NOT APPLICABLE
NOT APPLICABLE
The present invention relates to optical sensors for non-invasive determination of physiological characteristics, and in particular to sensors for making such determinations in the presence of motion.
Many types of optical sensors are used to measure physiological characteristics of a patient. Typically, an optical sensor provides emitted light which is then scattered through tissue and detected. Various characteristics of a patient can be determined from analyzing such light, such as oxygen saturation, pulse rate, pH, etc.
Pulse oximetry is typically used to measure various blood characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and the rate of blood pulsations corresponding to each heartbeat of a patient. Measurement of these characteristics has been accomplished by use of a non-invasive sensor which scatters light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured.
The light scattered through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of transmitted light scattered through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption. For measuring blood oxygen level, such sensors have typically been provided with a light source that is adapted to generate light of at least two different wavelengths, and with photodetectors sensitive to both of those wavelengths, in accordance with known techniques for measuring blood oxygen saturation.
Known non-invasive sensors include devices that are secured to a portion of the body, such as a finger, an ear or the scalp. In animals and humans, the tissue of these body portions is perfused with blood and the tissue surface is readily accessible to the sensor. A photoelectric pulse transducer from World Precision Instruments is described as even recording signals through the fingernail.
Optical sensors are typically either reflective or transmissive. Transmissive sensors have the emitter and detector on opposite sides of a finger, toe, nose or other tissue. They measure light transmitted through the tissue from one side to the other. Reflectance sensors, on the other hand, have the emitter and detector side-by-side, such as placement on the forehead, or on a fetus where it is difficult to position a sensor over a finger, etc. Reflectance sensors detect light which is scattered back to the same surface.
In pulse oximetry, the goal is to determine the amount of oxygen in arterial blood, as distinguished from venous blood or the tissue itself. The light emitted can be absorbed by all three, however, and they need to be distinguished among.
Using appropriate signal analysis, the DC portion can be eliminated, leaving an extracted AC portion which is due to absorption by arterial blood. As can be seen in
This characteristic of the red and infrared signals allows the determination of oxygen saturation through two methods. In a first method, the “ratio of ratios” is calculated, which is the ratio, between red and infrared, of the logarithms of the quotients obtained by dividing the maximum signal intensity and the subsequent minimum signal intensity. This ratio-of-ratios is then used in a predetermined formula to calculate arterial oxygen saturation. This is described more fully in U.S. Pat. No. 4,653,498.
In a second method, referred to here as “least squares,” a least squares regression analysis is performed on the above-mentioned Lissajous plot to determine the slope of the ensemble of data points taken during an epoch of time. This slope is then used in a predetermined formula to determine arterial oxygen saturation. Other techniques are set forth in a co-pending application entitled “Method and Apparatus for Estimating Physiological Parameters Using Model-Based Adaptive filtering,” filed Jun. 7, 1996, Ser. No. 08/660,510, the disclosure of which is hereby incorporated by reference.
In some cases, it is desirable to measure the oxygen saturation of the venous blood in order to get an indication of how much oxygen is being used by the body. The arterial blood, on the other hand, gives an indication of how much oxygen is being delivered to the body. In Shiga U.S. Pat. No. 4,927,264, the oxygen saturation in venous blood is determined by inducing a venous pressure with a pressure cuff. This effectively varies line 14 of
Motion artifact can degrade a pulse oximetry signal relied upon by a physician, without the physician's awareness. This is especially true if the monitoring of the patient is remote, the motion is too small to be observed, or the doctor is watching the instrument or other parts of the patient, and not the sensor site. Thus, typically techniques are employed to reduce the effects of motion or compensate for motion.
