (Hydrocotyl) Extract
Rosmarinus officinalis (Rosemary) Leaf Extract
Bambusa arundinacea (Bamboo) Stem Powder
Morinda citrifolia (Noni) Fruit Juice
Aleurites moluccana (Kukui) Seed Oil
Macadamia integrifolia (Macadamia) Seed Oil
Cocos nucifera (Coconut) Oil
Chondrus crispus (Carrageenan)
Morinda citrifolia (Noni) Seed Oil
Macadamia ternifolia (Macadamia) Seedcake
Cocos nucifera (Coconut) Shell Powder
Gardenia tahitensis (Tiare) Flower
Rosmarinus officinalis (Rosemary) Leaf Extract
Macadamia integrifolia (Macadamia) Seed Oil
Helianthus annuus (Sunflower) Seed Oil
Aleurites moluccana (Kukui) Seed Oil
Mangifera indica (Mango) Seed Butter
Cocos nucifera (Coconut) Oil
Morinda citrifolia (Noni) Seed Oil
Gardenia tahitensis (Tiare) Flower
Ananas sativus (Pineapple) Fruit Extract
Colocasia antiquorum (Taro) Root Extract
Carica papaya (Papaya) Fruit Extract
Morinda citrifolia (Noni) Fruit Juice Concentrate
Morinda citrifolia (Noni) Fruit Juice
Morinda citrifolia (Noni) Leaf Juice
Pisum sativum (Pea) Extract
Bambusa vulgaris (Bamboo) Extract
Hibiscus rosa-sinensis Flower Extract
Chondrus crispus (Carrageenan) Extract
Cocos nucifera (Coconut) Fruit Juice
Morinda citrifolia (Noni) Leaf Extract
Morinda citrifolia (Noni) Leaf Tea Powder
Terminalia chebula, Terminalia belerica and Embilica
officinalis (Triphala) Fruit Extract
Tinospora cordifolia (Indian Tinospora) Stem Extract
Astragalus Root
Echinacea Root
Ligustrum Berry
Schizandra Berry
Papaya Leaf
The following example illustrates some of the embodiments of the present invention comprising the administration of a composition comprising components of the Indian Mulberry or Morinda citrifolia L. plant. These examples are not intended to be limiting in any way, but are merely illustrative of benefits, advantages, and remedial effects of some embodiments of the Morinda citrifolia compositions of the present invention.
As illustrated by the following Example, embodiments of the present invention have been tested. Specifically, the Example illustrates the results of in-vitro studies that confirmed that concentrates of processed Morinda citrifolia products (“TNJ” is an evaporative concentrate) and processed plants selected as sources of iridoids have unexpected beneficial physiological effects. The percentage of concentration refers to the concentration strength of the particular concentrate tested; that is, the strength of concentration relative to the processed product from which the concentrate was obtained.
A human clinical trial of TAHITIAN NONI® Juice in heavy smokers revealed that ingestion of noni juice has DNA protective activity. Phytochemical analysis of TAHIITIAN NONI® Juice has revealed iridoids, specifically deacetylasperulosidic acid (DAA) and asperulosidic acid (AA) are the major phytochemcial constituents of noni fruit. DAA and AA were isolated from noni fruit puree from French Polyensia to evaluate their DNA protective potentials in vitro and make an assessment of their role in the results observed in the clinical trial.
The SOS-chromotest in E. coli PQ37 was used to determine the potential for iridoids in noni fruit from French Polynesia to prevent primary DNA damage. E coli PQ37 was incubated at 37° C. in the presence of deacetylasperulosidic acid and asperulosidic acid at a concentration of 250 ug mL−1 in a 96-well plate. Replicate samples were evaluated. The samples were also incubated with 1.25 ug mL−1 4-nitroquinoline 1-oxide (4NQO). Blank replicates were also prepared, where cells were not incubated with to iridoids or 4NQO. Additionally, a 1.25 ug mL−1 4NQO positive control was included in this assay. Following incubation with the samples, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside was added to the wells to detect β-galactosidase enzyme activity, which is induced during SOS repair of damaged DNA. The samples were again incubated for 90 minutes and the absorbances of the samples, blank and positive control were measured at 620 nm with a microplate reader. The β-galactosidase enzyme activity induction factor of each material was calculated by dividing the absorbance of the sample at 620 nm by that of the blank, while also correcting for cell viability. Induction factors of the blank, which by definition is 1, the positive control, and the sample wells containing DAA, plus 4NQO, and AA, plus 4NQO, were compared.
