1. Technical Field
The present invention relates to a motion analysis method, a motion analysis program, a storage medium thereof, a motion analysis apparatus, and a motion analysis system.
2. Related Art
Regarding a motion analysis method and a motion analysis apparatus, there is a technique of detecting an impact which is the moment at which exercise equipment hits a ball, with a motion sensor, and analyzing a swing (refer to JP-A-2014-100341).
However, for example, in golf, a so-called down blow in which the lowest point of a club head during a downswing occurs after impact or a so-called upper blow in which the lowest point thereof occurs before the impact may be differentiated from each other depending on the type of golf club.
However, a swing state in which a swing of exercise equipment at impact is, for example, a down blow or an upper blow cannot be objectively determined.
An advantage of some aspects of the invention is to provide a motion analysis method, a motion analysis program, a storage medium thereof, a motion analysis apparatus, and a motion analysis system, capable of objectively determining a swing of exercise equipment at impact.
(1) An aspect of the invention relates to a motion analysis method including calculating a level of a swing using an output from an inertial sensor on the basis of a relationship between a first angle formed between a tangential direction of a swing trajectory of a ball hitting portion of an exercise equipment at impact and a target hitting direction, and a second angle formed between a direction orthogonal to a hitting surface of the ball hitting portion at the impact and the target hitting direction.
According to the aspect of the invention, a level of a swing is calculated on the basis of the first angle corresponding to an attack angle at impact and the second angle corresponding to a face angle of a ball hitting portion with respect to a target hitting direction at impact, and thus it is possible to objectively determine a swing of exercise equipment at impact.
(2) In the aspect of the invention, in a case where an index related to the first angle is a first index, and an index related to the second angle is a second index, the level may be calculated on the basis of the first index and the second index. In this manner, a level can be calculated through positioning of a swing in a two-axis coordinate system formed of the first index and the second index, and thus a swing of exercise equipment at impact can be objectively determined.
(3) In the aspect of the invention, a score may be specified using the first angle and the second angle calculated through measurement on the basis of a table in which a score is added to each region in advance according to a relationship between the first index and the second index, and the score may be calculated as the level. In this manner, since a swing is calculated as a score on the basis of the first index and the second index using the table, it is possible to easily and appropriately perform an objective determination on a swing of exercise equipment at impact.
(4) In the aspect of the invention, in a case where the target hitting direction is set to a +X direction of an X axis, a direction opposite to the gravitational direction is set to a +Z direction of a Z axis, and a direction orthogonal to the X axis and the Z axis is set to be along a Y axis; in a case where, when the Y axis is a rotation axis, a direction in which +Z of the Z axis rotates in the +X direction of the X axis is defined as a first sign, and a sign reverse to the first sign is defined as a second sign, the first and second signs being related to the first angle; and in a case where, when the Z axis is a rotation axis, a direction in which +Y of the Y axis rotates in the +X direction of the X axis is defined as a third sign, and a sign reverse to the third sign is defined as a fourth sign, the third and fourth signs being related to the second angle, in the table, a score may be set for each region in a coordinate system having the first index and the second index as two axes orthogonal to each other, and a score added to the region specified by the first angle and the second angle which are calculated through the measurement may be output.
In this, a level can be calculated on the basis of a positioning region of a swing in a two-axis coordinate system formed of the first index and the second index by taking into consideration a sign of the first angle and a sign of the second angle, and thus a swing of exercise equipment at impact can be objectively determined.
(5) In the aspect of the invention, the first sign may be a negative sign, the second sign may be a positive sign, the third sign may be a negative sign, and the fourth sign may be a positive sign. However, this is only an example. For example, the first and second signs may be replaced with each other, and the third and fourth signs may be replaced with each other. The first to fourth signs may not be positive and negative signs but may be symbols indicating positive and negative signs.
(6) In the aspect of the invention, in a case where a sign of the first angle is the second sign, the lowest score may be calculated. Here, the first sign of the first angle corresponding to an attack angle at impact indicates, for example, a down blow in which the lowest point of a club head during a downswing occurs after the impact, and the second sign thereof indicates an upper blow in which the lowest point thereof occurs before the impact. In an iron club requiring a down blow, if the second sign is determined, the lowest score may be calculated, and thus a swing may be evaluated to be bad. Conversely, in a wood club requiring an upper blow, if the first sign is determined, the lowest score may be calculated, and thus a swing may be evaluated to be bad.
(7) In the aspect of the invention, in a case where a sign of the first angle is the first sign, and a sign of the second angle is the fourth sign, a lower score may be calculated as an absolute value of the second angle becomes greater. The case where a sign of the first angle corresponding to an attack angle is the first sign is a case where a down blow appropriate for an iron club is performed. The case where a sign of the second angle corresponding to a face angle of the ball hitting portion with respect to a target hitting direction at impact is the fourth sign is a case where the face surface tends to be open. In this case, since the face surface tends to be excessively open when an absolute value of the second angle becomes greater, a lower score may be calculated as an absolute value of the second angle becomes greater, and thus a swing may be evaluated to be bad.
(8) In the aspect of the invention, in a case where a sign of the first angle is the first sign, a higher score may be calculated as an absolute value of the first angle becomes smaller, and an absolute value of the second angle becomes smaller. The case where a sign of the first angle corresponding to an attack angle is the first sign is a case where a down blow appropriate for an iron club is performed. In this case, as an absolute value of the first angle becomes smaller, a swing becomes closer to a level blow or an appropriate down blow. As an absolute value of the second angle becomes smaller, the hitting surface of the ball hitting portion becomes closer to a square. Therefore, in these cases, a high score may be calculated according to the first and second angles, and thus a swing may be evaluated to be good.
(9) In the aspect of the invention, in a case where a sign of the first angle is the first sign, and a sign of the second angle is the third sign, a lower score may be calculated as an absolute value of the second angle becomes greater. The case where a sign of the first angle corresponding to an attack angle is the first sign is a case where a down blow appropriate for an iron club is performed. The case where a sign of the second angle corresponding to a face angle of the ball hitting portion with respect to a target hitting direction at impact is the third sign is a case where the face surface tends to be closed. In this case, since the face surface tends to be excessively closed when an absolute value of the second angle becomes greater, a lower score may be calculated as an absolute value of the second angle becomes greater, and thus a swing may be evaluated to be bad.
(10) In the aspect of the invention, the motion analysis method may further include outputting information regarding the level. When information regarding the level is output, it is thus possible to perform a notification of the level of a swing.
(11) In the aspect of the invention, the motion analysis method may further include performing diagnosis on the level; and outputting diagnosis information based on the diagnosis. In this manner, it is possible to perform a notification of a swing diagnosis result.
(12) In the aspect of the invention, the motion analysis method may further include outputting a practice method on the basis of the diagnosis information. In this manner, it is possible to output a practice method according to a swing diagnosis result.
(13) Another aspect of the invention relates to a motion analysis program causing a computer to execute a procedure of calculating a level of a swing using an output from an inertial sensor which measures a swing of exercise equipment on the basis of a relationship between a first angle formed between a tangential direction of a swing trajectory of a ball hitting portion of the exercise equipment at impact and a target hitting direction, and a second angle formed between a direction orthogonal to a hitting surface of the ball hitting portion at the impact and the target hitting direction.
The motion analysis program according to the aspect of the invention may be stored in a storage device of a motion analysis apparatus performing the motion analysis method according to the aspect of the invention, or may be installed in the storage device of the motion analysis apparatus from a server or a recording medium. In this manner, the program can execute the motion analysis method according to the aspect of the invention.
(14) Another aspect of the invention relates to a recording medium recording a motion analysis program causing a computer to execute a procedure of calculating a level of a swing using an output from an inertial sensor which measures a swing of exercise equipment on the basis of a relationship between a first angle formed between a tangential direction of a swing trajectory of a ball hitting portion of the exercise equipment at impact and a target hitting direction, and a second angle formed between a direction orthogonal to a hitting surface of the ball hitting portion at the impact and the target hitting direction.
The recording medium according to the aspect of the invention may be used as a storage device of a motion analysis apparatus performing the motion analysis method according to the aspect of the invention, and the motion analysis program may be installed in the storage device of the motion analysis apparatus from the recording medium.
(15) Another aspect of the invention relates to a motion analysis apparatus including a first angle calculation unit that calculates a first angle formed between a tangential direction of a swing trajectory of a ball hitting portion of an exercise equipment at impact and a target hitting direction, using an output from an inertial sensor which measures a swing of the exercise equipment; a second angle calculation unit that calculates a second angle formed between a direction orthogonal to a hitting surface of the ball hitting portion at the impact and the target hitting direction using an output from the inertial sensor; and a level calculation unit that calculates a level of the swing on the basis of a relationship between the first angle and the second angle.
According to the motion analysis apparatus of the aspect of the invention, it is possible to appropriately perform the motion analysis method of the aspect of the invention.