In one oximeter system described in U.S. Pat. No. 5,025,791, an accelerometer is used to detect motion. When motion is detected, readings influenced by motion are either eliminated or indicated as being corrupted. In a typical oximeter, measurements taken at the peaks and valleys of the blood pulse signal are used to calculate the desired characteristic. Motion can cause a false signal peak and valley, resulting in a measurement having an inaccurate value and one which is recorded at the wrong time. In U.S. Pat. No. 4,802,486, assigned to Nellcor Puritan Bennett, the assignee of the present invention, an EKG signal is monitored and correlated to the oximeter reading to provide synchronization to limit the effect of noise and motion artifact pulses on the oximeter readings. This reduces the chances of the oximeter locking onto a periodic motion signal. Still other systems, such as the one described in U.S. Pat. No. 5,078,136, assigned to Nellcor Puritan Bennett, use signal processing in an attempt to limit the effect of noise and motion artifact. The '136 patent, for instance, uses linear interpolation and rate of change techniques to analyze the oximeter signal. U.S. Pat. No. 5,337,744 sets forth sensor modifications used to improve the immunity of the signal from motion artifacts.
The motion signal impedes the measurement because it obscures the cardiac signal. The motion signal can have many components, such as, for example, the emitter or detector physically moving away from the body, or a volume of venous and arterial blood sloshing around in response to the motion, or the signal path being shortened or lengthened by expansion or compression of the tissue due to motion.
Contrary to conventional practice, signal analysis might be able to directly use the time-varying motion signal to calculate oxygen saturation. Under some conditions, the ratio-of-ratios (or least squares) resulting from a motion-induced signal has the same value as the ratio-of-ratios (or least squares) for the cardiac induced signal. The red and infrared intensity signals are often not in phase, and can limit the use of the motion signal for calculating oxygen saturation. One of the factors that may cause this is illustrated in
The present invention provides a non-invasive optical sensor which uses the motion signal to calculate the physiological characteristic being measured. For pulse oximetry, a least squares or a ratio-of-ratios technique can be applied to the slope of the motion signal itself. This is made possible by selecting a site on the patient where motion produces signals at two wavelengths which are adequately correlated with each other. Adequately correlated signals have a “closed” or “nearly closed” Lissajous. In particular, it has been determined that a sensor placed on a nail, in particular a thumbnail, exhibits the characteristics of having the red and infrared signals in phase when used for pulse oximetry.
The present invention also provides an optical sensor which fits entirely on a nail. No adhesive or other securing mechanism around the rest of the finger is necessary, resulting in the entire sensor moving with the nail. The use of the nail site reduces the likelihood of out-of-phase motion signals for red and infrared wavelengths, and takes advantage of the predominantly arterial blood saturation characteristic of the blood present beneath the nail. In addition, the nail is an advantageous surface for adhering the sensor to, and at this location the method of attachment allows a low profile, low mass sensor to be used which further limits differential phase errors due to motion.
Preferably, the sensor on a nail of the present invention is a reflectance-type sensor. In one embodiment, a closer spacing is used than in typical prior art sensors, preferably less than 5 mm, more preferably approximately 4 mm. It has been empirically determined that the physiological characteristics at a nail site produce an improved signal with closer spacing. In addition, the sensor preferably has a curvature which conforms to the shape of the nail, and is attached with an adhesive.
In alternate embodiments of the invention, artificial motion may be induced with an air bag or otherwise to produce a motion signal which can be used with the sensor of the invention. In particular, this could be used for patients with low perfusion, a weak heartbeat or no heartbeat such as is the case during heart bypass surgery.
For a further understanding of the nature and advantages of the invention, reference should be made to the following description taken in conjunction with the accompanying drawings.
The placement on the top of the nail allows the cable to extend along the top of the finger or other digit, without the sensor or the cable being on the palmar side of the digit where it would interfere with grasping or other functionality of the hand.
As can be seen, the emitter 44 and detector 46 are arranged laterally across the width of the nail. However, a longitudinal arrangement (discussed more fully below) or any other arrangement on a nail is possible. The spacing of the emitter and detector may be varied, but an optimum spacing was experimentally found to be less than 10 mm, preferably less than 5 mm, more preferably approximately 4 mm.
The nailbed makes a good site for the sensor because it has been observed that motion generates artifact signals for the red and infrared wavelengths that are largely correlated to one another. The inventors have observed that this results in a ratio-of-ratios (or least squares) which correlates well with the arterial oxygen saturation.
