Motion-dependent averaging for physiological metric estimating systems and methods

Abstract
Physiological signal processing systems include a photoplethysmograph (PPG) sensor that is configured to generate a physiological waveform, and an inertial sensor that is configured to generate a motion signal. A physiological metric extractor is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor. The physiological metric extractor includes an averager that has an impulse response that is responsive to the strength of the motion signal. Related methods are also described.
Description
BACKGROUND

Various embodiments described herein relate generally to signal processing systems and methods, and more particularly to physiological signal processing systems and methods.


There is a growing market demand for personal health and environmental monitors, for example, for gauging overall health, fitness, metabolism, and vital status during exercise, athletic training, work, public safety activities, dieting, daily life activities, sickness and physical therapy. These personal health and environmental monitors process physiological signals that may be obtained from one or more physiological sensors, and are configured to extract one or more physiological metrics from physiological waveforms. Unfortunately, inaccurate physiological metric extraction can reduce the accuracy of health, fitness and/or vital status monitoring.


SUMMARY

It should be appreciated that this Summary is provided to introduce a selection of concepts in a simplified form, the concepts being further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of this disclosure, nor is it intended to limit the scope of the invention.


Various embodiments described herein can provide physiological signal processing systems that include a photoplethysmograph (PPG) sensor that is configured to generate a physiological waveform, and an inertial sensor that is configured to generate a motion signal. A physiological metric extractor is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor. The physiological metric extractor includes an averager that has an impulse response that is responsive to the motion signal and, in some embodiments, to the strength of the motion signal.


Various embodiments of averagers may be provided according to various embodiments described herein. For example, the averager may operate in the time domain or in the frequency domain. The averager may include a spectral transformer or an averaging filter, such as an averaging window. Moreover, the impulse response may be responsive to the motion signal according to a discrete, continuous, linear and/or nonlinear function that may include hysteresis. The strength of the motion signal may comprise a maximum, sum of squares, maximum of squares, sum of absolute values, maximum of absolute values, root-sum-squares, root-mean-squares and/or decimation of a magnitude of the motion signal over a given time interval. Finally, the inertial sensor may comprise an accelerometer, an optical sensor, a blocked channel sensor, a capacitive sensor and/or a piezo sensor.


Various embodiments of a physiological metric extractor that includes an averager having an impulse response that is responsive to the motion signal will now be described. For example, in some embodiments, the impulse response has a first value in response to the strength of the motion signal exceeding a first threshold and a second value in response to the strength of the motion signal being less than a second threshold. The first value of the impulse response may set a first averaging window size of the averager and the second value of the impulse response may set a second averaging window size of the averager. Thus, the averaging window size of the averager may be a linear and/or nonlinear function of the strength of the motion signal. In other embodiments, the impulse response has a first value in response to the strength of the motion signal exceeding a first threshold but being less than a second threshold, a second value in response to the strength of the motion signal exceeding the second threshold but being less than a third threshold and a third value in response to the strength of the motion signal exceeding the third threshold. Thus, the first value of the impulse response may set a first averaging window size of the averager, the second value of the impulse response may set a second averaging window size of the averager and the third value of the impulse response may set a third averaging window size of the averager. Accordingly, two or more thresholds may be provided.


In other embodiments, the physiological metric extractor further comprises a spectral transformer that is configured to provide a weighted average spectral response over a window of samples that are derived from the physiological waveform that is generated by the PPG sensor. The weights and the number of samples in the window of samples define the impulse response.


In yet other embodiments, wherein a window size of the averager defines impulse response, the physiological metric extractor may further comprise a buffer configured to store a plurality of samples of the physiological waveform that is generated by the PPG sensor therein, ranging from a newest sample to an oldest sample. The buffer is further configured to store sufficient samples to correspond to a largest averaging window size.


The physiological metric may comprise a heart rate, respiration rate, heart rate variability (HRV), pulse pressure, systolic blood pressure, diastolic blood pressure, step rate, oxygen uptake (VO2), maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methemoglobins, percentage of carbonyl hemoglobin and/or glucose level.


Moreover, in some embodiments, a portable housing may be provided, wherein the PPG sensor, the inertial sensor and the physiological metric extractor are all included in the portable housing. A physiological metric assessor also may be provided, within or external to the portable housing, that is responsive to the physiological metric extractor and that is configured to process the physiological metric to generate at-least-one physiological assessment. The at-least-one physiological assessment may include ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max) and/or overall health or fitness.


Other embodiments described herein may provide a physiological processing system for a physiological waveform that is generated by a PPG sensor and a motion signal. These physiological signal processing systems may include a physiological metric extractor that is configured to extract the physiological metric from the physiological waveform that is generated by the PPG sensor. The physiological metric extractor has an averaging window of size that is responsive to the motion signal. In some embodiments, the averaging window size is responsive to the strength of the motion signal, as was described above. In some embodiments, the averaging size may have a first value and a second value or more than two different values, depending on the strength of the motion signal and one or more thresholds. Moreover, the averaging window size may be a linear and/or nonlinear function of the strength of the motion signal. The averager may operate in a time domain or in the frequency domain. A buffer may also be provided, as was described above. Finally, a physiological metric assessor may be provided as was described above.


Various embodiments were described above in connection with physiological signal processing systems. However, analogous physiological signal processing methods may also be provided according to various embodiments described herein. For example, some embodiments described herein can provide a physiological signal processing method comprising setting an impulse response in response to a motion signal, averaging a physiological waveform that is generated by a PPG sensor based on the impulse response that was set, and extracting a physiological metric from the physiological waveform that was averaged. In some embodiments, the setting may comprise setting an impulse response in response to the strength of the motion signal according to any of the embodiments described above. Moreover, the impulse response may have first, second, third, etc. values, depending on the strength of the motion signal relative to one or more thresholds, and these values may set averaging window sizes of the averaging, as was described above. The physiological metric may also be processed to generate at-least-one physiological assessment, as was described above.


Yet other embodiments of physiological signal processing methods may comprise setting an averaging window size in response to a motion signal, averaging a physiological waveform that is generated by a PPG sensor based on the averaging window size that was set, and extracting a physiological metric from the physiological waveform that was averaged. Again, the signal strength may be obtained according to any of the embodiments described herein, and the setting may comprise setting an average window size in response to the strength of the motion signal based on a linear and/or nonlinear function and/or the value of the motion signal relative to one or more thresholds.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a functional block diagram of physiological signal processing systems and methods according to various embodiments described herein.



FIGS. 2-4 are functional block diagrams of physiological metric extractors according to various embodiments described herein.



FIGS. 5-8 graphically illustrate various window sizes of an averager as a function of motion signal strength according to various embodiments described herein.



FIGS. 9-14 illustrate waveform spectra according to various embodiments described herein.





DETAILED DESCRIPTION

The present invention will now be described more fully hereinafter with reference to the accompanying figures, in which various embodiments are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. The sequence of operations (or steps) is not limited to the order presented in the figures and/or claims unless specifically indicated otherwise. Features described with respect to one figure or embodiment can be associated with another embodiment or figure although not specifically described or shown as such.


It will be understood that, when a feature or element is referred to as being “connected”, “attached”, “coupled” or “responsive” to another feature or element, it can be directly connected, attached, coupled or responsive to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached”, “directly coupled” or “directly responsive” to another feature or element, there are no intervening features or elements present.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that although the terms first and second are used herein to describe various features/elements, these features/elements should not be limited by these terms. These terms are only used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well-known functions or constructions may not be described in detail for brevity and/or clarity.


The term “headset” includes any type of device or earpiece that may be attached to or near the ear (or ears) of a user and may have various configurations, without limitation. Headsets as described herein may include mono headsets (one earbud) and stereo headsets (two earbuds), earbuds, hearing aids, ear jewelry, face masks, headbands, and the like.


The term “real-time” is used to describe a process of sensing, processing, or transmitting information in a time frame which is equal to or shorter than the minimum timescale at which the information is needed. For example, the real-time monitoring of pulse rate may result in a single average pulse-rate measurement every minute, averaged over 30 seconds, because an instantaneous pulse rate is often useless to the end user. Typically, averaged physiological and environmental information is more relevant than instantaneous changes. Thus, in the context of embodiments of the present invention, signals may sometimes be processed over several seconds, or even minutes, in order to generate a “real-time” response.


The term “monitoring” refers to the act of measuring, quantifying, qualifying, estimating, sensing, calculating, interpolating, extrapolating, inferring, deducing, or any combination of these actions. More generally, “monitoring” refers to a way of getting information via one or more sensing elements. For example, “blood health monitoring” includes monitoring blood gas levels, blood hydration, and metabolite/electrolyte levels.


The term “physiological” refers to matter or energy of or from the body of a creature (e.g., humans, animals, etc.). In embodiments of the present invention, the term “physiological” is intended to be used broadly, covering both physical and psychological matter and energy of or from the body of a creature. However, in some cases, the term “psychological” is called-out separately to emphasize aspects of physiology that are more closely tied to conscious or subconscious brain activity rather than the activity of other organs, tissues, or cells.


The term “body” refers to the body of a subject (human or animal) who may wear a headset incorporating embodiments of the present invention.


In the included figures, various embodiments will be illustrated and described. However, it is to be understood that embodiments of the present invention are not limited to those worn by humans.


The ear is an ideal location for wearable health and environmental monitors. The ear is a relatively immobile platform that does not obstruct a person's movement or vision. Headsets located at an ear have, for example, access to the inner-ear canal and tympanic membrane (for measuring core body temperature), muscle tissue (for monitoring muscle tension), the pinna and earlobe (for monitoring blood gas levels), the region behind the ear (for measuring skin temperature and galvanic skin response), and the internal carotid artery (for measuring cardiopulmonary functioning), etc. The ear is also at or near the point of exposure to: environmental breathable toxicants of interest (volatile organic compounds, pollution, etc.); noise pollution experienced by the ear; and lighting conditions for the eye. Furthermore, as the ear canal is naturally designed for transmitting acoustical energy, the ear provides a good location for monitoring internal sounds, such as heartbeat, breathing rate, and mouth motion.