(16) Another aspect of the invention relates to a motion analysis system including the motion analysis apparatus; and an inertial sensor.
According to the motion analysis system of the aspect of the invention, it is possible to appropriately perform the motion analysis method of the aspect of the invention.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. The embodiments described below are not intended to improperly limit the content of the invention disclosed in the appended claims. In addition, all constituent elements described below are not essential constituent elements of the invention.
Hereinafter, analysis of a golf swing will be described as an example of motion analysis.
The motion analysis system 1 may be configured to include a swing diagnosis apparatus 30 separately from the swing analysis apparatus 20. However, the swing diagnosis apparatus 30 may be included in the swing analysis apparatus 20. The swing diagnosis apparatus 30 may be implemented by a server which processes a request from the swing analysis apparatus 20. The swing analysis apparatus 20 and the swing diagnosis apparatus 30 may be connected to each other via a network 40. The network 40 may be a wide area network (WAN) such as the Internet, and may be a local area network (LAN). The swing analysis apparatus 20 and the swing diagnosis apparatus 30 may communicate with each other through, for example, near field communication or wired communication, without using the network 40.
The sensor unit 10 can measure acceleration in each axial direction of three axes and angular velocity about each of the three axes, and is attached to a golf club 3 as illustrated in
As illustrated in
The user 2 performs a swing action for hitting a golf ball 4 or a swing action through a practice swing according to predefined procedures.
Next, the user 2 performs a measurement starting operation (an operation for starting measurement in the sensor unit 10) via the swing analysis apparatus 20 (step S2). After receiving a notification (for example, a notification using a voice) of giving an instruction for taking an address attitude (a basic attitude before starting a swing) from the swing analysis apparatus 20 (Y in step S3), the user 2 takes an address attitude so that the axis in the longitudinal direction of the shaft 3a of the golf club 3 is perpendicular to a target line (target hit ball direction), and stands still (step S4). Next, the user 2 receives a notification (for example, a notification using a voice) of permitting a swing from the swing analysis apparatus 20 (Y in step S5), and then hits the golf ball 4 by performing a swing action (step S6). The present embodiment is not necessarily limited to ball hitting, and is also applicable to a practice swing, and may have a function of detecting a timing corresponding to ball hitting.
If the user 2 performs the measurement starting operation in step S2 in
The swing analysis apparatus 20 notifies the user 2 of permission of swing starting, shown in step S5 in
As illustrated in
The swing diagnosis apparatus 30 receives the swing analysis data transmitted by the swing analysis apparatus 20 via the network 40, and preserves the swing analysis data. Therefore, when the user 2 performs a swing action according to the procedures illustrated in
In the present embodiment, if the user 2 activates a swing diagnosis application via an operation section 23 (refer to
A checkbox correlated with each item of swing analysis data is located at a left end (a left end on the drawing surface) of the selection screen illustrated in
The input data editing screen illustrated in
The input data formed of the sex, the type of golf club, and the respective index values in the input data editing screen illustrated in
The swing diagnosis apparatus 30 receives the input data, and performs calculation of levels of a plurality of items using the input data. For example, the swing diagnosis apparatus 30 may calculate a level of each of five items such as a “V zone”, “rotation”, “impact”, a “down blow” or an “upper blow”, and “swing efficiency” illustrated in the radar chart of
The swing analysis apparatus 20 receives the information regarding levels and total score of the plurality of items, and displays, for example, a swing diagnosis screen as illustrated in
The user 2 can understand levels and a total score of the plurality of items as diagnosis results for the input data on the left part on the basis of the swing diagnosis screen illustrated in
The acceleration sensor 12 measures respective accelerations in three axial directions which intersect (ideally, orthogonal to) each other, and outputs digital signals (acceleration data) corresponding to magnitudes and directions of the measured three-axis accelerations.
The angular velocity sensor 14 measures respective angular velocities in three axial directions which intersect (ideally, orthogonal to) each other, and outputs digital signals (angular velocity data) corresponding to magnitudes and directions of the measured three-axis angular velocities.
The signal processing section 16 receives the acceleration data and the angular velocity data from the acceleration sensor 12 and the angular velocity sensor 14, respectively, adds time information thereto, stores the data in a storage portion (not illustrated), adds time information to the stored measured data (acceleration data and angular velocity data) so as to generate packet data conforming to a communication format, and outputs the packet data to the communication section 18.
Ideally, the acceleration sensor 12 and the angular velocity sensor 14 are provided in the sensor unit 10 so that the three axes thereof match three axes (an x axis, a y axis, and a z axis) of an orthogonal coordinate system (sensor coordinate system) defined for the sensor unit 10, but, actually, errors occur in installation angles. Therefore, the signal processing section 16 performs a process of converting the acceleration data and the angular velocity data into data in the xyz coordinate system using a correction parameter which is calculated in advance according to the installation angle errors.
The signal processing section 16 may perform a process of correcting the temperatures of the acceleration sensor 12 and the angular velocity sensor 14. Alternatively, the acceleration sensor 12 and the angular velocity sensor 14 may have a temperature correction function.
The acceleration sensor 12 and the angular velocity sensor 14 may output analog signals, and, in this case, the signal processing section 16 may A/D convert an output signal from the acceleration sensor 12 and an output signal from the angular velocity sensor 14 so as to generate measured data (acceleration data and angular velocity data), and may generate communication packet data using the data.
The communication section 18 performs a process of transmitting packet data received from the signal processing section 16 to the swing analysis apparatus 20, or a process of receiving a control command such as a measurement start command from the swing analysis apparatus 20 and sending the control command to the signal processing section 16. The signal processing section 16 performs various processes corresponding to control commands.
As illustrated in
The communication section 22 performs a process of receiving packet data transmitted from the sensor unit 10 and sending the packet data to the processing section 21, or a process of transmitting a control command from the processing section 21 to the sensor unit 10.
The operation section 23 performs a process of acquiring operation data from the user 2 and sending the operation data to the processing section 21. The operation section 23 may be, for example, a touch panel type display, a button, a key, or a microphone.
The storage section 24 is constituted of, for example, various IC memories such as a read only memory (ROM), a flash ROM, and a random access memory (RAM), or a recording medium such as a hard disk or a memory card. The storage section 24 stores a program for the processing section 21 performing various calculation processes or a control process, or various programs or data for realizing application functions.
In the present embodiment, the storage section 24 stores a swing analysis program 240 which is read by the processing section 21 and executes a swing analysis process. The swing analysis program 240 may be stored in a nonvolatile recording medium (computer readable recording medium) in advance, or the swing analysis program 240 may be received from a server (not illustrated) or the swing diagnosis apparatus 30 by the processing section 21 via a network, and may be stored in the storage section 24.
In the present embodiment, the storage section 24 stores golf club information 242, physical information 244, sensor attachment position information 246, and swing analysis data 248. For example, the user 2 may operate the operation section 23 so as to input specification information regarding the golf club 3 (for example, at least some information such as information regarding a length of the shaft, a position of the centroid thereof, a lie angle, a face angle, a loft angle, and the like) from the input screen illustrated in
For example, the user 2 may input physical information by operating the operation section 23 from the input screen illustrated in
The swing analysis data 248 is data including information regarding a swing action analysis result in the processing section 21 (swing analysis portion 211) along with a time point (date and time) at which a swing was performed, identification information or the sex of the user 2, and the type of golf club 3.
The storage section 24 is used as a work area of the processing section 21, and temporarily stores data which is input from the operation section 23, results of calculation executed by the processing section 21 according to various programs, and the like. The storage section 24 may store data which is required to be preserved for a long period of time among data items generated through processing of the processing section 21.
The display section 25 displays a processing result in the processing section 21 as text, a graph, a table, animation, and other images. The display section 25 may be, for example, a CRT, an LCD, a touch panel type display, and a head mounted display (HMD). A single touch panel type display may realize functions of the operation section 23 and the display section 25.
The sound output section 26 outputs a processing result in the processing section 21 as a sound such as a voice or a buzzer sound. The sound output section 26 may be, for example, a speaker or a buzzer.
The communication section 27 performs data communication with a communication section 32 (refer to
The processing section 21 performs a process of transmitting a control command to the sensor unit 10 via the communication section 22, or various computation processes on data which is received from the sensor unit 10 via the communication section 22, according to various programs. The processing section 21 performs a process of reading the swing analysis data 248 from the storage section 24, and transmitting the swing analysis data to the swing diagnosis apparatus 30 via the communication section 27, according to various programs. The processing section 21 performs a process of transmitting various pieces of information to the swing diagnosis apparatus 30 via the communication section 27, and displaying various screens (the respective screens illustrated in
Particularly, in the present embodiment, by executing the swing analysis program 240, the processing section 21 functions as a data acquisition portion 210, a swing analysis portion 211, an image data generation portion 212, a storage processing portion 213, a display processing portion 214, and a sound output processing portion 215, and performs a process (swing analysis process) of analyzing a swing action of the user 2.
