The present invention relates generally to medical devices and, more specifically, to implants.
Implants may be used in human and/or animals to support and/or secure one or more bones. For example, implants may be used in the spine to support and/or replace damaged tissue between the vertebrae in the spine. Once implanted between two vertebrae, the implant may provide support between the two vertebrae and bone growth may take place around and through the implant to at least partially fuse the two vertebrae for long-term support. Implants may include relatively large rims with solid material that may cover, for example, 50% of the area that interacts with the endplate. The rim may provide a contact area between the implant and the vertebral endplates. Large rims may have several drawbacks. For example, large rims may impede bone growth and reduce the size of the bone column fusing the superior and inferior vertebral bodies.
Spinal implants may include open channels through the center of the supporting rims in a superior/inferior direction. The open channel design may require members of the implant that separate the rims that interact with the vertebral endplates to absorb the compressive forces between the vertebral endplates. This may increase the pressure on smaller areas of the vertebral endplates and may potentially lead to stress risers in the vertebral endplates. Further, while bone graft material is often used in conjunction with implants to encourage bone growth, the open column design of implants may reduce the likelihood of bone graft material from securing itself to the implant that is not conducive to promoting good fusion.
Bone graft material may be packed into the implant in a high-pressure state to prevent bone graft material from exiting the implant while being placed between the vertebral endplates. The high-pressure state may also reduce the potential for the bone graft material loosening due to motion between the implant and the vertebral endplates or compressive forces experienced during settling of the implant. In addition, a high-pressure environment may allow the bone graft material to re-model and fuse at greater strength. High-pressure states, however, may be difficult to create and maintain for the bone graft material in an implant.
Various embodiments of implant systems and related apparatus, and methods of operating the same are described herein. In various embodiments, an implant for interfacing with a bone structure includes a web structure, including a space truss, configured to interface with human bone tissue including cells, matrix, mechanical forces, and ionic milieu. The space truss includes two or more planar truss units having a plurality of struts joined at nodes.
In an embodiment, an implant for interfacing with a bone structure, includes: a web structure that includes a plurality of struts joined at nodes, wherein the web structure is configured to interface with human bone tissue. The implant may include one or more of the struts are composed of an elastic material. In another embodiment, one or more struts may be formed from a viscoelastic material. The one or more elastic or viscoelastic struts may be placed in positions that allow the implant to flex during use. In some embodiments, all struts of the implant are composed of an elastic or viscoelastic material. A material that may be used to form at least some or all of the struts of an implant includes nickel-titanium alloys (e.g., nitinol).
In an embodiment, the first portion of struts that comprise the space truss may have: a deformation strength; a defined length; a diameter; a differential diameter along its length; a density; a porosity; or any combination of these physical properties; that is different from the second portion of the struts that comprise the space truss. In an embodiment, the space truss includes one or more central struts extending from the first bone contact surface to the second bone contact surface, wherein the central struts have a deformation strength that is greater than or less than the surrounding struts. In an embodiment, the space truss comprises one or more longitudinal struts extending parallel to the first bone contact surface and/or the second bone contact surface, wherein the longitudinal struts have a deformation strength that is greater than or less than the surrounding struts. The diameter of the first portion of the struts may be greater than a diameter of the second portion of the struts. The material used to form the first portion of struts may be different from the material used to form the second portion of struts.
Advantages of the present invention will become apparent to those skilled in the art with the benefit of the following detailed description of embodiments and upon reference to the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
As used herein a “truss structure” is a structure having one or more elongate struts connected at joints referred to as nodes. Trusses may include variants of a pratt truss, king post truss, queen post truss, town's lattice truss, planar truss, space truss, and/or a vierendeel truss (other trusses may also be used). A “truss unit” is a structure having a perimeter defined by three or more elongate struts.”
As used herein a “planar truss” is a truss structure where all of the struts and nodes lie substantially within a single two-dimensional plane. A planar truss, for example, may include one or more “truss units” where each of the struts is a substantially straight member such that the entirety of the struts and the nodes of the one or more truss units lie in substantially the same plane. A truss unit where each of the struts is a substantially straight strut and the entirety of the struts and the nodes of the truss unit lie in substantially the same plane is referred to as a “planar truss unit.”