Referring to
Connective tissue layer 54 is thin and apparently strongly connective. Thus, the expansion and compression of tissues, particularly fatty tissues, which may cause out of phase motion artifacts for other sites and types of sensors, is apparently greatly reduced here. Because the thumbnail 56 itself provides a strong mounting platform, the sensor can be securely attached to it with adhesive, avoiding the emitter and detector from separating from the patient and causing gaps that may cause corrupt ratio-of-ratio values.
The region beneath nail 56 also provides a region which appears to be concentrated with oxygen saturated blood similar to the saturation of arterial blood. Oxygen consumption beneath the nail appears to be small relative to the circulation there, or the relative volume of venous blood may be negligibly small.
The presence of many small capillaries, rather than large vessels, makes the region more homogeneous, and thus lessens the likelihood that two different light wavelengths would be affected differently by passing through differing regions. In the absence of motion, the high perfusion allows a normal pulse oximetry reading to be made. During the occurrence of motion, the large amount of blood present allows a strong motion signal to be obtained, since a lot of blood is moved around by the motion. In experiments conducted by the inventors, motion artifact signals greater than 50 times that of a normal pulsatile plethysmogram signal have been observed. The nail site also appears to have a nailbed-tissue boundary that is optically phase-matched for the wavelengths of the sensor.
In addition to measuring oxygen saturation, the nailbed is a good site for other optical sensors. For example, glucose detection which requires the use of a near infrared wavelength could be used. Among the blood properties or constituents that can be measured are blood gases (CO2, O2), pH, glucose, drug concentrations, or other analytes (THb, Hct, lactate, K+, Na+, Ca2+, etc.).
One characteristic of the nail as a site is that the nail itself could act as a light pipe, shunting light between the emitter and the detector. Preferably, the light travels through the tissue beneath the nail along a path 66. However, some light could bounce back and forth through the nail itself on a path 68 between the emitter and detector in a manner not unlike a waveguide. To limit this shunting, the sensor body is made to absorb light, or at least the region between the emitter and detector is made at least partially absorbing to the wavelengths of interest. In this way, each time light strikes the side of the nail adjacent the absorbing layer, it will be absorbed, rather than propagating along the nail.
Shunting can also be limited by recessing the emitter and detector and providing a narrow numerical aperture. Because of the rigidity of the sensor body, recessing will not produce variations in distance during motion. By limiting the numerical aperture of the emitter and detector to values less than 0.9, preferably to values less than 0.5, the emitter will not directly launch light into the nail “waveguide,” and light which does potentially travel path 68 will be outside the acceptance angle of the detector.
The nail also provides advantages for adhering the sensor to the patient since the nail does not have the quantity of oils or sweat as present on the skin.
In some patients, in particular those with low blood perfusion, it may be difficult to lock onto a pulse waveform. The additional transmissive sensor could be used to enable locking on for such patients. In addition, a transmissive sensor could be used to calibrate the nail sensor “on-the-fly.” Because of shunting and other unique aspects of the nail site, a predetermined calibration may be off. A measurement of saturation using the transmissive and the nail reflectance sensors could be done in the absence of motion, with a correction factor applied to the reflectance sensor. The correction could be a constant which is added or a multiplicative factor, or both. If measurements are done at different saturations, a calibration line or curve could be determined by the oximeter to allow adjustments anywhere along the calculated curve. Subsequently, in the presence of motion, the nail sensor will be more accurately calibrated.
Alternately, a pulse determination step E could be used where the sensor includes both a reflectance sensor and a transmittance sensor. If motion is present above a predetermined threshold (such as at least twice the arterial pulse signal), the reflectance sensor is used, which uses the motion signal, and alters any motion filtering or motion reduction techniques (step F). If the motion signal is below the threshold, the transmittance sensor is used (step G), with standard motion reduction techniques being employed (either hardware or software or both).
Both sensors could be energized in an ongoing manner, and the saturation and rate could be chosen to come from the sensor considered most reliable, depending on the instrument's assessment of motion. Simultaneous computation may further allow improved processed signal estimates of cardiac rate in the presence of motion given knowledge of estimated saturation.