The β-galactosidase enzyme activity induction factor of 1.25 ug mL−1 4NQO was 6.09, indicating a six-fold increase in DNA damage in the cells. The induction factors (mean±standard deviation) of the DAA and AA samples, each containing 1.25 ug mL−1 4NQO, were 0.98±0.02 and 1.04±0.01, respectively. The results are compared graphically in
The iridoids, DAA and AA, in noni fruit have the potential to protect DNA against 4NQO, a well known genotoxin. TAHITIAN NONI® Juice has also been shown to provide some level of DNA protection in humans against cigarette smoke, also a well known genotoxin. Further, chemical analysis has revealed that the major phytochemicals in noni fruit and TAHITIAN NONI® Juice are iridoids, specifically DAA and AA. Therefore, it can be concluded that these iridoids are responsible for, or at least have a prominant role in, the DNA protective effects of noni juice observed in the human clinical trial involving heavy smokers.
Analytical method to determine the quantity of iridoids in noni plant, as well as other fruits and their juices were developed. Major iridoids were isolated from the Morinda citrifolia plant as follows:
Acetonitrile (MeCN), methanol (MeOH), and water (H2O) of HPLC grade were obtained from Sigma-Aldrich (St. Louis, Mo., USA). Formic acid of analytical grade was purchased from Spectrum Chemical Mfg. Corp. (New Brunswick, N.J., USA). The chemical standard deacetylasperulosidic acid (DAA, 1) and asperulosidic acid (AA, 2) were isolated from noni fruits in our laboratory. Their purities were determined by HPLC and NMR to be higher than 99%. The chemical structures of DAA and AA are listed in
Tahitian noni fruit puree as used in this example is the mashed whole fruit, excluding seeds and pericarp. The fruits were originally collected from the Tahitian Islands. One gram of the puree was diluted with 5 mL of H2O-MeOH (1:1) and mixed thoroughly. The solution was then filtered through a nylon microfilter (0.45-μm pore size); the solution was collected into a 5 mL volumetric flask for HPLC analysis. Four batches of noni puree were analyzed in the experiments. Voucher specimens of the noni fruit puree are deposited in our lab. To test iridoid stability, a DAA solution of 0.5 mg/mL was prepared with MeOH. This solution was heated in a water-bath at 90° C. for 1 min, cooled to room temperature, and analyzed by HPLC.
Chromatographic separation was performed on a Waters 2690 separations module coupled with 996 PDA detectors, and equipped with an Atlantis C18 column (4.6 mm×250 mm; 5 μm, Waters Corporation, Milford, Mass., USA). The pump was connected to two mobile phases: A; MeCN, and B; 0.1% formic acid in H2O (v/v), and eluted at a flow rate of 0.8 mL/min. The mobile phase was programmed consecutively in linear gradients as follows: 0-5 min, 0% A; and 40 min, 30% A. The PDA detector was monitored in the range of 210-400 nm (235 nm was selected for quantitative analysis). The injection volume was 10 μl, for each of the sample solutions. The column temperature was maintained at 25° C. Data collection and integration were performed using Waters Millennium software revision 32.
The limits of detection (LOD) and quantitation (LOQ) were defined as the lowest concentrations of analytes in a sample that can be detected and quantified. These LOD and LOQ limits were determined on the basis of signal-to-noise ratios (S/N) of 3:1 and 10:1, respectively. The working solutions of standards 1 and 2 for LOD and LOQ were prepared by diluting them sequentially. The intra- and inter-day precision assays, as well as stability tests were performed by following the method applied to the sample analysis for 3 consecutive days. Accuracy of the method (recovery) was assessed by the recovery percentage of iridoids 1 and 2 in the spiked samples. The noni fruit puree samples were spiked with standards at 3 different concentrations (equivalent to 50%, 100% and 150% concentration of 1 and 2 in the samples). The recovery percentage was calculated using the ratio of concentration detected (actual) to those spiked (theoretical). Variation was evaluated by the relative standard deviation (RSD) of triplicate injections in the HPLC experiments.
Several fruits and fruit juice products, such as purees, were prepared and analyzed according to the methods described above. Samples of various commercial brand name fruit juices were also analyzed. Samples of noni leaves and seeds were also analyzed. The analytical results are provided in the following tables.
adeacetylasperulosidic acid (daa);
basperulosidic acid(aa);
cnot detected;
adeacetylasperulosidic acid (daa);
basperulosidic acid(aa);
cnot detected;
adeacetylasperulosidic acid (daa);
basperulosidic acid(aa);
cnot detected;
Major phytochemical component of noni fruit and TAHITIAN NONE) Juice are iridoids, specifically deacetylasperuloside and asperulosidic acid. A small quantity of another iridoid is found in blueberry fruit juice concentrate, at approximately 3.8% of the total iridoid content of noni fruit puree. The other fruits and non-noni fruit products did not contain iridoids.
