This invention relates to a magnetic based electric power source as a substitute for batteries and mains power connections, that draw on ambient vibrations or motion.
For some time there has been interest in harvesting energy from vibrations or motion such as walking to provide power as a replacement for batteries. Two sources of electric power have been used previously piezoelectric devices and magnetic devices.
U.S. Pat. No. 3,480,808 discloses a generator in which a coil moves relative to a magnet or a magnet moves relative to a coil.
U.S. Pat. Nos. 4,412,355 and 4,471,353 disclose a switch that powers a transmitter to switch on a remote light using the current generated by a magnet on a vibrating reed interacting with a coil.
U.S. Pat. No. 5,347,186 discloses in part a battery replacement device using magnetically levitated magnets oscillating within coils. As a battery replacement, the electronics includes rectifiers and a capacitor.
U.S. Pat. No. 5,818,132 generates electric power from the linear movement of a magnet through a coil
U.S. Pat. No. 5,838,138 uses a sprung magnet on a key of a key board moving in a coil to generate electric power to recharge batteries on a portable computer or similar device.
U.S. Pat. No. 5,945,749 discloses a power generator for devices on a train which uses the motion of the train to oscillate a magnetic piston within a coil.
U.S. Pat. No. 6,220,719 provides a torch with a magnet able to reciprocate within the torch barrel which is wound with coils. The arrangement includes a capacitor for storing charge.
U.S. Pat. No. 6,291,901 discloses an automobile wheel with a magnet and coil arranged so that deflection of the tire causes relative motion between the magnet and the coil to generate electricity.
These prior art devices are limited to harvesting energy from dynamic motion or vibration energy inputs which require a higher threshold typically frequencies above 10,000 hz than is available from many environmental motion and vibration sources.
PCT/AU03/01523 discloses a generator in which a coil mounted at the remote end of an L shaped membrane is moved by environmental vibrations to oscillate within a magnetic field.
There is a need for a device which can passively harvest energy from low level motion and vibration sources and which can replace conventional batteries.
To this end the present invention provides an electrical generator as a portable battery replacement which includes
An advantage of this invention resides in the fact that it is the coil that moves rather than a magnet. The coil provides the main inertial mass of the generator and because its weight can be conveniently lighter than the magnets the generator is sensitive to lower energy vibrations particularly those below 100 Hz, which are more abundant in vehicles or from movements such as walking. The resilient suspension may be provided by magnetic levitation but is preferably provided by coil springs within the housing and providing the electrical connection to the coil.
The coil may be fitted with a small mass to increase its momentum and sensitivity to lower energy vibrations, and to overcome the inductive resistance threshold of the permanent magnets. The resonant mass of the coil can be adjusted to create mechanical resonance at a particular harvesting frequency.
Incorporation of the Offset Weight has Two Functions
The first embodiment of the invention has a cylindrical coil suspended by coil springs, which allow the coils movement through a radial magnetic field generated by permanent magnets.
In a second embodiment of the invention there are three coils resiliently mounted on a torsion wire suspended between said permanent magnets with a counter weight also mounted on the torsion wire, but suspended outside the permanent magnets. Mechanical resonance is achieved by adjusting the mass of the counter weight.
The magnetic field is provided by a permanent magnet or an array of permanent magnets. Preferably the magnetic flux is non linear and the permanent magnets are configured to maximize the magnetic flux over the path of the moving coil to maximize current generation.
A third embodiment of the invention there are eight coils resiliently mounted within a disk shaped caddy. The torsion wire runs through the vertical axis of the caddy. The permanent magnets are distributed radially on top and bottom of the caddy.
The generator of this invention harvests the mechanical energy of motion and converts that mechanical energy into storable electrical energy. The device has a passive parasitic operation meaning that it converts energy without any active input, i.e. there are no buttons to push nor is there any required intentional shaking or direct activation of any kind. The device is parasitically attached to or placed into a receptacle that is attached to a moving object.