A calibration resistor (or other active or passive element) 115 encodes the mean wavelength of at least one LED, and provides it to a calibration reader circuit or CPU 120. The wavelength indicated is used to select coefficients stored in the monitor. Such a calibration technique is described in more detail in U.S. Pat. No. 4,621,643, the disclosure of which is incorporated herein by reference.
The sensor is secured to a nail 144 using an adhesive layer 146. The adhesive layer can act as a shunt path itself. Accordingly, the adhesive layer may be tinted to be opaque to the wavelengths used, with preferably transparent windows 148 and 150 for the detector and emitter apertures.
As will be understood by those of skill in the art, the present invention could be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example, a sensor could be placed on a fingernail other than the thumb nail, and could be placed on toenails. Alternately, a sensor could be placed on the cuticle or the live nail fold skin extending over the beginning of the nail. The sensor could be attached with a clip-type sensor, or an elastic wrap, bandage or adhesive which encircles the appendage could be used. The sensor could be placed at locations other than the nailbed where signals at the multiple wavelengths in the presence of motion are still adequately correlated. The emitter in the sensor could be fabricated using an optical fiber to carry the light from a source remotely located, and equivalently the detector could be an optical light guide to pipe the light to a remote detector. Accordingly, reference should be made to the following claims which set forth the scope of the invention.
This application is a continuation of U.S. application Ser. No. 10/080,433, filed Feb. 21, 2002, now U.S. Pat. No. 6,845,256, which is a division of U.S. application Ser. No. 09/348,437, filed Jul. 7, 1999, now U.S. Pat. No. 6,374,129, which is a division of U.S. application Ser. No. 08/722,443, filed Oct. 10, 1996, now U.S. Pat. No. 6,018,673, which disclosures are incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3090377 | Salisbury et al. | May 1963 | A |
3095872 | Tolles | Jul 1963 | A |
3638640 | Shaw | Feb 1972 | A |
4714341 | Hamaguri et al. | Dec 1987 | A |
4802486 | Goodman et al. | Feb 1989 | A |
4805623 | Jöbsis | Feb 1989 | A |
4807631 | Hersh et al. | Feb 1989 | A |
4832484 | Aoyagi et al. | May 1989 | A |
4869254 | Stone et al. | Sep 1989 | A |
4869261 | Peňáz | Sep 1989 | A |
4883055 | Merrick | Nov 1989 | A |
4883353 | Hausman et al. | Nov 1989 | A |
4901238 | Suzuki et al. | Feb 1990 | A |
4911167 | Corenman et al. | Mar 1990 | A |
4913150 | Cheung et al. | Apr 1990 | A |
4927264 | Shiga et al. | May 1990 | A |
4934372 | Corenman et al. | Jun 1990 | A |
4936679 | Mersch | Jun 1990 | A |
4938218 | Goodman et al. | Jul 1990 | A |
4955379 | Hall | Sep 1990 | A |
4960126 | Conlon et al. | Oct 1990 | A |
4971062 | Hasebe et al. | Nov 1990 | A |
4972331 | Chance | Nov 1990 | A |
4974591 | Awazu et al. | Dec 1990 | A |
5025791 | Niwa | Jun 1991 | A |
5028787 | Rosenthal et al. | Jul 1991 | A |
5055671 | Jones | Oct 1991 | A |
5065749 | Hasebe et al. | Nov 1991 | A |
5078136 | Stone et al. | Jan 1992 | A |
5084327 | Stengel | Jan 1992 | A |
