This invention relates to mortise locks and to multi-point locks including vertical rod door latches.
Vertical rod door latches are door latches commonly used in commercial or public buildings where the door latches are located at the top and/or bottom edge of the door. Vertical rod door latches typically include one or more latches or catches that extend upward out of the top and/or downward from the bottom edge of the door into a corresponding opening in a strike located in the door frame above the door or on the floor below the door.
The latches are most commonly driven into and out of engagement with the corresponding strike by vertical rods extending from an actuator located near the midpoint of the door to the top and/or bottom latches. The vertical rods extending from the actuator may be hidden inside the door or located on the surface of the door and they may drive the latches at each point with either a pulling or pushing motion. Typical multi-point applications use a pushbar or pushrail type exit device to drive the latch points or require a custom latch to interface with the vertical rod actuator.
Mortise locks, which are mounted between the inner and outer exterior panels or surfaces of the door (also known as the door skins), are used for operating and actuating a standard lateral or mid-point latch which extends from the lock at the side edge of the door. There is currently no standard mortise lock that is able to actuate vertical rod door latches.
Typically, latch projection is set before a door is installed and final adjustments require the door to be taken down and re-adjusted, then installed again. There is currently no multi-point lock system which allows for adjustment of latch projections while the door is hung, nor is there a mechanism for ensuring that latch projection adjustments for the top and/or bottom vertical rod latch(es) are from center.
After door installation, vertical latch projections are typically engaged and disengaged by means of pushing the latches into place by hand once the door is closed, or by pulling the projections out from the door frame to allow for opening the door. This requires an end-user to reach the top and bottom edges of the door in order to engage/disengage the top and bottom latch projections out of their respective strikes in the door frame/floor. This method of latch extension/retraction can be cumbersome and difficult for handicapped persons.
With the vertical rod and latch assembly typically concealed inside a cavity in the door, installation of the rods is complicated due to the inability of the installer to have a clean line of sight to the connection between the lock interface and the rod. A need exists for simplified installation of a multi-point lock system in a door with a concealed rod and latch assembly.
Although stiff vertical rods capable of applying a push or pull force to the latch points are the most common method of driving the latches, for the purpose of this application, the term “vertical rod door latch” is not intended to be limited to designs using only stiff vertical rods. The term is intended to include other mechanical drive mechanisms for driving the top and bottom latch points, such as cable drive systems and any other method by which an actuator mounted on the door can apply force to mechanically drive latch points at the top and/or bottom edges of the door.
The actuator most commonly used to drive the latch points of a vertical rod door latch includes a lever handle, or a pushbar or pushrail type exit device. An “exit device” is a lock mechanism operated from the inside of an exit door through the use of a crossbar, pushbar, pushrail, panic bar or paddle actuator that moves towards the exit door to retract the latches when pressure is applied.
A latch dogging switch holds the latches in place when retraction is desirable when the end user wishes to engage only a single mid-point or lateral latch located on the vertical edge of the door, near the actuator. There is a need for a latch dogging switch that allows for the option to designate between a single-point locking system and a multi-point locking system.
There is also a need for a latch dogging switch that can indicate whether the vertical rod door latches have been retracted. Such a design could be used regardless of whether the vertical rod door latch is mechanically driven by an exit device, a lever handle trim or any other type of handle or trim capable of driving the vertical rod latch. It would be desirable to be able to supply such an independent latch dogging switch design at the time of purchase with an existing mechanical actuator, such as an exit device or handle trim, or to be able to install the latch dogging switch in the field, where it is to be connected as a retrofit to drive a previously installed mechanically operated vertical rod door latch.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide an adapter and method whereby a standard mortise lock may be made to actuate vertical rod door latches.
It is another object of the present invention to provide an apparatus and method that permits positive attachment and verification of retention of a vertical rod in a multi-point latching system.
A further object of the present invention is to provide a multi-point lock system and method that allows for in situ adjustment of top and bottom vertical latch projections from center, i.e., the central actuator in the door interior.
It is also an object of the present invention to provide an apparatus and method whereby the top and bottom latch projections of a multi-point lock system may be adjusted while a door is hung in the door frame.
It is another object of the present invention to provide a tool for installation of vertical rods in a door with a concealed rod and latch assembly.
It is another object of the present invention to provide a tool for installation of vertical rods in a door with a concealed rod and latch assembly which assists in alignment of the rod with an opening in the lock interface.
A further object of the present invention is to simplify alignment of vertical rods in a door with a concealed rod and latch assembly of the rod with the lock interface by providing an alignment guide which is slideably retractable along the rod and remains concealed in the door after final installation.
Yet another object of the present invention is to provide a latch dogging switch and method of use which selectively holds the latches in place when retraction is desirable when the end user wishes to engage only a single mid-point or lateral latch located on the vertical edge of the door.
It is also an object of the present invention to provide a latch dogging switch and method that can indicate whether the vertical rod door latches have been retracted.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to mortise locks and to multi-point locks such as vertical rod door latches. More specifically, it is directed in several aspects to an adapter and interface that permits a standard mortise lock to drive top and bottom latch mechanisms of a multi-point lock system. An actuator permits in situ adjustment of the top and bottom vertical latch projections of adjusting these projections while the door is hung in the door frame. An installation tool assists in the installation of the vertical rods in a door. A connector and carrier secures the vertical rods to the actuator and permits verification of retention of the rods in a multi-point latching system. A latch dogging indicator allows for end-user adjustment between a single-point lock and a multi-point lock system when desired. These different aspects may be employed in combination or separately with other locking systems.
In one aspect, the present invention provides an adapter for enabling a mortise lock with a mid-point latch to actuate a vertical rod latch. The mortise lock is mounted between outer panels of a door and has a handle shaft opening for a hub rotatable by a handle to actuate a mid-point latch. The mid-point latch extends therefrom at a door edge from an extended locked position to a retracted open position. The adapter has a housing with an actuator for a vertical rod door latch. The actuator moves a vertical rod door latch from an extended locked position to a retracted open position. The adapter also has a hub rotatable with respect to the housing. The hub has a handle shaft opening for and is rotated by the mortise lock handle shaft. The hub handle shaft opening is positioned in alignment with the mortise lock handle shaft opening between the mortise lock and an inner surface of the door outer panel. The adapter hub is operatively connected to the vertical rod door latch actuator, where rotation of the adapter hub by the handle shaft moves the vertical rod door latch from an extended locked position to a retracted open position. Simultaneously, the handle shaft rotates the mortise lock handle shaft opening and hub to move the mid-point latch from an extended locked position to a retracted open position.
The adapter may further include an arm between the adapter hub and the vertical rod door latch actuator. The arm is moveable with operation of the adapter hub, such that the arm causes the vertical rod door latch to move from an extended locked position to a retracted open position when the adapter hub is rotated by the handle shaft.
The adapter housing may include a pair of sleeves positionable on both sides of a mortise lock, between the mortise lock and the inner surfaces of door outer panels. The sleeves may include an adapter hub with a handle shaft opening on each sleeve, and each adapter hub has an arm extending therefrom that is engageable with the actuator mechanism to cause a vertical rod door latch to move from an extended locked position to a retracted open position.
