The field of the invention is that of the fabrication of variable capacitors using integrated circuit techniques.
Currently, the present MOS varactors have a limited tuning range which may also overlap positive and negative biases in order to encompass a complete tuning range as required by the circuit they are used in.
Past implementations to improve the tuneability of a varactor have utilized separate n and p type gates wired in parallel. This approach increases the total required area and therefore is not an optimum solution.
U.S. Pat. No. 6,667,539, to E. Alder, provides for a MOS varactor circuit having a pair of serially-connected varactors whose junctions are connected via a tap of a resistor to a resistor which is connected to adjacent terminals.
Solutions that provide for MOS varactors with improved tuneability without impacting area, are of great value.
The invention relates to a structure and method of fabrication of a MOS varactor whereby abutted p-n junctions in the polysilicon gate allow for complete elimination of metal wiring; hence, providing for enhanced tuneability without impacting the area requirement.
A feature of the invention is the use of the same implants to form the varactor as are used in standard circuit elements, thereby eliminating the need for one or more additional masks.
Another feature of the invention is that the voltage range over which the varactor may be tuned is increased without increasing the area of the varactor.
Sidewalls 57 are thermal oxide spacers using the same process to form spacers on transistors. Sidewalls 59 are nitride spacers formed by the standard process of depositing a layer of nitride over the gate electrode and using a directional etch to remove the horizontal portions on top of the gate and outside the gate. Advantageously, both these spacer processes are the same as those used in forming transistors and are performed simultaneously with the formation of spacers on transistors in the rest of the circuit. One of the spacers may be omitted if desired.
An aperture is patterned and opened in resist 72-1 that exposes half of the gate electrode and a portion of the well outside the gate structure. An N+ implant dose, chosen as the same polarity as N-well 30, is implanted to form electrodes 62 for the lower electrode and a gate electrode 64. Advantageously, the implant dose is the same as that used to form source and drain electrodes in transistors, so that the same mask is used for the varactor electrodes as is used for the NFET source and drain.
Implementing an abutted p-n region in the polysilicon gate of a MOS varactor by using the standard PFET & NFET Source/Drain Implant avoids the need for extra masks and/or implant steps and provides an improved varactor that is “free” in the sense that an additional mask and/or additional implant is not required.
Varactors in the prior art implement two separate gates (one p-type and the other n-type . . . etc), separated according to the groundrules used in that particular circuit, to obtain improved/increased tuning range and tuneability. This invention reduces the total area compared with previous methods and will improve usability of the MOS Varactor in voltage controlled oscillator (VCO) frequency tuning applications and other complex circuits.
The result of this fabrication process is a varactor that saves space as compared with previous methods of forming P-type and N-type varactors separately and connecting them in parallel. Simulations with the same ground rules have shown that a varactor according to the invention having the same amount of capacitance occupies about 35% less area.
The invention not only provides an area saving, it also produces a combined device having a larger tuning range. Previous p or n varactors had a C-V tuning range of 1.5 volts. Varactors constructed according to the present invention have an improved tuning range of 2.5 volts.
While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced in various versions within the spirit and scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4745079 | Pfiester | May 1988 | A |
5079177 | Lage | Jan 1992 | A |
5204990 | Blake et al. | Apr 1993 | A |
5210435 | Roth | May 1993 | A |
5593909 | Han | Jan 1997 | A |
5643820 | Williams et al. | Jul 1997 | A |
5756365 | Kakumu | May 1998 | A |
5894157 | Han | Apr 1999 | A |
5977591 | Fratin | Nov 1999 | A |
6097070 | Mandelman | Aug 2000 | A |
6281559 | Yu | Aug 2001 | B1 |
6300177 | Sundaresan | Oct 2001 | B1 |
6407412 | Iniewski | Jun 2002 | B1 |
6492688 | Ilg | Dec 2002 | B1 |
6586808 | Xiang | Jul 2003 | B1 |
6630720 | Maszara | Oct 2003 | B1 |
6667539 | Adler | Dec 2003 | B2 |
20020074589 | Benaissa et al. | Jun 2002 | A1 |
20030137796 | Bulucea | Jul 2003 | A1 |
20030178689 | Maszara | Sep 2003 | A1 |
20040252546 | Liaw | Dec 2004 | A1 |
20050161743 | Voldman | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070029587 A1 | Feb 2007 | US |