5099842 | Mannheimer et al. | Mar 1992 | A |
5111817 | Clark et al. | May 1992 | A |
5119815 | Chance | Jun 1992 | A |
5122974 | Chance | Jun 1992 | A |
5167230 | Chance | Dec 1992 | A |
5190038 | Polson et al. | Mar 1993 | A |
5218962 | Mannheimer et al. | Jun 1993 | A |
5226417 | Swedlow et al. | Jul 1993 | A |
5246003 | DeLonzor | Sep 1993 | A |
5247931 | Norwood | Sep 1993 | A |
5263244 | Centa et al. | Nov 1993 | A |
5267563 | Swedlow et al. | Dec 1993 | A |
5267565 | Beard | Dec 1993 | A |
5273036 | Kronberg et al. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5279295 | Martens et al. | Jan 1994 | A |
5285783 | Secker | Feb 1994 | A |
5297548 | Pologe | Mar 1994 | A |
5343867 | Shankar | Sep 1994 | A |
5351685 | Potratz | Oct 1994 | A |
5355880 | Thomas et al. | Oct 1994 | A |
5355882 | Ukawa et al. | Oct 1994 | A |
5368026 | Swedlow et al. | Nov 1994 | A |
5372136 | Steuer et al. | Dec 1994 | A |
5385143 | Aoyagi | Jan 1995 | A |
5390670 | Centa et al. | Feb 1995 | A |
5392777 | Swedlow et al. | Feb 1995 | A |
5398680 | Polson et al. | Mar 1995 | A |
5413099 | Schmidt et al. | May 1995 | A |
5421329 | Casciani et al. | Jun 1995 | A |
5431170 | Mathews | Jul 1995 | A |
5452717 | Branigan et al. | Sep 1995 | A |
5469845 | DeLonzor et al. | Nov 1995 | A |
RE35122 | Corenman | Dec 1995 | E |
5482036 | Diab et al. | Jan 1996 | A |
5483646 | Uchikoga | Jan 1996 | A |
5485847 | Baker, Jr. | Jan 1996 | A |
5490505 | Diab | Feb 1996 | A |
5499627 | Steuer | Mar 1996 | A |
5503148 | Pologue et al. | Apr 1996 | A |
5517988 | Gerhard | May 1996 | A |
5524617 | Mannheimer | Jun 1996 | A |
5553614 | Chance | Sep 1996 | A |
5555882 | Richardson | Sep 1996 | A |
5564417 | Chance | Oct 1996 | A |
5575285 | Takanashi et al. | Nov 1996 | A |
5588425 | Sackner et al. | Dec 1996 | A |
5588427 | Tien | Dec 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5590652 | Inai | Jan 1997 | A |
5595176 | Yamaura | Jan 1997 | A |
5611337 | Bukta | Mar 1997 | A |
5617852 | Macgregor | Apr 1997 | A |
5630413 | Thomas et al. | May 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5645059 | Fein et al. | Jul 1997 | A |
5645060 | Yorkey | Jul 1997 | A |
5662106 | Swedlow et al. | Sep 1997 | A |
5676141 | Hollub | Oct 1997 | A |
5680857 | Pelikan et al. | Oct 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
5687719 | Sato et al. | Nov 1997 | A |
5687722 | Tien et al. | Nov 1997 | A |
5692503 | Keunstner | Dec 1997 | A |
5692505 | Fouts | Dec 1997 | A |
5713355 | Richardson | Feb 1998 | A |
5730124 | Yamauchi | Mar 1998 | A |
5731582 | West | Mar 1998 | A |
5743263 | Baker, Jr. | Apr 1998 | A |
5746206 | Mannheimer | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5776059 | Kaestle et al. | Jul 1998 | A |
5779631 | Chance | Jul 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5786592 | Hök | Jul 1998 | A |
5792050 | Alam et al. | Aug 1998 | A |
5803908 | Steuer et al. | Sep 1998 | A |
5817009 | Rosenheimer | Oct 1998 | A |
5830136 | DeLonzor et al. | Nov 1998 | A |
5830139 | Abreu | Nov 1998 | A |
5831598 | Kauffert et al. | Nov 1998 | A |
5842981 | Larsen et al. | Dec 1998 | A |
5846190 | Woehrle | Dec 1998 | A |
5853364 | Baker et al. | Dec 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5871442 | Madarasz et al. | Feb 1999 | A |
