MOSFET with self-aligned channel edge implant and method

Information

  • Patent Grant
  • 6472274
  • Patent Number
    6,472,274
  • Date Filed
    Thursday, June 29, 2000
    24 years ago
  • Date Issued
    Tuesday, October 29, 2002
    22 years ago
Abstract
A MOSFET device and method, the method involves forming the MOSFET device by selectively doping bordering channel regions in the device such that, in operation, the threshold, or turn-on, voltage is equalized across the channel. The device structure comprises a self-aligned channel edge implant region for equalizing threshold voltages in the channel edge region with threshold voltages in the channel interior region, thereby virtually eliminating sub-threshold leakage current in low voltage applications.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates generally to semiconductor chip devices and manufacturing methods and, particularly, to a metal-oxide-semiconductor-field-effect-transistor (MOSFET)device and method. The method involves forming a MOSFET device by,selectively doping bordering channel regions such that, in operation, the threshold, or turn-on, voltage is equalized across the channel. The device structure comprises a self-aligned channel edge implant region for equalizing threshold voltages in the channel edge region with threshold voltages in the channel interior region, thereby reducing sub-threshold leakage current in low voltage applications.




2. Discussion of the Prior Art




A schematic diagram of a typical MOSFET device is shown in FIG.


1


. As shown in

FIG. 1

, the MOSFET comprises a wafer of silicon (a semiconductor)


1


having two highly doped regions of opposite polarity diffused therein to form a source


2


and a drain


3


region.




Disposed on the semiconductor


1


, between the source


2


and the drain


3


regions, is an insulative gate


4


comprising, for example, silicon dioxide (a dielectric). Disposed on top of the gate dielectric is a metal contact


5


.




In operation, when a voltage (refered to as a gate voltage) is applied to the gate metal


5


with respect to the drain or source terminal (not shown), a “field effect” is triggered in the semiconductor


1


under the gate and between the source


2


and the drain


3


such that either a build-up or a depletion of charge occurs in the semiconductor


1


under the gate. Whichever event occurs depends on the doping conductivity type of the semiconductor


1


under the gate, and the polarity of the gate voltage. Particularly, the build-up or depletion of charges in the semiconductor


1


creates under the gate


4


, a channel


6


that electrically connects the source


2


and drain


3


. In this condition, the surface of the semiconductor


1


is said to be inverted, and a current will flow in the channel in response to the-gate voltage, i.e., an increase in the gate voltage will increase the size of the channel and increase the channel current; alternatively, an decrease in the gate voltage will decrease the channel current. By controlling the gate voltage, the device can function as a switch or an amplifier.




In MOSFET devices, for current to flow along the channel, a minimum gate voltage must be applied. This minimum voltage is called the threshold voltage, and it is an important parameter in the operation of the MOSFET device.




Also in MOSFET devices, due to variations in the gate dielectric thickness over the channel, and variations in the charge density and interface charge trapping density across the channel, the threshold at the channel edges is typically lower compared to the threshold voltage at the corresponding inner region of the channel.




A consequence of the lower threshold voltage at the channel edge is that current conduction along the edges will occur at a different, typically lower, gate voltage (V


G


) than in the inner region. This is depicted schematically in

FIG. 3

wherein current conduction at the channel edge (I


e


) is shown to occur at lower gate voltages than (I


c


) in the interior of channel.




The edge current, which contributes to what is known as the “off-state leakage” or sub-threshold voltage leakage current”, is undesirable particularly for applications that require a low “off-state” leakage current; these applications require a MOSFET which exhibits very low leakage current in its “off-state”, for example in low power applications to conserve power, or in DRAM applications to prevent data loss through charge leakage.




The problem of sub-threshold leakage current has been recognized and several prior art solutions have been claimed; see, for example, U.S. Pat. No. 5,994,202A, U.S. Pat. No. 5,643,822 and U.S. Pat. No. 5,798,533. Notwithstanding the prior art, however, the problem persists to varying degrees, hence the need for improvement in this area.




Accordingly, it is desirable to form a MOSFET device structure wherein the sub-threshold leakage current is eliminated or at least minimized. That is, it is desirable to form a MOSFET device structure wherein, application of a gate voltage, the threshold voltage in the channel is such that the threshold edge voltage and the threshold voltage in the interior of the channel are equal or substantially equalized. In other words, it is desirable to form a MOSFET device that exhibits sharp turn-on characteristics.