The data acquisition portion 210 performs a process of receiving packet data which is received from the sensor unit 10 by the communication section 22, acquiring time information and measured data from the received packet data, and sending the time information and the measured data to the storage processing portion 213. The data acquisition portion 210 performs a process of receiving the information required to display the various screens (the respective screens illustrated in
The storage processing portion 213 performs read/write processes of various programs or various data for the storage section 24. The storage processing portion 213 performs a process of storing the time information and the measured data received from the data acquisition portion 210 in the storage section 24 in correlation with each other, or a process of storing various pieces of information calculated by the swing analysis portion 211, the swing analysis data 248, or the like in the storage section 24.
The swing analysis portion 211 performs a process of analyzing a swing action of the user 2 using the measured data (the measured data stored in the storage section 24) output from the sensor unit 10, the data from the operation section 23, or the like, so as to generate the swing analysis data 248 including a time point (date and time) at which the swing was performed, identification information or the sex of the user 2, the type of golf club 3, and information regarding a swing action analysis result. Particularly, in the present embodiment, the swing analysis portion 211 calculates a value of each index of the swing as at least some of the information regarding the swing action analysis result.
The image data generation portion 212 performs a process of generating image data corresponding to an image displayed on the display section 25. For example, the image data generation portion 212 generates image data corresponding to the selection screen illustrated in
The display processing portion 214 performs a process of displaying various images (including text, symbols, and the like in addition to an image corresponding to the image data generated by the image data generation portion 212) on the display section 25. For example, the display processing portion 214 displays the selection screen illustrated in
The sound output processing portion 215 performs a process of outputting various sounds (including voices, buzzer sounds, and the like) from the sound output section 26. For example, the sound output processing portion 215 may output a sound for notifying the user 2 of permission of swing starting from the sound output section 26 in step S5 in
A vibration mechanism may be provided in the swing analysis apparatus 20 or the sensor unit 10, and various pieces of information may be converted into vibration pieces of information by the vibration mechanism so as to be presented to the user 2.
In the present embodiment, when a position of the head of the golf club 3 at address (during standing still) is set to the origin, an XYZ coordinate system (global coordinate system) is defined which has a target line indicating a target hit ball direction as an X axis, an axis on a horizontal plane which is perpendicular to the X axis as a Y axis, and a vertically upward direction (a direction opposite to the gravitational direction) as a Z axis. In order to calculate each index value, the swing analysis portion 211 calculates a position and an attitude of the sensor unit 10 in a time series from the time of the address in the XYZ coordinate system (global coordinate system) using measured data (acceleration data and angular velocity data) in the sensor unit 10. The swing analysis portion 211 detects respective timings of the swing starting, the top, and the impact illustrated in
If the user 2 performs the action in step S4 in
Specifically, first, the swing analysis portion 211 computes a position (initial position) of the sensor unit 10 during standing still (at address) of the user 2 in the XYZ coordinate system (global coordinate system) using the acceleration data measured by the acceleration sensor 12, the golf club information 242, and the sensor attachment position information 246.
y(0)=1G·sin α (1)
Therefore, the swing analysis portion 211 can calculate the inclined angle α according to Equation (1) using any acceleration data between any time points at address (during standing still).
Next, the swing analysis portion 211 subtracts a distance LBG between the sensor unit 10 and the grip end included in the sensor attachment position information 246 from a length L1 of the shaft included in the golf club information 242, so as to obtain a distance LSH between the sensor unit 10 and the head. The swing analysis portion 211 sets, as the initial position of the sensor unit 10, a position separated by the distance LSH from the position 61 (origin O) of the head in a direction (a negative direction of the y axis of the sensor unit 10) specified by the inclined angle α of the shaft.
The swing analysis portion 211 integrates subsequent acceleration data so as to compute coordinates of a position from the initial position of the sensor unit 10 in a time series.
The swing analysis portion 211 computes an attitude (initial attitude) of the sensor unit 10 during standing still (at address) of the user 2 in the XYZ coordinate system (global coordinate system) using acceleration data measured by the acceleration sensor 12. Since the user 2 performs the action in step S4 in
The swing analysis portion 211 computes changes in attitudes from the initial attitude of the sensor unit 10 in a time series by performing rotation calculation using angular velocity data which is subsequently measured by the angular velocity sensor 14. An attitude of the sensor unit 10 may be expressed by, for example, rotation angles (a roll angle, a pitch angle, and a yaw angle) about the X axis, the Y axis, and the Z axis, or a quaternion.
The signal processing section 16 of the sensor unit 10 may compute an offset amount of measured data so as to perform bias correction on the measured data, and the acceleration sensor 12 and the angular velocity sensor 14 may have a bias correction function. In this case, it is not necessary for the swing analysis portion 211 to perform bias correction on the measured data.
First, the swing analysis portion 211 detects a timing (impact timing) at which the user 2 hit a ball using measured data. For example, the swing analysis portion 211 may compute a combined value of measured data (acceleration data or angular velocity data), and may detect an impact timing (time point) on the basis of the combined value.
Specifically, first, the swing analysis portion 211 computes a combined value n0(t) of angular velocities at each time point t using the angular velocity data (bias-corrected angular velocity data for each time point t). For example, if the angular velocity data items at the time point t are respectively indicated by x(t), y(t), and z(t), the swing analysis portion 211 computes the combined value n0(t) of the angular velocities according to the following Equation (2).
n
0(t)=√{square root over (x(t)2+y(t)2+z(t)2)} (2)
Next, the swing analysis portion 211 converts the combined value n0(t) of the angular velocities at each time point t into a combined value n(t) which is normalized (scale-conversion) within a predetermined range. For example, if the maximum value of the combined value of the angular velocities in an acquisition period of measured data is max (n0), the swing analysis portion 211 converts the combined value n0(t) of the angular velocities into the combined value n(t) which is normalized within a range of 0 to 100 according to the following Equation (3).
Next, the swing analysis portion 211 computes a derivative dn(t) of the normalized combined value n(t) at each time point t. For example, if a cycle for measuring three-axis angular velocity data items is indicated by Δt, the swing analysis portion 211 computes the derivative (difference) dn(t) of the combined value of the angular velocities at the time point t using the following Equation (4).
dn(t)=n(t)−n(t−Δt) (4)
Next, of time points at which a value of the derivative dn(t) of the combined value becomes the maximum and the minimum, the swing analysis portion 211 specifies the earlier time point as an impact time point timpact (impact timing) (refer to
Next, the swing analysis portion 211 specifies a time point of a minimum point at which the combined value n(t) is close to 0 before the impact time point timpact, as a top time point ttop (top timing) (refer to
Next, the swing analysis portion 211 sets an interval in which the combined value n(t) is equal to or smaller than a predetermined threshold value before and after the top time point ttop, as a top interval, and detects a last time point at which the combined value n(t) is equal to or smaller than the predetermined threshold value before a starting time point of the top interval, as a swing starting (backswing starting) time point tstart (refer to
The swing analysis portion 211 may also detect each of a swing starting timing, a top timing, and an impact timing using three-axis acceleration data in the same manner.
The shaft plane is a first virtual plane specified by a target line (target hit ball direction) and the longitudinal direction of the shaft of the golf club 3 at address (standing still state) of the user 2 before starting a swing. The Hogan plane is a second virtual plane specified by a virtual line connecting the vicinity of the shoulder (the shoulder or the base of the neck) of the user 2 to the head of the golf club (or the golf ball 4), and the target line (target hit ball direction), at address of the user 2.
As illustrated in
Specifically, first, the swing analysis portion 211 computes coordinates (0,GY,GZ) of the position 62 of the grip end of the golf club 3 using the inclined angle α and the length L1 of the shaft included in the golf club information 242. As illustrated in
G
Y
=L
1·cos α (5)
G
Z
=L
3·sin α (6)
Next, the swing analysis portion 211 multiplies the coordinates (0,GY,GZ) of the position 62 of the grip end of the golf club 3 by a scale factor S so as to compute coordinates (0,SY,SZ) of a midpoint S3 of the vertex S1 and the vertex S2 of the shaft plane SP. In other words, the swing analysis portion 211 computes SY and SZ according to Equations (7) and (8), respectively.
S
Y
=G
Y
·S (7)
S
Z
=G
Z
·S (8)
The length L2 of the arms of the user 2 is associated with a height L0 of the user 2. The length L2 of the arms is expressed by a correlation expression such as Equation (10) in a case where the user 2 is a male, and is expressed by a correlation expression such as Equation (11) in a case where the user 2 is a female, on the basis of statistical information.
L
2=0.41×L0−45.5 [mm] (10)
L
2=0.46×L0−126.9 [mm] (11)
Therefore, the swing analysis portion 211 may calculate the length L2 of the arms of the user according to Equation (10) or Equation (11) using the height L0 and the sex of the user 2 included in the physical information 244.