5873821 | Chance et al. | Feb 1999 | A |
5879373 | Roper et al. | Mar 1999 | A |
5885213 | Richardson et al. | Mar 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5934277 | Mortz | Aug 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5995856 | Mannheimer et al. | Nov 1999 | A |
5995859 | Takahashi | Nov 1999 | A |
6011986 | Diab et al. | Jan 2000 | A |
6018673 | Chin et al. | Jan 2000 | A |
6022321 | Amano et al. | Feb 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
6064898 | Aldrich | May 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6081742 | Amano et al. | Jun 2000 | A |
6083172 | Baker et al. | Jul 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6104938 | Huiku et al. | Aug 2000 | A |
6120460 | Abreu | Sep 2000 | A |
6134460 | Chance | Oct 2000 | A |
6150951 | Olejniczak | Nov 2000 | A |
6154667 | Miura et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6163715 | Larsen et al. | Dec 2000 | A |
6181958 | Steuer et al. | Jan 2001 | B1 |
6181959 | Schöllermann et al. | Jan 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6217523 | Amano et al. | Apr 2001 | B1 |
6222189 | Misner et al. | Apr 2001 | B1 |
6230035 | Aoyagi et al. | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6266546 | Steuer et al. | Jul 2001 | B1 |
6285895 | Ristolainen et al. | Sep 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6353750 | Kimura et al. | Mar 2002 | B1 |
6385471 | Mortz | May 2002 | B1 |
6397091 | Diab et al. | May 2002 | B2 |
6411832 | Guthermann | Jun 2002 | B1 |
6411833 | Baker et al. | Jun 2002 | B1 |
6415236 | Kobayashi et al. | Jul 2002 | B2 |
6419671 | Lemberg | Jul 2002 | B1 |
6438399 | Kurth | Aug 2002 | B1 |
6461305 | Schnall | Oct 2002 | B1 |
6466809 | Riley | Oct 2002 | B1 |
6487439 | Skladnev et al. | Nov 2002 | B1 |
6501974 | Huiku | Dec 2002 | B2 |
6501975 | Diab et al. | Dec 2002 | B2 |
6526301 | Larsen et al. | Feb 2003 | B2 |
6544193 | Abreu | Apr 2003 | B2 |
6546267 | Sugiura et al. | Apr 2003 | B1 |
6549795 | Chance | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6591122 | Schmitt | Jul 2003 | B2 |
6594513 | Jobsis et al. | Jul 2003 | B1 |
6606509 | Schmitt | Aug 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6615064 | Aldrich | Sep 2003 | B1 |
6618042 | Powell | Sep 2003 | B1 |
6622095 | Kobayashi et al. | Sep 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6654621 | Palatnik et al. | Nov 2003 | B2 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kianl et al. | Dec 2003 | B2 |
6658277 | Wasserman | Dec 2003 | B2 |
6662030 | Khalil et al. | Dec 2003 | B2 |
6668183 | Hicks et al. | Dec 2003 | B2 |
6671526 | Aoyagi et al. | Dec 2003 | B1 |
6671528 | Steuer et al. | Dec 2003 | B2 |
6678543 | Diab et al. | Jan 2004 | B2 |
6681128 | Steuer et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6690958 | Walker et al. | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6708048 | Chance | Mar 2004 | B1 |
6711424 | Fine et al. | Mar 2004 | B1 |
6711425 | Reuss | Mar 2004 | B1 |
6714245 | Ono | Mar 2004 | B1 |
RE38492 | Diab et al. | Apr 2004 | E |
6721584 | Baker, Jr. et al. | Apr 2004 | B2 |
6731274 | Powell | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6785568 | Chance | Aug 2004 | B2 |
6793654 | Lemberg | Sep 2004 | B2 |
