Motion artifact mitigation methods and devices for pulse photoplethysmography

Information

  • Patent Grant
  • 10881310
  • Patent Number
    10,881,310
  • Date Filed
    Friday, August 23, 2013
    11 years ago
  • Date Issued
    Tuesday, January 5, 2021
    4 years ago
Abstract
Aspects of the present disclosure are directed toward devices, apparatus, and methods for interfacing a PPG apparatus with the skin surface of a patient and sensing artifacts due to surface motion attributable to contact-based surface motion at or near where the apparatus in contact with the skin surface of the patient. The devices, apparatus, and methods include circuitry that contacts the skin surface of the patient, illuminates tissue at the surface, and senses a pulse photoplethysmography (PPG) signal of the patient in response thereto. Further, the circuitry senses artifacts due to surface motion, and responds to the sensed PPG signal by processing the sensed PPG signal relative to the sensed artifacts to produce a version of the sensed PPG signal that is indicative local blood volume and composition of the patient, and filtered to suppress noise therein due to the contact-based surface motion.
Description
FIELD OF THE INVENTION

This invention relates to methods and devices for physiologic monitoring, pulse oximetry or heart rate monitoring. In particular, the invention relates to photoplethysmography.


BACKGROUND

Photoplethysmography (PPG) is a technique used in the determination of heart rate and blood oxygen saturation (e.g., pulse oximetry). PPG is often measured using optical detection of a pulsatile change in blood volume in highly-innervated tissues (e.g., fingers, ear lobes). Measuring PPG by optical detection can include illuminating the tissue with typically one wavelength (or two for pulse oximetry) using a light emitter (e.g., a light emitting diode (LED), and measuring the transmission (transmission PPG) or scattering (reflectance PPG) with a photodetector (e.g., photodiode, phototransistor).


PPG and pulse oximetry measurements are susceptible to motion artifacts. Minute movements of the light emitter and/or sensor with respect to the tissue will introduce artifacts which can render extraction of the underlying signal difficult, and can corrupt the calculation of the oxygen saturation value.


SUMMARY

Various aspects of the present disclosure are directed toward such above-discussed and other apparatuses and methods for interfacing with a patient.


Consistent with certain exemplary embodiments, the disclosure describes apparatuses and methods that utilize two circuits operative for contacting highly-innervated tissue (e.g., the skin surface of a person or patient) with one of the circuits illuminating tissue at the surface by sending light toward the surface. A circuit-enclosure, or housing, is used to contact the skin surface of the patient with light provided by the first circuit being characterized in a first wavelength range. The first circuit also senses a PPG signal of the patient in response to the light being sent toward the surface. The second circuit senses artifacts due to surface motion, where such artifacts are attributable to contact-based surface motion at a portion of the housing that is in contact with the skin surface of the patient. The frequency range of the artifacts overlaps with the frequency range of the PPG sensed by the first wavelength and/or as affecting the light in the first frequency range. Further, the second circuit responds to the sensed PPG signal by processing the sensed PPG signal relative to the sensed artifacts to produce a version of the sensed PPG signal that is indicative of local blood volume and blood composition of the patient. The PPG signal indicative of local blood volume and blood composition of the patient is filtered by the second circuit to suppress noise therein due to the contact-based surface motion.


Other aspects of the disclosure are directed to related embodiments in which the contact is not necessarily effecting direct engagement between the housing and the skin. In one such embodiment, the second circuit includes an impedance-based sensor that measures the surface motion artifacts, and the second circuit senses artifacts attributable to indirect contact-based surface motion at a portion of the housing in response to the housing being in sufficient proximity of the skin surface to transfer energy between the skin surface and the impedance-based sensor.


The above summary is not intended to describe each embodiment or every implementation of the present disclosure. The figures, detailed description and claims that follow more particularly exemplify various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure may be more completely understood in consideration of the detailed description of various embodiments of the present disclosure that follows in connection with the accompanying drawings, in which:



FIG. 1 shows an example block diagram of an apparatus for interfacing with a patient, consistent with various aspects of the present disclosure;



FIG. 2 shows an example PPG signal collector and determination of motion artifacts by capacitance circuitry, consistent with various aspects of the present disclosure;



FIG. 3 shows an example capacitive sensing arrangement using conductive lines in a printed circuit board (PCB), consistent with various aspects of the present disclosure;



FIG. 4 shows a PPG signal collector and determination of motion artifacts by using an optical signal, consistent with various aspects of the present disclosure;



FIG. 5A shows an example arrangement of a sensor that includes a PPG signal detector and at least one noise reference signal circuit, consistent with various aspects of the present disclosure;



FIG. 5B shows another example arrangement of a sensor that includes a PPG signal detector and at least one noise reference signal circuit, consistent with various aspects of the present disclosure;



FIG. 5C shows another example arrangement of a sensor that includes a PPG signal detector and at least one noise reference signal circuit, consistent with various aspects of the present disclosure; and



FIG. 5D shows another example arrangement of a sensor that includes a PPG signal detector and at least one noise reference signal circuit, consistent with various aspects of the present disclosure.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure including aspects defined in the claims.