Next, the swing analysis portion 211 computes coordinates (−UL/2,0,0) of the vertex U1 of the shaft plane SP, coordinates (UL/2,0,0) of a vertex U2, coordinates (−UL/2,SY,SZ) of the vertex S1, and coordinates (UL/2,SY,SZ) of the vertex S2 using the coordinates (0,SY,SZ) of the midpoint S3 and a width (the length of the first line segment 51) UL of the shaft plane SP in the X axis direction. The width UL in the X axis direction is set to a value at which a trajectory of the golf club 3 during a swing action of the user 2 enters the shaft plane SP. For example, the width UL in the X axis direction may be set to be same as the width S×L1 in the direction orthogonal to the X axis, that is, twice the sum of the length L1 of the shaft and the length L2 of the arms.
In the above-described manner, the swing analysis portion 211 can calculate the coordinates of the four vertices U1, U2, S1, and S2 of the shaft plane SP.
As illustrated in
Specifically, first, the swing analysis portion 211 estimates the predetermined position 63 using the coordinates (0,GY,GZ) of the position 62 of the grip end of the golf club 3 at address (during standing still), and the length L2 of the arms of the user 2 based on the physical information 244, and computes coordinates (AX,AY,AZ) thereof.
A
Z
=G
Z
+L
2 (12)
Next, the swing analysis portion 211 multiplies the Y coordinate AY and the Z coordinate AZ of the predetermined position 63 by a scale factor H, so as to compute coordinates (0,HY,HZ) of a midpoint H3 of the vertex H1 and the vertex H2 of the Hogan plane HP. In other words, the swing analysis portion 211 computes HY and HZ according to Equation (13) and Equation (14), respectively.
H
Y
=A
Y
·H (13)
H
Z
=A
Z
·H (14)
As illustrated in
The swing analysis portion 211 may compute the length L3 of the third line segment 53 according to Equation (13) using the Y coordinate AY and the Z coordinate AZ of the predetermined position 63.
Next, the swing analysis portion 211 computes coordinates (−UL/2,HY,HZ) of the vertex H1 of the Hogan plane HP, and coordinates (UL/2,HY,HZ) of the vertex H2 using the coordinates (0,HY,HZ) of the midpoint H3 and a width (the length of the first line segment 51) UL of the Hogan plane HP in the X axis direction. The two vertices U1 and U2 of the Hogan plane HP are the same as those of the shaft plane SP, and thus the swing analysis portion 211 does not need to compute coordinates of the vertices U1 and U2 of the Hogan plane HP again.
In the above-described manner, the swing analysis portion 211 can calculate the coordinates of the four vertices U1, U2, H1, and H2 of the Hogan plane HP.
A region interposed between the shaft plane SP (first virtual plane) and the Hogan plane HP (second virtual plane) is referred to as a “V zone”, and a trajectory of a hit ball (a ball line) may be estimated to some extent on the basis of a relationship between a position of the head of the golf club 3 and the V zone during a backswing or a downswing. For example, in a case where the head of the golf club 3 is present in a space lower than the V zone at a predetermined timing during a backswing or a downswing, a hit ball is likely to fly in a hook direction. In a case where the head of the golf club 3 is present in a space higher than the V zone at a predetermined timing during a backswing or a downswing, a hit ball is likely to fly in a slice direction. In the present embodiment, as is clear from
A head position at halfway back is a position of the head at the moment of the halfway back, right before the halfway back, or right after the halfway back, and a head position at halfway down is a position of the head at the moment of the halfway back, right before the halfway back, or right after the halfway back.
First, the swing analysis portion 211 computes a position of the head and a position of the grip end at each time point t using the position and the attitude of the sensor unit 10 at each time point t from the swing start time point tstart to the impact time point timpact.
Specifically, the swing analysis portion 211 uses a position separated by the distance LSH in the positive direction of they axis specified by the attitude of the sensor unit 10, from the position of the sensor unit 10 at each time point t as the position of the head, and computes coordinates of the position of the head. As described above, the distance LSH is a distance between the sensor unit 10 and the head. The swing analysis portion 211 uses a position separated by the distance LSG in the negative direction of the y axis specified by the attitude of the sensor unit 10, from the position of the sensor unit 10 at each time point t as the position of the grip end, and computes coordinates of the position of the grip end. As described above, the distance LSG is a distance between the sensor unit 10 and the grip end.
Next, the swing analysis portion 211 detects a halfway back timing and a halfway down timing using the coordinates of the position of the head and the coordinates of the position of the grip end.
Specifically, the swing analysis portion 211 computes a difference ΔZ between a Z coordinate of the position of the head and a Z coordinate of the position of the grip end at each time point t from the swing start time point tstart to the impact time point timpact. The swing analysis portion 211 detects a time point tHWB at which a sign of ΔZ is inverted between the swing start time point tstart and the top time point ttop, as the halfway back timing. The swing analysis portion 211 detects a time point t, at which a sign of ΔZ is inverted between the top time point ttop and impact time point timpact, as the halfway down timing.
The swing analysis portion 211 uses the position of the head at the time point tHWS as a position of the head at halfway back, and uses the position of the head at the time point tHWD as a position of the head at halfway down.
A head speed is the magnitude of a speed of the head at impact (the moment of the impact, right before the impact, or right after the impact). For example, the swing analysis portion 211 computes a speed of the head at the impact time point timpact on the basis of differences between the coordinates of the position of the head at the impact time point timpact and coordinates of a position of the head at the previous time point. The swing analysis portion 211 computes the magnitude of the speed of the head as the head speed.
The face angle is an index based on an inclination of the head of the golf club 3 at impact, and the club path (incidence angle) is an index based on a trajectory of the head of the golf club 3 at impact.
For example, assuming that an angle formed between the face surface of the head and the x axis direction is normally constant (for example, orthogonal), the swing analysis portion 211 computes a direction of a straight line orthogonal to the face surface on the basis of the attitude of the sensor unit 10 at the impact time point timpact. The swing analysis portion 211 uses, a straight line obtained by setting a Z axis component of the direction of the straight line to 0, as a direction of the straight line 73, and computes an angle (face angle) φ formed between the straight line 73 and the target line 70.
For example, the swing analysis portion 211 uses a direction of a speed (that is, a speed of the head in the XY plane) obtained by setting a Z axis component of a speed of the head at the impact time point timpact to 0, as a direction of the tangential line 72, and computes an angle (club path (incidence angle)) ψ formed between the tangential line 72 and the target line 70.
The face angle φ indicates an inclination of the face surface 74 with the target line 70 whose direction is fixed regardless of an incidence direction of the head to the ball hitting point 75 as a reference, and is thus also referred to as an absolute face angle. In contrast, an angle η formed between the straight line 73 and the tangential line 72 indicates an inclination of the face surface 74 with an incidence direction of the head to the ball hitting point 75 as a reference, and is thus referred to as a relative face angle. The relative face angle η is an angle obtained by subtracting the club path (incidence angle) from the (absolute) face angle
The shaft axis rotation angle θtop at top is an angle (relative rotation angle) by which the golf club 3 is rotated about a shaft axis from a reference timing to a top timing. The reference timing is, for example, the time of starting a backswing, or the time of address. In the present embodiment, in a case where the user 2 is a right-handed golfer, a right-handed screw tightening direction toward the tip end on the head side of the golf club 3 (a clockwise direction when the head is viewed from the grip end side) is a positive direction of the shaft axis rotation angle θtop. Conversely, in a case where the user 2 is a left-handed golfer, a left-handed screw tightening direction toward the tip end on the head side of the golf club 3 (a counterclockwise direction when the head is viewed from the grip end side) is a positive direction of the shaft axis rotation angle θtop.
In the present embodiment, as illustrated in
The grip deceleration ratio is an index based on a grip deceleration amount, and is a ratio between a speed of the grip when the grip starts to be decelerated during the downswing, and a speed of the grip at impact. The grip deceleration time ratio is an index based on a grip deceleration period, and is a ratio between a period of time from the time at which the grip starts to be decelerated during the downswing to the time of impact, and a period of time of the downswing. A speed of the grip is preferably a speed of a portion held by the user 2, but may be a speed of any portion of the grip (for example, the grip end), and may be a speed of a peripheral portion of the grip.
In
For example, the sensor unit 10 may be attached to the vicinity of a portion of the golf club 3 held by the user 2, and a speed of the sensor unit 10 may be regarded as a speed of the grip. Therefore, first, the swing analysis portion 211 computes a speed of the sensor unit 10 at the time point t on the basis of differences between coordinates of a position of the sensor unit 10 at each time point t from the top time point ttop to the impact time point timpact (during the downswing) and coordinates of a position of the sensor unit 10 at the previous time point.