A further aspect of the present invention provides a method of enabling a mortise lock with a mid-point latch to actuate a vertical rod door latch in a door having outer panels. The method provides a mortise lock having an opening for a shaft of a handle to actuate a mid-point latch extending therefrom at a door edge from an extended locked position to a retracted open position. It further provides an adapter having a housing with an actuator for a vertical rod door latch. The actuator moves a vertical rod door latch from an extended locked position to a retracted open position. The adapter hub is rotatable with respect to the housing, and has a handle shaft opening for and rotatable by the mortise lock handle shaft. The adapter hub handle shaft opening is positioned in alignment with the mortise lock handle shaft opening between the mortise lock and an inner surface of a door outer panel. Rotation of the adapter hub by the handle shaft causes the vertical rod door latch to move from an extended locked position to a retracted open position while the handle shaft simultaneously rotates the mortise lock handle shaft opening and hub to move the mid-point latch from an extended locked position to a retracted open position. The method includes inserting the adapter into a door edge between the door outer panels and operatively connecting the adapter to the vertical rod door latch in the door. The mortise lock is then inserted into the adapter in the door edge and handle shaft opening is aligned with the adapter hub handle shaft opening. A handle shaft is inserted through an opening in the outer door panel and extends into both the adapter hub handle shaft opening and the mortise lock handle shaft opening. Rotating the handle shaft causes the vertical rod door latch and mid-point latch to simultaneously move from an extended locked position to a retracted open position.
The adapter may include an arm between the adapter hub and the vertical rod door latch actuator. The arm is moveable with operation of the adapter hub such that rotation of the adapter hub by the handle shaft causes the arm to move the vertical rod door latch from an extended locked position to a retracted open position.
The housing may include a pair of sleeves which are positionable on both sides of a mortise lock, between the mortise lock and the inner surfaces of door outer panels. The housing may further include an adapter hub with a handle shaft opening on each housing sleeve. Each adapter hub has an arm extending therefrom that is engageable with the actuator mechanism to cause the vertical rod door latch to move from an extended locked position to a retracted open position.
It is another object of the present invention to provide an actuator for moving a vertical rod door latch between locked and open positions, and for permitting adjustment of vertical latch projections from a door. The actuator has a housing, a connector for securing an end of a vertical rod to the actuator, a worm drive comprising a worm screw and worm wheel coupled to the housing, and a receiver coupled to the worm wheel that has an opening adapted to engage an outer surface of the vertical rod when inserted. Actuation of the worm drive rotates the vertical rod to adjust the depth of the latch projection in upward and downward directions with respect to the opening in the strike.
Adjustment of the depth of a vertical latch projection is permitted after a door is secured in a door frame. The worm drive may be disposed at the end of a vertical rod distal from the latch. Adjustment of the depth of the vertical latch projection is effected at the worm drive. The worm drive may include an opening in its end adapted for receiving a rotatable tool. The worm drive is actuated by inserting the tool into the opening and rotating the device in a direction normal to the longitudinal axis of the vertical rod.
In yet another aspect the present invention provides an actuator for moving a vertical rod door latch between locked and open positions, and for permitting adjustment of projection of the vertical latch from a door into an opening in a door strike. The door latch has a vertical rod secured thereto by a threaded coupling to adjust the distance therebetween. The actuator comprises a housing, a receiver in the housing that has an opening adapted to engage an outer surface of the vertical rod when inserted therein. The actuator also has a driver to rotate the receiver, and a connector for securing an end of the vertical rod within the receiver in the actuator housing. The driver is engaged at the actuator to rotate the receiver and rotate the vertical rod with respect to the latch, and adjusts a depth of the latch projection in upward and downward directions with respect to the opening in the strike.
The actuator may further include a tool for engaging the driver to rotate the receiver. The tool is engageable with the driver while the actuator is installed within a door, and after the door is secured in a door frame.
A further aspect of the present invention is directed to a method of adjusting a vertical latch projection in a multi-point locking system. The method provides a door for mounting in a door frame. The door frame has a strike with an opening therein located above or below the door. It also provides a vertical rod having first and second ends within the door. The method further provides a vertical rod door latch assembly at the top or bottom of the door comprising a latch movable between an extended locked position and a retracted open position. The latch is adapted to extend into the strike opening when in the locked position. The latch is secured to the vertical rod second end by a threaded coupling to adjust the distance therebetween. The method further provides an actuator within the door for moving the vertical rod door latch between the extended locked and retracted open positions. The actuator comprises a housing, a receiver in the housing having an opening engaging an outer surface of the first end of the vertical rod, a driver to rotate the receiver, and a connector for securing the first end of the vertical rod within the receiver in the actuator housing. Engaging the driver at the actuator rotates the receiver and rotates the vertical rod with respect to the latch, and adjusts a depth of the latch projection in upward and downward directions with respect to the opening in the strike.
The driver may comprise a worm drive having a worm screw and worm wheel. The worm drive is coupled to the housing, and a receiver is coupled to the worm wheel. The driver is engaged by rotating the worm to rotate the worm wheel and the receiver. The worm may have an opening in an end adapted for receiving a rotatable tool. The driver is engaged by inserting the tool into the interior of a door and into the worm opening, and by rotating the tool in a direction normal to the longitudinal axis of the vertical rod. The method may further comprise securing a vertical rod first end to an actuator with a connector after setting the depth of the latch projection to a desired depth.
A further aspect of the present invention provides a vertical rod door latch locking system that permits adjustment of projection of the vertical latch from a door into an opening in a door strike. A vertical rod door latch assembly comprises a latch moveable between an extended locked position and a retracted open position. The latch is adapted to extend into the door strike opening when in the locked position. A vertical rod has first and second ends, the second end being secured to the latch by a threaded coupling to adjust the distance therebetween by rotation of the vertical rod. An actuator for moving the vertical rod comprises a housing, a receiver in the housing having an opening engaging an outer surface of the vertical rod first end, and a drive to rotate the receiver and the vertical rod with respect to the latch. The driver adjusts the depth of the latch projection in upward and downward directions with respect to the opening in the strike. A tool for engaging the driver to rotate the receiver and the vertical rod is engageable with the driver while the actuator is installed within a door and after the door is secured in a door frame.
Still another aspect of the present invention is directed to a retention system for a vertical rod door latch having a rod with an end and a carrier. The carrier secures the rod end to an actuator to move the vertical rod door latch between engaged and disengaged positions. The carrier has an opening for receiving the rod end, a securing member for mechanically engaging the rod end, and a screw for urging the securing member against the rod end to retain the rod in the carrier. The screw has at least one indentation around its periphery. The carrier includes at least one spring surface for bearing against at least one indentation of the screw. The spring is moveable to permit a user to rotate and tighten the screw to urge the securing member against the rod end. The spring surface applies a force to the at least one indentation to restrict loosening rotation of the screw, thereby retaining the rod end in the carrier. In an embodiment, at least one indentation in a screw comprises at least one flat surface portion in a shank portion of the screw.