As used herein a “space truss” is a truss having struts and nodes that are not substantially confined in a single two-dimensional plane. A space truss may include two or more planar trusses (e.g., planar truss units) wherein at least one of the two or more planar trusses lies in a plane that is not substantially parallel to a plane of at least one or more of the other two or more planar trusses. A space truss, for example, may include two planar truss units adjacent to one another (e.g., sharing a common strut) wherein each of the planar truss units lie in separate planes that are angled with respect to one another (e.g., not parallel to one another).
As used herein a “triangular truss” is a structure having one or more triangular units that are formed by three straight struts connected at joints referred to as nodes. For example, a triangular truss may include three straight elongate strut members that are coupled to one another at three nodes to from a triangular shaped truss. As used herein a “planar triangular truss” is a triangular truss structure where all of the struts and nodes lie substantially within a single two-dimensional plane. Each triangular unit may be referred to as a “triangular truss unit.” A triangular truss unit where each of the struts is a substantially straight member such that the entirety of the struts and the nodes of the triangular truss units lie in substantially the same plane is referred to as a “planar triangular truss unit.” As used herein a “triangular space truss” is a space truss including one or more triangular truss units.
In various embodiments, the trusses 102 of the web structure may include one or more planar truss units (e.g., planar triangular truss units) constructed with straight or curved/arched members (e.g., struts) connected at various nodes. In some embodiments, the trusses 102 may be micro-trusses. A “micro-truss” is a truss having dimensions sufficiently small enough such that a plurality of micro-trusses can be assembled or other wise coupled to one another to form a web structure having a small enough overall dimension (e.g., height, length and width) such that substantially all of the web structure can be inserted into an implant location (e.g., between two vertebra). Such a web structure and its micro-trusses can thus be employed to receive and distribute throughout the web structure loading forces of the surrounding tissue (e.g., vertebra, bone, or the like). In one embodiment, the diameters of the struts forming the micro-truss may be between about 0.25 millimeters (mm) and 5 mm in diameter (e.g., a diameter of about 0.25 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm). In one embodiment, a micro-truss may have an overall length or width of less than about 3 mm.
As depicted, for example, in
In one embodiment, web structure of the implant 100 may include an internal web structure that is at least partially enclosed by an external truss structure. For example, in one embodiment, web structure 101 may include an internal web structure that includes a space truss having at least a portion of the space truss surrounded by an external truss structure that includes one or more planar trusses formed with a plurality of planar truss units that lie substantially in a single plane.
In one embodiment, external truss structure 105 includes a plurality of planar trusses that are coupled about an exterior, interior or other portion of the implant. For example, in the illustrated embodiment, the external truss structure 105 includes a series of planar trusses 107a,b that are coupled to one another. Planar truss 107a is denoted by a dashed line [- - - - -], planar truss 107b is denoted by dotted-dashed line [- • - • -]. Each planar truss is formed from a plurality of planar truss units (e.g., triangular planar truss units. As depicted, planar truss 107a includes four triangular planar truss units 108a,b,c,d having a common vertex 110 and arranged to form a generally rectangular structure that lies in a single common plane. In other words, the four triangular planar truss units are arranged to form a substantially rectangular structure having “X” shaped struts extend from one corner of the rectangular structure to the opposite corner of the rectangular structure. As depicted, the substantially rectangular structure may include a trapezoidal shape. As described in more detail below, the trapezoidal shape may be conducive to providing an implant including lordosis. Lordosis may include an angled orientation of surfaces (e.g., top and bottom) of an implant that provides for differences in thickness in anterior and posterior regions of the implant such that the implant is conducive for supporting the curvature of a vertebral column.
In one embodiment, the planar trusses that form the external truss are coupled to one another, and are aligned along at least one axis. For example, in
In one embodiment, the external truss portion may encompass the sides, top, and/or bottom of the implant. For example, in one embodiment, the external truss portion may include a top region, side regions, and/or a bottom region.
In some embodiments, implant 100 may be formed from a biocompatible material such as a titanium alloy (e.g., γTitanium Aluminides), cobalt, chromium, stainless steel, Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), ceramics, cements, etc. Other materials are also contemplated. In some embodiments, implant 100 may be made through a rapid prototyping process (e.g., electron beam melting (EBM) process) as further described below. Other processes are also possible (e.g., injection molding, casting, sintering, selective laser sintering (SLS), Direct Metal Laser Sintering (DMLS), etc). SLS may include laser-sintering of high-performance polymers such as that provided by EOS of North America, Inc., headquartered in Novi, Michigan, U.S.A. High-performance polymers may include various forms of PEEK (e.g., HP3 having a tensile strength of up to about 95 mega Pascal (MPa) and a Young's modulus of up to about 4400 MPa and continuous operating temperature between about 180° C. (356° F.) and 260° C. (500° F.)). Other materials may include PA 12 and PA 11 provided by EOS of North America, Inc.