Next, the swing analysis portion 211 computes the magnitude of the speed of the sensor unit 10 at each time point t, sets the maximum value thereof as V1, and sets the magnitude of the speed at the impact time point timpact as V2. The swing analysis portion 211 specifies a time point tvmax at which the magnitude of the speed of the sensor unit 10 becomes the maximum value V1. The swing analysis portion 211 computes T1=tvmax−ttop, and T2=timpact−tvmax. The swing analysis portion 211 computes the grip deceleration ratio RV and the grip deceleration time ratio RT according to Equations (16) and (17), respectively.
The swing analysis portion 211 may regard a speed of the grip end as a speed of the grip, and may compute the speed of the grip end on the basis of coordinates of a position of the grip end at each time point t during the downswing, so as to obtain the grip deceleration ratio RV and the grip deceleration time ratio RT through the above-described computation.
The target hitting direction also includes a direction orthogonal to the face surface of the head of the golf club 3, a hitting direction which is set in advance by the user, a direction connecting a direct distance to a hole cup, and the like.
In the present embodiment, regarding signs of the attack angle (first angle) δ, when the Y axis is a rotation axis, a direction (a clockwise direction in
On the other hand, regarding signs of the face angle (second angle) φ illustrated in
The swing analysis portion 211 illustrated in
First, the processing section 21 waits for the user 2 to perform a measurement starting operation (the operation in step S2 in
Next, the processing section 21 instructs the user 2 to take an address attitude (step S14). The user 2 takes the address attitude in response to the instruction, and stands still (step S4 in
Next, if a standing still state of the user 2 is detected using the measured data acquired from the sensor unit 10 (Y in step S16), the processing section 21 notifies the user 2 of permission of swing starting (step S18). The processing section 21 outputs, for example, a predetermined sound, or an LED is provided in the sensor unit 10, and the LED is lighted, so that the user 2 is notified of permission of swing starting. The user 2 confirms the notification and then starts a swing action (the action in step S6 in
Next, the processing section 21 performs processes in step S20 and subsequent steps after completion of the swing action of the user 2, or from before completion of the swing action.
First, the processing section 21 computes an initial position and an initial attitude of the sensor unit 10 using the measured data (measured data during standing still (at address) of the user 2) acquired from the sensor unit 10 (step S20).
Next, the processing section 21 detects a swing starting timing, a top timing, and an impact timing using the measured data acquired from the sensor unit 10 (step S22).
The processing section 21 computes a position and an attitude of the sensor unit 10 during the swing action of the user 2 in parallel to the process in step S22, or before and after the process in step S22 (step S24).
Next, in steps S26 to S34, the processing section 21 computes values of various indexes regarding the swing using at least some of the measured data acquired from the sensor unit 10, the swing starting, top and impact timings detected in step S22, and the position and the attitude of the sensor unit 10 computed in step S24.
The processing section 21 computes the shaft plane SP and the Hogan plane HP in step S26.
The processing section 21 computes a head position at halfway back and a head position at halfway down in step S28.
The processing section 21 computes a head speed, the face angle φ, the attack angle δ, and the club path (incidence angle) ψ in step S30.
The processing section 21 computes the shaft axis rotation angle θt, at top in step S32.
The processing section 21 computes the grip deceleration ratio RV and the grip deceleration time ratio RT in step S34.
The processing section 21 generates the swing analysis data 248 using the various indexes calculated in steps S26 to S34, transmits the swing analysis data to the swing diagnosis apparatus 30 (step S36), and finishes the swing analysis process.
In the flowchart of
The storage section 34 is constituted of, for example, various IC memories such as a ROM, a flash ROM, and a RAM, or a recording medium such as a hard disk or a memory card. The storage section 34 stores a program for the processing section 31 performing various calculation processes or a control process, or various programs or data for realizing application functions.
In the present embodiment, the storage section 34 stores a swing diagnosis program 340 which is read by the processing section 31 and executes a swing diagnosis process. The swing diagnosis program 340 may be stored in a nonvolatile recording medium (computer readable recording medium) in advance, or the swing diagnosis program 340 may be received from a server (not illustrated) by the processing section 31 via a network, and may be stored in the storage section 34.
In the present embodiment, the storage section 34 stores (preserves) a swing analysis data list 341 including a plurality of items of swing analysis data 248 generated by the swing analysis apparatus 20. In other words, the swing analysis data 248 generated whenever the processing section 21 of the swing analysis apparatus 20 analyzes a swing action of the user 2 is sequentially added to the swing analysis data list 341.
In the present embodiment, the storage section 34 stores a V zone score table 342, a rotation score table 343, an impact score table 344, a down blow score table 345, an upper blow score table 346, and a swing efficiency score table 347. The score tables will be described later in detail.
The storage section 34 is used as a work area of the processing section 31, and temporarily stores results of calculation executed by the processing section 31 according to various programs, and the like. The storage section 34 may store data which is required to be preserved for a long period of time among data items generated through processing of the processing section 31.
The communication section 32 performs data communication with the communication section 27 (refer to
The processing section 31 performs a process of receiving the swing analysis data 248 from the swing analysis apparatus 20 via the communication section 32 and storing the swing analysis data 248 in the storage section 34 (adding the swing analysis data to the swing analysis data list 341), according to various programs. The processing section 31 performs a process of receiving various pieces of information from the swing analysis apparatus 20 via the communication section 32, and transmitting information required to display various screens (the respective screens illustrated in
Particularly, in the present embodiment, the processing section 31 functions as a data acquisition portion 310, a score calculation portion 311, and a storage processing portion 312 by executing the swing diagnosis program 340, and performs a diagnosis process (swing diagnosis process) on the swing analysis data 248 selected from the swing analysis data list 341.
The data acquisition portion 310 performs a process of receiving the swing analysis data 248 received from the swing analysis apparatus 20 by the communication section 32 and transmitting the swing analysis data 248 to the storage processing portion 312. The data acquisition portion 310 performs a process of receiving various pieces of information received from the swing analysis apparatus 20 by the communication section 32 and transmitting the information to the score calculation portion 311.
The storage processing portion 312 performs read/write processes of various programs or various data for the storage section 34. For example, the storage processing portion 312 performs a process of receiving the swing analysis data 248 from the data acquisition portion 310 and storing the swing analysis data 248 in the storage section 34 (adding the swing analysis data to the swing analysis data list 341), a process of reading the swing analysis data 248 from the swing analysis data list 341 stored in the storage section 34, or the like. For example, the storage processing portion 312 performs a process of reading the V zone score table 342, the rotation score table 343, the impact score table 344, the down blow score table 345, the upper blow score table 346, and the swing efficiency score table 347 stored in the storage section 34.
The score calculation portion 311 (level calculation unit) performs a process of calculating scores (levels) of a plurality of items on the basis of data regarding a swing. In the present embodiment, the data regarding a swing may be input data at the time of the diagnosis starting button on the input data editing screen illustrated in
For example, in a case where the sex, the type of golf club, and each index of a swing are not edited in a state of being initial values, and the diagnosis starting button is pressed on the input data editing screen illustrated in
A plurality of items which are score calculation targets include a first item regarding at least one of a backswing and a downswing. The first item may include an item indicating a relationship among at least one virtual plane, a position of the head (an example of a ball hitting portion) of the golf club 3 (an example of an exercise equipment) at a first timing during the backswing, and a position of the head at a second timing during the downswing. For example, the first timing may be the time at which the longitudinal direction of the golf club 3 becomes a direction along the horizontal direction during the backswing. For example, the second timing may be the time at which the longitudinal direction of the golf club 3 becomes a direction along the horizontal direction during the downswing.
At least one virtual plane may include the shaft plane SP which is a first virtual plane specified on the basis of the first line segment 51 which is a first axis along a target hit ball direction (target line) in the XY plane as a reference plane, and the second line segment 52 which is a second axis along the longitudinal direction of the golf club 3 before starting a backswing. The time before starting a backswing may be the time of address (when the user 2 takes an address attitude and stands still).
At least one virtual plane may include the Hogan plane HP which is a second virtual plane (that is, the second virtual plane which forms a first angle R with the first virtual plane) specified on the basis of the first line segment 51 which is a first axis along a target hit ball direction (target line) in the XY plane as a reference plane, and the third line segment 53 which is a third axis forming the first angle φ with the longitudinal direction of the golf club 3 before starting a backswing.
At least one virtual plane may include only one of the shaft plane SP and the Hogan plane HP. At least one virtual plane may include other virtual planes (for example, a plane interposed between the shaft plane SP and the Hogan plane HP, a plane outside the shaft plane SP and the Hogan plane HP, and a plane intersecting at least one of the shaft plane SP and the Hogan plane HP) instead of the shaft plane SP or the Hogan plane HP.
Hereinafter, the first item is assumed to include an item (hereinafter, this item will be referred to as a “V zone” item) indicating a relationship among four indexes of a swing, that is, the “shaft plane SP”, the “Hogan plane HP”, a “position of the head at halfway back”, and a “position of the head at halfway down”.