SUMMARY OF THE INVENTION




In view of the deficiencies in the prior MOSFET devices, it is an object of the present invention to provide a MOSFET device structure having self-aligned channel edge implant region for exhibiting significantly reduced or eliminated sub-threshold leakage current in low voltage applications.




It is also an objective of the invention to provide a method of manufacturing MOSFET device having self-aligned channel edge implant region for exhibiting significantly reduced or eliminated sub-threshold current leakage in low voltage applications.




These and other objectives are accomplished by a MOSFET device and manufacturing method where the device is formed by selectively doping the channel edge region, the method comprising the steps of:




a) depositing a masking layer over a planar surface of a silicon substrate;




b) patterning and etching through said masking layer into said silicon substrate to form first and second trenches defining a MOSFET device active area;




c) selectively etching back said masking material to expose regions of un-etched silicon at border regions of said MOSFET device active area, said border regions defining MOSFET device channel edges;




d) selectively doping said exposed border regions to form drain and source portions each including a respective MOSFET channel edge;




e) filling said trench with an electrically insulating material and removing remaining masking layer;




f) forming a MOSFET gate on and in unetched areas of said MOSFET device active area, wherein a said MOSFET device exhibits reduced or eliminated threshold leakage current in low-voltage applications.




Thus, by the method, a self-aligned mask is formed over the MOSFET device active area including the channel region, laterally etching the mask over the channel region to expose a thin, precisely defined border of underlaying silicon at the edge of the MOSFET device channel, and selectively doping the exposed region. Thereafter, the masking is removed and the MOSFET device is formed in between the exposed channel region. Because the masking process is self-aligned process, the definition of the channel edge and formation of the doping mask can be performed with a single photolithograph step.




The MOSFET device fabricated in accordance with the method of the invention, comprises:




a semiconductor substrate, said substrate comprising a doped source region and a doped drain region, said source and drain regions separated by a channel region and each respectively comprising a doped channel edge region;




a gate disposed on said substrate between said source and drain region substantially covering said channel region, wherein the respective channel edge regions is selectively doped such that when applying a voltage to said gate, a voltage is established in said channel region such that the voltage in said channel edge region is substantially equal to the voltage in a channel interior region.











BRIEF DESCRIPTION OF THE DRAWINGS




Further features, aspects and advantages of the methods of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:





FIG. 1

is a schematic diagram of a prior art MOSFET device.




FIGS.


2


(


a


)-(


g


) are schematic diagrams illustrative of the method of the invention, including the formation of a MOSFET device.





FIG. 3

is a schematic showing the dependence on gate voltage of conduction current at the channel edge (I


e


) compared to the conduction current (I


c


) in the channel interior of a prior art MOSFET device.





FIG. 4

is a schematic showing the dependence on gate voltage of the conduction current at the channel edge (I


e


) compared to the conduction current (I


c


) in the channel interior in the device of the invention.











DETAILED DESCRIPTION




The method according to the preferred embodiment of the invention is first described in conjunction with FIGS.


2


(


a


)-(


g


). Thereafter, the MOSFET device is described in conjunction with FIGS.


2


(


a


)-(


g


).




As a first step in the method, and in view of FIG.


2


(


a


), a masking material


11


is deposited over a suitably prepared planar silicon substrate


10


, including an active device area


12


for MOSFET device fabrication. The masking material


11


is applied in a convention manner to cover the substrate area


10


where the MOSFET device will fabricated. Suitable masking material include any photoresist well known in the art. Preferably, in this first step, the mask is generated by a self-aligned process such that the definition of the MOSFET device channel edge and the formation of the doping mask can be performed in a single lithography step.




Next, in view of FIG.


2


(


b


), the masking material


11


is patterned and etched through to the silicon substrate


10


to form respective trenches


13


that border the active device area


12


. The process of patterning and etching the mask into the silicon is done employing standard etchants and procedures well known in the art. In this step, the top of the active area is protected from etching.




Next, in view of FIG.


2


(


c


), the masking material


11


is selectively removed by a known etch-back technique to reveal border regions


14


defining the MOSFET channel edge comprising un-etched silicon underneath.




Next, in view of FIG.


2


(


d


), the exposed silicon border regions


14


are exposed using well known techniques such as ion-implantation or diffusion to produce respective doped areas


15


defining the MOSFET device channel edge regions


15


. Doping is performed in accordance in accordance with particular device characteristics. A preferred method of doping the exposed silicon is by ion-implantation as this allows for a more precise exposure of the exposed channel edge regions


15


of the silicon.