Wireless, Bluetooth®-enabled, and/or other personal communication headsets may be configured to incorporate physiological and/or environmental sensors, according to some embodiments of the present invention. As a specific example, Bluetooth® headsets are typically lightweight, unobtrusive devices that have become widely accepted socially. Moreover, Bluetooth® headsets are cost effective, easy to use, and are often worn by users for most of their waking hours while attending or waiting for cell phone calls. Bluetooth® headsets configured according to embodiments of the present invention are advantageous because they provide a function for the user beyond health monitoring, such as personal communication and multimedia applications, thereby encouraging user compliance. Exemplary physiological and environmental sensors that may be incorporated into a Bluetooth® or other type of headsets include, but are not limited to accelerometers, auscultatory sensors, pressure sensors, humidity sensors, color sensors, light intensity sensors, pressure sensors, etc.


Optical coupling into the blood vessels of the ear may vary between individuals. As used herein, the term “coupling” refers to the interaction or communication between excitation light entering a region and the region itself. For example, one form of optical coupling may be the interaction between excitation light generated from within a light-guiding earbud and the blood vessels of the ear. Light guiding earbuds are described in co-pending U.S. Patent Application Publication No. 2010/0217102, which is incorporated herein by reference in its entirety. In one embodiment, this interaction may involve excitation light entering the ear region and scattering from a blood vessel in the ear such that the intensity of scattered light is proportional to blood flow within the blood vessel. Another form of optical coupling may be the interaction between excitation light generated by an optical emitter within an earbud and the light-guiding region of the earbud.


Various embodiments described herein are not limited to headsets that communicate wirelessly. In some embodiments of the present invention, headsets configured to monitor an individual's physiology and/or environment may be wired to a device that stores and/or processes data. In some embodiments, this information may be stored on the headset itself. Furthermore, various embodiments described herein are not limited to earbuds. Some embodiments may be employed around another part of the body, such as a digit, finger, toe, limb, wrist, around the nose or earlobe, or the like. Other embodiments may be integrated into a patch, such as a bandage that sticks on a person's body.


Photoplethysmograph (PPG) sensors are widely used in physiological signal processing systems and methods to generate a physiological waveform. A PPG sensor is a device that measures the relative blood flow using an infrared or other light source that is transmitted through or reflected off tissue, detected by a photodetector and quantified. Less light is absorbed when blood flow is greater, increasing the intensity of light reaching the detector. A PPG sensor can measure blood volume pulse, which is the phasic change in blood volume with each heartbeat. A PPG sensor can also measure heart rate, heart rate variability and/or other physiological metrics. Moreover, many other types of sensors may also be used in physiological signal processing systems described herein.


Unfortunately, these sensors may be highly sensitive to noise. When used with a portable physiological signal processing system/method, these sensors may be particularly susceptible to motion noise. Moreover, a PPG sensor also may be particularly sensitive to “sunlight interference”, which may occur, for example, when a user is running beneath trees.


Averaging measurements may be used to reduce noise. Accordingly, many digital signal processing systems, and in particular physiological signal processing systems, may include an averager, such as an averaging filter or a spectral transform that effectively averages the response over a window of samples. The window function defines an impulse response. For example, when a filter is applied to a sequence of samples (either direct sensor samples or processed sensor samples), this may provide a weighted average of present and past samples, which may be specified as an impulse response. More broadly stated, an impulse response of a dynamic system represents its output when presented with a brief input signal called an “impulse”. The impulse response may be used to fully characterize the operation of a dynamic system on an input signal, so that it may be used to represent a weighted or unweighted average of a variable number of samples, also referred to as a “sampling window size”.


The selection of an impulse response for an averager can present a dilemma for the designer of a physiological signal processing system. In particular, there is a tradeoff between the window size versus the resolution of temporal changes of the measurement. Moreover, there is an inverse relationship between temporal resolution and frequency resolution.


Various embodiments described herein may arise from recognition that a desired or optimum tradeoff may vary with the nature of the noise. Pursuant to this recognition, various embodiments described herein can vary the averaging in time for physiological metric estimation based on conditions that set the noise. Thus, various embodiments described herein can provide a physiological metric extractor for a physiological waveform that is generated by a PPG sensor or other physiological sensor, wherein the physiological metric extractor includes an averager having an impulse response that is responsive to a motion signal that is generated by an inertial sensor. By being responsive to the motion signal, a smaller sampling window may be provided for low strength motion signals (for example, the subject at rest), whereas a larger sample window can be provided for a higher strength motion signal (for example, the subject in motion). Thus, higher resolution and higher noise rejection may be obtained, regardless of the presence of motion or other noise.



FIG. 1 is a functional block diagram of physiological signal processing systems and methods according to various embodiments described herein. Referring now to FIG. 1, these physiological signal processing systems/methods 100 may be used to process a physiological waveform 112 that is produced by a physiological sensor, such as a PPG sensor 110. The PPG sensor 110 generates an electrical physiological waveform. However, other physiological sensors may be provided to generate a physiological waveform that may include an electrical physiological waveform including an electroencephalogram (EEG), an electrocardiogram (ECG) and/or a radio frequency (RF) waveform, an electro-optical physiological waveform, an electro-photoacoustic waveform including a photoacoustic waveform, an electro-mechanical physiological waveform including an auscultation waveform, a piezo sensor waveform and/or an accelerometer waveform, and/or an electro-nuclear physiological waveform. When a PPG sensor 110 is used, the physiological waveform 112 may include both cardiovascular and pulmonary signal components therein.


Still referring to FIG. 1, a physiological metric extractor 130 extracts the physiological metric 132 from the physiological waveform 112. When a PPG sensor is used, the physiological metric 132 may include a heart rate, respiration rate, heart rate variability (HRV), pulse pressure, systolic blood pressure, diastolic blood pressure, step rate, oxygen uptake (VO2), maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methemoglobins, percentage of carbonyl hemoglobin and/or glucose level. The physiological metric extractor 130 may extract the physiological metric 132 using one or more conventional techniques. Moreover, a physiological metric assessor 150 may be provided to extract a metric according to one or many known physiological metric assessment techniques. The physiological assessment may include ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max) and/or overall health or fitness.


Still referring to FIG. 1, the physiological metric extractor 130 may include an averager 120. The averager is configured to obtain an average of the physiological waveform 112. It will be understood that the physiological waveform 112 may be directly averaged, or the physiological waveform 112 may be processed and/or conditioned prior to averaging by the averager 120. The averager 120 may operate in the time domain or in the frequency domain. The operation of the averager 120 defines an impulse response. For example, when the averager 120 provides a weighted average response over a window of samples that are derived from the physiological waveform 112, the weights and the number of samples in the window define the impulse response of the averager.


According to various embodiments described herein, the impulse response of the averager 120 is responsive to a motion signal, and in some embodiments a strength of a motion signal. For example, referring again to FIG. 1, an inertial sensor 140 may be provided to generate a motion signal 142. The inertial sensor 140 may comprise an accelerometer, an optical sensor, a blocked channel sensor, a capacitive sensor and/or a piezo sensor. A blocked channel sensor is described, for example, in U.S. Patent Application Publication No. 2010/0217102 to LeBoeuf et al. entitled Light-Guiding Devices and Monitoring Devices Incorporating Same, the disclosure of which is hereby incorporated herein by reference as if set forth fully herein. The inertial sensor 140 generates a motion signal 142. In some embodiments, the motion signal 142 is applied to a motion signal strength determiner 160 that provides a motion signal strength 162 to the averager 120. The motion signal strength determiner 160 may determine the motion signal strength 162 as a maximum, sum of squares, maximum of squares, sum of absolute values, maximum of absolute values, root-sum-squares, root-mean-squares and/or decimation of a magnitude of the motion signal over a given time interval.


Finally, one or more of the elements illustrated in FIG. 1 may be included in a portable housing 170 along with a power supply, such as a battery and/or capacitor power supply for the components in the housing 170. An example of such a housing is described, for example, in U.S. Patent Application Publication 2010/0217098 to LeBoeuf et al. entitled Form-Fitted Monitoring Apparatus for Health and Environmental Monitoring, the disclosure of which is hereby incorporated herein by reference as if set forth fully herein. However, in other embodiments, one or more of the elements of FIG. 1 may be external to the housing 170. For example, the PPG sensor 110, the inertial sensor 140, the motion signal strength determiner 160 and/or the physiological metric assessor 150 may be external to the housing 170.


It will also be understood that the averager 120 is functionally illustrated in FIG. 1 as being within the functional block of the physiological metric extractor 130. However, the averager 120 may be physically separate from the physiological metric extractor 130, so that the averager 120 operates on the physiological waveform 112 before it enters the physiological metric extractor 130, to provide an average of the physiological waveform 112 over a given time interval, and provides this average to the physiological metric extractor 130. For example, the averager may be included in an output buffer of the PPG sensor or provided as a separate interface between the PPG sensor 110 and the physiological metric extractor 130. Functionally, however, the averager 120 may be regarded as being included in physiological metric extraction, regardless of its physical location.