As described above, in some embodiments the web structure may be formed from a plurality of triangular planar truss units. In some embodiments, the planar truss units may be coupled to each other to define polyhedrons that define the internal web structure. Examples of polyhedron structures that may be created by joining planar truss units include, but are not limited to, tetrahedrons, pentahedrons, hexahedrons, heptahedrons, pyramids, octahedrons, dodecahedrons, icosahedrons, and spherical fullerenes. In some embodiments, such as those described above, the space truss of the web structure may connect multiple midpoints of tetrahedron building blocks and include a regular pattern of tetrahedron blocks arranged adjacent one another. In some embodiments, the web structure may not include a pattern of geometrical building blocks. For example,
As seen in
As shown in
As depicted in
In some embodiments, the implant may not include lordosis. For example,
In some embodiments, the web structure of an implant may distribute forces throughout the implant when implanted. For example, the connecting struts of the web structure may extend throughout the core of an implant, and the interconnectivity of struts may disperse the stress of compressive forces throughout implant to reduce the potential of stress risers (the distribution of forces throughout the implant may prevent concentration of stress on one or more portions of the vertebrae that may otherwise result in damage to the vertebrae).
In some embodiments, the web structure might be used as a lens to focus forces and strain specifically as a regional accelerant or retardant to bone growth. In this consideration, micromechanical alignment of force transduction would be used for alignment of scoliotic intervertebral articulations, for physeal shaping in varus and valgus misalignments, and in other anticipated redirectional applications.
In some embodiments, the web structure of an implant (e.g., the external and internal struts of the implant) may also provide surface area for bone graft fusion. For example, the web structure extending throughout an implant may add additional surface areas (e.g., on the surface of the struts making up the implant) to fuse to the bone graft material and prevent bone graft material from loosening or migrating from the implant. In some embodiments, the web structure may also support bone in-growth. For example, when implanted, adjacent bone (e.g., adjacent vertebrae if the implant is used as a spinal implant) may grow over at least a portion of struts of the implant. The bone growth and engagement between the bone growth and the implant may further stabilize the implant. In some embodiments, the surfaces of the implant may be formed with a rough surface to assist in bone in-growth adhesion.
In some embodiments, struts may have a diameter approximately in a range of about 0.025 to 5 millimeters (mm) (e.g., 1.0 mm, 1.5 mm, 3 mm, etc). Other diameters are also contemplated (e.g., greater than 5 mm). In some embodiments, the struts may have a length approximately in a range of 0.5 to 20 mm (e.g., depending on the implant size needed to, for example, fit a gap between vertebral endplates). As another example, struts may have a length approximately in a range of 30-40 mm for a hip implant. In some embodiments, the reduced strut size of the web structure may allow the open cells in implant 100 to facilitate bone growth (e.g., bone may grow through the open cells once implant 100 is implanted in the body). Average subsidence for implants may be approximately 1.5 mm within the first 3 weeks post op (other subsidence is also possible (e.g., approximately between 0.5 to 2.5 mm)). A strut size that approximately matches the subsidence (e.g., a strut size of approximately 1.5 mm in diameter and a subsidence of approximately 1.5 mm) may result in a net 0 bone growth (e.g., the bone growth growing around the struts) after the implant has settled in the implanted position. The net 0 bone growth throughout the entire surface area of the implant/vertebrae endplate interface may result in a larger fusion column of bone that may result in more stable fusion. Other fusion column sizes are also contemplated. The configuration of the implant may redistribute the metal throughout the implant. In some embodiments, a rim may not be included on the implant (in some embodiments, a rim may be included). The resulting bone growth (e.g., spinal column) may grow through the implant.
In some embodiments, greater than 50% of the interior volume of implant 100 may be open. In some embodiments, greater than 60%, greater than 70%, and/or greater than 80% of implant 100 may be open (e.g., 95%). In some embodiments, the open volume may be filled with bone growth material. For example, cancellous bone may be packed into an open/internal region of implant.