The first item may include an item regarding swing efficiency. The item regarding swing efficiency may be an item indicating a relationship between a deceleration amount and a deceleration period of the grip (an example of a holding portion) of the golf club 3 in a downswing. Hereinafter, the first item is assumed to include an item (hereinafter, this item will be referred to as a “swing efficiency” item) indicating a relationship between a “grip deceleration ratio” which is an index based on the deceleration amount of the grip and a “grip deceleration time ratio” which is an index based on the deceleration period of the grip, as the item regarding swing efficiency.
The plurality of items which are score calculation targets also include a second item regarding impact (at ball hitting). The second item may include an item indicating a relationship between an incidence angle of the head of the golf club 3 and an inclination of the head at impact (at ball hitting). Hereinafter, the second item is assumed to include an item (hereinafter, this item will be referred to as an “impact” item) indicating a relationship between the “club path (incidence angle) y” which is an index based on the incidence angle of the head of the golf club 3 at impact and the “relative face angle r” which is an index based on the inclination of the head at impact.
The second item may include an item indicating a relationship between an attack angle of the head of the golf club 3 and an absolute face angle at impact (at ball hitting). Hereinafter, the second item is assumed to include an item (hereinafter, this item will be referred to as a “down blow” item or an “upper blow” item) indicating a relationship between the “attack angle δ” which depends on a position of the head of the golf club 3 and the lowest point thereof at impact and the “absolute face angle φ” which is an index based on the inclination of the head at impact.
The plurality of items which are score calculation targets may also include a third item regarding the time at which a swing transitions from a backswing to a downswing, and the time of impact (the time of ball hitting). The third item may include an item indicating a relationship between a rotation angle about the long axis of the golf club 3 at the time (at top) at which a swing transitions from a backswing to a downswing and an inclination of the head of the golf club 3 at impact (at ball hitting). Hereinafter, the third item is assumed to include an item (hereinafter, this item will be referred to as a “rotation” item) indicating a relationship between the “shaft axis rotation angle θtop at top” which is an index based on the rotation angle about the long axis of the golf club 3 at the top timing, and the “(absolute) face angle φ” which is an index based on the inclination of the head at impact.
The score calculation portion 311 performs a process of calculating a total score on the basis of the scores of the plurality of items. The processing section 31 transmits information regarding the scores or the total score of the plurality of items, calculated by the score calculation portion 311, to the swing analysis apparatus 20 via the communication section 32. In other words, the processing section 31 also functions as an output section which outputs the information regarding the scores (levels) or the total score of the plurality of items.
In the present embodiment, the processing section 31 of the swing diagnosis apparatus 30 performs a process of calculating scores and a total score of a plurality of items indicating features of a swing as a swing analysis process.
A detailed description will be made of a method of calculating a score of each item and a method of calculating a total score in the score calculation portion 311 of the processing section 31.
The score calculation portion 311 calculates a score of the “V zone” item depending on in which regions head positions at halfway back and halfway down are included among a plurality of regions determined based on the shaft plane SP and the Hogan plane HP (V zone).
There may be various methods of setting the interface SAB, the interface SBC, the interface SCD, and the interface SDE. As an example, the interfaces may be set so that, on the YZ plane, the Hogan plane HP is located exactly at the center of the interface SAB and the interface SBC, the shaft plane SP is located exactly at the center of the interface SCD and the interface SDE, and angles of the region B, the region C, and the region D about the origin O (X axis) are the same as each other. In other words, with respect to the first angle β formed between the shaft plane SP and the Hogan plane HP, if each of angles formed between the Hogan plane HP, and the interface SAB and the interface SBC is set to β/4, and each of angles formed between the shaft plane SP, and the interface SCD and the interface SDF is set to β/4, angles of the region B, the region C, and the region D are all set to β/2.
Since a swing that causes a Y coordinate of a head position at halfway back or halfway down to be negative cannot be expected, an interface of the region A opposite to the interface SAB is set in the XZ plane in
Specifically, first, the score calculation portion 311 sets the interface SAD, the interface SBC, the interface SCD, and the interface SDE of the regions A to E on the basis of coordinates of each of the four vertices U1, U2, S1, and S2 of the shaft plane SP and coordinates of each of the four vertices U1, U2, H1, and H2 of the Hogan plane HP, included in data (selected swing analysis data 248) regarding a swing. Next, the score calculation portion 311 determines in which region of the regions A to E coordinates of a head position at halfway back and coordinates of a head position at halfway down included in the data (selected swing analysis data 248) regarding the swing are included. Information regarding a determination result thereof is transmitted to the swing analysis apparatus 20, and is used as the information regarding the “sex” and the “region in which a head position at halfway down is included” in the input data editing screen illustrated in
In the present embodiment, as illustrated in
The score calculation portion 311 may calculate a lower score as a hit ball predicted on the basis of a relationship among the shaft plane SP, the Hogan plane HP, the head position at halfway back, and the head position at halfway down becomes more easily curved. The term “easily curved” may indicate that a trajectory after ball hitting is easily curved (easily sliced or hooked), and may indicate that a hit ball direction is easily deviated relative to a target direction (target line). Alternatively, the score calculation portion 311 may calculate a higher score as a hit ball more easily flies straight. The term “easily flies straight” may indicate that a trajectory after ball hitting is hardly curved (easily straightened), and may indicate that a hit ball direction is hardly deviated relative to a target direction (target line).
For example, in a case where a head position at halfway back is included in the region E, and a head position at halfway down is included in the region A, it is expected that a hit ball is easily curved, and thus the score calculation portion 311 calculates a relatively low score. Therefore, in the example illustrated in
For example, in a case where a head position at halfway back and a head position at halfway down are all included in the region C, it is expected that a hit ball easily flies straight, and thus the score calculation portion 311 calculates a relatively high score (for example, 5 points maximum). Therefore, in the example illustrated in
The score calculation portion 311 calculates a score of the “rotation” item depending on in which range among a plurality of ranges each of the shaft axis rotation angle θt at top and the face angle φ is included. Specifically, first, the score calculation portion 311 determines whether or not in which range each of the shaft axis rotation angle θtop at top and the face angle φ included in data (target diagnosis input data) regarding a swing is included. Next, the score calculation portion 311 calculates a score corresponding to a determination result by referring to the rotation score table 343.
In the present embodiment, as illustrated in
The score calculation portion 311 may calculate a lower score as a hit ball predicted on the basis of a relationship between the shaft axis rotation angle θtop at top and the face angle φ becomes more easily curved.
For example, since the face surface of the golf club 3 is considerably open in a state where the shaft axis rotation angle θtop at top is extremely large, it is expected that the face surface is not completely returned to a square at impact, and thus a hit ball is easily curved. A state in which the face angle φ is extremely large is a state in which the face surface at impact is considerably open, and a state in which the face angle φ is extremely small (a negative state in which an absolute value thereof is great) is a state in which the face surface at impact is considerably closed. In either state, it is expected that a hit ball is easily curved. In other words, for example, in a case where the shaft axis rotation angle θtop is included in the range of “θ4 or more”, and the face angle φ is included in the range of “less than φ1” or “φ6 or more”, it is expected that a hit ball is easily curved, and thus the score calculation portion 311 calculates a relatively low score. Therefore, in the example illustrated in
For example, if the shaft axis rotation angle θtop at top is small, it is expected that the face surface is completely returned to the square at impact, and thus a hit ball easily flies straight. If the face angle φ is close to 0°, the face surface at impact is close to the square, and thus it is expected that a hit ball easily flies straight. In other words, in a case where the shaft axis rotation angle θtop is included in the range of “less than θ1”, and the face angle φ is included in the range of “φ3 or more and less than φ4”, it is expected that a hit ball easily flies straight, and thus the score calculation portion 311 calculates a relatively high score (for example, 5 points maximum). Therefore, in the example illustrated in
The score calculation portion 311 calculates a score of the “impact” item depending on in which range among a plurality of ranges each of the club path (incidence angle) ψ and the relative face angle η is included. Specifically, first, the score calculation portion 311 determines whether or not in which range the club path (incidence angle) ψ included in data (target diagnosis input data) regarding a swing is included. The score calculation portion 311 calculates the relative face angle q by subtracting the club path (incidence angle) ψ from the face angle φ included in the data (diagnosis target input data) regarding the swing (refer to
In the present embodiment, as illustrated in
The score calculation portion 311 may calculate a lower score as a hit ball predicted on the basis of the club path (incidence angle) ψ and the relative face angle η becomes more easily curved.