The present invention may be embodied in other specific forms without departing from its spirit of essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The proximate nutritional, vitamin, mineral, and amino acid contents of processed noni fruit puree were determined. The phytochemical properties were evaluated, as well as an assessment made on the safety and potential efficacy of the major phytochemicals present in the puree. Processed noni fruit puree is a potential dietary source of vitamin C, vitamin A, niacin, manganese, and selenium. Vitamin C is the major nutrient present, in terms of concentration. The major phytochemicals in the puree are iridoids, especially deacetylasperulosidic acid, which were present in higher concentrations than vitamin C. The iridoids in noni did not display any oral toxicity or genotoxicity, but did possess potential anti-genotoxic activity. These findings suggest that deacetylasperulosidic acid may play an important role in the biological activities of noni fruit juice that have been observed in vitro, in vivo, and in human clinical trials.
Morinda citrifolia, commonly known as noni, is a widely distributed tropical tree. It grows on the islands of the South Pacific, Southeast Asia, Central America, Indian subcontinent, and in the Caribbean. Knowledge of the phytochemical profile of processed noni fruit puree is important in understanding potential bioactivities, as well as in understanding the compounds responsible for health effects already demonstrated in human clinical trials. Iridoids constitute the major phytochemical component of noni fruit, with a few other compounds, such as scopoletin, quercetin, and rutin have occurring in significant, although much less, quantities. Previous analyses have been limited in the amount of nutrient data provided. Further, they have not been representative of the commercially processed noni fruit puree, as processing conditions do alter the nutritional and phytochemical profiles of fruits and vegetables. Therefore, the current chemical analyses were performed to provide more complete and accurate nutritional data. Analyses of the major phytochemicals in noni fruit were also carried out to provide an important reference for quality control and identity testing of these raw materials.
As the iridoids are present in significant quantities in noni fruit puree, genotoxicity and acute toxicity tests were performed to better understand their individual safety profiles. Therefore, the anti-genotoxic activities of the iridoids were evaluated in vitro, to investigate their potential roles in this reported DNA protection.
Noni fruits were harvested in French Polynesia and allowed to fully ripen. The fruit was then processed into a puree by mechanical removal of the seeds and skin via micro-mesh screen in a commercial fruit pulper, followed by pasteurization (87° C. for 3 seconds) at a good manufacturing certified fruit processing facility in Mataiea, Tahiti. The pasteurized puree is filled into aseptic containers, or totes containing 880 kg of noni fruit puree, and stored under refrigeration. Samples were obtained from 10 totes, from different batches, for the chemical analyses in this study.
For the acute oral toxicity test, an iridoid enriched fruit extract was prepared. This was done by removal of seeds and skin from the fruit flesh, followed by size reduction with a 0.65 mm sieve. An aqueous extract was prepared with the remaining fruit pulp, at ambient temperature, which was then freeze-dried, resulting in a total iridoid concentration of 1690 mg/100 g extract.
Freeze-dried noni fruit powder (36 g) was extracted with 1 L of methanol by percolation to produce 10 g of methanol extract. Following addition of water, the methanol extract was partitioned with ethylacetate (150 mL three times) to remove non-polar impurities. The aqueous extract was further partitioned with n-butanol (150 mL three times) to yield 3 g n-butanol extract. The extract was subjected to flash column chromatography on silica gel, eluting with a stepwise dichloromethane:methanol (20:1→1.5:1) gradient solvent system to yield sixty-two primary fractions. Among these, the presence of two major compounds was indicated by a preliminary HPLC analysis. The iridoid containing fractions were combined and subject to further purification by using reverse phase preparative HPLC (Symmetry Prep™ C18 column, Waters Corp.), eluting with an isocratic solvent system of MeCN—H2O (35:65) at a flow rate of 3 mL/min, resulting in the isolation of DAA and AA.