In some embodiments, at least a portion of the surfaces of the implant may be coated/treated with a material intend to promote bone growth and/or bone adhesion and/or an antimicrobial agent to prevent infections. For example, in some embodiments, the surface of the struts may be coated with a biologic and/or a bone growth factor. In some embodiments, a biologic may include a coating, such as hydroxyapatite, bone morphaginic protein (BMP), insulin-like growth factors I and II, transforming growth factor-beta, acidic and basic fibroblast growth factor, platelet-derived growth factor, and/or similar bone growth stimulant that facilitates good biological fixation between the bone growth and a surface of the implant. In some embodiments, a bone growth factor may include a naturally occurring substance capable of stimulating cellular growth, proliferation and cellular differentiation (e.g., a protein or steroid hormone). In some embodiments, the surface of the implant (e.g., the struts, the external truss structure, etc.) may be coated with collagen.
In some embodiments, a biologic and/or growth factor may be secured to a central region of an implant. For example, in some embodiments, a biologic or growth factor may be provided on at least a portion of a strut that extends through central portion 501a and/or 501b of implant 100, see
As the implant settles into the implant site, subsidence may place additional pressure on the bone graft material (which may already be under compressive forces in the implant) and act to push the bone graft material toward the sides of the implant (according to Boussinesq's theory of adjacent material, when a force is applied to a member that is adjacent to other materials (such as sand, dirt, or bone graft material) the force against the member creates a zone of increased pressure (e.g., 60 degrees) in the adjacent material). Struts of the implant may resist bone graft material protrusion from the sides of the web structure and may increase the pressure of the bone graft material. Bone graft material may need to be implanted in a higher-pressure environment to create an environment conducive to strong bone growth (e.g., according to Wolf's law that bone in a healthy person or animal will adapt to the loads it is placed under). The web structure may thus increase the chance of stronger fusion.
Web structures formed from other truss configurations are also contemplated. For example, the trusses may include a series of packing triangles, a two-web truss, a three-web truss, etc. Further, the web structure for an implant may include one or more trusses as described in U.S. Pat. No. 6,931,812 titled “Web Structure and Method For Making the Same”, which issued Aug. 23, 2005, which is hereby incorporated by reference in its entirety as though fully and completely set forth herein.
At 1001, a three dimensional model of an implant is generated and stored in a storage medium accessible to a controller operable to control the implant production process. At 1003, a layer of material (e.g., a powder, liquid, etc.) is applied to a support. In some embodiments, the powder may include γTiAl (γTitanium Aluminides) which may be a high strength/low weight material. Other materials may also be used. The powder may be formed using a gas atomization process and may include granules with diameters approximately in a range of 20 to 200 micrometers (μm) (e.g., approximately 80 μm). The powder may be delivered to the support through a distributer (e.g., delivered from a storage container). The distributer and/or the support may move during distribution to apply a layer (e.g., of powder) to the support. In some embodiments, the layer may be approximately a uniform thickness (e.g., with an average thickness of 20 to 200 micrometers (μm)). In some embodiments, the distributer and support may not move (e.g., the material may be sprayed onto the support). At 1005, the controller moves an electron beam relative to the material layer. In some embodiments, the electron beam generator may be moved, and in some embodiments the support may be moved. If the material is γTiAl, a melting temperature approximately in a range of 1200 to 1800 degrees Celsius (e.g., 1500 degrees Celsius) may be obtained between the electron beam and the material. At 1007, between each electron beam pass, additional material may be applied by the distributer. At 1009, the unmelted material is removed and the implant cooled (e.g., using a cool inert gas). In some embodiments, the edges of the implant may be smoothed to remove rough edges (e.g., using a diamond sander). In some embodiments, the implant may include rough edges to increase friction between the implant and the surrounding bone to increase adhesion of the implant to the bone.
Other methods of making an implant are also contemplated. For example, an implant may be cast or injection molded. In some embodiments, multiple parts may be cast or injection molded and joined together (e.g., through welding, melting, etc). In some embodiments, individual struts forming the implant may be generated separately (e.g., by casting, injection molding, etc.) and welded together to form the implant. In some embodiments, multiple implants of different sizes may be constructed and delivered in a kit. A medical health professional may choose an implant (e.g., according to a needed size) during the surgery. In some embodiments, multiple implants may be used at the implant site.
Specialized tools may be used to insert the implants described herein. Examples of tools that may be used are described in U.S. Published Patent Applications Nos.: 2010/0161061; 2011/0196495; 20110313532; and 2013/0030529, each of which is incorporated herein by reference.