As the coils pass through the field created by permanent magnets arranged around the coils they generate an AC voltage, which appears at the coil output wires. The voltage generated can be used to charge a capacitor or a battery. The invention may be used as a movement energy sensor. By attaching the invention to a moving object it can give an indication of movement intensity. This is because the AC voltage generated by the invention is proportional to how vigorously the object moves. To maximize the harvesting potential of the invention, the magnetic field strength within the cavities is maximized. This is achieved by reducing the width of the magnetic cavity and the placement of smaller magnets in specific alignments within the cavity, increasing the flux density through which the coil must pass. The smaller magnets act as ‘boosters’ to the diminishing field passing through the coil.
A second embodiment has the one coil separated into 3 or 4 coils connected in series. This is specific to the magnetic circuit design and maximizes the harvesting efficiency of the invention.
It is well established that one of the parameters defining the generation of Voltage by induction from a coil is the number of turns.
The field versus distance from a pole face of a magnet is proportional to the inverse square of the distance. This invention is in part based the consequences of applying this principle to a coil passing through a field generated by two permanent magnets. The thicker the coil the further the magnets must be placed apart, and consequently the weaker (proportional to the inverse square of the separation) field in between. This invention is in part predicated the realisation that magnetic separation is a crucial point of the design of magnetic circuits. The design of this embodiment maximizes the slot width, slot number, placement and pattern in a magnet, whilst at the same time maximizing the magnetic field strength within the slots. The coil is split into several coils connected in series, specifically to fit into the number of slots in the magnet. As all of the coils are resiliently fixed to move as one, physically connected by the torsion bar, they will respond to external excitement in unison, acting as one coil with the same number of turns. Increasing the flux density in the oscillation path of the coils, increases the combined three-coil output voltage for a given inertial input. This procedure maximizes the harvesting potential of the invention.
The magnets used may be any suitable permanent magnets able to generate the appropriate magnetic field strengths. Magnets formed using magnetic nanoparticles as disclosed in specification PCT/AU2004/00728 may be used. Magnetic particles as disclosed in that patent can be incorporated in a polymeric matrix to provide a light weight permanent magnet. Reduction of weight in the generator makes the generator useful in powering devices where weight is a design issue.
The electronic module is required to
The electronics can be modified to suit the requirements of any application, and if the power is not available will run in duty cycle mode (i.e. it will cycle through a turn on only when it has enough power to run the application and off when recharging)
The device is tuned by assessing the major frequencies of vibration available in the application, and the displacement distance of that vibration. The mechanical resonance (i.e. the coil mass-spring resonance) of the device is designed to resonate at the frequency. The displacement distance is related to the energy in each oscillation and is used to evaluate the spring constant (or ‘spring-ey-ness’) of the springs. The thicker the cross section of the springs the more spring resistance the spring has and the more powerful the recoil.
To make use of the AC voltage as a generator, the voltage needs to be converted to a DC current by a rectification circuit and then stored in a capacitor. In many applications, the voltage generated is not high. Preferably schottky diodes with low voltage turn on specifications are used in the quadrupler/rectification circuit,
The devices embodying this invention can be small, lightweight, and unobtrusive and yet generate sufficient electric energy to power sensor or alarm circuits and transmitters in applications where battery power is usually needed. This includes most remote sensing where motion or vibration is experienced as in land, air and water vehicles, buoys, vehicle and animal tracking devices, pagers etc.
The device of this invention is particularly applicable to energizing transponders used in tracking vehicles or containers or collecting tolls from vehicles. The power requirement for transponders is from 1 to 2 mW during transmission and about 55 milliamps, this is equivalent to a supply voltage of 3 Volts enabled for 100 mSec. The size and weight of the device needs to be similar to that of an AA battery. This power requirement can be harvested from vibrations in the 2-20 Hz range which is achievable in motor vehicles and trucks. The third embodiment of the device with a size of about ⅔ of a packet of 20 cigarettes is larger than the second embodiment and can generate with an appropriate inertial input about 100 mWatt of power.
A preferred embodiment of the invention will be described with reference to the drawings in which:
The embodiment of
In the
In the battery replacement model as proposed in the embodiments of
The electronics pack will normally include a Voltage Detector Module and a DC to DC switch mode voltage converter Module.