Proximate nutritional analyses of noni fruit puree were carried out to determine moisture, fat, protein, ash, and carbohydrate contents. Protein content was determined by the Kjedahl method, Association of Official Analytical Chemists (AOAC) Method 979.09 (AOAC, 2000 a). Total moisture was determined gravimetrically by loss on drying at 100° C. in a vacuum oven. Fat determination involved continuous extraction by petroleum ether in a Soxhlet apparatus, AOAC Method 960.39 (AOAC, 2000 b). Ash was determined gravimetrically following combustion in a furnace at 550° C. Carbohydrate was then calculated by difference. Total dietary fiber was determined according to AOAC Method 991.43 (AOAC, 2000 c). Fructose, glucose, and sucrose contents were determined according to AOAC method 982.14 (AOAC, 2000 d).
Minerals were determined by inductively coupled plasma (ICP) emission spectrometry (AOAC, 2000 e; AOAC, 2000 f). Vitamin A, as β-carotene, was determined by a modified AOAC official method 941.15 for an HPLC system (AOAC, 2000 g). Vitamin C was determined by titration with 2,6-dichloroindophenol, by the microfluorometric method, or by HPLC and UV detection of oxidized ascorbic acid (AOAC, 2000 h; AOAC, 20001). Niacin, thiamin, riboflavin, vitamin B6, vitamin B12, vitamin E, folic acid, biotin, and pantothenic acid were determined by AOAC and United States Pharmacopoeia methods (AOAC, 2000 j; AOAC, 2000 k; AOAC, 2000 l; AOAC, 2000 m; AOAC, 2000 n; AOAC, 2000 0; AOAC, 2000 p; United States Pharmacopeia, 2005; Scheiner & De Ritter, 1975). Vitamin E was determined by HPLC similar to a previously reported method (Omale and Omajali, 2010), but with direct organic solvent extraction and use of a 2-propanol:H2O (60:20, %:%) mobile phase. Vitamin K was determined according to AOAC method 992.27 (AOAC, 2000 p). Amino acids were determined with an automated amino acid analyzer, following acid hydrolysis, except for tryptophan which involved hydrolysis with sodium hydroxide (AOAC, 2000 q).
The iridoid content, inclusive of deacetylasperulosidic acid (DAA) and asperulosidic acid (AA), was determined by HPLC, according to a previously reported method (Deng et al., 2010 b). Other significant secondary metabolites, such as scopoletin, rutin, and quercetin, were also determined by HPLC (Deng et al., 2010 a).
Twenty healthy Sprague-Dawley rats (10 males, 10 females, body weight 181-205 g) were selected for the tests. An iridoid enriched fruit extract was dissolved in water to produce a total iridoid concentration of 8.5 mg/mL. A dose of 340 mg total iridoids/kg body weight (bw) was given to each animal by gastric intubation (20 mL/kg bw twice per day). For 14 days following the administration of the iridoid solution, animals were observed daily for occurrences of death and symptoms of toxicity, including convulsions, irregular breathing, piloerection, and paralysis. As decreased weight is a typical symptom of toxicity, body weights were recorded for each animal on days 0 and 14. The acute toxicity test was carried out in accordance with EC Directive 86/609/EEC (European Communities, 1986).
2.5 Primary DNA Damage Test in E. coli PQ37
The SOS-chromotest in E. coli PQ37 was used to determine the potential for DAA and AA to induce primary DNA damage. This test was carried out according to the previously developed method (Fish et al., 1987). DAA and AA were isolated from noni fruits from Tahiti and purified to >98%. E. coli PQ37 was incubated in LB medium in a 96-well plate at 37° C. in the presence of DAA or AA for 2 hours. The DAA and AA concentrations tested were 7.81, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 μg mL−1 Samples were evaluated in triplicate. Following incubation with the samples, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside was added to the wells to detect β-galactosidase enzyme activity, which is induced during SOS repair of damaged DNA. Nitrophenyl phosphate is also added to the wells to measure alkaline phosphatase activity, an indicator of cell viability. The samples were again incubated and the absorbances of the samples, blanks and controls were measured at 410 and 620 nm with a microplate reader. Vehicle blanks and positive controls, 1.25 μg mL−1 4-nitroquinoline 1-oxide (4NQO), were included in this test. The induction factor of each material was calculated by dividing the absorbance of the sample at 620 nm by that of the blank, while also correcting for cell viability. Induction factors less than two indicate an absence of genotoxic activity.
2.6 Anti-Genotoxicity Test in E. coli PQ37
The primary DNA damage test was performed again, similar to the method described above. However, the method was modified to include incubation of E. coli PQ37 in the presence of both 1.25 μg mL−1 4NQO and 250 μg mL−1 DAA or AA. Induction factors were calculated in the same manner as described above. The percent reduction in genotoxicity was determined by dividing the difference between the induction factor of 4NQO and the blank (induction factor of 1) by the difference between the induction factor of 4NQO plus DAA or AA and the blank.