For example, a state in which the relative face angle η is extremely large is a state in which the face surface at impact is open, and a state in which the face angle is extremely small (a negative state in which an absolute value thereof is great) is a state in which the face surface at impact is considerably closed. In either state, it is expected that a hit ball is easily curved. For example, in a state in which the club path (incidence angle) ψ is extremely large, a trajectory of the head at impact becomes a considerably inside-out trajectory, and thus it is expected that a hit ball is easily curved. In a state in which the club path (incidence angle) ψ is extremely small (a negative state in which an absolute value thereof is great), a trajectory of the head at impact becomes a considerably outside-in trajectory, and thus it is expected that a hit ball is easily curved. In other words, for example, in a case where the relative face angle η is included in the range of “η1 or more” or “less than η4”, and the club path (incidence angle) ψ is included in the range of “less than ψ1” or “ψ4 or more”, it is expected that a hit ball is easily curved, and thus the score calculation portion 311 calculates a relatively low score. Therefore, in the example illustrated in
For example, in a case where the relative face angle η is close to 0°, and the club path (incidence angle) ψ is close to 0°, the face surface at impact is close to the square, and a trajectory of the head at impact is nearly straight. Therefore, it is expected that a hit ball easily flies straight. In other words, in a case where the relative face angle η is included in the range of “less than η2 and η3 or more”, and the club path (incidence angle) ψ is included in the range of “ψ2 or more and less than ψ3”, it is expected that a hit ball easily flies straight, and thus the score calculation portion 311 calculates a relatively high score (for example, 5 points maximum). Therefore, in the example illustrated in
The score calculation portion 311 calculates a score of the “down blow” item depending on in which range among a plurality of ranges each of the attack angle δ and the absolute face angle φ is included in a case where an iron is selected as the golf club 3. Specifically, first, the score calculation portion 311 determines whether or not in which range the attack angle δ illustrated in
In the present embodiment, as illustrated in
Here, when a sign of the attack angle (first angle) δ is the second sign (positive), scores pd5, pd10, pd15, pd20, and pd25 may be the lowest score. In this case, an absolute value of the threshold value δ4 may be infinitely small (δ8≈0). As mentioned above, the second sign (positive) of the attack angle (first angle) δ at impact indicates an upper blow in which the lowest point of the club head during a downswing occurs before the impact. In an iron club requiring a down blow, if it is determined that a sign of the attack angle (first angle) δ is the second sign (positive), the lowest score may be calculated, and thus a swing may be evaluated to be bad.
Next, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and a sign of the absolute face angle (second angle) φ is the fourth sign (positive), if an absolute value of the absolute face angle (second angle) φ is equal to or greater than the first threshold value φ2, scores pd21 to pd24 illustrated in
Next, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), if an absolute value of the attack angle (first angle) δ is smaller than a second threshold value δ2, and an absolute value of the absolute face angle (second angle) φ is smaller than the third threshold value φ1, scores pd8, pd9, pd13 and pd14 satisfying this condition may be set to be highest. The case where a sign of the attack angle (first angle) δ is the first sign (negative) indicates a case where a swing using an iron club is an appropriate down blow or a level blow. For example, if an absolute value of the attack angle (first angle) δ is smaller than the second threshold value δ2, it is determined that the attack angle (first angle) δ is in an appropriate range. Similarly, if an absolute value of the absolute face angle (second angle) φ is smaller than the third threshold value φ1, it is also determined that the absolute face angle (second angle) φ is in an appropriate range. In this case, the highest score may be calculated, and thus the swing may be evaluated to be good.
Next, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and a sign of the absolute face angle (second angle) φ is the fourth sign (positive), if an absolute value of the absolute face angle (second angle) φ is equal to or greater than the third threshold value φ1 and is smaller than the first threshold value φ2, scores pd16 to pd19 satisfying this condition may be set as low scores. The case where a sign of the attack angle (first angle) δ is the first sign (negative) indicates a case where a swing using an iron club is an appropriate down blow or a level blow. The case where a sign of the absolute face angle (second angle) φ is the fourth sign (positive) corresponds to the time at which the face surface is open. In this case, if an absolute value of the absolute face angle (second angle) φ is equal to or greater than the third threshold value φ1 and is smaller than the first threshold value φ2, low scores are set. The scores pd21 to pd24 illustrated in
Next, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and a sign of the absolute face angle (second angle) φ is the third sign (negative), if an absolute value of the absolute face angle (second angle) φ is equal to or greater than the third threshold value φ1, scores pd1, pd2, pd3 and pd4 illustrated in
Next, if an absolute value of the attack angle (first angle) δ is equal to or greater than the fourth threshold value δ1 and is smaller than the second threshold value δ2 in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and if an absolute value of the absolute face angle (second angle) φ is smaller than the third threshold value φ1 in a case where a sign of the absolute face angle (second angle) φ is the third sign (negative), a score pd7 illustrated in
Next, if an absolute value of the attack angle (first angle) δ is equal to or greater than the fourth threshold value δ1 and is smaller than the second threshold value δ2 in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and if an absolute value of the absolute face angle (second angle) φ is smaller than the third threshold value φ1 in a case where a sign of the absolute face angle (second angle) φ is the fourth sign (positive), a score pd12 illustrated in
In the present embodiment, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and a sign of the absolute face angle (second angle) φ is the fourth sign (positive), a lower score may be calculated as an absolute value of the second angle becomes greater (for example, pd6<pd7<pd8, pd9, pd11<pd12<pd13).
In the present embodiment, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), a higher score may be calculated as an absolute value of the first angle becomes smaller and an absolute value of the second angle becomes smaller (for example, pd2<pd7=pd12<pd8=pd13, and pd7=pd12>pd17).
In the present embodiment, in a case where a sign of the attack angle (first angle) δ is the first sign (negative), and a sign of the absolute face angle (second angle) φ is the third sign (negative), a lower score is calculated as an absolute value of the second angle becomes greater (for example, pd1<pd6, pd2<pd7, pd3<pd8, and pd4<pd9).
The score calculation portion 311 calculates a score of the “upper blow” item depending on in which range among a plurality of ranges each of the attack angle δ and the absolute face angle φ is included in a case where a wood is selected as the golf club 3. Specifically, the score calculation portion 311 calculates a score corresponding to a determination result by referring to the upper blow score table 346, for example, as illustrated in
Here,
The score calculation portion 311 calculates a score of the “swing efficiency” item depending on in which range among a plurality of ranges each of the grip deceleration ratio RV and the grip deceleration time ratio RT is included. Specifically, first, the score calculation portion 311 determines whether or not in which range each of the grip deceleration ratio RV and the grip deceleration time ratio RY included in data (target diagnosis input data) regarding a swing is included. Next, the score calculation portion 311 calculates a score corresponding to a determination result by referring to the swing efficiency score table 347.
In the present embodiment, as illustrated in
The score calculation portion 311 may calculate a higher score as swing efficiency predicted on the basis of a relationship between the grip deceleration ratio RV and the grip deceleration time ratio RT becomes higher.
It is considered in a golf swing that, when the head is accelerated, the arms are decelerated by reducing forces of the arms in a downswing, and thus natural rotation of the golf club occurs, so that the shaft is accelerated. A tendency for the natural rotation of the golf club to occur can be understood depending on to what extent a speed of the grip is decelerated during a downswing. Therefore, it is expected that a highly efficient swing using natural rotation of the golf club can be realized as the grip deceleration ratio RV becomes higher. However, if a timing at which natural rotation of the golf club occurs is close to an impact timing, that is, the grip deceleration time ratio RT is low, impact occurs in a state in which the natural rotation of the golf club cannot be sufficiently used, and thus it cannot necessarily be said that a highly efficient swing is performed. In other words, for example, in a case where the grip deceleration ratio RV is included in the range of “nu1 or more”, and the grip deceleration time ratio RT is included in the range of “nup1 or more”, it is expected that swing efficiency is high, and thus the score calculation portion 311 calculates a relatively high score. For example, in a case where the grip deceleration ratio RV is included in the range of “less than nu5”, and the grip deceleration time ratio RT is included in the range of “less than nup5”, it is expected that swing efficiency is low, and thus the score calculation portion 311 calculates a relatively low score. Therefore, in the example illustrated in
Here, in the score tables illustrated in
A score is added to each area in advance on the basis of a relationship between the first index and the second index, and thus a lookup table can be used. A score can be specified on the basis of the first index and the second index using the lookup table, and the score can be calculated as a level. As mentioned above, since a swing is calculated as a score on the basis of a relationship between the first index and the second index using the lookup table, it is possible to easily and appropriately perform an objective determination on a swing of exercise equipment at impact.
The score calculation portion 311 calculates a total score on the basis of the score of the “V zone” item, the score of the “rotation” item, the score of the “impact” item, the score of the “down blow” or “upper blow” item, and the score of the “swing efficiency” item.
For example, in a case where a score of each item is 5 points maximum, if a maximum of a total score is 100 points, the score calculation portion 311 may multiply the score of each item by 4 so that 20 points maximum is obtained, and may add all the scores together so as to calculate a total score. In the swing diagnosis screen illustrated in
For example, the score calculation portion 311 may increase a weight of a highly important item in diagnosis (evaluation) of a swing and may add scores of the items together so as to calculate a total score.