6801797 | Mannheimer et al. | Oct 2004 | B2 |
6801798 | Geddes et al. | Oct 2004 | B2 |
6801799 | Mendelson | Oct 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6829496 | Nagai et al. | Dec 2004 | B2 |
6836679 | Baker et al. | Dec 2004 | B2 |
6850053 | Daalmans et al. | Feb 2005 | B2 |
6863652 | Huang et al. | Mar 2005 | B2 |
6873865 | Steuer et al. | Mar 2005 | B2 |
6889153 | Dietiker | May 2005 | B2 |
6898451 | Wuori | May 2005 | B2 |
6931268 | Kiani-Azarbayjany et al. | Aug 2005 | B1 |
6939305 | Flaherty et al. | Sep 2005 | B2 |
6939307 | Dunlop | Sep 2005 | B1 |
6947780 | Scharf | Sep 2005 | B2 |
6949081 | Chance | Sep 2005 | B1 |
6961598 | Diab | Nov 2005 | B2 |
6983178 | Fine et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
7024235 | Melker et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7030749 | Al-Ali | Apr 2006 | B2 |
7035697 | Brown | Apr 2006 | B1 |
7041060 | Flaherty et al. | May 2006 | B2 |
7047056 | Hannula et al. | May 2006 | B2 |
7127278 | Melker et al. | Oct 2006 | B2 |
7162306 | Caby et al. | Jan 2007 | B2 |
7209775 | Bae et al. | Apr 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7215986 | Diab et al. | May 2007 | B2 |
7236811 | Schmitt | Jun 2007 | B2 |
7239905 | Kiani-Azarbayjany et al. | Jul 2007 | B2 |
7263395 | Chan et al. | Aug 2007 | B2 |
7272426 | Schmid | Sep 2007 | B2 |
7315753 | Baker et al. | Jan 2008 | B2 |
7328053 | Diab et al. | Feb 2008 | B1 |
7336983 | Baker et al. | Feb 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7376453 | Diab et al. | May 2008 | B1 |
7383070 | Diab et al. | Jun 2008 | B2 |
20010005773 | Larsen et al. | Jun 2001 | A1 |
20010020122 | Steuer et al. | Sep 2001 | A1 |
20010039376 | Steuer et al. | Nov 2001 | A1 |
20010044700 | Kobayashi et al. | Nov 2001 | A1 |
20020026106 | Khalil et al. | Feb 2002 | A1 |
20020035318 | Mannheimer et al. | Mar 2002 | A1 |
20020038079 | Steuer et al. | Mar 2002 | A1 |
20020042558 | Mendelson | Apr 2002 | A1 |
20020049389 | Abreu | Apr 2002 | A1 |
20020062071 | Diab et al. | May 2002 | A1 |
20020111748 | Kobayashi et al. | Aug 2002 | A1 |
20020128544 | Diab et al. | Sep 2002 | A1 |
20020133068 | Huiku | Sep 2002 | A1 |
20020156354 | Larson | Oct 2002 | A1 |
20020161287 | Schmitt | Oct 2002 | A1 |
20020161290 | Chance | Oct 2002 | A1 |
20020165439 | Schmitt | Nov 2002 | A1 |
20020198443 | Ting | Dec 2002 | A1 |
20030023140 | Chance | Jan 2003 | A1 |
20030055324 | Wasserman | Mar 2003 | A1 |
20030060693 | Monfre et al. | Mar 2003 | A1 |
20030139687 | Abreu | Jul 2003 | A1 |
20030144584 | Mendelson | Jul 2003 | A1 |
20030220548 | Schmitt | Nov 2003 | A1 |
20030220576 | Diab | Nov 2003 | A1 |
20040010188 | Wasserman | Jan 2004 | A1 |
20040054270 | Pewzner et al. | Mar 2004 | A1 |
20040064020 | Diab et al. | Apr 2004 | A1 |
20040068164 | Diab et al. | Apr 2004 | A1 |
20040087846 | Wasserman | May 2004 | A1 |
20040107065 | Al-Ali | Jun 2004 | A1 |
20040127779 | Steuer et al. | Jul 2004 | A1 |
20040158135 | Baker et al. | Aug 2004 | A1 |
20040171920 | Mannheimer et al. | Sep 2004 | A1 |
20040176670 | Takamura et al. | Sep 2004 | A1 |
20040176671 | Fine et al. | Sep 2004 | A1 |
20040181134 | Baker et al. | Sep 2004 | A1 |
20040204636 | Diab et al. | Oct 2004 | A1 |
