In an embodiment of the present invention, the received signal 98 is a broadcast video signal, such as a television signal, high definition televisions signal, enhanced high definition television signal or other broadcast video signal that has been transmitted over a wireless medium, either directly or through one or more satellites or other relay stations or through a cable network, optical network or other transmission network. In addition, received signal 98 can be generated from a stored video file, played back from a recording medium such as a magnetic tape, magnetic disk or optical disk, and can include a streaming video signal that is transmitted over a public or private network such as a local area network, wide area network, metropolitan area network or the Internet.
Video signal 110 can include an analog video signal that is formatted in any of a number of video formats including National Television Systems Committee (NTSC), Phase Alternating Line (PAL) or Sequentiel Couleur Avec Memoire (SECAM). Processed video signal includes 112 a digital video codec standard such as H.264, MPEG-4 Part 10 Advanced Video Coding (AVC) or other digital format such as a Motion Picture Experts Group (MPEG) format (such as MPEG1, MPEG2 or MPEG4), Quicktime format, Real Media format, Windows Media Video (WMV) or Audio Video Interleave (AVI), or another digital video format, either standard or proprietary.
Video display devices 104 can include a television, monitor, computer, handheld device or other video display device that creates an optical image stream either directly or indirectly, such as by projection, based on decoding the processed video signal 112 either as a streaming video signal or by playback of a stored digital video file.
Video encoder 102 includes a motion compensation module 150 that operates in accordance with the present invention and, in particular, includes many optional functions and features described in conjunction with
The video encoder 102 includes a processing module 200 that can be implemented using a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, co-processors, a micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions that are stored in a memory, such as memory module 202. Memory module 202 may be a single memory device or a plurality of memory devices. Such a memory device can include a hard disk drive or other disk drive, read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that when the processing module implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
Processing module 200, and memory module 202 are coupled, via bus 220, to the signal interface 198 and a plurality of other modules, such as motion search module 204, motion refinement module 206, direct mode module 208, intra-prediction module 210, mode decision module 212, reconstruction module 214 and coding module 216. The modules of video encoder 102 can be implemented in software, firmware or hardware, depending on the particular implementation of processing module 200. It should also be noted that the software implementations of the present invention can be stored on a tangible storage medium such as a magnetic or optical disk, read-only memory or random access memory and also be produced as an article of manufacture. While a particular bus architecture is shown, alternative architectures using direct connectivity between one or more modules and/or additional busses can likewise be implemented in accordance with the present invention.
Motion compensation module 150 includes a motion search module 204 that processes pictures from the video input signal 110 based on a segmentation into macroblocks of pixel values, such as of 16 pixels by 16 pixels size, from the columns and rows of a frame and/or field of the video input signal 110. In an embodiment of the present invention, the motion search module determines, for each macroblock or macroblock pair of a field and/or frame of the video signal a motion vector that represents the displacement of the macroblock from a reference frame or reference field of the video signal to a current frame or field. In operation, the motion search module operates within a search range to locate a macroblock in the current frame or field to an integer pixel level accuracy such as to a resolution of 1-pixel. Candidate locations are evaluated based on a cost formulation to determine the location and corresponding motion vector that have a most favorable (such as lowest) cost.
In an embodiment of the present invention, a cost formulation is based on the sum of the Sum of Absolute Difference (SAD) between the reference macroblock and candidate macroblock pixel values and a weighted rate term that represents the number of bits required to be spent on coding the difference between the candidate motion vector and an estimated predicted motion vector that is determined based on motion vectors from neighboring macroblocks of a prior row of the video input signal—and not based on motion vectors from neighboring macroblocks of the row of the current macroblock. Because the cost formulation avoids the use of motion vectors from the current row, the motion search module can operate on an entire row of video input signal 110 in parallel, to contemporaneously determine the motion search motion vector for each macroblock in the row.
A motion refinement module 206 generates a refined motion vector for each macroblock of the plurality of macroblocks, based on the motion search motion vector. In an embodiment of the present invention, the motion refinement module determines, for each macroblock or macroblock pair of a field and/or frame of the video input signal 110 a refined motion vector that represents the displacement of the macroblock from a reference frame or reference field of the video signal to a current frame or field. In operation, the motion refinement module refines the location of the macroblock in the current frame or field to a greater pixel level accuracy such as to a resolution of ¼-pixel. Candidate locations are also evaluated based on a cost formulation to determine the location and refined motion vector that have a most favorable (such as lowest) cost. As in the case with the motion search module, a cost formulation is based on the a sum of the Sum of Absolute Difference (SAD) between the reference macroblock and candidate macroblock pixel values and a weighted rate term that represents the number of bits required to be spent on coding the difference between the candidate motion vector and an estimated predicted motion vector that is calculated based on motion vectors from neighboring macroblocks of a prior row of the video input signal—and not based on motion vectors from neighboring macroblocks of the row of the current macroblock. Because the cost formulation avoids the use of motion vectors from the current row, the motion refinement module can operate on an entire row of video input signal 110 in parallel, to contemporaneously determine the refined motion vector for each macroblock in the row. In this fashion the motion search module 204 and the motion refinement module 206 are pipelined and operate in parallel to process each of the plurality of macroblocks in the row of the video input signal 110.