DETAILED DESCRIPTION

The present disclosure is believed to be useful for applications involving devices, apparatuses, and methods that determine local blood volume and blood composition in a subject and mitigate motion-induced errors that can occur during measurement. For instance, various aspects of the present disclosure are directed toward mitigation of artifacts in PPG signals due to the subtle movements of the devices/apparatuses (sensors), which are in same frequency range as the PPG signal itself, with respect to the tissue. Such sensors, consistent with various aspects of the present disclosure, can include structure that allows for placement of a patient's finger for determining local blood volume and blood composition. For instance, a patient will place his or her finger in, on, or near the sensor for PPG measurements. Based on the skin surface movements, motion defects occurs, and are determined/measured based on the surface movements. Accordingly, various aspects of the present disclosure include determination of at least one noise reference signal indicative of the artifacts that negatively affect the PPG signal(s) that is used to adaptively filter the PPG signal(s) to provide an accurate determination of PPG and/or a pulse oximetry measurement of a patient.


Various aspects of the present disclosure are directed toward apparatuses and methods for interfacing with a patient. The apparatus and methods are directed towards the apparatus operative for contacting the skin surface of the patient with one of the circuits illuminating tissue at the surface by sending light toward the surface. For example, the apparatus includes a housing for enclosing at least a first one of the circuits that contacts the skin surface of the patient, where the first circuit illuminates tissue at the surface by sending light toward the surface. Such contact at the skin surface is implemented in certain embodiments by a near contact and in other embodiments by an actual contact. The light provided by the first circuit is characterized as being in a first wavelength range. The first circuit also senses a PPG signal of the patient in response to the light being sent toward the surface.


The apparatus and methods for interfacing with a patient also include a second circuit that senses artifacts due to surface motion. In certain embodiments, the artifacts are characterized in that the artifact frequency range overlaps with the frequency range of the PPG sensed by the first wavelength and/or as affecting the light in the first frequency range. Further, the second circuit responds to the sensed PPG signal by processing the sensed PPG signal relative to the sensed artifacts to produce a version of the sensed PPG signal that is indicative of local blood volume and blood composition (e.g., heart rate or blood oxygen saturation) of the patient. The sensed PPG signal is filtered by the second circuit to suppress noise therein due to the surface motion.


In certain embodiments, the second circuit includes an impedance-based sensor that is used to measure the surface motion artifacts. In certain more specific embodiments, the impedance-based sensor determines electrical properties of the skin surface. Certain embodiments of the present disclosure are characterized in that the second circuit sends light toward the surface. The light sent by the second circuit is a second wavelength range that is different than the first wavelength range (sent by the first circuit). Additionally, in certain embodiments, the second circuit can include both an impedance-based sensor that measures surface motion artifacts of the patient that are both physiological and mechanical, and the second circuit that illuminates tissue at the surface at a second wavelength. In these such embodiments, the second circuit measures transmitted or reflected light being characterized by a second wavelength range and, in response thereto, measures physiological and mechanical surface motion artifacts of the patient and produce the filtered version of the sensed PPG signal.


Additionally, other embodiments, consistent with various aspects of the present disclosure are characterized in that the second circuit having an impedance-based sensor, which includes capacitance circuit and a computer that is electrically coupled to the capacitance circuitry. In such an embodiment, the impedance-based sensor measures physiological and mechanical surface motion artifacts of the patient. Further, the computer measures physiological and mechanical surface motion artifacts of the patient and produces the filtered version of the sensed PPG signal. In certain embodiments, the second circuit measures a transmitted or reflected PPG signal. Additionally, the second circuit can generate a noise-reference signal based on the sensed artifacts. The noise-reference signal is being characterized to correlate predominantly with the artifacts and minimally to the sensed PPG signal.


Various aspects of the present disclosure are also directed toward methods of interfacing with a patient. In such methods, the skin surface of the patient is contacted, and a light source is used to illuminate tissue at the surface, which sends light (in a first wavelength range) toward the surface. Additionally, a PPG signal of the patient is sensed in response to the light being sent toward the surface. Further, artifacts are sensed due to surface motion. The artifacts are characterized as also being in the first wavelength range, and in response to the sensed PPG signal, the sensed PPG signal is processed relative to the sensed artifacts to produce a version of the sensed PPG signal that is indicative of local blood volume and blood composition of the patient as filtered to suppress noise therein due to the surface motion.


Turning now to the Figures, FIG. 1 shows an example block diagram of an apparatus for interfacing with a patient, consistent with various aspects of the present disclosure. For instance, a noisy PPG block 100 represents a PPG signal having motion artifacts, relative to contact movement at a contact region 102 of the skin surface, that affect the signal, is measured in response thereto. The affected signals include the noisy PPG block 100, which illuminates tissue at the skin surface of a patient by sending light toward the surface. As discussed in further detail below the light is characterized as being in a first wavelength range. Such a measured noise PPG signal 100 is shown in the inset graph 105. In addition to the noisy PPG block 100, FIG. 1 shows a motion reference block 110. The motion reference block 110 denotes artifacts that occur due to surface motion between the contact region 102 of the skin surface and the housing 112 of the PPG apparatus. As shown in the inset, the artifacts are represented by a motion reference graph 116. Preferably, an outer surface of the housing 112 would contact the contact region 102 of the skin surface, directly or indirectly (e.g., through a light-passing intervening structure or medium for its impedance/capacitance aspects). As noted above, certain in embodiments, the artifacts can be characterized due to the artifact frequency range overlapping with the frequency range of the PPG (typically ranging from 0.1-30 Hz) as sensed by the first wavelength and as affecting the light in the first frequency range.