The screw may include a shank with a plurality of indentations. The indentations comprise a plurality of flat surface detent portions extending around the shank. The spring includes a pair of parallel legs extending through openings in the carrier. The screw is disposed between the spring legs with surfaces of the spring legs bearing against opposite flat surface portions of the screw shank. The spring legs are moveable outward upon tightening of the screw and bears against flat surface portions on opposite sides of the screw shank to restrict loosening rotation of the screw when the securing member is in position to retain the rod end in the carrier.
The screw may have a head with a plurality of indentations, the indentations comprising a plurality of flat surface portions extending around the head. A spring includes a pair of parallel legs on either side of the screw head, and is in a deformed position permitting rotation of the screw head and tightening of the screw. In an undeformed position, the spring has the surfaces of the leg bearing against flat surface portions on opposite sides of the screw head to restrict loosening rotation of the screw when the securing member is in position to retain the rod end in the carrier. A further embodiment provides a vertical rod having a grooved end and a securing member that engages the grooves on the rod end.
Yet another aspect of the present invention provides a method of retaining an end of a vertical rod in a vertical rod door latch latching system. The method provides a carrier for securing the rod end to an actuator to move the vertical rod door latch between engaged and disengaged positions. The carrier has an opening for receiving the rod end, a securing member for mechanically engaging the rod end, and a screw for urging the securing member against the rod end to retain the rod in the carrier. The screw has at least one indentation around its periphery. The carrier includes at least one spring surface for bearing against the at least one indentation of the screw. Rotating the screw towards the securing member urges it against the rod end. The spring surface is alternately moved outward and inward between contact with at least one indentation. Tightening the set screw of the securing member into a final tightened position retains the rod end in the carrier. The spring moves inward to a detent position, where its surface bears against the indentation to resist and restrict loosening rotation of the screw.
Another aspect of the present invention is directed to a method of retaining an end of a vertical rod in a vertical rod door latch latching system. A carrier for securing the rod end to an actuator moves the vertical rod door latch between engaged and disengaged positions. The carrier has an opening for receiving the rod end, a securing member for mechanically engaging the rod end, and a screw for urging the securing member against the rod end to retain the rod in the carrier. The screw has at least one indentation around its periphery. The carrier includes at least one spring surface for bearing against at least one indentation of the screw. The method includes deforming the spring by moving the spring surface out of contact with at least one indentation of the screw, rotating the screw into a tightened final position of the securing member to retain the rod end in the carrier, and releasing the spring to an undeformed position, wherein the spring surface moves back into contact with and bears against at least one indentation of the screw, resists and restricts loosening rotation of the screw.
In a further aspect the present invention provides a set screw retention system with a housing, a set screw, and a spring. The housing secures a member therein, and has an opening for receiving the member to be secured and a threaded opening for receiving the set screw to secure the member in the housing. The set screw has an unthreaded shank with a plurality of flat surface detent portions around the shank periphery. The spring has at least one leg bearing against the shank of the set screw. The spring is moveable to permit a user to rotate and tighten the screw to secure the member in the housing. The spring leg bears against at least one flat surface detent portion on the shank periphery when the set screw is in a tightened position to apply a force to restrict loosening rotation of the screw, thereby retaining the member in the housing.
The spring may include a pair of parallel legs extending through openings in the housing. The set screw is disposed between the spring legs with surfaces of the spring legs bearing against opposite flat surface portions of the set screw shank when the set screw is in a tightened position. The spring legs are moveable outward upon tightening of the screw.
Another aspect of the present invention provides a set screw retention system that includes a housing, a set screw, and a spring. The housing secures a member therein and has an opening for receiving the member to be secured, as well as a threaded opening for receiving the set screw to secure the member in the housing. The set screw has a head with a plurality of flat surface portions extending around the head. A spring has a pair of parallel legs on either side of the screw head, and in a deformed position permits rotation of the screw head and tightening of the screw. In an undeformed position, the spring has its spring legs bearing against flat surface portions on opposite sides of the screw head when the set screw is in a tightened position to apply a force that restricts loosening rotation of the screw, thereby retaining the member in the housing.
The spring may be moved into a deformed position in a direction towards a member. The spring clears a set screw head and permits rotation thereof. Upon release, the spring moves to the undeformed position wherein the legs engage the flat surface portions of the screw head on opposite sides when the set screw is in a tightened position.
Yet another aspect of the present invention is directed to a retention system for a vertical rod door latch. A carrier secures a rod end to an actuator to move the vertical rod door latch between engaged and disengaged positions. The carrier also has an opening for receiving the rod end. A securing member in the carrier mechanically engages the rod end. A locking gate member moveable between open and closed positions permits the securing member to release the rod end when in the open position. In the closed position, the gate member holds the securing member against the rod end and retains the rod end in the carrier.
The system may further include a button moveable in an opening in the carrier in a direction normal to a longitudinal axis of a vertical rod. The button urges a securing member toward the rod end. A gate member in the open position is out of the path of movement of the button, thus permitting the securing member to release the rod end. In the closed position, the gate member blocks the path of movement of the button, and holds the button inward against the securing member. The securing member is thus held against the rod end and retains the rod end in the carrier. The button may include a planar face and an outwardly stepped flat edge portion on its head. The button's planar face comes in contact with a gate member when the gate member is in a closed position.
The system may further include a flexible member between a button and a securing member. The flexible member becomes compressed when the button urges the securing member against a rod end.
The button may include a planar face and an outwardly stepped flat edge portion on the button's head. A gate member is slideable in at least one opening in a carrier, in a direction parallel to a longitudinal axis of a rod. The gate member includes an edge for contacting the flat edge of the button head. The button's planar face and the gate member come in contact when the gate member is in the closed position portion to restrict loosening of the button. The gate may have a pair of parallel legs on either side of the gate edge. The gate legs are slideable in openings in a carrier oriented in directions parallel to a longitudinal axis of a rod. The button head flat edge portion may be oriented in a position normal to a longitudinal axis of a rod when a gate member is in a closed position, such that the gate edge contacts the button head flat edge portion. The button can be rotated to urge the button head flat edge portion against the gate edge and move the gate member out of the path of movement of the button. This permits the button to move outward of the carrier housing and also permits a securing member to be loosened and moved away from a rod end to permit the rod to be removed from the rod carrier.
Another aspect of the present invention provides a method of retaining an end of a vertical rod in a vertical rod door latch latching system. A carrier secures a rod end to an actuator to move the vertical rod door latch between engaged and disengaged positions. The carrier has an opening for receiving the rod end, a securing member for mechanically engaging the rod end, and a locking gate member moveable between open and closed positions. In the open position, the gate member permits the securing member to release the rod end. In the closed position, the gate member holds the securing member against the rod end and retains the rod end in the carrier. The method includes moving the gate member to an open position so the securing member may release the rod end, rotating the securing member towards the rod end and urging itself against the rod, and moving the gate member to a final closed position to hold the securing member against the rod end, thus retaining the rod end in the carrier.