Voltage Detector Module
When batteries are connected to a circuit, voltage instantly appears in the circuit and the circuit begins to function as expected. For energy harvesters the voltage appears in the circuit as it is generated. Because of the large capacity of the super-capacitor (0.01 Farad) it may take some time to charge the device to useable voltage levels, even though the actual energy stored in the capacitor may be enough to drive the particular application. Although super-capacitors are chosen to suit the application, the charge time may cause problems when turning on some microcomputers and integrated circuits. This occurs when the charging rate of the super-capacitor is not high enough, initiating a ‘partial turn on state’, where the micro or integrated circuit tries to pull up to its operating voltage by draining more and more current. Unfortunately if this process is allowed to continue, all the charge from the storage capacitor will be exhausted without turning on the application.
This problem is overcome using a voltage detector, and a MOSFET turn off mechanism, which places upper and lower limits (respectively) on the conduction of charge from the super-capacitor. The detector is set so that it senses when the output voltage of the super-capacitor is at a predetermined voltage. When the charge in the super-capacitor reaches the predetermined value the voltage detector turns on a N channel MOSFET enabling conduction to the application matching stage through the P channel MOSFET (see
This means that when the device is charged and ready to function it automatically turns itself on to drive the application and vice versa. The charge detection and conduction stage behaves as an automatic on/off switch. So that if there is enough vibration to keep the harvested energy requirements above the demands of the application then the harvester will behave as if it were a battery. If the harvested energy is not enough for the demands of the application, the charge detection and conduction stage will automatically move into a duty cycle mode. This means that it will conduct charge at the required voltage until the charge on the super-capacitor is depleted, turn off, and it will wait until it has enough charge to perform another cycle.
The turning off function is controlled by the draining of charge off the gate of the P channel MOSFET achieved by the resistor Capacitor combination R1-C6 (see
DC to DC Switch Mode Voltage Converter Module
A switch mode step-up DC to DC voltage converter is used to convert the voltage to a useable level as required by the application. The supply current will decrease in proportion to the voltage increase, and there are losses in the efficiency (80%) and drive current (30 uA) of the converter.
Typically the converter will start-up when the voltage in the capacitor as seen by the switch-mode during conduction rises above 0.8 Volts. Once turned on the device will continue to operate until the voltage in drops below 0.3 Volts. DC to DC voltage converters are available to convert to output voltages between 3 and 5 volts in 0.5 volt steps.
This means that by replacing the switch-mode converter with one suitable to the application, the harvesting device has the drive capability to suit any application between 3-5 volts, in either direct or duty cycle mode depending on the vibrational energy available.
The embodiment illustrated in FIGS. 6 to 10 is a variation of the
The caddy oscillates with the coils between the array of magnets 56 and 58. The coils 57 set into the caddy 59, are moved through the magnetic fields of the permanent magnets 56,58, thereby generating energy. The polarity of the magnet array is shown in
In all embodiments the spring be it a torsion wire or coil, provides the mechanism that restores the coils to their original position.
In the embodiment of
The offset weight 55 parasitically captures two-dimensional tangential momentum converting it to angular momentum which also moves the caddy 59 in the same direction. This movement places a shear stress on the torsion wire 60 which acts as a spring resisting the angular motion of the caddy 59. This resistance increases up to the point where the angular torsion (stored in the shear stress of the wire) exactly balances the angular momentum of the caddy and the motion stops. At this point the shear stress in the spring gradually accelerates the caddy 59 in the opposite direction until it reaches a maximum angular velocity after which it begins to decelerate due to the shear stress build up in the torsion wire 60. Unless it is interrupted this motion is periodic and the oscillations will decay in each cycle until the caddy comes to rest. The constant motion or vibration maintains the oscillations. As the coils oscillate within the strong magnetic fields produced by the magnets 56,58 current is produced in the coils creating power.
This invention is particularly useful in
From the above those skilled in the art will realise that this invention differs from previous attempts in
Those skilled in the art will realise that the present invention may be adapted for use in a range of applications and sizes and can be shaped to fit the requirements of the desired application.
Number | Date | Country | Kind |
---|---|---|---|
2004904182 | Jul 2004 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU05/01093 | 7/27/2005 | WO | 1/24/2007 |