1. Field of the Invention
The present invention relates to MOS transistors. More particularly, the present invention relates to MOS transistors having improved total radiation-induced leakage currents.
2. The Prior Art
It is known that MOS transistors exhibit increased radiation-induced leakage along channel ends at the birds beak region of the field oxide edges caused by electron-hole pair charge buildup. This effect is only seen in n-channel devices. P-channel devices are not negatively affected. It is known to reduce this radiation-induced current leakage by increasing the boron field channel-stop implant dose under the birds beak edges of the field oxide isolation regions. Typically, field channel-stop implant doses may be increased from about 6e13 up to about 1.2e14.
While increasing the field channel-stop implant dose is known to decrease this radiation-induced current leakage, the increased field channel-stop implant dose has the unwanted effect of decreasing the junction breakdown voltage of the MOS transistor. The need to avoid unwanted lowering of the junction breakdown of the transistor limits the use of increased field channel-stop implant dose as a means of decreasing the radiation-induced current leakage in MOS transistors.
Recently, shallow-trench isolation has been used as an isolation technique. Use of this technique, in which trenches are etched in the silicon substrate and filled with deposited silicon dioxide, provides a deep isolation and a much more planarized surface than can be obtained by using the traditional field oxide isolation techniques. In transistors formed using shallow-trench isolation techniques, the top surface of the silicon dioxide at the edges of the trenches can lie below the level of the bottom of the source/drain implants in the active transistor regions. The polysilicon gates formed over the gate oxides of the transistors follow the contours formed by the lowered edges of the silicon dioxide used to fill the trenches and thus can also extend vertically below the level of the bottom of the source/drain implants in the active transistor regions. Because there is no field channel-stop implant in the shallow-trench isolation structures, radiation-induced current leakage can occur at the edges of the source and drain regions where the polysilicon transistor gate extends below the source and drain implants.
Attempts have been made to correct this problem by modifying the geometries of the silicon and silicon dioxide interface at the trench edges. These attempts have met with varying degrees of success.
A shallow-trench isolation transistor according to the present invention includes a sidewall channel-stop implant around the side and bottom walls of the trench. This implant surrounds the transistor and extends below the level of the source and drain implants in the active transistor region and significantly lowers the radiation-induced leakage currents that would otherwise exist in the shallow-trench isolation transistor.
The disclosure is also directed toward a shallow-trench isolation that includes a semiconductor substrate. An active region of the transistor is formed on the semiconductor substrate. A single isolation trench is in the semiconductor substrate having a uniform cross-section that bounds the active region. An isolation implant is formed in the sidewalls of the isolation trench. Spaced apart source and drain regions are formed over the active region. A gate dielectric layer is formed over the active region. A gate is disposed over the gate dielectric layer and is located between the source and drain region.
A method for fabricating a shallow-trench isolation transistor according to the present invention includes forming isolation trenches to define active regions in a silicon substrate; performing sidewall isolation implants on the side and bottom walls of the isolation trenches in the n-channel (p-well) areas only; depositing a dielectric isolation material in the isolation trenches; planarizing the top surface of the silicon substrate and the dielectric isolation material using CMP techniques; forming a gate oxide layer over the active regions in the silicon substrate; forming and defining gate regions over the gate oxide layer in the active regions in the silicon substrate; and forming source and drain regions in the active regions in the silicon substrate. The method of the present invention requires the use of one additional mask for sidewall implant in the n-channel (p-well) areas only.
Those of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.
Referring first to
The structure of
As previously noted, while increasing the field channel-stop implant dose is known to decrease this radiation-induced current leakage, the increased field channel-stop implant dose has the unwanted effect of decreasing the junction breakdown voltage of the MOS transistor 10. The need to avoid unwanted lowering of the junction breakdown of the MOS transistor 10 limits the use of increased field channel-stop implant dose as a means of decreasing the radiation-induced current leakage in MOS transistors.
Referring now to
In transistors 32 formed using shallow-trench isolation techniques, edges 40 of the top surface of the silicon dioxide regions 34 at the edges of the trenches can lie below the level of the bottom of the source/drain implants (not shown) in the active transistor regions 42. The polysilicon gates 38 formed over the gate oxides 36 of the transistors 32 follow the contours formed by the lowered top surfaces 40 of the silicon dioxide regions 34 used to fill the trenches and thus can also extend vertically below the level of the bottom of the source/drain implants in the active transistor regions 42. Because there is no field channel-stop implant in the gate edge region of conventional shallow-trench isolation structures, radiation-induced current leakage can occur at the edges of the source and drain regions where the polysilicon gate 38 of MOS transistor 32 extends below the source and drain implants.
Referring now to
Unlike the prior-art shallow-trench isolated MOS transistor of
As will be appreciated by persons of ordinary skill in the art, different species will be used for the sidewall implant 60 depending on whether N-Channel or P-Channel MOS transistors are being formed. For example, to form N-Channel MOS transistors according to the present invention, boron may be implanted at a dose of about 2.0e12. P-Channel MOS transistors do not need the sidewall trench implant according to the present invention.
Turning now to
Referring now to
As shown in
In accordance with the present invention, sidewall implants for isolation of N-Channel MOS transistors according to the present invention may be performed by, for example, implanting boron at a concentration of between about 5.0e11 to about 3.0e12, and preferably about 2.0e12, at an angle of between about 10° to about 35°, and preferably about 25°.
Referring now to
Referring now to
Persons of ordinary skill in the art will understand that, after performing the steps illustrated in
An alternate technique to perform the function of the present invention involves performing an additional implant in the channel region at the time of the Vt implant in place of the trench sidewall implant in order to help negate leakage at the channel edges. According to this aspect of the present invention, a boron implant of between about 1.0e12 to about 1.5e12, preferably about 1.2e12, is made at an energy of between about 50 to about 100 keV, preferably about 80 keV. This implant is performed at the time of the Vt threshold adjusting implant prior to formation of the polysilicon gate.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
This application is a continuation-in part of co-pending U.S. patent application Ser. No. 10/036,303, filed Dec. 28, 2001, which is a divisional of U.S. patent application Ser. No. 09/741,949, filed Dec. 20, 2000, now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 09741949 | Dec 2000 | US |
Child | 10036303 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10036303 | Dec 2001 | US |
Child | 10929107 | Aug 2004 | US |