A button may be moveable in an opening in the carrier in a direction normal to a longitudinal axis of a vertical rod. This includes moving a gate member to an open position out of the path of movement of the button, and permitting a securing member to release a rod end. Moving the gate member to a final closed position blocks the path of movement of the button and holds the button inward against the securing member, the securing member which is thus held against the rod end.
The method may include providing a flexible member between the button and the securing member. The flexible member is compressed when the button urges the securing member against a rod end. The button includes a planar face and an outwardly stepped flat edge portion on a head of the button. A gate member is slideable in at least one opening in a carrier in a direction parallel to the longitudinal axis of the rod. The gate member includes an edge for contacting the button head flat edge. Moving the gate member to a final closed position wherein the button planar face and gate member are in contact restricts loosening of the button.
The method may include moving the gate member to a final closed position so that a button head flat edge portion is oriented in a position normal to a longitudinal axis of the rod. The gate edge is in contact with the button head flat edge portion. The method further includes rotating the button to urge the button head flat edge portion against the gate edge to move the gate member out of the path of the movement of the button, thereby permitting the button to move outward of the carrier housing. This causes the securing member to be loosened and moved away from the rod end to permit the rod to be removed from the rod carrier.
A further aspect of the present invention is directed to a retention system including a housing, a securing member, a button, a flexible member, and a locking gate member. The housing secures a member therein and has an opening for receiving the member to be secured. The securing member is in the housing, and mechanically engages the member to be secured. The button is moveable in an opening in the housing in a direction normal to an axis of reception of the member. It urges the securing member toward the member to be secured. The flexible member is between the button and the securing member, and is compressed when the button urges the securing member against the member to be secured. The locking gate member is slideable between open and closed positions in at least one opening in the housing. In an open position, the gate member is out of the path of movement of the button and permits the securing member to release the member to be secured. In the closed position, the gate member blocks the path of movement of the button to hold the button inward, and holds the securing member against the member to be secured, thus retaining it in the housing.
The button may include a planar face and an outwardly stepped flat edge portion on a head of the button. A gate member is slideable in at least one opening in a housing in a direction parallel to the axis of reception of a member. The gate member includes an edge for contacting the button head flat edge, where the button planar face and the gate member come in contact when the gate member is in the closed position portion to restrict loosening of the button.
The button head flat edge portion may be oriented in a position normal to the axis of reception of a member. A gate member is in a closed position so that the gate edge is in contact with the button head flat edge portion, and the button may be rotated to urge the button head flat edge portion against the gate edge to move the gate member out of the path of movement of the button. This permits the button to move outward of a housing, and for a securing member to be loosened and moved away from the member to be secured, thus permitting it to be removed from the housing.
Still another aspect of the present invention provides a tool for installing a rod in a door having a concealed vertical rod door latch assembly. The rod has a first end for attachment to a receiver coupled to a lock interface and an opening for receiving the rod first end and a second end for driving a latch. The tool comprises a sleeve positionable around the rod and moveable along a longitudinal axis of the rod to extend beyond the rod first end. The sleeve has a first end configured for mating with the receiver. The rod is moveable within and with respect to the sleeve such that upon mating of the sleeve with the receiver, the rod may be extended beyond the sleeve first end and into the receiver for attachment thereto.
The sleeve first end may have a protrusion extending therefrom configured to mate with an outer surface of the receiver. The sleeve protrusion is adapted to extend around at least a portion of the outer surface of the receiver. The rod may further include a stop for preventing movement of the sleeve in the direction of the rod second end, and the sleeve second end may include a slot for receiving the stop.
The rod may have a non-circular cross-section and the sleeve may have a correspondingly-shaped cross-section for at least a portion of its length for preventing rotation of the sleeve about the longitudinal axis of the rod. The rod has a length sufficient to reach substantially from the top or bottom of the door to the concealed actuator receiver within the door. One or both of the sleeve and rod may be comprised of photoluminescent material.
In another aspect, the present invention is directed to a method for installing a rod in a door having a concealed vertical rod door latch actuator. The method comprises providing a door having a concealed vertical rod door latch actuator in an interior portion of the door, the vertical rod door latch actuator including a receiver having an opening for receiving a vertical rod. The method also provides a rod having a first end for attachment to the actuator receiver and a second end for driving a latch. The method further provides a tool for installing the rod in the door. The tool is coupled to the vertical rod and comprises a sleeve moveable along a longitudinal axis of the rod and extendable beyond the rod first end, the sleeve having a first end configured for mating with the receiver, the rod being moveable within and with respect to the sleeve. The method then further comprises extending the sleeve beyond the first end of the rod, inserting the rod first end and sleeve into the door interior portion, mating the sleeve first end with an outer surface of the receiver and slideably moving the rod with respect to the sleeve in the direction of the actuator receiver and extending the rod beyond the sleeve first end, and inserting the rod first end into the receiver opening for attachment thereto. The method may further comprise the step of securing the rod first end to the lock interface after inserting the rod first end into the receiver opening.
The sleeve first end may have a protrusion extending therefrom configured to mate with an outer surface of the receiver and the sleeve protrusion may extend around at least a portion of the outer surface of the receiver, and the step of mating the sleeve first end with an outer surface of the receiver may comprise aligning the sleeve protrusion with the outer surface of the receiver.
The rod may further include a stop for preventing movement of the sleeve in the direction of the rod second end, and the step of slideably moving the rod within the sleeve in the direction of the actuator receiver and extending the rod beyond the sleeve first end may comprise contacting a second end of the sleeve against the stop as a result of movement of the rod within the sleeve. The sleeve second end may comprise a slot for receiving the stop.
The rod may have a non-circular cross-section and the sleeve may have a correspondingly-shaped cross-section for at least a portion of its length for preventing rotation of the sleeve about the longitudinal axis of the rod. The rod and sleeve may be inserted into a door interior through an opening for a vertical door latch to be actuated by the rod. One or both of the sleeve and rod may be comprised of photoluminescent material.
In still another aspect the present invention provides a latch dogging switch for a vertical rod door latch assembly operable by a handle. The latch assembly comprises a mid-point door latch, a first vertical latch at the top of a door frame and a second vertical latch at the bottom of the door frame. The mid-point and vertical latches are mechanically linked to retract cooperatively from an extended position. A first vertical rod is attached to and drives the first vertical latch, and a second vertical rod is attached to and drives a second vertical latch. The switch comprises a housing, a switch and switch block, and an arm fixture which is affixed to and slides vertically inside of the switch housing. The arm fixture attaches to one of the vertical rods and is moveable therewith. The switch block inside the housing is attached to the switch, and the switch is alternately slideable into a single-point position and a multi-point position. When one of the rods is moved by operation of the handle to retract the vertical latch, the switch may move the switch block to the single-point position, and the switch block holds one of the vertical rods and vertical latches in place in the retracted position. The vertical latches remain retracted upon release of the handle back to its normal position. The mid-point latch continues to operate normally between open and closed positions in conjunction with the subsequent operation of the handle while the switch is in the single point position.