Means and standard deviations were calculated for each set of analytical results obtained from the different batches. In both the primary DNA damage test and the anti-genotoxicity test, intergroup comparisons were made with Student's t-test.
The nutrient composition of processed noni fruit puree is summarized in Table 4. Proximate nutritional parameters are within the typical ranges for fruits in general. Processed noni fruit puree contains 2 g 100 g−1 dietary fiber. Noni fruit does not contain a significant quantity of protein or fat. However, all but one essential amino acid, tryptophan, as well as histidine, essential for infants, were detected in the puree (Table 5). Aspartic acid was the most predominant amino acid.
Vitamin C is the most prominent vitamin in noni fruit puree, with a mean content of 1.13 mg−1 g. At this concentration, 100 g of puree provides 251% of the recommended daily vitamin C requirement for adults (FAO/WHO, 2001). Noni fruit puree contains appreciable quantities of β-carotene. As calculated from β-carotene concentration, the mean vitamin A content per 100 g of puree is 318.17 retinol equivalents (RE). The joint FAO/WHO recommendation for average vitamin A daily intake by adults is 270 RE for females and 300 RE for males (FAO/WHO, 1998). As such, noni fruit puree appears to have the potential to be a significant dietary source of vitamin A. The niacin content of processed noni fruit is great enough to have some nutritional impact, but will only be significant when larger quantities are consumed. At 100 g, the puree provides 18 to 21% of the recommended niacin intake for adults (FAO/WHO, 2001). Thiamin, riboflavin, vitamin B6, vitamin B12, folic acid, pantothenic acid, and vitamin K were below detection limits. Processed noni fruit puree contains, but is not a significant source of, vitamin E and biotin.
Potassium appears to be the most abundant mineral in processed noni fruit puree. It is more than four times the concentration of calcium, the next most abundant mineral, although neither is present in nutritionally significant quantities. Only two minerals are present in nutritionally significant amounts. In 100 g of noni puree, manganese and selenium contents would meet approximately 18 to 26% of the recommended daily allowance for adults (Institute of Medicine, 2000; Institute of Medicine, 2001).
The phytochemical analyses reveal that iridoids are the major secondary metabolites produced by noni fruit and are present in significant quantities following processing (Table 6). Scopoletin, rutin, and quercetin were also present after processing. The total iridoid content was 20 times greater than the combined concentrations of the other three phytochemicals. Deacetylasperulosidic acid accounted for 78% of the total iridoid content. Due to their prevalence in noni fruit, both iridoids may be used as markers for identification of products containing authentic noni ingredients. Bioactivities of iridoids from noni fruit juice and noni fruit extracts may ionclude antioxidant, anti-inflammatory, immunomodulatory, hepatoprotective, and hypolipidemic activities.
No deaths or symptoms of toxicity were observed in the acute toxicity test. Animals also gained appropriate weight (Table 7). The LD50 of noni iridoids was determined to be >340 mg/kg bw. In the primary DNA damage test in E. coli PQ37 (Table 8), the mean induction factors for DAA and AA, at 1000 μg mL—1, were 1.07 and 1.09, respectively. At all concentrations tested, DAA and AA did not induce any SOS repair at a frequency significantly above that of the blank. Statistically, induction factors were no different than that of the blank, and all results remained well below the two-fold criteria for genotoxicity. SOS-chromotest results have a high level of agreement (86%) with those from the reverse mutation assay (Legault et al., 1994). Therefore, the SOS-chromotest has some utility in predicting potential mutagenicity, in addition to primary DNA damage. The lack of DAA and AA toxicity in these tests are consistent with the results of toxicity tests of noni fruit juice (West et al., 2009 a; West et al., 2009 b; Westendorf et al., 2007).
In the anti-genotoxicity test, 4NQO, exhibited obvious genotoxicity, inducing SOS repair more than 8-fold above that of the vehicle blank. But the induction factors of 4NQO plus DAA or AA, were the same as those of DAA or AA alone (Table 9), with no statistical difference from that of the vehicle blank. The reductions in genotoxicity from 250 μmL−1 DAA and AA were 98.96 and 99.22%, respectively. Therefore, the genotoxic activity of 4NQO was almost entirely abolished by the addition of either iridoid.