The motion reference block 110 passes the signal representing the artifacts (Signal 2) through a filter block 116. Additionally, a signal (Signal 1) representing the noisy PPG is passed from the noisy PPG block 100. Signals 1 and 2 are provided to a processor block 120. The processor block 120 responds to the PPG signal (Signal 1) by processing the sensed PPG signal relative to the sensed artifacts (Signal 2) to produce a filter version, represented by filtered PPG block 125, of the sensed PPG signal that is indicative of local blood volume and blood composition of the patient. The filtered version of the sensed PPG signal is shown in the inset graph 130. The filtered PPG block 125 suppresses the noise due to the surface motion.



FIG. 2 shows an example PPG signal collector and determination of motion artifacts by capacitance circuitry, consistent with various aspects of the present disclosure. Various aspects of the present disclosure are detected toward extraction of a noise-reference signal as can be used to filter out noise in a collected PPG signal, for example, as discussed with reference to FIG. 1. For instance, FIG. 2 shows a finger 200 of a patient making contact with a sensor or apparatus. A light source 205 shines light toward the skin-to-surface contact, which penetrates the finger 200 (shown as point A). The light reflects, and is measured by a photo collector 210 (e.g., a photodiode). This light path is the collected PPG signal. An optically measured PPG signal is determined by measuring the pulsatile change in local blood volume under the action of the pressure pulse generated by the heart's contraction. FIG. 2 also shows capacitance circuitry 215 that is used to determine the motion artifacts by measuring the subtle motion changes of the finger at the contact. The artifacts, in the form of capacitance measured by the capacitance circuitry 215, are provided to a capacitance-meter/microcontroller 220. FIG. 2 also shows an example PPG signal collected by the photo collector 210 in graph 221, and an example capacitance signal measured by the capacitance-meter/microcontroller 220 in graph 225.



FIG. 3 shows an example capacitive sensing arrangement using conductive lines in a PCB, consistent with various aspects of the present disclosure. As shown in FIG. 3, a sensor, defined by one or more insulated conductive surfaces or lines 300, detects the capacitance change between these conductors when a finger 305 gets close and changes the dielectric properties of the capacitor. Changes of the interface between the sensors and the skin will also modulate the capacitance. The capacitance change can be measured using a simple microcontroller (see, e.g., Texas Instruments MSP430).



FIG. 4 shows a PPG signal collector and determination of motion artifacts by using an optical signal, consistent with various aspects of the present disclosure. The PPG signal is predominantly a measurement of a periodic change in local blood volume in a human/patient/person. As noted above, this signal can suffer from degradation due to motion artifacts. FIG. 4 shows a finger 400 of a patient making contact with a sensor or apparatus. A first light source 405 shines light toward the skin-to-surface contact, which penetrates the finger 400 (shown as path A). The light reflects, and is measured by a photo collector 410 (e.g., a photodiode). This light path is the collected PPG signal. An optically measured PPG signal is determined by measuring the pulsatile change in local blood volume under the action of the pressure pulse generated by the heart's contraction. A second light source 415 shines light toward the skin-to-surface contact, which penetrates the finger 400 (shown as path B). As noted above, an optically measured PPG signal is determined by measuring the pulsatile change in local blood volume under the action of the pressure pulse generated by the heart's contraction. More blood will absorb more light, and thus less light will pass through the tissue. If the detector is on the same side as the illuminator (reflectance PPG), then it is the amount of scattered light coming back to the detector which is modulated. PPG can be measured at many wavelengths, although some principles are usually guiding the selection. For the measurement of oxygen saturation (pulse oximetry), a combination of red and Infared (IR) lights are typically used because of the specific absorption spectra of hemoglobin and oxihemoglobin.


Red/IR light emitters also can have good transmission of these wavelengths through the tissue, which increases the signal in transmission mode and allows the interrogation of deep arteries. These wavelengths have low scattering coefficients. On the other hand, shorter wavelengths (yellow, green) have higher absorption coefficients as well as higher scattering coefficients. While detrimental for transmission mode (not enough light passes through the finger/ear lobe), this absorption generates more signal for reflectance mode. It also can sense more superficially. Successful reflectance mode PPG sensors have been constructed with green LEDs.


The skin of the finger 400, in response to light shown thereon by the second light source 415, has a distinct wavelength dependence for both absorption and scattering. The wavelength of the second light source 415 is absorbed only at the surface of the skin (where the remaining capillaries show much attenuated pulsation). Due to the wavelength of the second light source 415 being absorbed only at the surface of the skin, the reflectance of the light from the second light source 415 measured at the photo detector 410 is indicative of motion artifacts at the surface. For instance, the upper graphs 420 of FIG. 4 show an example where there is no movement of a sensor with respect to the skin surface. However, as shown in the lower graphs 425 of FIG. 4, if the sensor moves with respect to the skin surface, this surface signal (reference signal) modulates. Thus, because the surface signal (reference signal) modulates in response to movement, the signal is a reference signal to filter out motion-noise in a PPG signal. This signal can thus be used as a noise reference, as discussed with reference to FIG. 1.


Such an arrangement can utilize a photodetector, a light emitter (e.g., LED), and a second light emitter having an emission spectrum located close to the first light emitter (e.g., IR, red or green). In this manner due to the differing wavelength dependence for both absorption and scattering, a PPG signal is collected, and a separate optically-based signal is collected that captures the motion artifact due to sensor/tissue movements, but not the pulse signal. The wavelength of interest for such surface sensing would be in the blue/near-UV (as opposed to the red/IR wavelengths for a PPG signal), based on the strong adsorption of the melanin pigment present in the epidermis. Reducing the intensity of the emitted light will also contribute to a more superficial sensing, containing less of the pulsatile component.