20040204638 | Diab et al. | Oct 2004 | A1 |
20040210146 | Diab et al. | Oct 2004 | A1 |
20040230106 | Schmitt et al. | Nov 2004 | A1 |
20040236196 | Diab et al. | Nov 2004 | A1 |
20050080323 | Kato | Apr 2005 | A1 |
20050085735 | Baker, Jr. et al. | Apr 2005 | A1 |
20050101850 | Parker | May 2005 | A1 |
20050113651 | Wood et al. | May 2005 | A1 |
20050113656 | Chance | May 2005 | A1 |
20050143634 | Baker, Jr. et al. | Jun 2005 | A1 |
20050168722 | Forstner et al. | Aug 2005 | A1 |
20050177034 | Beaumont | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050203357 | Debreczeny et al. | Sep 2005 | A1 |
20050209517 | Diab et al. | Sep 2005 | A1 |
20050228248 | Dietiker | Oct 2005 | A1 |
20050267346 | Faber et al. | Dec 2005 | A1 |
20050283059 | Iyer et al. | Dec 2005 | A1 |
20060009688 | Lamego et al. | Jan 2006 | A1 |
20060015021 | Cheng | Jan 2006 | A1 |
20060020181 | Schmitt | Jan 2006 | A1 |
20060030763 | Mannheimer et al. | Feb 2006 | A1 |
20060052680 | Diab | Mar 2006 | A1 |
20060058683 | Chance | Mar 2006 | A1 |
20060064024 | Schnall | Mar 2006 | A1 |
20060195028 | Hannula et al. | Aug 2006 | A1 |
20060217609 | Diab et al. | Sep 2006 | A1 |
20060224058 | Mannheimer | Oct 2006 | A1 |
20060247501 | Ali | Nov 2006 | A1 |
20060258921 | Addison et al. | Nov 2006 | A1 |
20070225581 | Diab et al. | Sep 2007 | A1 |
20070249918 | Diab et al. | Oct 2007 | A1 |
20070291832 | Diab et al. | Dec 2007 | A1 |
20080004514 | Diab et al. | Jan 2008 | A1 |
20080033266 | Diab et al. | Feb 2008 | A1 |
20080045823 | Diab et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
19640807 | Sep 1997 | DE |
0615723 | Sep 1994 | EP |
0630203 | Dec 1994 | EP |
734223 | May 1998 | EP |
1491135 | Dec 2004 | EP |
63275325 | Nov 1988 | JP |
3170866 | Jul 1991 | JP |
4191642 | Jul 1992 | JP |
4332536 | Nov 1992 | JP |
6285048 | Oct 1994 | JP |
7124138 | May 1995 | JP |
7136150 | May 1995 | JP |
7171139 | Jul 1995 | JP |
10216115 | Aug 1998 | JP |
3238813 | Oct 2001 | JP |
2003194714 | Jul 2003 | JP |
2003210438 | Jul 2003 | JP |
2003275192 | Sep 2003 | JP |
2003339678 | Dec 2003 | JP |
2004008572 | Jan 2004 | JP |
2004113353 | Apr 2004 | JP |
2004135854 | May 2004 | JP |
2004194908 | Jul 2004 | JP |
2004202190 | Jul 2004 | JP |
2004248819 | Sep 2004 | JP |
2004290545 | Oct 2004 | JP |
2005034472 | Feb 2005 | JP |
WO9101678 | Feb 1991 | WO |
WO9111137 | Aug 1991 | WO |
WO9216142 | Oct 1992 | WO |
WO9221281 | Dec 1992 | WO |
WO9221281 | Dec 1992 | WO |
WO9309711 | May 1993 | WO |
WO9403102 | Feb 1994 | WO |
WO9423643 | Oct 1994 | WO |
WO9512349 | May 1995 | WO |
WO9516388 | Jun 1995 | WO |
WO9639926 | Dec 1996 | WO |
WO9639927 | Dec 1996 | WO |
WO9749330 | Dec 1997 | WO |
WO9842249 | Oct 1998 | WO |
WO9842251 | Oct 1998 | WO |
WO9843071 | Oct 1998 | WO |
WO9932030 | Jul 1999 | WO |
WO0021438 | Apr 2000 | WO |
WO0140776 | Jun 2001 | WO |
WO0176461 | Oct 2001 | WO |
WO0176471 | Oct 2001 | WO |
WO03039326 | May 2003 | WO |
WO2005009221 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050070773 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09348437 | Jul 1999 | US |
Child | 10080433 | US | |
Parent | 08722443 | Oct 1996 | US |
Child | 09348437 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10080433 | Feb 2002 | US |
Child | 10990686 | US |