The switch and switch block may be alternately held in the single-point position and the multi-point position by a detent structure in the switch block. The switch block may be slideable in a direction perpendicular to the vertical latches between a multi-point and single-point position. In the multi-point position the arm fixture is moveable with the one of the vertical rods between extended and retracted positions. In the single-point position, the arm fixture holds the one of the vertical rods in the retracted position. The switch block detent structure may comprise a spring and ball bearing. The spring pushes the ball bearings into a groove on the rear faceplate of the housing, holding the switch in place when the switch block is in position. The ball bearings allow for sliding movement of the switch block upon applied force to the switch.
A further aspect of the present invention provides a method of switching between a multi-point and single-point locking system for a door. There is provided a door having a latch structure operable by a handle, the latch structure comprising a mid-point latch, a first vertical latch at the top of the door frame, and a second vertical latch at the bottom of the door frame. The mid-point and vertical latches are mechanically linked to retract cooperatively from an extended position. A first vertical rod is attached to and drives the first vertical latch, and a second vertical rod is attached to and drives the second vertical latch. A latch dogging switch is further provided, which has a housing, and an arm fixture affixed to and vertically slideable within the housing. The arm fixture is attached to one of the vertical rods and is moveable therewith. A switch block is inside the housing and is attached to the switch. The switch is slideable into a single-point position and a multi-point position. When the switch is in the multi-point position, the handle may be operated to retract the mid-point latch, first vertical latch, and second vertical latch. The method includes moving the switch to the single-point position while the mid-point and vertical latches are retracted so that the switch block holds one of the vertical rods and the vertical latches in the retracted position. The method also includes releasing the handle whereupon the vertical latches remain retracted while the switch is still in the single-point position and the mid-point latch continues to operate normally between open and closed positions by subsequent operation of the handle.
In still another aspect of the present invention there is provided an indicator for a vertical rod door latch in a door having a vertical latch at the top and/or bottom of the door. A vertical rod is attached to and drives the vertical latch. The vertical rod door latch is operable between retracted and extended positions. The indicator comprises a housing and an indicator member on the housing attached to the vertical rod and moveable therewith. The indicator member has visible markings corresponding to extension and retraction of the vertical rod door latch. The indicator member displays one marking pattern when the vertical rod door latch is in the retracted position, and displays a different marking pattern when the vertical rod door latch is in the extended position.
When the door has a mid-point latch, the indicator member further includes a visible marking corresponding to the mid-point latch. The indicator may further include an indicator panel on a face of the latch housing, wherein the indicator member markings are visible in the indicator panel.
In yet another aspect the present invention provides a method of indicating whether a vertical rod door latch is engaged. The method provides a door having a vertical latch positioned at the top of a door frame, a vertical rod attached to and driving the latch, the vertical rod which is operable between retracted and extended positions. Further provided is an indicator having a housing, an indicator panel on a face of the housing, and indicator member attached to the vertical rod and moveable therewith. The indicator member has visible markings corresponding to extension and retraction of the vertical rod. The method includes moving the vertical rod into the retracted position and displaying one marking pattern by the indicator member to indicate that the vertical rod is in the retracted position. The method then includes moving the vertical rod into the engaged position and displaying a different marking pattern by the indicator member to indicate that the vertical rod is in the extended position. The door may further include a mid-point latch and the method then includes displaying a visible marking corresponding to the mid-point latch.
The present invention also provides in another aspect an adapter for enabling a mortise lock with a mid-point latch to actuate a vertical rod door latch and adjust the degree of projection of the vertical rod door latch from the door. The mortise lock is mountable between outer panels of a door and has an opening for a handle to actuate a mid-point latch extending therefrom at a door edge from an extended locked position to a retracted open position. The adapter comprises a housing, a receiver in an actuator, a driver, and an adapter hub. The housing has an actuator for a vertical rod door latch, which moves a vertical rod door latch from an extended locked position to a retracted open position. The receiver in the actuator has an opening adapted to engage an end of a vertical rod secured to the vertical rod door latch by a threaded coupling to adjust the distance therebetween. The driver rotates the receiver. The adapter hub is rotatable with respect to the housing, and has a handle shaft opening for and rotatable by the mortise lock handle shaft. The adapter hub handle shaft opening is positionable in alignment with the mortise lock handle shaft opening between the mortise lock and an inner surface of a door outer panel. The adapter hub is operatively connected to the vertical rod door latch actuator, such that upon rotation of the adapter hub by the handle shaft the vertical rod door latch moves from an extended locked position to a retracted open position while the handle shaft simultaneously rotates the mortise lock handle shaft opening and hub to move the mid-point latch from an extended locked position to a retracted open position. The driver may be engaged at the actuator to rotate the receiver and rotate the vertical rod with respect to the latch and adjust a degree of the latch projection in upward and downward directions.
The adapter may further include one embodiment of a carrier for securing an end of a vertical rod within a receiver in an actuator housing. The carrier has an opening for receiving the rod end, a securing member for mechanically engaging the rod end, and a screw for urging the securing member against the rod end to retain the rod in the carrier. The screw has at least one indentation around its periphery. The carrier includes at least one spring surface for bearing against at least one indentation of the screw. The spring is moveable to permit a user to rotate and tighten the screw to urge the securing member against the rod end. The spring surface applies a force to the at least one indentation to restrict loosening rotation of the screw, thereby retaining the rod end in the carrier.
The adapter may also include another embodiment of a carrier for securing an end of a vertical rod within a receiver in an actuator housing. The carrier has an opening for receiving the rod end, a securing member in the carrier for mechanically engaging the rod end, and a locking gate member moveable between open and closed positions. In the open position, the gate member permits the securing member to release the rod end and the gate member in the closed position holds the securing member against the rod end and retains the rod end in the carrier.
The adapter may further include a tool for installing the vertical rod, where the vertical rod has a first end for attachment to a receiver. The tool comprises a sleeve positionable around the vertical rod and moveable along a longitudinal axis of the rod to extend beyond the rod first end. The sleeve has a first end configured for mating with the receiver, and is moveable with respect to the rod such that upon mating of the sleeve with the receiver, the road may extend beyond the sleeve first end and into the receiver for attachment thereto.
The present invention further provides an actuator for moving a vertical rod door latch between locked and open positions, and for permitting adjustment of projection of the vertical latch from a door into an opening in a door strike. The door latch has a vertical rod secured thereto by a threaded coupling to adjust the distance therebetween. The actuator comprises a housing, a receiver in the housing having an opening adapted to engage an end of the vertical rod, a driver to rotate the receiver, and a carrier for securing an end of the vertical rod within the receiver in the actuator housing. The carrier has an opening for receiving the rod end, a securing member for mechanically engaging the rod end, and a screw for urging the securing member against the rod end to retain the rod in the carrier. The screw has at least one indentation around its periphery. The carrier includes at least one spring surface for bearing against at least one indentation of the screw. The spring is moveable to permit a user to rotate and tighten the screw to urge the securing member against the rod end. The spring surface applies a force to at least one indentation to restrict loosening rotation of the screw, thereby retaining the rod end in the carrier. Prior to securing the vertical rod within the receiver with the carrier, the driver may be engaged at the actuator to rotate the receiver and rotate the vertical rod with respect to the latch. This adjusts the depth of the latch projection in upward and downward directions with respect to the opening in the strike.