Accordingly, because of the wavelength dependence of both absorption and scattering, a wavelength for a second light emitter can be selected which is absorbed only at the surface of the skin, where the remaining capillaries show much attenuated pulsation. The optically-based noise reference signal then becomes mainly a function of how the light is coupled into the skin, and where it is measured.


Further, as noted in FIG. 2 and FIG. 4, the artifacts of movement at the surface can be measured due to capacitance circuitry or a circuitry measuring the different wavelength of light absorbed only at the surface of a finger. Further, because the noise reference signals in those instances are collected based on separate circuitry, both the capacitance circuitry and the circuitry measuring the different wavelength of light absorbed only at the surface of a finger can be used to filter the PPG signal, as discussed with reference to FIG. 1.


As discussed herein, in measuring the PPG signal of a patient, the motion artifacts are determined when the patient's skin surface (e.g., digit/member) makes direct contact or medium-intervening contact in which the contact is indirect as indicated via with an impedance-based sensor. The impedance-based sensor can include or be implemented as part of a capacitive-touch apparatus such as a pulse oximeter or a smart tablet (e.g., smartphone) that also includes a camera and a light source. For instance, a patient can place his or her finger on the sensing-surface of the sensor (including circuitry as discussed herein) or a patient can place his or her finger for near contact (e.g., as would occur when energy is transferred between a capacitively-charged surface and a finger situated apart from one another by one to several millimeters). The capacitance circuitry, as described above, has sensitivity such that it can sense near contact of the patient. Further, in embodiments that use a second light source in mitigation of motion negatively affecting the PPG signal, light for both the PPG and the mitigation of motion can be provided from the sensor or smart tablet toward the skin surface. A camera (as is provided with the sensor or smart tablet) that is sensitive to both wavelengths can determine the motion artifacts based on wavelengths reflected/scattered at the skin surface (motion reference) versus wavelength absorbed more deeply and reflecting a stronger PPG signal, as presented for contact situations. The camera can measure the reflected/scattered light from the finger irrespective of the distance away from the finger (the angle of the light source(s) is not a significant factor).


Accordingly, in the above-discussed embodiments, the second circuit includes an impedance-based (e.g., capacitor-based) sensor that measures the surface motion artifacts attributable to contact-based surface motion at a portion of the housing when the housing is in sufficient proximity of the skin surface to transfer energy between the skin surface and the impedance-based sensor.


In each of FIGS. 5A-D, the arrangements shown include at least one emitter, a photodiode (for determining at least PPG signal), and a microcontroller. FIG. 5A shows an example arrangement of a sensor that includes a photodiode 500, capacitive circuitry 505 composed of two metal lines, encircles a light emitter 510 (which includes at least one light emitter), and a microcontroller 515. The sense lines can be on the same side as the other components as shown in FIG. 5B, or on opposite sides, as shown in FIG. 5D. As shown in FIG. 5C, the arrangement can include two emitters for arrangements using an optically-based noise reference signal. FIG. 5C also shows an optional capacitive sensor in instances when both the capacitance circuitry and the circuitry measuring the different wavelength of light absorbed only at the surface of a finger can be used to filter the PPG signal.


In certain instances, an optically-based noise reference signal can be sensed at both sides of tissue of a finger if transmission mode is performed. Further, an electrically-based noise reference signal can also utilize an impedance measurement, rather than a pure capacitance measurement. Such an impedance measurement can be performed by direct measurement of the impedance with metal contact surrounding the sensor. Because of the high impedance of the skin, such signals will also be very sensitive to skin/sensor contact, and therefore sensitive to relative motion. For all modes of electrical sensing, the sensor could be unique or composed of several sensitive surfaces.


For further discussion of physiologic monitoring, pulse oximetry or heart rate monitoring and mitigating motion artifacts of the measurement as relating to the embodiments and specific applications discussed herein, reference may be made to the underlying U.S. Provisional Patent Application, Ser. No. 61/693,270 filed on Aug. 25, 2012 (including the Appendix therein) to which priority is claimed. The aspects discussed therein may be implemented in connection with one or more of embodiments and implementations of the present disclosure (as well as with those shown in the figures). Moreover, for general information and for specifics regarding applications and implementations to which one or more embodiments of the present disclosure may be directed to and/or applicable, reference may be made to the references cited in the aforesaid patent application and published article, which are fully incorporated herein by reference generally and for the reasons noted above. In view of the description herein, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present disclosure.


Various circuit-based building blocks and/or other modules may be implemented to carry out one or more of the operations and activities described herein and/or shown in the Figures. In such contexts, a “block” or “module” is a circuit that carries out one or more of these or related operations/activities. For example, in certain of the above-discussed embodiments, one or more blocks are discrete logic circuits or programmable logic circuits configured and arranged for implementing these operations/activities, as in the circuit modules shown in the Figures, such as the filter block or processor block shown in FIG. 1. In certain embodiments, the programmable circuit is one or more computer circuits programmed to execute a set (or sets) of instructions (and/or configuration data). The instructions (and/or configuration data) can be in the form of firmware or software stored in and accessible from a memory (circuit). As an example, first and second modules include a combination of a CPU hardware-based circuit and a set of instructions in the form of firmware, where the first module includes a first CPU hardware circuit with one set of instructions and the second module includes a second CPU hardware circuit with another set of instructions.


Based upon the above discussion and illustrations, those skilled in the art will readily recognize that various modifications and changes may be made without strictly following the exemplary embodiments and applications illustrated and described herein. Furthermore, various features of the different embodiments may be implemented in various combinations. Such modifications do not depart from the true spirit and scope of the present disclosure, including those set forth in the following claims.