First, the processing section 21 of the swing analysis apparatus 20 transmits user identification information allocated to the user 2, to the swing diagnosis apparatus 30 (step S100 in
Next, the processing section 31 of the swing diagnosis apparatus 30 receives the user identification information, and transmits list information of the swing analysis data 248 corresponding to the user identification information (step S200 in
Next, the processing section 21 of the swing analysis apparatus 20 receives the list information of the swing analysis data 248, and displays a selection screen (
The processing section 21 of the swing analysis apparatus 20 waits for the swing analysis data 248 to be selected on the selection screen of the swing analysis data (N in step S120 in
Next, the processing section 31 of the swing diagnosis apparatus 30 receives the selected information of the swing analysis data (step S210 in
The processing section 31 of the swing diagnosis apparatus 30 determines a region in which a head position at halfway back is included and a region in which a head position at halfway down is included on the basis of the selected swing analysis data 248 (step S230 in
Next, the processing section 31 of the swing diagnosis apparatus 30 transmits various pieces of information based on the selected swing analysis data (step S240 in
Next, the processing section 21 of the swing analysis apparatus 20 receives the various pieces of information based on the selected swing analysis data 248, and displays an editing screen (
The processing section 21 of the swing analysis apparatus 20 waits for a diagnosis starting operation to be performed on the editing screen of input data (N in step S150 in
Next, the processing section 31 of the swing diagnosis apparatus 30 receives the diagnosis target input data (step S250 in
Next, the processing section 31 of the swing diagnosis apparatus 30 transmits (outputs) information regarding the scores and the total score of the plurality of items to the swing analysis apparatus 20 (step S270 in
The processing section 21 of the swing analysis apparatus 20 receives the information regarding the scores and the total score of the plurality of items, displays the swing diagnosis screen (
In the flowchart of
First, the processing section 31 calculates a score (a score of the “V zone” item) corresponding to a region in which a head position at halfway back is included and a region in which a head position at halfway down is included by referring to the V zone score table 342 stored in the storage section 34 (step S261).
Next, the processing section 31 calculates a score (a score of the “rotation” item) corresponding to the shaft axis rotation angle θtop at top and the face angle φ by referring to the rotation score table 343 stored in the storage section 34 (step S262).
Next, the processing section 31 calculates the relative face angle t on the basis of the face angle and the club path (incidence angle) p (step S263).
Next, the processing section 31 calculates a score (a score of the “impact” item) corresponding to the relative face angle η and the club path (incidence angle) ψ by referring to the impact score table 344 stored in the storage section 34 (step S264).
Next, if an iron is selected as the golf club 3, the processing section 31 calculates a score (a score of the “down blow” item) corresponding to the attack angle δ and the absolute face angle φ by referring to the down blow score table 345 stored in the storage section 34 (step S265). Alternatively, if a wood is selected as the golf club 3, the processing section 31 calculates a score (a score of the “upper blow” item) corresponding to the attack angle δ and the absolute face angle φ by referring to the upper blow score table 346 stored in the storage section 34 (step S265).
Next, the processing section 31 calculates a score (a score of the “swing efficiency” item) corresponding to the grip deceleration ratio RV and the grip deceleration time ratio RT by referring to the swing efficiency score table 347 stored in the storage section 34 (step S266).
Finally, the processing section 31 calculates a total score on the basis of the score of the “V zone” item calculated in step S261, the score of the “rotation” item calculated in step S262, the score of the “impact” item calculated in step S264, the score of the “down blow” or “upper blow” item calculated in step S265, and the score of the “swing efficiency” item calculated in step S266 (step S267).
A swing diagnosis screen illustrated in
The lesson screen illustrated in
On the swing diagnosis screen illustrated in
For example, a diagnosis result corresponding to each item may be formed in advance in each region (for each score) of the score tables illustrated in
The low scores pd16 to pd19 are correlated with a diagnosis result that “there is a swing tendency that the attack angle is a predetermined angle or more, but the face is open; since the weight shift to the left or lower body leading is strong, the upper body moves to the left during a downswing, and thus there is a tendency that a down blow increases or the face is unlikely to be closed; and perform a swing while being aware of keeping a head position on the right side of the body during a downswing, so as to maintain a head position at address, thereby achieving appropriate attack angle and face angle”.
The intermediate scores pd1 to pd4 similar to the low scores are correlated with a diagnosis result that “there is a swing tendency that the attack angle is a predetermined angle or more, but the face angle is not stable; the face is closed or open at impact, and thus a ball tends to fly along a curved path, such as a hook or a slice; ball hitting is stabilized by removing consciousness of hand swing and being aware of smooth weight shift or lower body leading; and since appropriate ball hitting is performed by taking the balance between movement of the body and movement of the arms, perform a swing while thinking about the balance between movement of the lower body and movement of the upper body”.
Similarly, the lesson screen illustrated in
The invention is not limited to the present embodiment, and may be variously modified within the scope of the spirit of the invention. For example, a plurality of sensor units 10 may be attached to the golf club 3 or parts such as the arms or the shoulders of the user 2, and the swing analysis portion 211 may perform a swing analysis process using measured data from the plurality of sensor units 10.
In the embodiment, the swing analysis portion 211 calculates the third line segment 53 which is a third axis and the Hogan plane HP using the physical information of the user 2, but a line segment and a plane obtained by rotating the second line segment 52 which is a second axis and the shaft plane SP by a predetermined first angle β (for example, 30°) about the X axis, respectively, may be used as the third line segment 53 and the Hogan plane HP.
In the embodiment, the swing analysis portion 211 detects impact using the square root of the square sum as shown in Equation (2) as a combined value of three-axis angular velocities measured by the sensor unit, but, as a combined value of three-axis angular velocities, for example, a square sum of three-axis angular velocities, a sum or an average of three-axis angular velocities, or the product of three-axis angular velocities may be used. Instead of a combined value of three-axis angular velocities, a combined value of three-axis accelerations such as a square sum or a square root of three-axis accelerations, a sum or an average value of three-axis accelerations, or the product of three-axis accelerations may be used.
In the embodiment, the score calculation portion 311 may calculate scores and a total score of a plurality of items on the basis of the selected swing analysis data 248 without displaying the input data editing screen as illustrated in
In the embodiment, the score calculation portion 311 calculates scores of five items including the “V zone” item, the “rotation” item, the “impact” item, the “down blow” or “upper blow” item, and the “swing efficiency” item, but may not calculate scores of some of the items, and may calculate scores of other items. In the present embodiment, the score calculation portion 311 calculates a total score, but may not calculate a total score.
In the embodiment, the score calculation portion 311 calculates scores of a plurality of items using various score tables, but may use equations instead of the score tables.
In the embodiment, the score calculation portion 311 may also function as the swing analysis portion 211, and may perform a swing diagnosis process (a swing analysis process and a score calculation process) including the swing analysis process on the basis of measured data (an output signal from an inertial sensor) from the sensor unit 10, which is data regarding a swing.
In the embodiment, the whole or a part (display section) of the motion analysis apparatus may be configured using a head mounted display (HMD) as a display destination of a determination result (diagnosis result).
As illustrated in
The display section 502 is provided with, for example, the image display unit 503 such as an liquid crystal display (LCD), a first beam splitter 504, a second beam splitter 505, a first concave reflection mirror 506, a second concave reflection mirror 507, a shutter 508, and a convex lens 509.
The first beam splitter 504 is disposed on the front side of the left eye of the user 2, and partially transmits and partially reflects light emitted from the image display unit 503.
The second beam splitter 505 is disposed on the front side of the right eye of the user 2, and partially transmits and partially reflects light which is partially transmitted from the first beam splitter 504.
The first concave reflection mirror 506, which is disposed in front of the first beam splitter 504, partially reflects the partially reflected light from the first beam splitter 504 so as to transmit the light through the first beam splitter 504, and thus guides the light to the left eye of the user 2.
The second concave reflection mirror 507, which is disposed in front of the second beam splitter 505, partially reflects the partially reflected light from the second beam splitter 505 so as to transmit the light through the second beam splitter 505, and thus guides the light to the right eye of the user 2.
The convex lens 509 guides partially transmitted light from the second beam splitter 505 to the outside of the HMD 500 when the shutter 508 is opened.
According to the HMD 500, the user 2 can understand necessary information such as a swing type thereof without holding the swing analysis apparatus 20 with the hands.
Alternatively, in the embodiment, the whole or a part (display section) of the motion analysis apparatus may be configured using a wrist type terminal as a display destination of a determination result (diagnosis result).
The entire disclosure of Japanese Patent Application No. 2016-006347 filed Jan. 15, 2016 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2016-006347 | Jan 2016 | JP | national |