Still another aspect of the present invention provides an actuator for moving a vertical rod door latch between locked and open positions, and permitting adjustment of projection of the vertical latch from a door into an opening in a door strike. The door latch has a vertical rod secured thereto by a threaded coupling to adjust the distance therebetween. The actuator comprises a housing, a receiver in the housing having an opening adapted to engage an end of the vertical rod, a driver to rotate the receiver, and a carrier for securing an end of the vertical rod within the receiver in the actuator housing. The carrier has an opening for receiving the rod end, a securing member in the carrier for mechanically engaging the rod end, and a locking gate member moveable between open and closed positions. The gate member in the open position permits the securing member to release the rod end and the gate member in the closed position holds the securing member against the rod end and retains the rod end in the carrier. Prior to securing the vertical rod end within the receiver with the carrier, the driver may be engaged at the actuator to rotate the receiver and rotate the vertical rod with respect to the latch. This adjusts the depth of the latch projection in upward and downward directions with respect to the opening in the strike.
The present invention in yet another aspect provides a method for installing a rod in a door having a concealed vertical rod door latch actuator, and adjusting a vertical rod latch projection. The method provides a door, a concealed vertical rod door latch actuator, a rod, and a tool for installation. The door is for mounting in a door frame having a strike with an opening therein located above or below the door. The vertical rod door latch actuator is in an interior portion of the door for moving the vertical rod door latch between extended locked and retracted open positions. The actuator comprises a housing, a receiver in the housing having an opening for engaging a vertical rod, and a driver to rotate the receiver. The rod has a first end for attachment to the actuator receiver and a second end for driving a latch. The tool is coupled to the vertical rod and comprises a sleeve movable along a longitudinal axis of the rod and extends beyond the rod first end. The sleeve has a first end configured for mating with the receiver, the rod being movable within and with respect to the sleeve. The method includes extending the sleeve beyond the first end of the rod, inserting the rod first end and sleeve into the door interior portion, mating the sleeve first end with an outer surface of the receiver, slideably moving the rod with respect to the sleeve in the direction of the actuator receiver and extending the rod beyond the sleeve first end, and inserting the rod first end into the receiver opening for attachment thereto. A vertical rod door latch assembly is further provided at the top or bottom of the door, comprising a latch moveable between an extended locked position and a retracted open position. The latch is adapted to extend into the strike opening when in the locked position. The method includes securing the latch to the vertical rod second end by a threaded coupling capable of adjusting the distance therebetween, and engaging the driver at the actuator to rotate the receiver and rotate the vertical rod with respect to the latch, and adjust a depth of the latch projection in upward and downward directions with respect to the opening in the strike.
The method may further include the step of securing the rod first end to the actuator after adjusting the depth of the latch projection.
The present invention in a further aspect provides a method for enabling a mortise lock with a mid-point latch to actuate a vertical rod door latch and install the vertical rod for the latch in a door. The door has outer panels, an interior portion therebetween and openings in a side edge and a top or bottom of the door to the interior portion. The mortise lock has an opening for a shaft of a handle to actuate a mid-point latch extending therefrom at a door edge from an extended locked position to a retracted open position. An adapter is provided that has a housing with an actuator for a vertical rod door latch. The actuator includes a receiver having an opening for receiving a vertical rod to be operatively connected to a vertical rod door latch. The actuator is adapted to move the vertical rod door latch from an extended locked position to a retracted open position. An adapter hub rotates with respect to the housing, and has a handle shaft opening for and rotatable by the mortise lock handle shaft. The adapter hub handle shaft opening is positionable in alignment with the mortise lock handle shaft opening between the mortise lock and an inner surface of a door outer panel. The adapter hub upon rotation by the handle shaft causes the vertical rod door latch to move from the extended locked position to the retracted open position while the handle shaft simultaneously rotates the mortise lock handle shaft opening and hub to move the mid-point latch from an extended locked position to a retracted open position. The method includes inserting the adapter through the door side edge opening into the door interior portion. A rod having a first end for attachment to the actuator receiver and a second end for driving a vertical rod door latch is provided. A tool for installing the rod in the door is also provided. The tool is coupled to the vertical rod and comprises a sleeve moveable along a longitudinal axis of the rod and is extendable beyond the rod first end. The sleeve has a first end configured for mating with a receiver. The rod is moveable within and with respect to the sleeve. The method includes extending the sleeve beyond the first end of the rod, and inserting the rod first end and sleeve through the top or bottom opening in the door interior portion. The sleeve first end is mated with an outer surface of the receiver. The rod is slideably moved with respect to the sleeve in the direction of the actuator receiver, and is extended beyond the sleeve first end. The method then includes inserting the vertical rod first end into the receiver opening, and securing the vertical rod to the actuator to operatively connect the adapter to the vertical rod door latch in the door. The method further includes inserting the mortise lock into the adapter in the door side edge opening, and aligning the mortise lock handle shaft opening with the adapter hub handle shaft opening. Using a handle shaft inserted through an opening in the outer door panel and extended into both the adapter hub handle shaft opening and the mortise lock handle shaft opening, the method includes rotating the handle shaft to simultaneously cause the vertical rod door latch and the mid-point latch to move from extended locked positions to retracted open positions.
The actuator may include a driver to rotate the receiver. The method may further include providing a door for mounting in a door frame, the door frame having a strike with an opening therein located above or below the door. After inserting the rod first end into the receiver opening, and before securing the vertical rod to the actuator, the method includes engaging the driver at the actuator to rotate the receiver and rotate the vertical rod with respect to the latch and adjust a depth of the latch projection in upward and downward directions with respect to the opening in the strike.
In another aspect of the aforementioned method the mortise lock provides a mid-point latch and has a handle extending from the handle shaft, and includes a first vertical latch at the top of a door frame and a second vertical latch at the bottom of the door frame. The mid-point and vertical latches are mechanically linked by the actuator to retract cooperatively from an extended position. A first vertical rod extends from the actuator and attaches to and drives the first vertical latch, and a second vertical rod extends from the actuator and attaches to and drives the second vertical latch. The method further includes providing a latch dogging switch having a housing, an arm fixture affixed to and vertically slideable within the switch housing, the arm fixture attached to one of the vertical rods and moveable therewith. A switch block inside the switch housing is attached to the switch, the switch being slideable into a single-point position and a multi-point position. While the switch is in the multi-point position, the handle is operated to retract the mid-point latch, first vertical latch and second vertical latch. The switch is moved to the single-point position while the mid-point and the vertical latches are retracted. The switch block holds the one of the vertical rods and the vertical latches in the retracted position. The handle is released whereupon the vertical latches remain retracted while the switch is in the single-point position, and the mid-point latch continues to operate normally between open and closed positions by subsequent operation of the handle.