Claims
  • 1. An apparatus for interfacing with a subject, the apparatus comprising: a housing including a light emitter, and a first circuit and a physiological sensor circuit, the first circuit being configured and arranged toilluminate tissue at a skin surface of the subject by sending light toward the skin surface, the light being characterized by a first wavelength range, andsense a pulse photoplethysmography (PPG) signal of the subject in response to the sent light being sent toward the skin surface while the housing is in contact and while the housing is near contact with the skin surface of the subject; and the physiological sensor circuit is configured and arranged with:the light emitter being configured and arranged to sense artifacts attributable to surface motion of the skin surface with respect to the housing by sending additional light toward the tissue at the skin surface at a reduced intensity than the sent light and detecting modulation therefrom, wherein the detected modulation includes changes corresponding to the skin surface and is indicative of the additional light as reflected from the same tissue of the skin surface as the PPG signal is sensed from; andwherein the physiological sensor circuit is configured and arranged with a signal-processing filter to respond to the sensed PPG signal by using the detected modulation from the additional light sent at the reduced intensity to produce a version of the sensed PPG signal that is indicative of local blood volume and blood composition of the subject and that is filtered to suppress noise therein due to the surface motion, wherein a frequency range of the sensed artifacts overlap with a frequency range of the sensed PPG signalwherein the physiological sensor circuit further includes an impedance-based sensor having conductors to transfer energy there between, and configured and arranged to measure changes in properties of the transferred energy which is further between the physiological sensor circuit and pulsatile tissue of the subject, and therefrom, sense artifacts attributable to the surface motion as an interface between the skin surface of the subject and the housing changes by creating an electrical field over the housing and detecting an impedance change between the conductors of the physiological sensor circuit,wherein the impedance-based sensor is configured and arranged to determine electrical properties via the skin surface of the subject and wherein the conductors of the impedance-based sensor include at least one conductive line encircling the first circuit such that the conductors surround the first circuit and the light emitter, and wherein the physiological sensor circuit is configured and arranged with the signal-processing filter to respond to the sensed PPG signal by using the detected modulation and the impedance change between the conductors of the physiological sensor circuit to produce a filtered version of the sensed PPG signal.
  • 2. The apparatus of claim 1, wherein the physiological sensor circuit includes: the impedance-based sensor, including capacitance circuitry, configured and arranged to measure physiological and mechanical surface motion artifacts of the subject; and a computer that is electrically coupled to the capacitance circuitry and configured and arranged to measure physiological and mechanical surface motion artifacts of the subject and produce a filtered version of the sensed PPG signal.
  • 3. The apparatus of claim 1, wherein the physiological sensor circuit includes the impedance-based sensor configured and arranged to measure surface motion artifacts of the subject that are both physiological and mechanical.
  • 4. The apparatus of claim 1, wherein the physiological sensor circuit includes the impedance-based sensor, including the conductors, configured and arranged to measure the artifacts, and wherein the physiological sensor circuit is further configured and arranged to sense artifacts attributable to non-contact-based and contact-based surface motion at a portion of the housing in response to a distance between the housing and the skin surface, and the distance changing as the skin surface approaches, but before contacting, the housing, such that the housing is in sufficient proximity of the skin surface to transfer energy between the skin surface and the impedance-based sensor and, in response, the impedance-based sensor is configured and arranged to detect the impedance change, via a capacitance measurement, between the conductors of the impedance-based sensor.
  • 5. The apparatus of claim 1, wherein the physiological sensor circuit is further configured and arranged to detect the impedance change between the conductors of the physiological sensor circuit by measuring capacitance changes between the conductors, the conductors including at least two metal lines that surround the first circuit that includes a photodiode and a light emitter circuit.
  • 6. The apparatus of claim 1, wherein the first circuit includes a photodiode and a light emitter circuit, and the conductors of the physiological sensor circuit include at least two metal lines that encircle the photodiode and the light emitter circuit.