FIG. 1 also illustrates physiological signal processing systems according to various other embodiments described herein for a physiological waveform 112 that is generated by a PPG sensor 110 and a motion signal 142, wherein these physiological signal processing systems include a physiological metric extractor 130 that is configured to extract a physiological metric 132 from the physiological waveform 112 that is generated by the PPG sensor 110. The physiological metric extractor includes an averager 120 having an averaging window size that is responsive to the motion signal 142. FIG. 1 also illustrates physiological signal processing methods according to various embodiments described herein that comprise setting an impulse response in response to a motion signal 142, averaging a physiological waveform 112 that is generated by a PPG sensor 110 based on the impulse response that was set, and extracting a physiological metric 132 from the physiological waveform that was averaged. FIG. 1 also describes physiological signal processing methods according to various embodiments described herein that comprise setting an averaging window size in response to a motion signal 142, averaging a physiological waveform that is generated by a PPG sensor 110 based on the averaging window size that was set, and extracting a physiological metric 132 from the physiological waveform that was averaged.


The averager 120 may be embodied in many forms, as illustrated in FIGS. 2-4. For example, in FIG. 2, the averager 120 may be embodied by an averaging filter 120′, which provides a weighted average of samples of the physiological waveform 112. In these embodiments, both the weights and the number of samples in a sampling window can define an impulse response, and are responsive to the motion signal 142. In FIG. 3, the averager 120 is embodied by a spectral transformer 120″ that is configured to provide a weighted average spectral response over a window of samples that are derived from the physiological waveform 112 that is generated by the PPG sensor 110, wherein the weights and the number of samples in the window of samples define the impulse response. Finally, in FIG. 4, the physiological metric extractor 130 may further comprise a buffer 410 that is configured to store a plurality of processed or unprocessed samples of the physiological waveform 112 therein, ranging from a newest sample to the oldest sample. The buffer 410 may be configured to store sufficient samples to correspond to a largest desired averaging window size. Many other examples of averagers 120 may also be provided.


As was described in connection with FIG. 1, the averager 120 has an impulse response that is responsive to the motion signal 142 and, in some embodiments, to the motion signal strength 162. The impulse response may a linear, nonlinear, discrete and/or continuous function of the strength of the motion signal. Various examples will now be described wherein it is assumed that the averager 120 operates in the time domain, and wherein a window size of a moving average of the averager 120 defines the impulse response. Thus, in the embodiments that will now be described, the window size of the moving average of the averager 120 is a linear, nonlinear, discrete and/or continuous function of the strength of the motion signal 162. It will be understood, however, that the averager 120 may operate in the frequency domain, and that the impulse response of the averager 120 may be defined by a window size and a weight that is applied to each of the samples and/or using other techniques.


For example, FIG. 5 graphically illustrates a window size of the averager 120 relative to motion signal strength 162. As shown in FIG. 5, a first averaging window size is provided in response to the motion signal strength 162 exceeding a first threshold TH1 and a second value of the window size of the averager 120 is provided in response to the strength of the motion signal 162 being less than a second threshold TH2. It will be understood that the first and second thresholds may be the same in some embodiments. In other embodiments, different thresholds may be used, as shown in FIG. 5, to provide hysteresis and reduce the likelihood of rapid switching of window size when the motion signal value is in the vicinity of the thresholds. In one example, a six second sampling interval (averaging window size) may be provided when the motion signal strength is below a given threshold and a ten second sampling interval (averaging window size) may be provided when the motion signal strength is above a given threshold. These examples will be illustrated below with actual data. Accordingly, FIG. 5 illustrates various embodiments wherein the impulse response has a first value in response to the strength of the motion signal exceeding a first threshold, and a second value in response to the strength of the motion signal being less than a second threshold.


Thus, a simple form of various embodiments described herein uses a motion flag, where motion is declared when the accelerometer strength is greater than a predetermined threshold, and where rest is otherwise declared. The motion flag then determines which of two predetermined window sizes are used for a spectral transform. A more complex form can map the accelerometer strength to multiple window sizes and/or further characteristics, as will be described in connection with FIGS. 6-8 below.


More than two thresholds may be used, as illustrated in FIG. 6. For example, FIG. 6 illustrates that the impulse response has a first value that sets a first averaging window size of the averager in response to the strength of the motion signal exceeding the first threshold TH1, but being less than the second threshold TH2, a second value that sets a second averaging window size of the averager in response to the strength of the motion signal exceeding the second threshold TH2, but being less than a third threshold TH3, and a third value that sets a third averaging window size of the averager in response to the strengths of the motion signal exceeding the third threshold TH3. In one specific example, the averaging window size may be four, seven or ten seconds long in response to the three different threshold ranges that are defined. It will be understood that more than three thresholds may be used, and that hysteresis may also be used.



FIG. 7 illustrates other embodiments wherein the averaging window size of the averager is a linear function of a strength of the motion signal. Specifically, in FIG. 7, the averaging window size increases linearly with the strength of the motion signal. FIG. 8 illustrates other embodiments wherein the averaging window size of the averager is a nonlinear function, such as a parabolic function, of the strength of the motion signal. Thus, in FIG. 8, the window size increases parabolically with the strength of the motion signal. Various other linear and/or nonlinear functions may be employed and the various functions of FIGS. 5-8 may also be combined in various combinations and subcombinations.


It will be understood that in any of the embodiments described herein, it may be desirable to avoid discontinuities when changing averaging window sizes. Accordingly, it may be desirable to use a delay line or a buffer corresponding to the largest anticipated window size, and allow the smaller window to encompass the newest samples in the delay line. Discontinuity may thereby be reduced or minimized. Hysteresis, as was described in FIG. 5, may also reduce discontinuity.



FIGS. 9-14 are oscillographs of spectra of a physiological metric 132 (here, heart rate in beats per minute (BPM)) over time, based on a physiological waveform 112 from a PPG sensor 110 that is processed by a physiological metric extractor 130 including a spectral transformer 120″ having a sampling window in the time domain of six seconds or ten seconds. Specifically, FIG. 9 illustrates a subject at rest, so that the motion signal strength 162 is low, and a six second spectral transform window is applied. FIG. 10 illustrates a subject at rest with a ten second spectral transform window. Comparing FIGS. 9 and 10, it can be seen that a six second window resolves the physiological waveform more clearly than the ten second window. Compare, for example, the physiological waveform at about 60 seconds, which is clearly resolvable in FIG. 9, but not clearly resolvable in FIG. 10. Accordingly, for a subject at rest (low motion signal strength 162), a smaller averaging window provides greater agility in tracking the dynamic heart rate with a six second spectral transform window.


Now compare FIGS. 11 and 12, which both illustrate a subject in motion (motion signal strength 162 high). FIG. 11 uses a six second spectral transform window, whereas FIG. 12 uses a ten second spectral transform window. Comparing FIGS. 11 and 12, the physiological waveform 112 is more resolvable using the larger sampling window of FIG. 12 than the smaller sampling window of FIG. 11. Compare the sharp or crisp signal in FIG. 12 to the fuzzy signal of FIG. 11, and the greater amount of noise of FIG. 11 compared to FIG. 12. Thus, for example, when running, a sharper signal is obtained and less noise is obtained when using a larger sampling window of FIG. 12 compared to the smaller sampling window of FIG. 11.


Finally, FIGS. 13 and 14 compare a subject in motion with “sunlight interference”. Sunlight interference refers to interference in an optical signal, such as a PPG signal, when a user is running beneath trees on a sunny day. A six second spectral transform window is used in FIG. 13 and a ten second spectral transform window is used in FIG. 14. As with FIGS. 11 and 12, the larger spectral transform window of FIG. 14 provides a more resolvable signal in the presence of motion and in the presence of sunlight interference, compared to FIG. 13. Compare the sharper signal in FIG. 14 with the fuzzy signal in FIG. 13, and the lower amount of background noise in FIG. 14 with the higher amount of background noise in FIG. 13. Thus, FIG. 14 illustrates an unexpected potential benefit of various embodiments described herein, which may provide reduced sunlight interference sensitivity as well. Accordingly, a runner running indoors may obtain a more accurate physiological metric using various embodiments described herein, and a runner running outdoors subject to sunlight interference may obtain an added benefit when using various embodiments described herein.


Various embodiments have been described herein primarily with respect to physiological signal processing systems. However, FIGS. 1-8 also illustrate analogous physical signal processing methods according to various embodiments described herein.


Various embodiments have been described herein with reference to block diagrams of methods, apparatus (systems and/or devices) and/or computer program products. It is understood that a block of the block diagrams, and combinations of blocks in the block diagrams, can be implemented by computer program instructions that are performed by one or more computer circuits. These computer program instructions may be provided to a processor circuit of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams, and thereby create means (functionality), structure and/or methods for implementing the functions/acts specified in the block diagrams.


These computer program instructions may also be stored in a computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instructions which implement the functions/acts specified in the block diagrams and/or flowchart block or blocks.


A tangible, non-transitory computer-readable medium may include an electronic, magnetic, optical, electromagnetic, or semiconductor data storage system, apparatus, or device. More specific examples of the computer-readable medium would include the following: a portable computer diskette, a random access memory (RAM) circuit, a read-only memory (ROM) circuit, an erasable programmable read-only memory (EPROM or Flash memory) circuit, a portable compact disc read-only memory (CD-ROM), and a portable digital video disc read-only memory (DVD/Blu-ray™).


The computer program instructions may also be loaded onto a computer and/or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer and/or other programmable apparatus to produce a computer-implemented process or method such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the block diagrams.


Accordingly, the invention may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor such as a digital signal processor, which may collectively be referred to as “circuitry,” “a module” or variants thereof.


It should also be noted that in some alternate implementations, the functions/acts noted in the blocks may occur out of the order noted in the blocks. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Moreover, the functionality of a given block of the block diagrams may be separated into multiple blocks and/or the functionality of two or more blocks of the block diagrams may be at least partially integrated. Finally, other blocks may be added/inserted between the blocks that are illustrated.