A double-blind human clinical trial revealed that ingestion of noni fruit juice reduced the amount of aromatic DNA-adduct formation in the lymphocytes of current heavy cigarette smokers. 4NQO exhibits genotoxic activity in E. coli through the formation of 4NQO-guanine and 4NQO-adenine adducts. These DNA lesions lead to the induction of the SOS repair mechanism. As such, the reduction in 4NQO genotoxicity by DAA and AA equates to a reduction in DNA adduct formation. Therefore, the results of the current anti-genotoxicity test suggest the possible involvement of these iridoids in noni juice's DNA protective effects.
Processed noni fruit puree is a potential dietary source of vitamin C, vitamin A, niacin, manganese, and selenium. Vitamin C is the major nutrient present, in terms of concentration. The major phytochemicals in the puree are iridoids, especially DAA. The iridoids in noni did not display any toxicity. On the other hand, these iridoids did display potential anti-genotoxic activity. Even though processed noni fruit puree contained an appreciable quantity of vitamin C, the average DAA content was approximately 22% greater than that of vitamin C. These findings suggest that DAA may play an important role in the biological activities of noni fruit juice that have been observed in vitro, in vivo, and in human clinical trials.
Noni is a medicinal plant with a long history of use as a folk remedy in many tropical areas, and is attracting more attention worldwide. A comprehensive study on the major phytochemicals in different noni plant parts, such as fruit, leaf, seed, root and flower is of great value for fully understanding their diverse medicinal benefits. Moreover, the diversity of geographic environments may contribute to the variation of noni's components.
Objective—This study quantitatively determines the major iridoid components in different parts of noni plants, and compares iridoids in noni fruits collected from different tropical areas worldwide.
Methodology—The optimal chromatographic conditions were achieved on a C18 column with gradient elution using 0.1% formic acid aqueous formic acid and acetonitrile at 235 nm. The selective HPLC method was validated for precision, linearity, limit of detection (LOD), limit of quantitation (LOQ), and accuracy.
Results—Deacetylasperulosidic acid (DAA) was found to be the major iridoid in noni fruit. In order of predominance, DAA concentrations in different parts of the noni plant were dried noni fruit>fruit juice>seed>flower>leaf>root. The order of predominance for asperulosidic acid (AA) concentration was dried noni fruit>leaf>flower>root>fruit juice>seed. DAA and AA contents of methanolic extracts of noni fruits collected from different tropical regions were 13.8-42.9 mg/g and 0.7-8.9 mg/g, respectively, with French Polynesia containing the highest total iridoids and the Dominican Republic containing the lowest.
Conclusion—Iridoids are found to be present in leaf, root, seed, and flower of noni plants, and were identified as the major components in noni fruit. Given the great variation of iridoid contents in noni fruit grown in different tropical areas worldwide, geographical factors appear to have significant effects on fruit composition. The iridoids in noni fruit were stable at temperatures used during pasteurization and, therefore, may be useful marker compounds for identity and quality testing of commercial noni products.
Noni (Morinda citrifolia Linn.) is a popular medicinal plant indigenous to a wide range of tropical areas, such as southern Asia, the Caribbean, and the Pacific Islands. This study aims to quantitatively determine the major iridoids in different parts of noni (fruit, leaf, root, seed, and flower), and comparatively analyze the iridoids in different noni fruits cultivated and collected worldwide, by using a validated HPLC-PDA method.
HPLC grade acetonitrile (MeCN), methanol (MeOH), and water (H2O) were obtained from Sigma-Aldrich (St. Louis, Mo., USA). Analytical grade formic acid was purchased from Spectrum Chemical Mfg. Corp. (New Brunswick, N.J., USA). The chemical standards deacetylasperulosidic acid (DAA) and asperulosidic acid (AA) were isolated from authentic noni fruit in our laboratory. Their identification and purities were determined by HPLC, Mass spectrometry, and NMR to be higher than 99% (data not shown). The chemical structures of DAA and AA are listed in
Chromatographic separation was performed on a Waters 2690 separations module coupled with 996 PDA detectors, equipped with an C18 column (4.6 mm×250 mm; 5 μm, Waters Corporation, Milford, Mass., USA). The pump was connected to two mobile phases: A; MeCN, and B; 0.1% formic acid in H2O (v/v), and eluted at a flow rate of 0.8 mL/min. The mobile phase was programmed consecutively in linear gradients as follows: 0-5 min, 0% A; and 40 min, 30% A. The PDA detector was monitored in the range of 210-400 nm. The injection volume was 10 μL for each of the sample solutions. The column temperature was maintained at 25° C. Data collection and integration were performed using Waters Millennium software revision 32.