A direct mode module 208 generates a direct mode motion vector for each macroblock of the plurality of macroblocks, based on a plurality of macroblocks that neighbor the macroblock of pixels. In an embodiment of the present invention, the direct mode module 208 operates in a fashion such as defined by the H.264 standard to determine the direct mode motion vector and the cost associated with the direct mode motion vector.
While the prior modules have focused on inter-prediction of the motion vector, intra-prediction module 210 generates a best intra prediction mode for each macroblock of the plurality of macroblocks. In particular, intra-prediction module 210 operates in a fashion such as defined by the H.264 standard to evaluate a plurality of intra prediction modes to determine the best intra prediction mode and the associated cost.
A mode decision module 212 determines a final motion vector for each macroblock of the plurality of macroblocks based on costs associated with the refined motion vector, the direct mode motion vector, and the best intra prediction mode, and in particular, the method that yields the most favorable (lowest) cost, or otherwise an acceptable cost. A reconstruction module 214 generates residual luma and chroma pixel values corresponding to the final motion vector for each macroblock of the plurality of macroblocks.
A coding module 216 of video encoder 102 generates processed video signal 112 by transforming coding and quantizing the motion vector and residual pixel values into quantized transformed coefficients that can be further coded, such as by entropy coding, to be transmitted and/or stored as the processed video signal 112.
While not expressly shown, video encoder 102 can include a memory cache, a memory management module, a filter module, such as an in-loop deblocking filter, comb filter or other video filter, and/or other module to support the encoding of video input signal 110 into processed video signal 112.
In an embodiment of the present invention, the cost associated with the refined motion vector and the motion search motion vector for a macroblock is calculated based on an estimated predicted motion vector that is based exclusively on neighboring macroblocks from at least one prior row of the video input signal. In the example presented above, the estimated predicted motion vector for MB n of row is calculated based on subblocks D0, B0 and C0 from the row above (without including subblock A0 from the current row). In this fashion, the estimated predicted motion vector for each of the macroblocks in row i can be calculated based exclusively on final motion vectors for subblocks from another row, such as the prior row. As discussed in conjunction with
In a further embodiment of the present invention, the estimated predicted motion vector used to calculate a cost for either a motion search motion vector or a refined motion vector for one of the plurality of subblocks of a macroblock is used for each of the remaining plurality of subblocks. For example, the cost calculation used for each subblock of MB n of row i would be the estimated predicted motion vector that is based on subblocks D0, B0 and C0 from row i-1.
In an embodiment of the present invention, step 402 includes calculating a cost based on an estimated predicted motion vector that is based exclusively on neighboring macroblocks from at least one prior row of the video input signal. The prior row can include the row above the row of the video input signal. Further, step 402 optionally includes evaluating a plurality of partitions of each macroblock of the plurality of macroblocks into a plurality of subblocks and wherein the estimated predicted motion vector used to calculate a cost for one of the plurality of subblocks is used for each of the remaining plurality of subblocks.
In an embodiment of the present invention, step 400 includes calculating a cost based on an estimated predicted motion vector that is based exclusively on neighboring macroblocks from a prior row of the video input signal. The prior row can include the row above the row of the video input signal. Further, step 400 optionally includes evaluating a plurality of partitions of each macroblock of the plurality of macroblocks into a plurality of subblocks and wherein the estimated predicted motion vector used to calculate a cost for one of the plurality of subblocks is used for each of the remaining plurality of subblocks.
In preferred embodiments, the various circuit components are implemented using 0.35 micron or smaller CMOS technology. Provided however that other circuit technologies, both integrated or non-integrated, may be used within the broad scope of the present invention.
As one of ordinary skill in the art will appreciate, the term “substantially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As one of ordinary skill in the art will further appreciate, the term “coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As one of ordinary skill in the art will also appreciate, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two elements in the same manner as “coupled”. As one of ordinary skill in the art will further appreciate, the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
As the term module is used in the description of the various embodiments of the present invention, a module includes a functional block that is implemented in hardware, software, and/or firmware that performs one or module functions such as the processing of an input signal to produce an output signal. As used herein, a module may contain submodules that themselves are modules.
Thus, there has been described herein an apparatus and method, as well as several embodiments including a preferred embodiment, for implementing a video encoder and motion compensation module for use therewith. Various embodiments of the present invention herein-described have features that distinguish the present invention from the prior art.
It will be apparent to those skilled in the art that the disclosed invention may be modified in numerous ways and may assume many embodiments other than the preferred forms specifically set out and described above. Accordingly, it is intended by the appended claims to cover all modifications of the invention which fall within the true spirit and scope of the invention.