Many different embodiments have been disclosed herein, in connection with the above description and the drawings. It will be understood that it would be unduly repetitious and obfuscating to literally describe and illustrate every combination and subcombination of these embodiments. Accordingly, the present specification, including the drawings, shall be construed to constitute a complete written description of all combinations and subcombinations of the embodiments described herein, and of the manner and process of making and using them, and shall support claims to any such combination or subcombination.


In the drawings and specification, there have been disclosed embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims
  • 1. A physiological signal processing system comprising: a photoplethysmograph (PPG) sensor that is configured to generate a physiological waveform;an inertial sensor that is configured to generate a motion signal; andphysiological metric extractor circuitry that is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor,wherein the physiological metric extractor circuitry is further configured to extract the physiological metric using an averager having an impulse response defined by an averaging window size,wherein the averaging window size is defined in a time domain and is responsive to a strength of the motion signal, and wherein the averaging window size is increased or decreased with increases or decreases in the strength of the motion signal, respectively.
  • 2. A physiological signal processing system according to claim 1: wherein the strength of the motion signal comprises a maximum, sum of squares, maximum of squares, sum of absolute values, maximum of absolute values, root-sum-squares, root-mean-squares and/or decimation of a magnitude of the motion signal over a given time interval; orwherein the impulse response has a first value in response to the strength of the motion signal exceeding a first threshold and a second value in response to the strength of the motion signal being less than a second threshold, and wherein the first value of the impulse response sets a first averaging window size of the averager and the second value of the impulse response sets a second averaging window size of the averager; orwherein the averaging window size of the averager is a mathematical function of the strength of the motion signal.
  • 3. A physiological signal processing system according to claim 1, wherein the impulse response has a first value in response to the strength of the motion signal exceeding a first threshold but being less than a second threshold, a second value in response to the strength of the motion signal exceeding the second threshold but being less than a third threshold and a third value in response to the strength of the motion signal exceeding the third threshold, wherein the first value of the impulse response sets a first averaging window size of the averager, the second value of the impulse response sets a second averaging window size of the averager and the third value of the impulse response sets a third averaging window size of the averager.
  • 4. A physiological signal processing system for a motion signal and a physiological waveform that is generated by a photoplethysmograph (PPG) sensor, the physiological signal processing system comprising: physiological metric extractor circuitry that is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor,wherein the physiological metric extractor circuitry is further configured to extract the physiological metric using an averager having an averaging window size that is defined in a time domain and is responsive to a strength of the motion signal, and wherein the averaging window size is increased or decreased with increases or decreases in the strength of the motion signal, respectively.
  • 5. A physiological signal processing system according to claim 4: wherein the strength of the motion signal comprises a maximum, sum of squares, maximum of squares, sum of absolute values, maximum of absolute values, root-sum-squares, root-mean-squares and/or decimation of a magnitude of the motion signal over a given time interval; orwherein the averaging window size has a first value in response to the strength of the motion signal exceeding a first threshold and a second value in response to the strength of the motion signal being less than a second threshold; orwherein the averaging window size is a mathematical function of the strength of the motion signal.
  • 6. A physiological signal processing method comprising: setting an impulse response defined by an averaging window size, wherein the averaging window size is defined in a time domain and is set in response to a strength of a motion signal;averaging a physiological waveform that is generated by a photoplethysmograph (PPG) sensor based on the impulse response that was set; andextracting a physiological metric from the physiological waveform that was averaged,wherein the averaging window size is increased or decreased with increases or decreases in the strength of the motion signal, respectively.
  • 7. A physiological signal processing method according to claim 6: wherein the strength of the motion signal comprises a maximum, sum of squares, maximum of squares, sum of absolute values, maximum of absolute values, root-sum-squares, root-mean-squares and/or decimation of a magnitude of the motion signal over a given time interval; orwherein the impulse response has a first value in response to the strength of the motion signal exceeding a first threshold and a second value in response to the strength of the motion signal being less than a second threshold, and wherein the first value of the impulse response sets a first averaging window size of the averaging and the second value of the impulse response sets a second averaging window size of the averaging.
  • 8. A physiological signal processing method according to claim 6: wherein the physiological metric comprises a heart rate, respiration rate, heart rate variability (HRV), pulse pressure, systolic blood pressure, diastolic blood pressure, step rate, oxygen uptake (VO2), maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methemoglobins, percentage of carbonyl hemoglobin and/or glucose level.
  • 9. A physiological signal processing method according to claim 6 further comprising: processing the physiological metric to generate at-least-one physiological assessment,wherein the at-least-one physiological assessment includes ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max) and/or overall health or fitness.
  • 10. The physiological signal processing method according to claim 6, wherein the averaging window size has a first time duration in response to the strength of the motion signal exceeding a first threshold, and a second time duration, different than the first time duration, in response to the strength of the motion signal being less than a second threshold.
  • 11. A physiological signal processing method comprising: setting an averaging window size, wherein the averaging window size is defined in a time domain and is set in response to a strength of a motion signal;averaging a physiological waveform that is generated by a photoplethysmograph (PPG) sensor based on the averaging window size that was set; andextracting a physiological metric from the physiological waveform that was averaged,wherein the averaging window size has a first time duration in response to the strength of the motion signal exceeding a first threshold, and a second time duration, different than the first time duration, in response to the strength of the motion signal being less than a second threshold.
  • 12. A physiological signal processing method according to claim 11: wherein the strength of the motion signal comprises a maximum, sum of squares, maximum of squares, sum of absolute values, maximum of absolute values, root-sum-squares, root-mean-squares and/or decimation of a magnitude of the motion signal over a given time interval; orwherein the averaging window size is a mathematical function of the strength of the motion signal.
  • 13. A physiological signal processing method according to claim 11 wherein the physiological metric comprises a heart rate, respiration rate, heart rate variability (HRV), pulse pressure, systolic blood pressure, diastolic blood pressure, step rate, oxygen uptake (VO2), maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methemoglobins, percentage of carbonyl hemoglobin and/or glucose level.
  • 14. A physiological signal processing method according to claim 11 further comprising: processing the physiological metric to generate at-least-one physiological assessment,wherein the at-least-one physiological assessment includes ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max) and/or overall health or fitness.
  • 15. A physiological signal processing method according to claim 11, wherein the second threshold is different than the first threshold.
  • 16. A physiological signal processing system comprising: a photoplethysmograph (PPG) sensor that is configured to generate a physiological waveform;an inertial sensor that is configured to generate a motion signal; andphysiological metric extractor circuitry that is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor,wherein the physiological metric extractor circuitry is further configured to extract the physiological metric using an averager having an impulse response defined by an averaging window size,wherein the averaging window size is defined in a time domain and is responsive to a strength of the motion signal, andwherein the averaging window size has a first time duration in response to the strength of the motion signal exceeding a first threshold, and a second time duration, different than the first time duration, in response to the strength of the motion signal being less than a second threshold.
  • 17. A physiological signal processing system according to claim 16, wherein the physiological metric extractor circuitry further comprises a spectral transformer that is configured to provide a weighted average spectral response over a window of samples that are derived from the physiological waveform that is generated by the PPG sensor, wherein weights and a number of samples in the window of samples define the impulse response.
  • 18. A physiological signal processing system according to claim 16, wherein the physiological metric extractor circuitry further comprises a buffer configured to store a plurality of samples of the physiological waveform that is generated by the PPG sensor therein, ranging from a newest sample to an oldest sample, and wherein the buffer is further configured to store sufficient samples to correspond to a largest value of the averaging window size.
  • 19. A physiological signal processing system according to claim 16: wherein the inertial sensor comprises an accelerometer, an optical sensor, a blocked channel sensor, a capacitive sensor and/or a piezo sensor; orwherein the physiological metric comprises a heart rate, respiration rate, heart rate variability (HRV), pulse pressure, systolic blood pressure, diastolic blood pressure, step rate, oxygen uptake (VO2), maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methemoglobins, percentage of carbonyl hemoglobin and/or glucose level; orfurther comprising a portable housing, wherein the PPG sensor, the inertial sensor and the physiological metric extractor circuitry are all included in the portable housing.
  • 20. A physiological signal processing system according to claim 16, further comprising: physiological metric assessor circuitry that is responsive to the physiological metric extractor circuitry and that is configured to process the physiological metric to generate at-least-one physiological assessment,wherein the at-least-one physiological assessment includes ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max) and/or overall health or fitness.
  • 21. A physiological signal processing system according to claim 16, wherein the averaging window size is increased or decreased with increases or decreases in the strength of the motion signal, respectively.
  • 22. A physiological signal processing system according to claim 16, wherein the second threshold is different than the first threshold.
  • 23. A physiological signal processing system for a motion signal and a physiological waveform that is generated by a photoplethysmograph (PPG) sensor, the physiological signal processing system comprising: physiological metric extractor circuitry that is configured to extract a physiological metric from the physiological waveform that is generated by the PPG sensor,wherein the physiological metric extractor circuitry is further configured to extract the physiological metric using an averager having an averaging window size that is defined in a time domain and is responsive to a strength of the motion signal, andwherein the averaging window size has a first time duration in response to the strength of the motion signal exceeding a first threshold and a second time duration, different than the first time duration, in response to the strength of the motion signal being less than a second threshold.
  • 24. A physiological signal processing system according to claim 23: wherein the physiological metric extractor circuitry further comprises a buffer configured to store a plurality of samples of the physiological waveform that is generated by the PPG sensor therein, ranging from a newest sample to an oldest sample, and wherein the buffer is further configured to store sufficient samples to correspond to a largest value of the averaging window size; orwherein the physiological metric comprises a heart rate, respiration rate, heart rate variability (HRV), pulse pressure, systolic blood pressure, diastolic blood pressure, step rate, oxygen uptake (VO2), maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methemoglobins, percentage of carbonyl hemoglobin and/or glucose level.
  • 25. A physiological signal processing system according to claim 23, further comprising: physiological metric assessor circuitry that is responsive to the physiological metric extractor circuitry and that is configured to process the physiological metric to generate at-least-one physiological assessment,wherein the at-least-one physiological assessment includes ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max) and/or overall health or fitness.
  • 26. A physiological signal processing system according to claim 23, wherein the second threshold is different than the first threshold.
CLAIM OF PRIORITY