The latch dogging switch may include an indicator panel on the face of the switch housing, and an indicator member attached to one of the vertical rods and moveable therewith. The indicator member has visible markings corresponding to extension and retraction of the vertical rod. The method further includes moving the vertical rod into the retracted position and displaying one marking pattern by the indicator member to indicate that the vertical rod is in the retracted position, and moving the vertical rod into the engaged position and displaying a different marking pattern by the indicator member to indicate that the vertical rod is in the extended position.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the embodiments of the present invention, reference will be made herein to
This invention relates to mortise locks and to multi-point locks such as vertical rod door latches. More specifically, it is directed in several aspects to an adapter and interface that permits a standard mortise lock to drive top and bottom latch mechanisms of a multi-point lock system, a method of permitting verification of retention of the vertical rods in a multi-point latching system, an actuator allowing for in situ adjustment of the top and bottom vertical latch projections and a method of adjusting these projections while the door is hung, an installation tool that assists in the installation of the vertical rods in a door with a concealed rod and latch assembly, and a latch dogging indicator that allows for end-user adjustment between a single-point lock and a multi-point lock system when desired. These different aspects may be employed in combination with each other or in combination or separately with other locking systems.
The lock systems and methods described herein are particularly suited for, but not limited to, high security and strength doors, such as tornado doors typically found in a tornado shelter or safe room. A tornado door includes a door shell having a first exterior panel or outer door skin on the impact side of the door and a second exterior panel or inner door skin on the non-impact side of the door. In some embodiments, the tornado door may include an opening for receiving an impact resistant window assembly. The exterior panels may be made of any suitable sheet material, for example a metal or alloy such as about 16 gauge (0.056 in, 1.422 mm) or 20 gauge (0.032 in, 0.81 mm) steel, and may be flat or embossed. Typical door skin thickness may be in the range of about 0.032 to 0.104 inches (0.81 mm to 2.64 mm). The door includes door edges extending between the periphery of the inner and outer exterior panels. A tornado door is normally an active door which is opened and closed and is positioned within a door frame, and attached to the door frame by a plurality of hinges on one edge of the door. The opposite free edge of the door may include one or more locks, such as a deadbolt or cylindrical lock, disposed within the interior of the door for securing the door in a closed position, and a handle for opening and releasing the door when the lock(s) are collectively in an unlocked position. The interior portion may be hollow and include a plurality of stiffeners for strengthening the inner and outer door skins.
Referring to
Mortise Lock Adapter
An embodiment of the mortise lock adapter and vertical rod interface cassette 40 of the present invention is shown in
The vertical rods 16, 18 extending upward and downward, respectively, are mechanically linked to move together, but in opposite directions, through actuation assembly 30′. A pair of upper and lower rod connectors or carriers 100 are vertically slideable up and down on pins 56, 58, respectively, within slots on opposite sides of housing 42, and secure the lower end 16a of upper rod 16 and the upper end 18a of lower rod 18, respectively. A double ended lever 27 pivots on pin 28 in housing 42 and has opposite arms 27a, 27b extending therefrom. Elongated members or links 32a, 32b connect at one end via pins 56, 58 to upper and lower rod carriers 100, respectively (
The adapter 40 housing 42 is constructed as a magazine or cassette as shown in
Adapter hubs 46a, 46b are operatively connected to the actuator portion of cassette 40 to retract the vertical rods 16, 18 upon rotation of the hubs. While the mechanism of the prior art actuator 30 may be employed (
Because the shafts of handles 12, 14 extend through the adapter hubs 46a, 46b to the mortise lock hub handle slot 22, simultaneously the mortise lock hubs 20a, 20b move the mortise lock mid-point latchbolt 23 from an extended locked position to a retracted open position. This unlatches the door from the door frame and floor and allows the door to open.
While rotating lever handles as shown may be employed, push/pull, pushbar and other known types of exit devices, trim or handles may be used, and the term handle is understood to include these as well.
Adjustment of Vertical Rod Latch Projection
An apparatus and method for adjusting a vertical rod latch projection in a multi-point latching system is shown in
The embodiment of the multi-point locking system shown in
The vertical rods 16, 18 are mechanically linked in a conventional manner to move together, but in opposite directions through actuator assembly 30. When the upper vertical rod 16 moves down, the lower vertical rod 18 moves up. The lower vertical rod 18 drives a lower latch having a pin or latch 36 extending through the lower door edge that enters a corresponding strike or opening typically mounted in the floor. The upper latch is provided with a latch assembly 24 and an upper pin or latch 26 extending through the upper door edge (not shown) that also enters a corresponding strike or opening in the top of the door frame. In the vertical rod door latch illustrated, the upper latch assembly 24 acts to hold the pins 36 and 26 in the retracted position when the door is open and to release them when the door is closed using sensing pin 25. The vertical rods 16, 18 are typically located inside the door so that they are hidden.
By rotating or otherwise operating handles 12 or 14, the vertical rods 16, 18 can be moved to unlatch the upper, lower and mid-point latches by retracting the upper, lower and mid-point pins 26, 36, 23 from their respective strike openings. This unlatches the door from the door frame and floor and allows the door to open.
The actuator assembly of the present invention eliminates the need to stand on a ladder to adjust the upper door latch or take down the door to adjust depth of vertical latch projection by permitting adjustment of the projection of a vertical rod latch into the corresponding strike opening in situ while the door is hung, while also ensuring that latch projection adjustments for the top and/or bottom vertical rod latch(es) are made from the center of the door.
An embodiment of the adjustable vertical rod latch is shown in the actuator assembly of the adapter and vertical rod interface cassette in
The actuator assembly of the present invention permits the depth of the top and bottom vertical latch projection(s) to be adjusted while the door is hung and prior to securing the lower end 16a of the upper vertical rod 16 and the upper end 18a of the lower vertical rod 18, respectively, to the actuator 30′. As shown in
As described above with respect to prior art multi-point lock systems, the top end 16b of the upper vertical rod 16 drives an upper latch having a pin or latch 26 extending through a corresponding strike or opening in the top of the door frame (not shown). The vertical rod has a threaded coupling with the door latch to adjust the distance between the two. Rod top end 16b is helically threaded and screws into a comparably-threaded lower end 26a of latchbolt 26. Latchbolt 26 may move up and down, but is restrained from rotation. As shown in
A corresponding worm drive 150a and receiver 70a may be integral with or coupled to the bottom end of the assembly housing 42 (
Connector/Carrier for Verifying Retention of the Vertical Rods
An embodiment of the apparatus and method for verification of retention of vertical rods in a multi-point latching system is shown in
The connection between vertical rods 16, 18 and vertical rod connection or actuator assembly 30′ is shown as being made via a pair of connectors or carriers 100 in one embodiment shown in
As shown in
The set screw 140 or 140′ has threads and is received in a comparably threaded opening in the housing oriented in a direction perpendicular to the vertical rod axis. The set screw embodiment 140 depicted in
The set screw 140 shown in
The carrier housing 132 includes openings 252 through which a pair of essentially parallel spring legs 250a, 250b extend perpendicularly to both the vertical rod axis and the set screw axis (
In the method aspect of this embodiment of the present invention, as the set screw 140 is rotated into a tightened position toward the securing member 136 urging it against the rod end 16a, 16b, the spring legs 250a, 250b are moved outward by the corners 145 between the screw shank flat portions 144 so that the screw must overcome the spring force to turn (
In another embodiment shown in
As seen in the side view in
In the method aspect of this embodiment, the second cantilever portion 251′a of the spring may be moved toward the securing member 136 by a hand or tool into a loaded or deformed position, wherein the spring is below and clears the set screw head 146′, so that the screw head may be rotated. The set screw 140′ is then tightened into final position against the securing member 136 to retain the rod end 16a, 18a in the carriers 100a, 100b, and the head 146′ is left in a position where the flat side portions 144′ are parallel to the spring legs 251a, 251b. Upon release the second cantilever portion 250′a of the spring 250 moves upward away from the securing member to the undeformed position (
A further embodiment of the connector/carrier securing the vertical rod in the actuator is shown in
The button 180 is received in a comparably sized opening 135 in the housing oriented in a direction perpendicular to the vertical rod axis. In
The button 180 is shown having a planar face 183 normal to its longitudinal axis and a stepped detent or indentation 184 in what would otherwise be the cylindrical shape of the shank at the head end 186. The stepped detent or indentation 184 in this embodiment comprises an outwardly stepped flat surface portion in the periphery of the head end 186, and may be perpendicular to the screwdriver slot and to the button face 183 as shown.