Next, in view of FIG.


2


(


e


), the trench


13


formed by the-preceding step described with respect to FIG.


2


(


b


) is filled with an electrically insulation material


16


, and the remaining mask material


11


is removed by well known pocesses. Suitable insulating material for filling the trench include silicon nitride and silicon dioxide.




Finally, in view of FIG.


2


(


f


), after removal of the masking layer


11


, the MOSFET device


17


comprising a source


18


, a drain


19


and a gate with a metal contact


20


are formed on top of the un-etched silicon employing methods well known in the art. A top, plan view of the semiconductor substrate after the removal of the masking material by the present method is shown in FIG.


2


(


g


) wherein the doped region


15


, formed at the edge of the channel, is shown disposed beneath the source


18


, the drain


19


and the gate


20


.




Compared to prior art MOSFET device, the resultant MOSFET device formed by the method described with respect to FIGS.


2


(


a


)-(


g


) comprises a semiconductor substrate


10


that includes a source region


18


and a drain region


19


therein, and a channel


12


formed between the source


18


and drain


19


within the substrate. Disposed on top of the substrate


10


is a gate


20


formed on the substrate


10


between the source


18


and the drain


19


, and disposed substantially over the channel


12


, the gate triggering the formation of the channel upon application of a gate voltage. However, due to the formation of the selectively doped channel edge regions


15


in the MOSFET device, the threshold voltage in the channel edge region


15


is equal to or nearly equalized with that of the interior channel region


21


, when a gate voltage is applied.




An example of the improved results achieved by the method steps of FIGS.


2


(


a


)-(


g


), whereby the channel edge region


15


of a MOSFET device is selectively doped to minimize the difference between the channel edge region threshold voltage and the interior channel region threshold voltage, can be seen in FIG.


4


. By contrast with

FIG. 3

, in

FIG. 4

, the conduction current in the channel edge (I


e


) and the conduction current in the channel interior (I


c


) of the present device are substantially the same, and occur at about the same time.




Since the threshold voltage is substantially equalized across the channel of the MOSFET device, the sub-threshold leakage current along the channel edge caused by variations in the threshold voltage in the channel, is reduced or eliminated. The device can therefore be utilized in low voltage applications that require low “off-state” leakage current, particularly devices having small channel widths and wherein the channel edge region constitutes a significant portion of the entire device.



Claims
  • 1. A method for forming a MOSFET device, comprising the steps of:a) depositing a masking layer over a planar surface of a silicon substrate; b) patterning and etching through said masking layer into said silicon substrate to form first and second trenches defining a MOSFET device active area; c) selectively etching back said masking material to expose regions of un-etched silicon at border regions of said MOSFET device active area, said border regions defining MOSFET device channel edges; d) selectively doping said exposed border regions to form drain and source portions each including a respective MOSFET channel edge; e) filling said trench with an electrically insulating material and removing remaining masking layer; f) forming a MOSFET gate on and in un-etched areas of said MOSFET device active area, wherein a said MOSFET device exhibits reduced or eliminated threshold leakage current in low-voltage applications.
  • 2. The method of claim 1, wherein said depositing step a) includes implementing a self-aligned masking process.
  • 3. The method of claim 1, wherein said patterning and etching step b) is a lithographic process.
  • 4. The method of claim 1, wherein said selectively doping step d) includes a selective ion implantation technique.
US Referenced Citations (20)
Number Name Date Kind
4677736 Brown Jul 1987 A
5291049 Morita Mar 1994 A
5643822 Furukawa et al. Jul 1997 A
5741738 Mandelman et al. Apr 1998 A
5798553 Furukawa et al. Aug 1998 A
5923067 Voldman Jul 1999 A
5930620 Wristers et al. Jul 1999 A
5977602 Gardner et al. Nov 1999 A
5994202 Gambino et al. Nov 1999 A
6046115 Molloy et al. Apr 2000 A
6054344 Liang et al. Apr 2000 A
6110787 Chan et al. Aug 2000 A
6194748 Yu Feb 2001 B1
6204137 Teo et al. Mar 2001 B1
6242788 Mizuo Jun 2001 B1
6262456 Yu et al. Jul 2001 B1
6268630 Schwank et al. Jul 2001 B1
6274420 Xiang et al. Aug 2001 B1
6277736 Chen et al. Aug 2001 B1
6278164 Hieda et al. Aug 2001 B1
Foreign Referenced Citations (1)
Number Date Country
06151896 May 1994 JP