This application claims priority from U.S. Provisional Patent Application No. 62/359,962 entitled “MOTION-DEPENDENT AVERAGING FOR PHYSIOLOGICAL METRIC ESTIMATING SYSTEMS AND METHODS” filed Jul. 8, 2016, in the United States Patent and Trademark Office, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (556)
Number Name Date Kind
3595219 Friedlander et al. Jul 1971 A
4240882 Ang et al. Dec 1980 A
4281645 Jobsis Aug 1981 A
4331154 Broadwater et al. May 1982 A
4371406 Li Feb 1983 A
4438772 Slavin Mar 1984 A
4491760 Linvill Jan 1985 A
4521499 Switzer Jun 1985 A
4541905 Kuwana et al. Sep 1985 A
4586513 Hamaguri May 1986 A
4592807 Switzer Jun 1986 A
4655225 Dahne et al. Apr 1987 A
4830014 Goodman et al. May 1989 A
4882492 Schlager Nov 1989 A
4896676 Sasaki Jan 1990 A
4928704 Hardt May 1990 A
4952890 Swanson Aug 1990 A
4952928 Carroll et al. Aug 1990 A
4957109 Groeger et al. Sep 1990 A
5002060 Nedivi Mar 1991 A
5022970 Cook et al. Jun 1991 A
5025791 Niwa Jun 1991 A
5079421 Knudson et al. Jan 1992 A
5080098 Willett et al. Jan 1992 A
5086229 Rosenthal et al. Feb 1992 A
5139025 Lewis et al. Aug 1992 A
5143078 Mather et al. Sep 1992 A
5226417 Swedlow et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5299570 Hatschek Apr 1994 A
5348002 Caro Sep 1994 A
5377100 Pope et al. Dec 1994 A
5386819 Kaneko et al. Feb 1995 A
5431170 Mathews Jul 1995 A
5448082 Kim Sep 1995 A
5482036 Diab et al. Jan 1996 A
5492129 Greenberger Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5499301 Sudo et al. Mar 1996 A
5581648 Sahagen Dec 1996 A
5596987 Chance Jan 1997 A
5662117 Bittman Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5697374 Odagiri et al. Dec 1997 A
5711308 Singer Jan 1998 A
5725480 Oosta et al. Mar 1998 A
5743260 Chung et al. Apr 1998 A
5779631 Chance Jul 1998 A
5797841 Delonzor et al. Aug 1998 A
5807114 Hodges et al. Sep 1998 A
5807267 Bryars et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5820560 Sinderby et al. Oct 1998 A
5846190 Woehrle Dec 1998 A
5853005 Scanlon Dec 1998 A
5904654 Wohltmann et al. May 1999 A
5938593 Ouellette Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5964701 Asada et al. Oct 1999 A
5971931 Raff Oct 1999 A
5974338 Asano et al. Oct 1999 A
5995858 Kinast Nov 1999 A
6004274 Nolan et al. Dec 1999 A
6006119 Soller et al. Dec 1999 A
6013007 Root et al. Jan 2000 A
6022748 Charych et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6030342 Amano et al. Feb 2000 A
6045511 Ott et al. Apr 2000 A
6067006 O'Brien May 2000 A
6070093 Oosta et al. May 2000 A
6078829 Uchida et al. Jun 2000 A
6080110 Thorgersen Jun 2000 A
6081742 Amano et al. Jun 2000 A
6122042 Wunderman et al. Sep 2000 A
6148229 Morris, Sr. et al. Nov 2000 A
6155983 Kosuda et al. Dec 2000 A
6168567 Pickering et al. Jan 2001 B1
6186145 Brown Feb 2001 B1
6198394 Jacobsen et al. Mar 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6205354 Gellermann et al. Mar 2001 B1
6231519 Blants et al. May 2001 B1
6267721 Welles Jul 2001 B1
6283915 Aceti et al. Sep 2001 B1
6285816 Anderson et al. Sep 2001 B1
6289230 Chaiken et al. Sep 2001 B1
6298314 Blackadar et al. Oct 2001 B1
6332868 Sato et al. Dec 2001 B1
6358216 Kraus et al. Mar 2002 B1
6361660 Goldstein Mar 2002 B1
6371925 Imai et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6415167 Blank et al. Jul 2002 B1
6443890 Schulze et al. Sep 2002 B1
6444474 Thomas et al. Sep 2002 B1
6454718 Clift Sep 2002 B1
6458080 Brown et al. Oct 2002 B1
6470893 Boesen Oct 2002 B1
6513532 Mault et al. Feb 2003 B2
6514278 Hibst et al. Feb 2003 B1
6527711 Stivoric et al. Mar 2003 B1
6527712 Brown et al. Mar 2003 B1
6529754 Kondo Mar 2003 B2
6534012 Hazen et al. Mar 2003 B1
6556852 Schulze et al. Apr 2003 B1
6569094 Suzuki et al. May 2003 B2
6571117 Marbach May 2003 B1
6605038 Teller et al. Aug 2003 B1
6608562 Kimura et al. Aug 2003 B1
6616613 Goodman Sep 2003 B1
6631196 Taenzer et al. Oct 2003 B1
6647378 Kindo Nov 2003 B2
6656116 Kim et al. Dec 2003 B2
6694180 Boesen Feb 2004 B1
6702752 Dekker Mar 2004 B2
6725072 Steuer et al. Apr 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748254 O'Neil et al. Jun 2004 B2
6760610 Tschupp et al. Jul 2004 B2
6783501 Takahashi et al. Aug 2004 B2
6808473 Hisano et al. Oct 2004 B2
6859658 Krug Feb 2005 B1
6893396 Schulze et al. May 2005 B2
6941239 Unuma et al. Sep 2005 B2
6953435 Kondo et al. Oct 2005 B2
6954644 Johansson et al. Oct 2005 B2
6996427 Ali et al. Feb 2006 B2
6997879 Turcott Feb 2006 B1
7018338 Vetter et al. Mar 2006 B2
7024369 Brown et al. Apr 2006 B1
7030359 Romhild Apr 2006 B2
7034694 Yamaguchi et al. Apr 2006 B2
7039454 Kaga et al. May 2006 B1
7041062 Friedrichs et al. May 2006 B2
7043287 Khalil et al. May 2006 B1
7048687 Reuss et al. May 2006 B1
7054674 Cane et al. May 2006 B2
7088234 Naito et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7117032 Childre et al. Oct 2006 B2
7144375 Kosuda Dec 2006 B2
7163512 Childre et al. Jan 2007 B1
7175601 Verjus et al. Feb 2007 B2
7190986 Hannula et al. Mar 2007 B1
7209775 Bae et al. Apr 2007 B2
7217224 Thomas May 2007 B2
7252639 Kimura et al. Aug 2007 B2
7263396 Chen et al. Aug 2007 B2
7289837 Mannheimer et al. Oct 2007 B2
7336982 Yoo Feb 2008 B2
7341559 Schulz et al. Mar 2008 B2
7376451 Mahony et al. May 2008 B2
7378954 Wendt May 2008 B2
7470234 Elhag et al. Dec 2008 B1
7483730 Diab et al. Jan 2009 B2
7486988 Goodall et al. Feb 2009 B2
7507207 Sakai et al. Mar 2009 B2
7519327 White Apr 2009 B2
7526327 Blondeau et al. Apr 2009 B2
7583994 Scholz Sep 2009 B2
7620450 Kim et al. Nov 2009 B2
7625285 Breving Dec 2009 B2
7652569 Kiff et al. Jan 2010 B2
7689437 Teller et al. Mar 2010 B1
7695440 Kondo et al. Apr 2010 B2
7725147 Li et al. May 2010 B2
7756559 Abreu Jul 2010 B2
7843325 Otto Nov 2010 B2
7894869 Hoarau Feb 2011 B2
7914468 Shalon et al. Mar 2011 B2
7991448 Edgar, Jr. et al. Aug 2011 B2
7998079 Nagai et al. Aug 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
8055319 Oh et al. Nov 2011 B2
8055330 Egozi Nov 2011 B2
8059924 Letant et al. Nov 2011 B1
8130105 Al-Ali et al. Mar 2012 B2
8137270 Keenan et al. Mar 2012 B2
8157730 Leboeuf et al. Apr 2012 B2
8172459 Abreu May 2012 B2
8175670 Baker, Jr. et al. May 2012 B2
8204730 Liu et al. Jun 2012 B2
8204786 Leboeuf et al. Jun 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8251903 Leboeuf et al. Aug 2012 B2
8255027 Al-Ali et al. Aug 2012 B2
8255029 Addison et al. Aug 2012 B2
8303512 Kosuda et al. Nov 2012 B2
8320982 Leboeuf et al. Nov 2012 B2
8323982 Leboeuf et al. Dec 2012 B2
8328420 Abreu Dec 2012 B2
8416959 Lott et al. Apr 2013 B2
8491492 Shinar et al. Jul 2013 B2
8504679 Spire et al. Aug 2013 B2
8506524 Graskov et al. Aug 2013 B2
8512242 Leboeuf et al. Aug 2013 B2
8647270 Leboeuf et al. Feb 2014 B2
8652040 Leboeuf et al. Feb 2014 B2
8652409 Leboeuf et al. Feb 2014 B2
8679008 Hughes et al. Mar 2014 B2
8700111 Leboeuf et al. Apr 2014 B2
8702607 Leboeuf et al. Apr 2014 B2
8730048 Shen et al. May 2014 B2
8788002 Leboeuf et al. Jul 2014 B2
8886269 Leboeuf et al. Nov 2014 B2
8888701 Leboeuf et al. Nov 2014 B2
8923941 Leboeuf et al. Dec 2014 B2
8929965 Leboeuf et al. Jan 2015 B2
8929966 Leboeuf et al. Jan 2015 B2
8934952 Leboeuf et al. Jan 2015 B2
8942776 Leboeuf et al. Jan 2015 B2
8961415 Leboeuf et al. Feb 2015 B2
8996332 Kahn Mar 2015 B2
9005129 Venkatraman et al. Apr 2015 B2
9044180 Leboeuf et al. Jun 2015 B2
9289175 Leboeuf et al. Mar 2016 B2