  • 7. The apparatus of claim 6, wherein the housing is configured and arranged to allow for placement of a digit of the subject therein, and the sensed artifacts are indicative of relative movement of the first circuit with respect to the skin surface of the digit.
  • 8. An apparatus for interfacing with a subject, the apparatus comprising: a housing including: first means for illuminating tissue at a skin surface of the subject by sending light toward the skin surface, the light being characterized by a first wavelength range, andsensing a pulse photoplethysmography (PPG) signal of the subject in response to the light being sent toward the skin surface; andphysiological sensor means, including impedance circuitry having conductors, for transferring energy between the conductors, measuring changes in properties of the transferred energy which is indirectly between the physiological sensor means and pulsatile tissue of the subject, and therefrom sensing artifacts due to surface motion as an interface between the skin surface of the subject and the housing changes, by; creating an electrical field over the housing, anddetecting an impedance change between the conductors of the impedance circuitry, wherein the conductors of the impedance circuitry include at least one conductive line encircling the first means such that the at least one conductive line surrounds the first means,wherein the physiological sensor means further includes a signal-processing filter for responding to the sensed PPG signal by using the detected impedance change to process the sensed PPG signal relative to the sensed artifacts, and therefrom producing a version of the sensed PPG signal that is indicative of local blood volume and blood composition of the subject as filtered to suppress noise therein due to the motion at the skin surface, wherein the sensed artifacts are indicative of relative movement of the first means with respect to the skin surface of the subject, and wherein the sensed artifacts are sensed at the same tissue of the skin surface as the PPG signal is sensed from.
  • 9. A method of interfacing with a subject, the method comprising: using a light source of an apparatus, the apparatus having a housing for the light source and a physiological sensor circuit including an impedance-based sensor having conductors, to illuminate tissue at a skin surface of the subject, thereby sending light thereat, the light being characterized by a first wavelength range;sensing a pulse photoplethysmography (PPG) signal of the subject in response to the light being sent toward tissue of the skin surface using a detector circuit of the physiological sensor circuit while the housing is in contact and while the housing is near contact with the skin surface of the subject; andtransferring energy between the conductors of the impedance-based sensor and measuring changes in properties of the transferred energy which is between the impedance-based sensor and pulsatile tissue of the subject, and therefrom, sensing artifacts due to surface motion and a change in an interface between the skin surface approaches the housing by: sending light characterized by, and detecting modulation therefrom, a second wavelength range toward the same skin surface, wherein the modulation of the second wavelength range includes changes corresponding to the skin surface and is indicative of reflected light at the same tissue of the skin surface as the PPG signal is sensed from, the light characterized by the second wavelength range being at a lower intensity than the light characterized by the first wavelength range, andcreating an electrical field over the housing; anddetecting an impedance change between the conductors of the impedance-based sensor, wherein the conductors include at least one conductive line encircling the light source and the detector circuit such that the at least one conductive line surrounds the light source and the detector circuit, andwherein, in response to the sensed PPG signal, using the modulation of the second wavelength range and the detected impedance change in the dielectric properties between the conductors, via the physiological sensor circuit and a signal-processing filter, to produce a version of the sensed PPG signal that is indicative of local blood volume and blood composition of the subject as filtered to suppress noise therein due to the surface motion.
  • 10. The method of claim 9, wherein sensing the artifacts includes: sending the light toward the skin surface, the light being characterized by the second wavelength range that is different than the first wavelength range and including the lower intensity of light than the light characterized by the first wavelength range; andsensing the artifacts based on wavelengths in the second wavelength range that are reflected or scattered by the skin surface, the artifacts being indicative of movement of the same skin surface and as sensed based on the wavelengths in the second wavelength range and at the lower intensity which contains less of a pulsatile component than wavelengths in the first wavelength.