At step 1301, an intersomatic space is accessed. For example, an anterior opening may be made in a patient's body for an anterior lumbar inter-body fusion (ALIF) approach or a posterior opening may be made for a posterior lumbar inter-body fusion (PLIF) approach. At 1303, at least a portion of the intersomatic space is excised to form a cavity in the intersomatic space. At 1305, the implant is inserted into the cavity in the intersomatic space. In some embodiments, a handler, or some other device, is used to grip the implant. In some embodiments, a force may be applied to the implant (e.g., through a hammer) to insert the implant into the cavity. At 1307, before and/or after insertion of the implant, the implant and/or space in the cavity may be packed with bone graft material. At 1309, the access point to the intersomatic space may be closed (e.g., using sutures).
In some embodiments, the implant may be customized. For example, three dimensional measurements and/or shape of the implant may be used to construct an implant that distributes the web structure throughout a three-dimensional shape design.
In some embodiments, a truss/web structure may be disposed on at least a portion of an implant to facilitate coupling of the implant to an adjacent structure. For example, where an implant is implanted adjacent a bony structure, one or more truss structures may be disposed on and/or extend from a surface (e.g., an interface plate) of the implant that is intended to contact, and at least partially adhere to, the bony structure during use. In some embodiments, such as those including an intervertebral implant disposed between the end plates of two adjacent vertebrae during, one or more truss structures may be disposed on a contact surface of the intervertebral implant to facilitate bone growth that enhances coupling of the intervertebral implant to the bony structure. For example, a truss structure may include one or more struts that extend from the contact surface to define an open space for bone growth therethrough, thereby enabling bone through growth to interlock the bone structure and the truss structure with one another to couple the implant to the bony structure at or near the contact face. Such interlocking bone through growth may inhibit movement between the implant and the bony structure which could otherwise lead to loosening, migration, subsidence, or dislodging of the implant from the intended position. Similar techniques may be employed with various types of implants, including those intended to interface with tissue and/or bone structures. For example, a truss structure may be employed on a contact surface of knee implants, in a corpectomy device, in a hip replacement, in a knee replacement, in a long bone reconstruction scaffold, or in a cranio-maxifacial implant hip implants, jaw implant, an implant for long bone reconstruction, foot and ankle implants, shoulder implants or other joint replacement implants or the like to enhance adherence of the implant to the adjacent bony structure or tissue. Examples of truss structures, and other structures, that may extend from the surface of an implant to facilitate coupling of the implant to an adjacent structure are described in U.S. Published Patent Application No. 2011/0313532, which is incorporated herein by reference.
While implants described herein are depicted as being composed of substantially straight struts, it should be understood that the struts can be non-linear, including, but not limited to curved, arcuate and arch shaped. Examples of implants having non-linear struts are described in U.S. patent application Ser. No. 13/668,968, which is incorporated herein by reference.
Many bone structures in the human body need to have some flexibility for proper movement. For example, disks in the human spine need flexibility to accommodate the movement of the subject. Disks in the human spine exhibit viscoelastic properties. Under normal body weight, the disks creep, that is they get shorter with time. Lying down allows the spinal disks to recover their original shape. In an embodiment, an implant may include a web structure that includes a plurality of struts joined at noes, the web structure having an interface for bone tissue. The implant may include one or more elastic material to impart flexibility. In some embodiments, the implant may include one or more viscoelastic materials. A flexible material that may be used for the struts of an implant includes nickel-titanium alloys (e.g., nitinol). Other materials that may be incorporated into the implant include polymeric fibrous materials such as described in U.S. Pat. No. 7,905,921, which is incorporated herein by reference.
In an embodiment, depicted in
It has been discovered that small electrical charges may be used to induce increased BMP production from osteogenic cells. The difficulty, in practice, would be how to supply an implant with a power source that could generate the electrical charges to stimulate BMP production. Piezoelectric materials are materials that create an electric charge when subjected to mechanical stress. In an embodiment, an implant may be formed from titanium, or other conductive material, and a piezoelectric material may be coated on at least a portion of the struts. When implanted, the struts undergo mechanical stress due to the changing forces applied to the implant as the subject moves. The mechanical stress causes the piezoelectric material coated on the struts to produce electric charges that stimulate the production of BMP from attached osteoblasts. Examples of piezoelectric materials that may be used include, but are not limited to, gallium orthophosphate (GaPO4), langasite (La3Ga5SiO14), barium titanate (BaTiO3), Lead titanate (PbTiO3), lead zirconate titanate (Pb[ZrxTi1-x]O3 0≤x≤1, “PZT”), potassium niobate (KNbO3), lithium niobate (LiNbO3), lithium tantalate (LiTaO3), sodium tungstate (Na2WO3), zinc oxide (ZnO), Ba2NaNb5O5, Pb2KNb5O15), sodium potassium niobate ((K,Na)NbO3), bismuth ferrite (BiFeO3), sodium niobate (NaNbO3), bismuth titanate (Bi4Ti3O12), sodium bismuth titanate (Na0.5Bi0.5TiO3), and polyvinylidene fluoride (PVDF).