9801552 Romesburg Oct 2017 B2
9808204 Leboeuf et al. Nov 2017 B2
9943266 Adams Apr 2018 B2
20010015123 Nishitani et al. Aug 2001 A1
20010044588 Mault Nov 2001 A1
20010049471 Suzuki et al. Dec 2001 A1
20020035340 Fraden et al. Mar 2002 A1
20020143242 Nemirovski Oct 2002 A1
20020156386 Dardik et al. Oct 2002 A1
20020156654 Roe et al. Oct 2002 A1
20020173780 Altshuler et al. Nov 2002 A1
20020186137 Skardon Dec 2002 A1
20020188210 Aizawa Dec 2002 A1
20020194002 Petrushin Dec 2002 A1
20030002705 Boesen Jan 2003 A1
20030007631 Bolognesi et al. Jan 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030050563 Suribhotla et al. Mar 2003 A1
20030064712 Gaston et al. Apr 2003 A1
20030065257 Mault et al. Apr 2003 A1
20030065269 Vetter et al. Apr 2003 A1
20030083583 Kovtun et al. May 2003 A1
20030109030 Uchida et al. Jun 2003 A1
20030109791 Kondo et al. Jun 2003 A1
20030130586 Starobin et al. Jul 2003 A1
20030181795 Suzuki et al. Sep 2003 A1
20030181798 Al-Ali Sep 2003 A1
20030181817 Mori Sep 2003 A1
20030212336 Lee et al. Nov 2003 A1
20030220584 Honeyager et al. Nov 2003 A1
20030222268 Yocom et al. Dec 2003 A1
20030233051 Verjus et al. Dec 2003 A1
20040004547 Appelt et al. Jan 2004 A1
20040022700 Kim et al. Feb 2004 A1
20040030581 Leven Feb 2004 A1
20040034289 Teller et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039254 Stivoric et al. Feb 2004 A1
20040073455 McConnochie et al. Apr 2004 A1
20040075677 Loyall et al. Apr 2004 A1
20040077934 Massad Apr 2004 A1
20040081621 Arndt et al. Apr 2004 A1
20040082842 Lumba et al. Apr 2004 A1
20040097796 Berman et al. May 2004 A1
20040103146 Park May 2004 A1
20040117204 Mazar et al. Jun 2004 A1
20040120844 Tribelsky et al. Jun 2004 A1
20040122294 Hatlestad et al. Jun 2004 A1
20040122702 Sabol et al. Jun 2004 A1
20040133123 Leonhardt et al. Jul 2004 A1
20040135571 Uutela et al. Jul 2004 A1
20040138578 Pineda et al. Jul 2004 A1
20040158167 Smith et al. Aug 2004 A1
20040186387 Kosuda et al. Sep 2004 A1
20040186390 Ross et al. Sep 2004 A1
20040219056 Tribelsky et al. Nov 2004 A1
20040220488 Vyshedskiy et al. Nov 2004 A1
20040228494 Smith Nov 2004 A1
20040242976 Abreu Dec 2004 A1
20040254501 Mault Dec 2004 A1
20050004458 Kanayama et al. Jan 2005 A1
20050007582 Villers et al. Jan 2005 A1
20050021519 Ghouri Jan 2005 A1
20050027216 Guillemaud et al. Feb 2005 A1
20050030540 Thornton Feb 2005 A1
20050033200 Soehren et al. Feb 2005 A1
20050036212 Saito Feb 2005 A1
20050038349 Choi et al. Feb 2005 A1
20050043630 Buchert Feb 2005 A1
20050059870 Aceti Mar 2005 A1
20050070809 Acres Mar 2005 A1
20050084666 Pong et al. Apr 2005 A1
20050100866 Arnone et al. May 2005 A1
20050101845 Nihtila May 2005 A1
20050101872 Sattler et al. May 2005 A1
20050113167 Buchner et al. May 2005 A1
20050113656 Chance May 2005 A1
20050113703 Farringdon et al. May 2005 A1
20050116820 Goldreich Jun 2005 A1
20050119833 Nanikashvili Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050154264 Lecompte et al. Jul 2005 A1
20050177034 Beaumont Aug 2005 A1
20050187448 Petersen et al. Aug 2005 A1
20050187453 Petersen et al. Aug 2005 A1
20050192515 Givens et al. Sep 2005 A1
20050196009 Boesen Sep 2005 A1
20050203349 Nanikashvili Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050209516 Fraden Sep 2005 A1
20050212405 Negley Sep 2005 A1
20050222487 Miller, III et al. Oct 2005 A1
20050222903 Buchheit et al. Oct 2005 A1
20050228244 Banet Oct 2005 A1
20050228299 Banet Oct 2005 A1
20050228463 Mac et al. Oct 2005 A1
20050240087 Keenan et al. Oct 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050258816 Zen et al. Nov 2005 A1
20050259811 Kimm et al. Nov 2005 A1
20060009685 Finarov et al. Jan 2006 A1
20060012567 Sicklinger Jan 2006 A1
20060063993 Yu et al. Mar 2006 A1
20060074333 Huiku Apr 2006 A1
20060084878 Banet et al. Apr 2006 A1
20060084879 Nazarian et al. Apr 2006 A1
20060122520 Banet et al. Jun 2006 A1
20060123885 Yates et al. Jun 2006 A1
20060140425 Berg et al. Jun 2006 A1
20060142665 Garay et al. Jun 2006 A1
20060202816 Crump et al. Sep 2006 A1
20060205083 Zhao Sep 2006 A1
20060210058 Kock et al. Sep 2006 A1
20060211922 Al-Ali et al. Sep 2006 A1
20060211924 Dalke et al. Sep 2006 A1
20060217598 Miyajima et al. Sep 2006 A1
20060224059 Swedlow et al. Oct 2006 A1
20060240558 Zhao Oct 2006 A1
20060246342 MacPhee Nov 2006 A1
20060251277 Cho Nov 2006 A1
20060251334 Oba et al. Nov 2006 A1
20060252999 Devaul et al. Nov 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060287590 McEowen Dec 2006 A1
20060292533 Selod Dec 2006 A1
20060293921 McCarthy et al. Dec 2006 A1
20070004449 Sham Jan 2007 A1
20070004969 Kong et al. Jan 2007 A1
20070015992 Filkins et al. Jan 2007 A1
20070021206 Sunnen Jan 2007 A1
20070027367 Oliver et al. Feb 2007 A1
20070027399 Chou Feb 2007 A1
20070036383 Romero Feb 2007 A1
20070050215 Kil et al. Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070060819 Altshuler et al. Mar 2007 A1
20070063850 Devaul et al. Mar 2007 A1
20070082789 Nissila et al. Apr 2007 A1
20070083092 Rippo et al. Apr 2007 A1
20070083095 Rippo et al. Apr 2007 A1
20070088221 Stahmann Apr 2007 A1
20070093702 Yu et al. Apr 2007 A1
20070106167 Kinast May 2007 A1
20070112273 Rogers May 2007 A1
20070112598 Heckerman et al. May 2007 A1
20070116314 Grilliot et al. May 2007 A1
20070118043 Oliver et al. May 2007 A1
20070118054 Pinhas et al. May 2007 A1
20070135717 Uenishi et al. Jun 2007 A1
20070165872 Bridger et al. Jul 2007 A1
20070167850 Russell et al. Jul 2007 A1
20070191718 Nakamura Aug 2007 A1
20070197878 Shklarski Aug 2007 A1
20070197881 Wolf et al. Aug 2007 A1
20070213020 Novac Sep 2007 A1
20070230714 Armstrong Oct 2007 A1
20070233403 Alwan et al. Oct 2007 A1
20070265097 Havukainen Nov 2007 A1
20070270667 Coppi et al. Nov 2007 A1
20070270671 Gal Nov 2007 A1
20070293781 Sims et al. Dec 2007 A1
20070299330 Couronne et al. Dec 2007 A1
20080001735 Tran Jan 2008 A1
20080004536 Baxi et al. Jan 2008 A1
20080015424 Bernreuter Jan 2008 A1
20080039731 McCombie et al. Feb 2008 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080081963 Naghavi et al. Apr 2008 A1
20080081972 Debreczeny Apr 2008 A1
20080086533 Neuhauser et al. Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080114220 Banet et al. May 2008 A1
20080132798 Hong et al. Jun 2008 A1
20080133699 Craw et al. Jun 2008 A1
20080141301 Azzaro et al. Jun 2008 A1
20080154098 Morris et al. Jun 2008 A1
20080154105 Lemay Jun 2008 A1
20080165017 Schwartz Jul 2008 A1
20080170600 Sattler et al. Jul 2008 A1
20080171945 Dotter Jul 2008 A1
20080177162 Bae et al. Jul 2008 A1
20080200774 Luo Aug 2008 A1
20080203144 Kim Aug 2008 A1
20080221414 Baker, Jr. Sep 2008 A1
20080221461 Zhou et al. Sep 2008 A1
20080249594 Dietrich et al. Oct 2008 A1
20080287752 Stroetz et al. Nov 2008 A1
20080312517 Genoe et al. Dec 2008 A1
20090005662 Petersen et al. Jan 2009 A1
20090006457 Stivoric et al. Jan 2009 A1
20090010461 Klinghult et al. Jan 2009 A1
20090010556 Uchibayashi et al. Jan 2009 A1
20090030350 Yang et al. Jan 2009 A1
20090054751 Babashan et al. Feb 2009 A1
20090054752 Jonnalagadda et al. Feb 2009 A1
20090069645 Nielsen et al. Mar 2009 A1
20090082994 Schuler et al. Mar 2009 A1
20090088611 Buschmann Apr 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090105548 Bart Apr 2009 A1
20090105556 Fricke et al. Apr 2009 A1
20090112101 Furness, III et al. Apr 2009 A1