As shown in
In the method aspect of this embodiment of the present invention, gate 170 is removed from carriers 100a′, 100b′ or otherwise moved to an open position wherein the gate is out of the path of longitudinal movement of button 180. After the rod end is placed in carrier opening 134 and the flexible member 171 is positioned between the securing member and the button in the carrier housing, button 180 is then depressed toward securing member 136, so as to urge it against the rod end 16a, 18a. Button 180 is then moved to its final position in which button face 183 is inward of the plane of gate 170 and button flat 184 is oriented normal to the rod axis and parallel to gate edge 174. Gate 170 is moved to a final closed position wherein the gate 170 is adjacent button face 183, blocking the path of longitudinal movement of the button, and gate edge 174 is in contact with button flat 184. The gate and gate edge in that position apply a force to the button to restrict loosening movement of the button outward, thereby retaining the rod end in the carrier. The position of gate 170 may be confirmed visually from the front of the carrier, thereby verifying that the rod is properly retained in the carrier.
When it is desired to remove the rod from the carrier, button 180 may be rotated by a screwdriver in slot 187 with respect to its longitudinal axis to urge one or the other end of the button head flat 184 against gate edge 174 and move the gate upward and away from the button. Once gate 170 is out of the path of longitudinal movement of button 180, the button moves outward by force of the flexible member and removes pressure and compression of flexible member 171 against securing member 136 to loosen and move it away from the rod end to permit the rod to be removed from the rod carrier.
Securing of the vertical rod in the connector/carrier described herein, including those of
Rod Installation Tool
With the vertical rod and latch assembly typically concealed inside a cavity in the door, installation of the rods is complicated due to the inability of the installer to have a clear line of sight to the opening for connection between the lock interface and the rod. The integrated rod guide installation tool of the present invention remedies this deficiency by simplifying alignment of the rod with the lock interface by providing an alignment guide which is slideably retractable along the rod and remains concealed in the door after final installation.
The integrated rod guide installation tool of the present invention is shown in
As shown in
As shown in
In an exemplary method of installing a vertical rod using the installation guide of the present invention, as shown in
In one or more embodiments, the end 162 of the sleeve has a protrusion 166 extending therefrom which is configured to mate with an outer surface of the receiver. As best shown in the top portion of
As shown in
To further assist in alignment of the rod with the lock interface, in one or more embodiments of the present invention, one or both of the sleeve 160 and rod 16, 18 may be comprised of photoluminescent material. In that the rod and latch assembly are concealed within the door body, proper alignment of the rod 16, 18 with the receiver 70, 70a is further aided by the photoluminescence afforded by the rod installation guide of the present invention.
Latch Dogging Switch and Indicator
A latch dogging switch and indicator in accordance with the present invention is shown in
As shown in
Housing 310 also contains the vertical rod engagement structure which includes an arm fixture 320 that protrudes out the rear faceplate 340 of the housing 310. Referring to
Referring to
When switch 312 is in the multi-point position 312b, switch block 314 rests aside and away from arm fixture base tab 322b (
Referring to
An exterior lever handle and an interior lever handle 12, 14 are connected together to drive a cam 64 when either handle is turned (
For an end user to engage/disengage the multi-point lock system, while the mid-point 23 and vertical latches 26, 36 are retracted, the user slides the switch 312 found on the face of the housing 310 laterally to either of the multi-point 312b or single-point 312a position. The multi-point position 312b engages all the latches 23, 26, 36 of the multi-point lock system, and the single-point position 312a disengages the vertical latches 26, 36 of the multi-point lock system while leaving operable only the mid-point latch 23 as a single-point lock system. The face of the latch dogging switch will display colored indicators 318a, 318b to convey to the end user whether they are engaging or disengaging the multi-point lock system.
The multi-point position 312b allows the vertical bolts 26, 36 which run parallel to the vertical edge of the door 400 or other structure to move freely between the locked and unlocked position. The single-point position 312a locks the vertical bolts 26, 36 into place within the door 400 or other structure, preventing them from moving into a locked position when the end user turns the lever handles 12, 14.
While engaging and disengaging the vertical rod 16 as above, the indicator member 318 on the front side of the base attached to the vertical rod 16 displays alternate marking patterns 318a, 318b visible on the indicator panel on the face of the housing 310. The markings correspond to engagement and disengagement of the vertical rods 16, 18. When the vertical rods 16, 18 are in the retracted position, the indicator panel displays one marking pattern 318a, i.e., there are no marks visible at the top and bottom of the indicator panel 318. When the vertical rods are in the engaged position, the indicator panel displays a different marking pattern 318b, i.e., marks at both the top and bottom of the panel. The indicator panel further includes a visible marking corresponding to the mid-point latch 23, i.e., a mark visible at the side mid-point of the panel.
Thus, the present invention achieves the objects above. The adapter and interface permit a standard mortise lock to drive top and bottom latch mechanisms of a multi-point lock system. The actuator permits in situ adjustment of the top and bottom vertical latch projections of adjusting these projections while the door is hung in the door frame. The installation tool assists in the installation of the vertical rods in a door. The embodiments of the connector and carrier secure the vertical rods to the actuator and permit verification of retention of the rods in a multi-point latching system. The latch dogging indicator allows for end-user adjustment between a single-point lock and a multi-point lock system when desired.
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
Thus, having described the invention, what is claimed is:
Number | Date | Country | |
---|---|---|---|
62381755 | Aug 2016 | US | |
62381758 | Aug 2016 | US | |
62381343 | Aug 2016 | US | |
62381332 | Aug 2016 | US | |
62381321 | Aug 2016 | US | |
62381337 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16325909 | Feb 2019 | US |
Child | 17559682 | US |