The physical properties of the struts of the implant may be varied such that the diameter and/or density of a first portion of a strut is different than a diameter of the second portion of a strut. In some embodiments, the first portion of the strut may be formed from a material that is different from the material used to form the second portion of the strut. In some embodiments, the first portion of the strut has a density that is different from the density of the second portion of the strut. In some embodiments, the first portion of a strut may have a porosity that is different from the porosity of the second portion of the strut. Any combination of these different physical properties may be present in an implant to help optimize the distribution of stress throughout the implant.
Electrospun materials may also be used to create electric charges in an implant. Materials formed from an electrospinning process generally are charged materials, since electrospinning relies on this charge to draw the fibers. In an embodiment, an implant may be formed from titanium, or other conductive material, and an electrospun material (e.g., a ceramic or polymer) may be coated on at least a portion of the struts. When implanted, the struts undergo mechanical stress due to the changing forces applied to the implant as the subject moves. The mechanical stress causes the electrically charged electrospun material coated on the struts to produce electric charges that stimulate the production of BMP from attached osteoblasts.
In accordance with the above descriptions, in various embodiments, an implant may include a web structure. The web structure for the implant may include a micro truss design. In some embodiments, the micro truss design may include a web structure with multiple struts. Other web structures are also contemplated. The web structure may extend throughout the implant (including a central portion of the implant). The web structure may thus reinforce the implant along multiple planes (including internal implant load bearing) and provide increased area for bone graft fusion. The web structure may be used in implants such as spinal implants, corpectomy devices, hip replacements, knee replacements, long bone reconstruction scaffolding, and cranio-maxifacial implants. Other implant uses are also contemplated. In some embodiments, the web structure for the implant may include one or more geometric objects (e.g., polyhedrons). In some embodiments, the web structure may not include a pattern of geometrical building blocks (e.g., an irregular pattern of struts may be used in the implant). In some embodiments, the web structure may include a triangulated web structure including two or more tetrahedrons. A tetrahedron may include four triangular faces in which three of the four triangles meet at each vertex. The web structure may further include two tetrahedrons placed together at two adjacent faces to form a web structure with a hexahedron-shaped frame (including six faces). In some embodiments, multiple hexahedron-shaped web structures may be arranged in a side-by-side manner. The web structures may connect directly through side vertices (e.g., two or more hexahedron-shaped web structures may share a vertex). In some embodiments, the web structure may be angled to provide lordosis to the implant.
In this patent, certain U.S. patents, U.S. patent applications, and other materials (e.g., articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.
Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description. For example, although in certain embodiments, struts have been described and depicts as substantially straight elongated members, struts may also include elongated members curved/arched along at least a portion of their length. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. Furthermore, it is noted that the word “may” is used throughout this application in a permissive sense (i.e., having the potential to, being able to), not a mandatory sense (i.e., must). The term “include”, and derivations thereof, mean “including, but not limited to”. As used in this specification and the claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a strut” includes a combination of two or more struts. The term “coupled” means “directly or indirectly connected”.
This application is a continuation of U.S. patent application Ser. No. 16/824,678, filed Mar. 19, 2020; which is a continuation of U.S. patent application Ser. No. 15/667,377, filed Aug. 2, 2017; which is a continuation of U.S. patent application Ser. No. 14/216,087, filed Mar. 17, 2014, which claims priority to U.S. Provisional Application Ser. No. 61/801,666 entitled “MOTION PRESERVATION IMPLANT AND METHODS” filed Mar. 15, 2013, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61801666 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16824678 | Mar 2020 | US |
Child | 18205928 | US | |
Parent | 15667377 | Aug 2017 | US |
Child | 16824678 | US | |
Parent | 14216087 | Mar 2014 | US |
Child | 15667377 | US |