Fresh noni fruit juice (sample A,
The raw noni fruit samples (
The limits of detection (LOD) and quantitation (LOQ) were defined as the lowest concentrations of analytes in a sample that can be detected and quantified. These LOD and LOQ limits were determined on the basis of signal-to-noise ratios (S/N) of 3:1 and 10:1, respectively. The working solutions DAA and AA standards, for LOD and LOQ determinations, were prepared by serial dilution. The intra- and inter-day precision assays, as well as stability tests were performed by following the method applied to the sample analysis for 3 consecutive days. Repeatability is the degree of agreement between results, when experimental conditions are maintained as constant as possible, and is expressed as the relative standard deviation (RSD) of replicates.
In the study, intra- and inter-day precisions of the HPLC method were measured by triplicate injections of samples on 3 consecutive days. Accuracy of the method (recovery) was assessed by the recovery percentage of DAA and AA in the spiked samples. The noni fruit juices were spiked with standards at three different concentrations (equivalent to 50%, 100% and 150% concentration of DAA and AA in the samples). The recovery percentage was calculated using the ratio of concentration detected (actual) to those spiked (theoretical). Variation was evaluated by the relative standard deviation (RSD) of triplicate injections in the HPLC experiments.
The validation of the developed HPLC chromatographic method was conducted on the fresh noni juice to determine LOD, LOQ, linearity, intra-day and inter-day precisions, and accuracy (Tables 10-13). The selected MeCN—H2O gradient exhibited a good separation and symmetrical peak shapes of target analytes in the HPLC chromatograms. The LODs (S/N=3) and LOQs (S/N=10) for DAA and AA are 10.6 and 9.7 ng, and 34.8 and 32.0 ng, respectively. The linear regression equations for DAA and AA were calculated as: y=1.443×107−17342.2 and y=1.537×107−40804.7, respectively, where x is the concentration and y is the peak area. The results showed good linearity with correlation coefficients of 0.9994 and 0.9999 for DAA and AA, within the range of concentrations investigated. The intra- and inter-day precisions, as RSD's, of DAA and AA were less than 0.86% and 3.0%, respectively, indicating that DAA and AA were stable during investigation period. Under the established experimental conditions, percent recoveries of analytes DAA and AA were from 90.49% to 105.32%, with RSD ranging from 0.40-2.66% (Table 12). The results of the experiments are within tolerance ranges recommended in the guideline for dietary supplement issued by the Association of Analytical Communities (AOAC International, 2002). The characterization of iridoids DAA and AA in noni samples were conducted by comparing their HPLC retention times and UV maximum absorptions with these of standards (Table 10).
aDeacetylasperulosidic acid;
basperulosidic acid.
aMean ± SD, n = 3, mg/mL;
bdeacetylasperulosidic acid;
casperulosidic acid.
aUnit, mg/ml;
bmean ± SD; n = 3;
cdeacetylasperulosidic acid;
dasperulosidic acid.
aDeacetylasperulosidic acid;
basperulosidic acid; mean ± SD; n = 3.
Iridoids have been identified in noni fruit, leaf, and root previously. In our preliminary experiments, DAA and AA appear to be the major iridoids in most parts of the noni plant. As such, these two iridoids were employed for the quantitation and comparison of iridoid contents in different noni parts. The typical HPLC chromatograms of noni fruit, leaf, root, seed, and flower are shown in
Comparison of Iridoid Contents in Noni Fruits from Different Areas
To evaluate the impact of geographical environments (soil, sunlight, temperature, precipitation, etc.) on the iridoid contents in noni fruit, analyses were performed on noni fruits cultivated and collected from different tropical regions worldwide. Ripe noni fruit samples were kept frozen during shipment. Further, MeOH extracts were analyzed to control for moisture variations.
Noni fruit juice is usually subjected to heat pasteurization during commercial processing. Pasteurization is usually employed in noni industry, i.e., heating up to 87.7° C. for several seconds. In this study, the stability of DAA was conducted. DAA was exposed to 90° C. at pH 3.3 for one minute to determine its thermal stability at acidic conditions. The results indicated that there was no difference in the DAA contents before and after heating, indicating that DAA is stable under the pasteurization conditions.
A selective analytical HPLC method has been developed and validated for analysis of iridoids in noni. Iridoids, specifically deacetylasperulosidic acid and asperulosidic acid, are identified as the major components in noni fruit, and also present in leaf, root, seed, and flower of the noni plant. Geographical factors seem to influence iridoid content of the fruit. Noni iridoids are stable during pasteurization. Therefore, the method reported herein may provide an accurate and rapid tool in the qualitative and quantitative analysis of noni and its commercial products.