20090131761 Moroney, III et al. May 2009 A1
20090131764 Lee et al. May 2009 A1
20090175456 Johnson Jul 2009 A1
20090177097 Ma et al. Jul 2009 A1
20090214060 Chuang et al. Aug 2009 A1
20090221888 Wijesiriwardana Sep 2009 A1
20090227853 Wijesiriwardana Sep 2009 A1
20090240125 Such et al. Sep 2009 A1
20090253992 Van Der Loo Oct 2009 A1
20090253996 Lee et al. Oct 2009 A1
20090264711 Schuler et al. Oct 2009 A1
20090270698 Shioi et al. Oct 2009 A1
20090281435 Ahmed et al. Nov 2009 A1
20090287067 Dorogusker et al. Nov 2009 A1
20090299215 Zhang Dec 2009 A1
20100004517 Bryenton et al. Jan 2010 A1
20100022861 Cinbis et al. Jan 2010 A1
20100045663 Chen et al. Feb 2010 A1
20100100013 Hu et al. Apr 2010 A1
20100113948 Yang et al. May 2010 A1
20100168531 Shaltis et al. Jul 2010 A1
20100172522 Mooring et al. Jul 2010 A1
20100179389 Moroney, III et al. Jul 2010 A1
20100185105 Baldinger Jul 2010 A1
20100217100 Leboeuf et al. Aug 2010 A1
20100217102 Leboeuf et al. Aug 2010 A1
20100217103 Abdul-Hafiz et al. Aug 2010 A1
20100222655 Starr et al. Sep 2010 A1
20100228315 Nielsen Sep 2010 A1
20100234714 Mercier et al. Sep 2010 A1
20100268056 Picard et al. Oct 2010 A1
20100274100 Behar et al. Oct 2010 A1
20100274109 Hu et al. Oct 2010 A1
20100292589 Goodman Nov 2010 A1
20100298653 McCombie et al. Nov 2010 A1
20110028810 Van Slyke et al. Feb 2011 A1
20110028813 Watson et al. Feb 2011 A1
20110066007 Banet Mar 2011 A1
20110081037 Oh et al. Apr 2011 A1
20110098112 Leboeuf et al. Apr 2011 A1
20110105869 Wilson et al. May 2011 A1
20110112382 Li et al. May 2011 A1
20110130638 Raridan Jun 2011 A1
20110142371 King et al. Jun 2011 A1
20110178564 Keefe Jul 2011 A1
20110288379 Wu Nov 2011 A1
20120030547 Raptis et al. Feb 2012 A1
20120095303 He Apr 2012 A1
20120150052 Buchheim et al. Jun 2012 A1
20120156933 Kreger et al. Jun 2012 A1
20120172702 Koyrakh Jul 2012 A1
20120179011 Moon et al. Jul 2012 A1
20120190948 Vetter Jul 2012 A1
20120203081 Leboeuf et al. Aug 2012 A1
20120226111 Leboeuf et al. Sep 2012 A1
20120226112 Leboeuf et al. Sep 2012 A1
20120277548 Burton Nov 2012 A1
20120296184 Leboeuf et al. Nov 2012 A1
20130053661 Alberth et al. Feb 2013 A1
20130072765 Kahn et al. Mar 2013 A1
20130197377 Kishi et al. Aug 2013 A1
20130245387 Patel Sep 2013 A1
20130336495 Burgett et al. Dec 2013 A1
20140012105 Leboeuf et al. Jan 2014 A1
20140051940 Messerschmidt Feb 2014 A1
20140051948 Leboeuf et al. Feb 2014 A1
20140052567 Bhardwaj et al. Feb 2014 A1
20140058220 Leboeuf et al. Feb 2014 A1
20140073486 Ahmed et al. Mar 2014 A1
20140088433 Shan Mar 2014 A1
20140094663 Leboeuf et al. Apr 2014 A1
20140100432 Golda et al. Apr 2014 A1
20140114147 Romesburg Apr 2014 A1
20140127996 Park et al. May 2014 A1
20140128690 Leboeuf May 2014 A1
20140135596 Leboeuf et al. May 2014 A1
20140140567 Leboeuf et al. May 2014 A1
20140171755 LeBoeuf Jun 2014 A1
20140213863 Loseu et al. Jul 2014 A1
20140219467 Kurtz Aug 2014 A1
20140228649 Rayner et al. Aug 2014 A1
20140235967 Leboeuf et al. Aug 2014 A1
20140235968 Leboeuf et al. Aug 2014 A1
20140236531 Carter Aug 2014 A1
20140243617 Leboeuf et al. Aug 2014 A1
20140243620 Leboeuf et al. Aug 2014 A1
20140275852 Hong et al. Sep 2014 A1
20140275854 Venkatraman et al. Sep 2014 A1
20140275855 Leboeuf et al. Sep 2014 A1
20140276119 Venkatraman et al. Sep 2014 A1
20140287833 Leboeuf et al. Sep 2014 A1
20140288392 Hong et al. Sep 2014 A1
20140288396 Leboeuf et al. Sep 2014 A1
20140288436 Venkatraman et al. Sep 2014 A1
20140323829 Leboeuf et al. Oct 2014 A1
20140323830 Leboeuf et al. Oct 2014 A1
20140323880 Ahmed et al. Oct 2014 A1
20140327515 Luna Nov 2014 A1
20140378844 Fei Dec 2014 A1
20150011898 Romesburg Jan 2015 A1
20150018636 Romesburg Jan 2015 A1
20150025393 Hong et al. Jan 2015 A1
20150031967 Leboeuf et al. Jan 2015 A1
20150032009 Leboeuf et al. Jan 2015 A1
20150057967 Albinali Feb 2015 A1
20150080741 Leboeuf et al. Mar 2015 A1
20150080746 Bleich et al. Mar 2015 A1
20150157269 Lisogurski Jun 2015 A1
20150190085 Nathan et al. Jul 2015 A1
20150196256 Venkatraman et al. Jul 2015 A1
20150250396 Ahmed et al. Sep 2015 A1
20150265217 Penders et al. Sep 2015 A1
20150282768 Luna et al. Oct 2015 A1
20150289820 Miller et al. Oct 2015 A1
20150305682 Leboeuf et al. Oct 2015 A1
20150342481 Liu et al. Dec 2015 A1
20150366509 Romesburg Dec 2015 A1
20160022220 Lee et al. Jan 2016 A1
20160029964 Leboeuf et al. Feb 2016 A1
20160038045 Shapiro Feb 2016 A1
20160051157 Waydo Feb 2016 A1
20160089033 Saponas et al. Mar 2016 A1
20160089086 Lin Mar 2016 A1
20160094899 Aumer et al. Mar 2016 A1
20160120476 Liu May 2016 A1
20160206247 Morland et al. Jul 2016 A1
20160287108 Wei et al. Oct 2016 A1
20160361021 Salehizadeh et al. Dec 2016 A1
20170007166 Roovers et al. Jan 2017 A1
20170034615 Mankodi et al. Feb 2017 A1
20170112447 Aumer et al. Apr 2017 A1
20170232294 Kruger Aug 2017 A1
20170290549 Romesburg Oct 2017 A1
20180020979 Wagner et al. Jan 2018 A1
20180049645 Romesburg Feb 2018 A1
20180146926 Ishikawa May 2018 A1
Foreign Referenced Citations (54)
Number Date Country
2015101130 Oct 2015 AU
101212927 Jul 2008 CN
201438747 Apr 2010 CN
3910749 Oct 1990 DE
1297784 Apr 2003 EP
1480278 Nov 2004 EP
1908401 Apr 2008 EP
2077091 Jul 2009 EP
2182839 May 2010 EP
2667769 Dec 2013 EP
2408209 May 2005 GB
2411719 Sep 2005 GB
07241279 Sep 1995 JP
09253062 Sep 1997 JP
09299342 Nov 1997 JP
2000-116611 Apr 2000 JP
2001-025462 Jan 2001 JP
2003-159221 Jun 2003 JP
2004-513750 May 2004 JP
2004-283523 Oct 2004 JP
2005-040261 Feb 2005 JP
2005-270544 Oct 2005 JP
2007-044203 Feb 2007 JP
2007-185348 Jul 2007 JP
2008-136556 Jun 2008 JP
2008-279061 Nov 2008 JP
2009-153664 Jul 2009 JP
2010-526646 Aug 2010 JP
2014-068733 Apr 2014 JP
20-0204510 Nov 2000 KR
0024064 Apr 2000 WO
0047108 Aug 2000 WO
0108552 Feb 2001 WO
0217782 Mar 2002 WO
2005010568 Feb 2005 WO
2005020121 Mar 2005 WO
2005036212 Apr 2005 WO
2005110238 Nov 2005 WO
2006009830 Jan 2006 WO
2006067690 Jun 2006 WO
2007012931 Feb 2007 WO
2007053146 May 2007 WO
2008141306 Nov 2008 WO
2011127063 Oct 2011 WO
2013019494 Feb 2013 WO
2013038296 Mar 2013 WO
2013109389 Jul 2013 WO
2013109390 Jul 2013 WO
2014092932 Jun 2014 WO
2014196119 Dec 2014 WO
2015068066 May 2015 WO
2015128226 Sep 2015 WO
2015131065 Sep 2015 WO
2017027551 Feb 2017 WO
Non-Patent Literature Citations (46)
Entry
Fukushima et al. “Estimating Heart Rate using Wrist-type Photoplethysmography and Acceleration sensor while running” 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2901-2904) (Sep. 2012).
Asada et al. “Mobile Monitoring with Wearable Photoplethysmographic Biosensors” IEEE Engineering in Medicine and Biology Magazine (pp. 28-40) (May/Jun. 2003).
Bifulco et al. “Bluetooth Portable Device for Continuous ECG and Patient Motion Monitoring During Daily Life” Medicon 2007 IFMBE Proceedings 16:369-372 (2007).
Brodersen et al. “In-Ear Acquisition of Vital Signs Discloses New Chances for Preventive Continuous Cardiovascular Monitoring” 4th International Workshop on Wearable and Implantable Body Sensor Networks 13:189-194 (2007).
Celka et al. “Motion Resistant Earphone Located Infrared based Heart Rate Measurement Device” Proceedings of the Second IASTED International Conference on Biomedical Engineering (pp. 582-585) (Feb. 16-18, 2004).
Comtois “Implementation of Accelerometer-Based Adaptive Noise Cancellation in a Wireless Wearable Pulse Oximeter Platform for Remote Physiological Monitoring and Triage” Thesis, Worcester Polytechnic Institute (149 pages) (Aug. 31, 2007).