  • 11. The method of claim 9, wherein sensing the artifacts includes: sending the light characterized by both the first and second wavelength ranges toward the skin surface, the light being characterized by the second wavelength range that is absorbed at the surface of the skin and is within a near-ultraviolet or blue wavelength range, andsensing, by a camera, the PPG signal of the subject in response to the light based on wavelengths in the first wavelength range and sensing the artifacts based on wavelengths in the second wavelength range by generating a spectral image of the skin surface from light reflected or scattered by the skin surface in both the first and second wavelength ranges, wherein the camera is decoupled from movement of the skin surface.
  • 12. The method of claim 9, wherein sensing the artifacts further includes: creating the electrical field over the housing and detecting the impedance change across the conductors of the physiological sensor circuit, in response to changes in a volume or a surface area of the pulsatile tissue of the subject caused by the change in the interface between the skin surface and the housing.
  • 13. The method of claim 9, wherein sensing the artifacts includes: sending the light characterized by the second wavelength range toward the skin surface and, therefrom, measuring wavelengths reflected or scattered by the skin surface, andsensing the artifacts based on wavelengths in the second wavelength range that are reflected or scattered by the skin surface and responsive to changes in a volume or a surface area of the pulsatile tissue of the subject caused by the skin surface approaching or moving away from the housing, thereby causing the change in the interface between the skin surface and the housing.
US Referenced Citations (236)
Number Name Date Kind
5040539 Schmitt et al. Aug 1991 A
5111817 Clark et al. May 1992 A
5450846 Goldreyer Sep 1995 A
5672875 Block et al. Sep 1997 A
5792998 Gardner, Jr. et al. Aug 1998 A
5859652 Silverbrook Jan 1999 A
5909227 Silverbrook Jun 1999 A
6010836 Eichorst et al. Jan 2000 A
6064065 Block et al. May 2000 A
6139819 Unger et al. Oct 2000 A
6169914 Hovland et al. Jan 2001 B1
6231834 Unger et al. May 2001 B1
6261236 Grimblatov Jul 2001 B1
6380294 Babinec et al. Apr 2002 B1
6408198 Hanna et al. Jun 2002 B1
6420709 Block et al. Jul 2002 B1
6431173 Hoffmann Aug 2002 B1
6491647 Bridger et al. Dec 2002 B1
6521211 Unger et al. Feb 2003 B1
6535754 Fishbein et al. Mar 2003 B2
6549801 Chen et al. Apr 2003 B1
6586520 Canorro et al. Jul 2003 B1
6699199 Asada et al. Mar 2004 B2
6707257 Norris Mar 2004 B2
6731967 Turcott May 2004 B1
6754535 Noren et al. Jun 2004 B2
6839585 Lowery et al. Jan 2005 B2
6905470 Lee et al. Jun 2005 B2
6997879 Turcott Feb 2006 B1
7020507 Scharf et al. Mar 2006 B2
7058272 Bourdelais et al. Jun 2006 B2
7130689 Turcott Oct 2006 B1
7194306 Turcott Mar 2007 B1
7254425 Lowery et al. Aug 2007 B2
7277741 Debreczeny et al. Oct 2007 B2
7288584 Highcock et al. Oct 2007 B2
7300166 Agrawal et al. Nov 2007 B2
7329402 Unger et al. Feb 2008 B2
7452551 Unger et al. Nov 2008 B1
7477924 Chin Jan 2009 B2
7483731 Hoarau et al. Jan 2009 B2
7486979 Matlock Feb 2009 B2
7499740 Nordstrom et al. Mar 2009 B2
7507579 Boccazzi et al. Mar 2009 B2
7515949 Norris Apr 2009 B2
7519413 Morris et al. Apr 2009 B1
7522948 Chin Apr 2009 B2
7545903 Kohler et al. Jun 2009 B2
7555327 Matlock Jun 2009 B2
7574244 Eghbal et al. Aug 2009 B2
7574245 Arizaga Ballesteros Aug 2009 B2
7590439 Raridan et al. Sep 2009 B2
7629400 Hyman Dec 2009 B2
7641614 Asada et al. Jan 2010 B2
7647084 Eghbal et al. Jan 2010 B2
7650177 Hoarau et al. Jan 2010 B2
7657294 Eghbal et al. Feb 2010 B2
7657295 Coakley et al. Feb 2010 B2
7657296 Raridan et al. Feb 2010 B2
7674230 Reisfeld Mar 2010 B2
7676253 Raridan, Jr. Mar 2010 B2
7684842 Ollerdessen Mar 2010 B2
7684843 Coakley et al. Mar 2010 B2
7691067 Westbrook et al. Apr 2010 B2
7693559 Raridan et al. Apr 2010 B2
7712673 Jones May 2010 B2
7720516 Chin et al. May 2010 B2
7725146 Li et al. May 2010 B2
7725147 Li et al. May 2010 B2
7725187 Nabutovsky et al. May 2010 B1
7727159 Choi et al. Jun 2010 B2
7728048 Labrec Jun 2010 B2
7729736 Raridan, Jr. Jun 2010 B2
7738155 Agrawal Jun 2010 B2
7738935 Turcott Jun 2010 B1
7738937 Coakley et al. Jun 2010 B2
7756580 Turcott Jul 2010 B1
7787946 Stahmann et al. Aug 2010 B2
7789311 Jones et al. Sep 2010 B2
7794406 Reisfeld et al. Sep 2010 B2
7796403 Coakley Sep 2010 B2
7803118 Reisfeld et al. Sep 2010 B2
7803119 Reisfeld Sep 2010 B2
7824029 Jones et al. Nov 2010 B2
7839416 Ebensberger et al. Nov 2010 B2
7839417 Ebensberger et al. Nov 2010 B2
7857768 Starr et al. Dec 2010 B2
7869849 Ollerdessen et al. Jan 2011 B2
7869850 Hoarau et al. Jan 2011 B2
7879564 Brice et al. Feb 2011 B2
7881762 Kling et al. Feb 2011 B2
7894869 Hoarau Feb 2011 B2
7899510 Hoarau Mar 2011 B2
7904130 Raridan, Jr. Mar 2011 B2
7907809 Korampally et al. Mar 2011 B2
7912672 Feichtinger et al. Mar 2011 B2
7920919 Nabutovsky Apr 2011 B1
7924972 Koehler et al. Apr 2011 B2
7929220 Sayag Apr 2011 B2
7980596 Labrec Jul 2011 B2
7998080 Ben-Ari et al. Aug 2011 B2
8034898 Caravan et al. Oct 2011 B2
8060171 Hoarau et al. Nov 2011 B2
8073516 Scharf et al. Dec 2011 B2
8073518 Chin Dec 2011 B2
8093062 Winger Jan 2012 B2
8095192 Baker, Jr. Jan 2012 B2
