1. Field of the Invention
The present invention relates to a metal oxide semiconductor (MOS) transistor, and more particularly to a structure and manufacturing method of a MOS transistor having a structure in which a source and a drain are raised on a substrate by using a selective epitaxial growth technique.
2. Description of the Related Art
Some MOS transistors have a structure in which a source and a drain are raised on a substrate by using a selective epitaxial growth technique. Because epitaxially grown silicon contains no impurities, this type of MOS transistors has a high resistance due to a bulk resistance. Accordingly, it is difficult to maintain an on-state current Ion of a MOS transistor.
One of methods for maintaining an on-state current Ion includes introducing impurities into a source and a drain at a high concentration after selective epitaxial growth. An ion implantation method may be used for this purpose. Alternatively, polysilicon doped at a high concentration may be brought into contact with an upper surface of a silicon layer formed by selective epitaxial growth to thereby introduce impurities. In these methods, if a silicon layer is formed with a small thickness by selective epitaxial growth, then impurities having a high concentration may be diffused to the vicinity of a gate on a substrate side. Accordingly, characteristics of the MOS transistor may be changed.
Here, current paths of an on-state current Ion in a conventional MOS transistor will be described. An on-state current Ion flows from a lower end of a sidewall of a gate to an impurity layer. In
For example, Japanese laid-open patent publication No. 11-145453 (Patent Document 1) discloses a conventional technology of the related art.
In the conventional technology, silicon is formed with a large thickness by epitaxial growth in order to reduce variations in characteristics of a MOS transistor. Alternatively, the amount of impurities to be introduced into a MOS transistor is reduced. However, in either case, a bulk resistance component is increased at those processed portions. Accordingly, an on-state current Ion of the MOS transistor cannot be maintained.
The present invention has been made in view of the above drawbacks. It is, therefore, an exemplary object of the present invention to provide technology to reduce a bulk resistance in a MOS transistor having a structure in which a source and a drain are raised on a substrate by using a selective epitaxial growth technique and to reduce an impurity concentration of a silicon layer in the selective epitaxial growth.
It is considered that the above problems can be solved by removing a high-resistance portion before formation of a contact. Thus, the present invention proposes the following technology to achieve the above object as exemplary aspects of it.
Specifically, an exemplary aspect of the present invention proposes a metal oxide semiconductor (MOS) transistor including a gate having a sidewall formed on a silicon substrate, a silicon layer formed on the silicon substrate by selective epitaxial growth, and an inclination portion inclined downward in a direction opposite to the gate on at least a portion of a cross-section including the silicon layer and the gate.
Thus, the MOS transistor according to the exemplary aspect has the silicon layer inclined downward. With regard to current paths extending radially from a lower end of the sidewall to the silicon layer, a current path can be shortened in the inclination portion as it is located farther away from the sidewall, as compared to a conventional MOS transistor having a flat silicon layer. As a result, a bulk resistance of the silicon layer can be reduced.
In a MOS transistor having a structure in which silicon of a source and a drain is raised on a substrate by using selective epitaxial growth technique, an exemplary aspect of the present invention is focused on the fact that the high resistance of the raised silicon inhibits an on-state current Ion of the transistor. Accordingly, a portion of the raised silicon is removed. As a result, the parasitic resistance of the source and the drain can be reduced, and an on-state current Ion can be improved.
A manufacturing method of a MOS transistor 100 according to a first exemplary embodiment of the present invention will be described below with reference to
As shown in
Then, as shown in
Next, as shown in
Subsequently, as shown in
Then, as shown in
Next, while the silicon nitride films 19 and 20 are used as a mask, the silicon layer 14 and the impurity layer 16 are etched so as to form a recessed portion 22 as shown in
Subsequently, as shown in
Then, as shown in
Next, as shown in
The present embodiment provides a MOS transistor having the following structure. A portion of the silicon layers 14 and 15 formed by selective epitaxial growth is removed so as to form inclination portions inclined downward in directions away from the sidewalls 7 and 8. The impurity layers 24 and 25 are formed on the inclination portions. Since the portion of the silicon layers 14 and 15, which have a high resistance, is removed, the parasitic resistance of the source and the drain is reduced in the MOS transistor. As a result, an on-state current Ion of the MOS transistor can be increased. Referring to
Next, a manufacturing method of a MOS transistor 200 according to a second exemplary embodiment of the present invention will be described.
The explanation of the first embodiment with reference to
In the first embodiment, after the recessed portions 22 and 23 are formed as shown in
Although the present invention has been described based on the preferred exemplary embodiments, it is not limited to the illustrated embodiments. It would be apparent to those skilled in the art that many modifications and variations may be made without departing from the spirit and scope of the present invention.
For example, the MOS transistors 100 and 200 described in the first and second embodiments are used in a portion of a semiconductor device shown in
Furthermore, it would be apparent to those skilled in the art that the present invention can be applied to a PMOS transistor and an NMOS transistor in a CMOS device.
In a case where the silicon layer has a high resistance to some extent, it is desirable that a conductive layer be provided along the inclination portion. Conversely, in a case where the silicon layer has a low resistance, such a conductive layer may not necessarily be provided.
For example, the inclination portion may be formed as a portion of a recessed portion.
It is desirable that the MOS transistor include a contact hole having a bottom formed by at least a portion of the inclination portion on the silicon layer. At that time, in a case where the silicon layer has a high resistance to some extent, it is desirable that a conductive layer be provided on the bottom of the contact hole.
Examples of the conductive layer include an impurity layer introduced by an ion implantation method and a conductive layer formed in a self-aligned manner by metal or semiconductor and the silicon layer. For example, cobalt and nickel are used as the metal. However, any metals capable of forming a silicide layer can be used as the metal. Furthermore, germanium may be used as the semiconductor. In this case, the conductive layer is a silicon germanide layer.
Examples of the contact in the contact hole include a silicide layer formed by introducing an impurity into the contact hole by an ion implantation method and polysilicon including a doped impurity.
Furthermore, an exemplary aspect of the present invention provides a semiconductor device in which the aforementioned MOS transistors are connected to each other. The semiconductor device includes a recessed portion located between two of the gates of the MOS transistors. The recessed portion is formed by connecting the inclination portions of the MOS transistors to each other. The semiconductor device also includes a contact hole having a bottom formed by the recessed portion.
Moreover, another exemplary aspect of the present invention provides a semiconductor device including the aforementioned MOS transistor.
Furthermore, another exemplary aspect of the present invention provides a method of manufacturing the aforementioned MOS transistor.
According to another exemplary aspect of the present invention, a parasitic resistance of a source and a drain is reduced in a MOS transistor. As a result, an on-state current Ion of the MOS transistor can be improved.
The above and other objects, features, and advantages of the present invention will be apparent from the following description when taken in conjunction with the accompanying drawings which illustrate preferred exemplary embodiments of the present invention by way of example.
Number | Date | Country | Kind |
---|---|---|---|
2006-226494 | Aug 2006 | JP | national |
This application is a Continuation application of U.S. application Ser. No. 11/842,643 filed Aug. 21, 2007, which claims priority from Japanese Patent Application No. 2006-226494, filed on Aug. 23, 2006, the disclosure of which is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11842643 | Aug 2007 | US |
Child | 14679188 | US |