Comtois et al. “A Wearable Wireless Reflectance Pulse Oximeter for Remote Triage Applications” IEEE (pp. 53-54) (2006).
Comtois et al. “A Comparative Evaluation of Adaptive Noise Cancellation Algorithms for Minimizing Motion Artifacts in a Forehead-Mounted Wearable Pulse Oximeter” Proceedings of the 29th Annual International Conference of the IEEE EMBS (pp. 1528-1531) (Aug. 23-26, 2007).
Duun et al. “A Novel Ring Shaped Photodiode for Reflectance Pulse Oximetry in Wireless Applications” IEEE Sensors 2007 Conference (pp. 596-599) (2007).
FiTrainer “The Only Trainer You Need” http://itami.com © 2008 FiTrainer™ (2 pages) (Downloaded Feb. 26, 2010).
Fleming et al. “A Comparison of Signal Processing Techniques for the Extraction of Breathing Rate from the Photoplethysmorgram” World Academy of Science, Engineering and Technology 30:276-280 (Oct. 2007).
Geun et al. “Measurement Site and Applied Pressure Consideration in Wrist Photoplethysmography” The 23rd International Technical Conference on Circuits/Systems, Computers and Communications (pp. 1129-1132) (2008).
Gibbs et al. “Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers” Proc. of SPIE Smart Structures and Materials, 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 5765:811-819 (2005).
Gibbs et al. “Reducing Motion Artifact in Wearable Bio-Sensors Using MEMS Accelerometers for Active Noise Cancellation” 2005 American Control Conference 1581-1586 (Jun. 8-10, 2005).
Haahr et al. “A Wearable “Electronic Patch” for Wireless Continuous Monitoring of Chronically Diseased Patients” Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, in conjunction with the 5th International Summer School and Symposium on Medical Devices and Biosensors (pp. 66-70) (Jun. 1-3, 2008).
Han et al. “Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method” Computers in Biology and Medicine 42:387-393 (Apr. 2012).
Han et al. “Development of a wearable health monitoring device with motion artifact reduced algorithm” International Conference on Control, Automation and Systems 2007 (ICCAS 2007) (pp. 1581-1584) (Oct. 17-20, 2007).
Jiang “Motion-Artifact Resistant Design of Photoplethysmograph Ring Sensor for Driver Monitoring” Thesis, Massachusetts Institute of Technology (62 pages) (Feb. 2004).
Kuzmina et al. “Compact multi-functional skin spectrometry set-up” Advanced Optical Materials, Technologies, and Devices, Proc. of SPIE 6596:65960T-1-65960T-6 (2007).
Lee et al. “A Mobile Care System With Alert Mechanism” IEEE Transactions on Information Technology in Biomedicine 11(5):507-517 (Sep. 2007).
Lee et al. “Respiratory Rate Detection Algorithms by Photoplethysmography Signal Processing” 30th Annual International IEEE EMBS Conference (pp. 1140-1143) (Aug. 20-24, 2008).
Lindberg et al. “Monitoring of respiratory and heart rates using a fibre-optic sensor” Med Biol Eng Comput 30(5):533-537 (Sep. 1992).
Luprano “Sensors and Parameter Extraction by Wearable Systems: Present Situation and Future” pHealth 2008 (29 pages) (May 21, 2008).
Lygouras et al. “Optical-Fiber Finger Photo-Plethysmograph Using Digital Techniques” IEEE Sensors Journal 2(1):20-25 (Feb. 2002).
Maguire et al. “The Design and Clinical Use of a Reflective Brachial Photoplethysmograph” Signals and Systems Research Group, National University of Ireland (13 pages) (Apr. 2002).
Mendelson et al. “Measurement Site and Photodetector Size Considerations in Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter” Proceedings of the 25th Annual International Conference of the IEEE EMBS (pp. 3016-3019) (Sep. 17-21, 2003).
Mendelson et al. “Noninvasive Pulse Oximetry Utilizing Skin Reflectance Photoplethysmography” IEEE Transactions on Biomedical Engineering 35(10):798-805 (Oct. 1988).
Nakajima et al. “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique” Med. Eng. Phys. 18(5):365-372 (Jul. 1996).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in corresponding PCT Application No. PCT/US2017/041006 (15 pages) (dated Sep. 6, 2017).
Poh et al. “Motion Tolerant Magnetic Earring Sensor and Wireless Earpiece for Wearable Photoplethysmography” IEEE Transactions on Information Technology in Biomedicine 14(3):786-794 (May 2010).
Renevey et al. “Wrist-Located Pulse Detection Using IR Signals, Activity and Nonlinear Artifact Cancellation” IEEE EMBS (4 pages) (2001).
Rhee et al. “Artifact-Resistant Power-Efficient Design of Finger-Ring Plethysmographic Sensors” IEEE Transactions on Biomedical Engineering 48(7):795-805 (Jul. 2001).
Shaltis “Analysis and Validation of an Artifact Resistant Design for Oxygen Saturation Measurement Using Photo Plethysmographic Ring Sensors” Thesis, Massachusetts Institute of Technology (103 pages) (Jun. 2004).
Shaw et al. “Warfighter Physiological and Environmental Monitoring: A Study for the U.S. Army Research Institute in Environmental Medicine and the Soldier Systems Center” Massachusetts Institute of Technology Lincoln Laboratory (141 pages) (Nov. 1, 2004).
Shin et al. “A Novel Headset with a Transmissive PPG Sensor for Heart Rate Measurement” 13th International Conference on Biomedical Engineering (pp. 519-522) (2009).
Spigulis et al. “Wearable wireless photoplethysmography sensors” Proc. of SPIE 6991:69912O-1-69912O-7 (2008).
Takatani et al. “Optical Oximetry Sensors for Whole Blood and Tissue” IEEE Engineering in Medicine and Biology (pp. 347-357) (Jun./Jul. 1994).
Vogel et al. “A System for Assessing Motion Artifacts in the Signal of a Micro-Optic In-Ear Vital Signs Sensor” 30th Annual International IEEE EMBS Conference (Aug. 20-24, 2008).
Vogel et al. “In-Ear Heart Rate Monitoring Using a Micro-Optic Reflective Sensor” Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale (pp. 1375-1378) (Aug. 23-26, 2007).
Wang et al. “Multichannel Reflective PPG Earpiece Sensor With Passive Motion Cancellation” IEEE Transactions on Biomedical Circuits and Systems 1(4):235-241 (Dec. 2007).
Wang et al. “Reflective Photoplethysmograph Earpiece Sensor for Ubiquitous Heart Rate Monitoring” 4th International Workshop on Wearable and Implantable Body Sensor Networks IFMBE Proceedings 13:179-183 (2007).
Webster, John G. “Design of Pulse Oximeters” Medical Science Series, Institute of Physics Publication (143 pages) (Aug. 1997).
Wei et al. “A New Wristband Wearable Sensor Using Adaptive Reduction Filter to Reduce Motion Artifact” Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, in conjunction with The 2nd International Symposium & Summer School on Biomedical and Health Engineering (pp. 278-281) (May 30-31, 2008).
Wikipedia “Least mean squares filter” Retrieved at URL: https://en.wikipedia.org/wiki/Least_mean_squares_filter (6 pages) (Retrieved on Mar. 17, 2016).
Wood “Motion Artifact Reduction for Wearable Photoplethysmogram Sensors Using Micro Accelerometers and Laguerre Series Adaptive Filters” Thesis, Massachusetts Institute of Technology (74 pages) (Jun. 2008).
Wood et al. “Active Motion Artifact Reduction for Wearable Sensors Using Laguerre Expansion and Signal Separation” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 3571-3574) (Sep. 1-4, 2005).
Related Publications (1)
Number Date Country
20180008200 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
62359962 Jul 2016 US