This application claims priority to U.S. Provisional Application No. 61/307,262 filed Feb. 23, 2010 which claims priority to U.S. Provisional Patent Application No. 60/970,445, filed on Sep. 6, 2007, entitled, “Morinda Citrifolia Based Formulations for Regulating T Cell Immunomodulation in Neonatal Stock Animals,” is a continuation in part of U.S. patent Ser. No. 11/034,505, filed Jan. 13, 2005, entitled “Profiles of Lipid Proteins and Inhibiting HMG-COA Reductase,” which claims priority to Provisional Application No. 60/536,663, filed Jan. 15, 2004 and claims priority to Provisional Application No. 60/552,144, filed Mar. 10, 2004, is a continuation-in-part of U.S. Pat. No. 6,737,089, filed Apr. 17, 2001, entitled “Morinda Citrifolia (Noni) Enhanced Animal Food Product”, and is a continuation-in-part of U.S. Pat. No. 7,244,463, filed Oct. 18, 2001, entitled “Garcinia Mangostana L. Enhanced Animal Food Product” and is a continuation-in-part of U.S. patent application Ser. No. 10/396,868, filed Mar. 25, 2003, entitled “Preventative And Treatment Effects Of Morinda Citirifolia As An Aromatase Inhibitor” and claims priority to U.S. Provisional Patent Application Ser. No. 60/458,353, filed Mar. 28, 2003, entitled “The Possible Estrogenic Effects Of Tahitian Noni Puree Juice Concentrate-Dry Form”, and is a continuation-in-part of U.S. patent application Ser. No. 11/360,550 filed Feb. 23, 2006, entitled “Preventative and Treatment Effects of Morinda Citrifolia on Osteoarthritis and Its Related Conditions” which is a divisional of U.S. patent application Ser. No. 10/285,359, now U.S. Pat. No. 7,033,624, filed Oct. 31, 2002, entitled “Preventative and Treatment Effects of Morinda Citrifolia on Osteoarthritis and Its Related Conditions” which claims priority to U.S. Provisional Patent Application No. 60/335,343 filed Nov. 2, 2001, entitled, “Methods for Treating Osteoarthritis” and is a continuation-in-part of U.S. patent application Ser. No. 10/006,014 filed Dec. 4, 2001, entitled “Tahitian Noni Juice On Cox-1 And Cox-2 And Tahitian Noni Juice As A Selective Cox-2 Inhibitor”, which claims priority to U.S. Provisional Patent Application Ser. No. 60/251,416 filed Dec. 5, 2000, entitled “Cox-1 and Cox-2 Inhibition Study on TNJ” and is a continuation-in-part of U.S. patent application Ser. No. 11/553,323, filed Oct. 26, 2006, entitled “Preventative and Treatment Effects of Morinda Citrifolia on Diabetes and its Related Conditions” which is a divisional of U.S. patent application Ser. No. 10/993,883, now U.S. Pat. No. 7,186,422 filed Nov. 19, 2004, entitled “Preventative And Treatment Effects Of Morinda Citrifolia On Diabetes And Its Related Conditions” which is a divisional of U.S. application Ser. No. 10/286,167, now U.S. Pat. No. 6,855,345 filed Nov. 1, 2002, entitled “Preventative And Treatment Effects Of Morinda Citrifolia On Diabetes And Its Related Conditions,” which claims priority to U.S. Provisional Application Ser. No. 60/335,313, filed Nov. 2, 2001, and entitled, “Methods for Treating Conditions Related to Diabetes.”
Number | Date | Country | |
---|---|---|---|
61307262 | Feb 2010 | US | |
60536663 | Jan 2004 | US | |
60552144 | Mar 2004 | US | |
60335343 | Nov 2001 | US | |
60251416 | Dec 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10285359 | Oct 2002 | US |
Child | 11360550 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11034505 | Jan 2005 | US |
Child | 13032540 | US | |
Parent | 09836881 | Apr 2001 | US |
Child | 11034505 | US | |
Parent | 11253130 | Oct 2005 | US |
Child | 09836881 | US | |
Parent | 10396868 | Mar 2003 | US |
Child | 11253130 | US | |
Parent | 11360550 | Feb 2006 | US |
Child | 10396868 | US | |
Parent | 10006014 | Dec 2001 | US |
Child | 10285359 | US |