8140143 Picard et al. Mar 2012 B2
8145288 Baker, Jr. Mar 2012 B2
8152732 Lynn et al. Apr 2012 B2
8157730 LeBoeuf et al. Apr 2012 B2
8162841 Keel et al. Apr 2012 B2
8175670 Baker, Jr. et al. May 2012 B2
8175671 Hoarau May 2012 B2
8190224 Hoarau May 2012 B2
8190225 Hoarau May 2012 B2
8195263 Drebreczeny et al. Jun 2012 B2
8195264 Hoarau Jun 2012 B2
8204567 Petersen Jun 2012 B2
8204786 LeBoeuf et al. Jun 2012 B2
20020183611 Fishbein et al. Dec 2002 A1
20030139667 Hewko et al. Jul 2003 A1
20030166998 Lowery et al. Sep 2003 A1
20030208239 Lu Nov 2003 A1
20030212336 Lee et al. Nov 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20040030230 Norris Feb 2004 A1
20040147832 Fishbein et al. Jul 2004 A1
20050038349 Choi et al. Feb 2005 A1
20050043608 Haj-Yousef Feb 2005 A1
20050054939 Ben-Ari et al. Mar 2005 A1
20050165316 Lowery et al. Jul 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050209516 Fraden Sep 2005 A1
20050243053 Liess Nov 2005 A1
20060047214 Fraden Mar 2006 A1
20060211930 Scharf et al. Sep 2006 A1
20060264755 Maltz et al. Nov 2006 A1
20070004977 Norris Jan 2007 A1
20070053482 Kohler et al. Mar 2007 A1
20070055163 Asada et al. Mar 2007 A1
20070070800 Virag et al. Mar 2007 A1
20070106137 Baker, Jr. et al. May 2007 A1
20070167844 Asada et al. Jul 2007 A1
20070213619 Linder Sep 2007 A1
20070213620 Reisfeld Sep 2007 A1
20070213621 Reisfeld et al. Sep 2007 A1
20070213622 Reisfeld Sep 2007 A1
20070213624 Reisfeld et al. Sep 2007 A1
20070244399 Kim et al. Oct 2007 A1
20080009690 Debreczeny et al. Jan 2008 A1
20080081961 Westbrook et al. Apr 2008 A1
20080132798 Hong et al. Jun 2008 A1
20080133171 Feichtinger et al. Jun 2008 A1
20080146892 Le Boeuf et al. Jun 2008 A1
20080190430 Melker et al. Aug 2008 A1
20080200787 Shapira et al. Aug 2008 A1
20080238695 Yanai Oct 2008 A1
20080287815 Chon et al. Nov 2008 A1
20090043179 Melker et al. Feb 2009 A1
20090054752 Jonnalagadda et al. Feb 2009 A1
20090105556 Fricke et al. Apr 2009 A1
20090118598 Hoarau May 2009 A1
20090203998 Klinghult Aug 2009 A1
20090209834 Fine Aug 2009 A1
20090221888 Wijesiriwardana Sep 2009 A1
20090227853 Wijesiriwardana Sep 2009 A1
20090227965 Wijesiriwardana Sep 2009 A1
20090232379 Kohler et al. Sep 2009 A1
20090281399 Keel et al. Nov 2009 A1
20090281435 Ahmed et al. Nov 2009 A1
20090292193 Wijesiriwardana Nov 2009 A1
20090326351 Addison et al. Dec 2009 A1
20100004517 Bryenton et al. Jan 2010 A1
20100016691 Watson et al. Jan 2010 A1
20100079279 Watson et al. Apr 2010 A1
20100094147 Inan et al. Apr 2010 A1
20100145201 Westbrook et al. Jun 2010 A1
20100160794 Banet et al. Jun 2010 A1
20100160795 Banet et al. Jun 2010 A1
20100160796 Banet et al. Jun 2010 A1
20100160797 Banet et al. Jun 2010 A1
20100160798 Banet et al. Jun 2010 A1
20100168589 Banet et al. Jul 2010 A1
20100168596 Jaeschke et al. Jul 2010 A1
20100192952 Melker et al. Aug 2010 A1
20100217099 LeBoeuf et al. Aug 2010 A1
20100217102 LeBoeuf Aug 2010 A1
20100241186 Turcott Sep 2010 A1
20100268056 Ricard et al. Oct 2010 A1
20100312131 Naware et al. Dec 2010 A1
20100331715 Addison et al. Dec 2010 A1
20110004072 Fletcher et al. Jan 2011 A1
20110009754 Wenzel et al. Jan 2011 A1
20110009755 Wenzel et al. Jan 2011 A1
20110040345 Wenzel et al. Feb 2011 A1
20110046498 Klap et al. Feb 2011 A1
20110054279 Reisfeld et al. Mar 2011 A1
20110066041 Pandia et al. Mar 2011 A1
20110066042 Pandia et al. Mar 2011 A1
20110066381 Garudadri et al. Mar 2011 A1
20110071366 McKenna Mar 2011 A1
20110082355 Eisen et al. Apr 2011 A1
20110098112 LeBoeuf et al. Apr 2011 A1
20110098583 Pandia et al. Apr 2011 A1
20110106627 LeBoeuf et al. May 2011 A1
20110112442 Meger et al. May 2011 A1
20110125208 Karst et al. May 2011 A1
20110144460 Oh et al. Jun 2011 A1
20110144461 Oh et al. Jun 2011 A1
20110172504 Wegerich Jul 2011 A1
20110184297 Vitali et al. Jul 2011 A1
20110224518 Tindi et al. Sep 2011 A1
20110245633 Goldberg et al. Oct 2011 A1
20110251503 Ben-Ari et al. Oct 2011 A1
20110257489 Banet et al. Oct 2011 A1
20110257551 Banet et al. Oct 2011 A1
20110257552 Banet et al. Oct 2011 A1
20110257553 Banet et al. Oct 2011 A1
20110257554 Banet et al. Oct 2011 A1
20110257555 Banet et al. Oct 2011 A1
20110301436 Teixeira Dec 2011 A1
20120022336 Teixeira Jan 2012 A1
20120022350 Teixeira Jan 2012 A1
20120022384 Teixeira Jan 2012 A1
20120022844 Teixeira Jan 2012 A1
20120065527 Gill et al. Mar 2012 A1
20120065528 Gill et al. Mar 2012 A1
20120078066 Ahmed et al. Mar 2012 A1
20120078119 Ahmed et al. Mar 2012 A1
20120078120 Ahmed et al. Mar 2012 A1
20120078130 Ahmed et al. Mar 2012 A1
20120078321 Blomqvist et al. Mar 2012 A1
20120108928 Tverskoy May 2012 A1
20130303922 Buchheim Nov 2013 A1
Foreign Referenced Citations (2)
Number Date Country
WO 2011029029 Mar 2011 WO
WO 2013052574 Apr 2013 WO
Non-Patent Literature Citations (2)
Entry
H. Tandri et al. “Reversible Cardiac Conduction Block and Defibrillation with High-Frequency Electric Field.” Sci Transl Med 3(102), Sep. 28, 2011, 16 pgs.
M. Z. Poh et al. “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.” Optics Express 18(10), May 2010, pp. 10762-10774.
Related Publications (1)
Number Date Country
20140058217 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61693270 Aug 2012 US