The invention relates to a motion transmission gear structure, particularly for a vehicle steering gear or a windshield wiper drive including input and output shafts interconnected by a gear structure INCLUDING a curved motion transfer element.
A motion transmission gear structure of this type is known for example in the form of a steering gear from U.S. Pat. No. 1,814,988. Connected to the input shaft is an elliptical transmission element which has control grooves in which a control finger is received, which control finger is connected by means of an output lever to an output shaft. The pivoting angle of the output shaft, however, is small.
A mechanism for transmitting motion is also known from FR 799 517. In this case, a spherical transmission element having control grooves is partially enclosed by a cylindrical output shaft, a control finger being received in the grooves of THE transmission element.
It is the object of the present invention to provide a gearing structure vehicle which forms a drive with a relatively large a pivoting angle of the output shaft.
In a device for transmitting rotational movement including an input shaft, which is connected to an input element and an output shaft which is operatively connected to the input shaft by means of a gearing structure, the gearing structure has a transmission element in the shape of a sphere and the axes of the input and output shafts intersect at the center point of the transmission element.
A vehicle gearing structure according to the invention has a transmission element whose basic form is in the shape of a sphere, ellipse or hyperboloid of revolution. The transmission element may for example be designed as a sphere, as a hyperboloid of revolution, as an ellipsoid or as an elliptical swash plate. An efficient, cost-effective gear structure can be provided in this manner because simple gearing arrangements may thus be realized. In this case, for example, no components with complex internal machining are required.
In addition, the transmission element has a control groove in which a control finger is received, which control finger is connected by means of an output lever to the output shaft. Alternatively, the control finger may be represented by a rolling element which rolls in the control groove. In this case, the rolling element is connected to the output shaft by means of a bearing. On account of the spherical or elliptical basic form of the transmission element, constant engagement of the control finger in the control groove is ensured. In this case, an elliptical transmission element is used if an offset is required between the input and output shafts.
According to the invention, for a sphere the longitudinal axes of the input and output shafts intersect at the central point of the transmission element and the longitudinal axis of the control finger lies in a plane with the longitudinal axis of the input shaft.
In a further embodiment of the invention, the control groove is arranged in annular or helical form on the surface or in the body of the transmission element. In the case of a helical arrangement, the control groove is arranged so as to be inclined with respect to the longitudinal axis of the input shaft. The closed ring has the effect that, in one rotation of the input shaft, the output shaft is pivoted a maximum of once in one direction and then back again. In this case, the magnitude of the pivoting and hence the transmission ratio of the gearing are dependent on the inclination of the ring with respect to the longitudinal axis of the input shaft. Gearings of this type may for example be implemented in windshield wiper drives of vehicles.
In the case of a spherical basic form of the transmission element and an annular control groove, the control finger may be realized by means of balls of a ball bearing. In this case, the inner race (the inner ring) of the ball bearing is formed by the control groove or the inner race is attached to the control groove. The outer race (the outer ring) of the ball bearing is connected in a non-positive manner to the output shaft.
In the case of a helical arrangement of the control groove, the groove encircles the longitudinal axis of the input shaft helically, the local diameter varying as a function of the spherical or elliptical basic shape of the transmission element when progressing from one connection point of the transmission element and input shaft to the opposite connection point. In contrast to the elliptical basic shape, a hyperboloid of revolution has not a convex but a concave basic form. Gearings of this type may for example be used as a steering gear in a vehicle. In this case, the transmission ratio of the gearing is established by means of the length and hence the number of turns of the control groove.
In a further embodiment, the helical control groove has a different pitch, at least in segments. In this way, a variable ratio between the input and output shafts can be realized.
By way of example, the turns of the control groove in the region of greatest radial extent of the transmission element may lie closer together and thus have a lower pitch than in the end regions which are closer to the connection points of the transmission element and the input shaft.
An advantageous exemplary application of a configuration of this type is in a steering gear of a steered vehicle. In this way, small steering movements of the input shaft about a central position when driving straight ahead, in which situation the control finger runs perpendicular to the input shaft, result in only small angular changes of the output shaft, whilst larger steering movements, by means of a larger steering input at a steering handle which is connected to the input shaft, cause a more pronounced steering movement at the output shaft. This is particularly advantageous in applications in various driving situations. Small steering movements at high speed, for example when driving on a freeway, should effect small changes in the direction of travel. In the case of low speed or parking maneuvers, in which large steering angle changes are regularly required, an increase in ratio at large steering angles has the effect that a driver need only apply a small number of rotations to the input shaft by means of the steering wheel in order to turn the steerable vehicle wheels suitably sharply.
In a further embodiment, an actuating device such as an actuating motor is present, by means of which the position of the control finger relative to the output lever may be varied. A pivoting of the control finger effects a pivoting movement of the output lever and hence a pivoting of the output shaft connected to the output lever. Since a pivoting of the control finger independently of a rotational movement of the input shaft causes a pivoting movement of the output shaft, superposition of a pivoting movement may thus be generated.
The use of the device according to the invention as a steering gear of a vehicle thus permits a superposition gearing to be realized, by means of which a steering intervention can be realized in order to influence the driving behavior of the vehicle. By way of example, a steering angle which increases driving stability may be applied to the steered vehicle wheels by means of the steering gear, which is connected to the steerable vehicle wheels by means of a steering linkage, if a controller detects an unstable driving situation. A steering angle which for example increases the agility of the vehicle may likewise be applied.
In a further embodiment of the invention, the control groove has a curved cross section, at least in segments. The curved segment, is particularly in the form of a circle, such that when the control finger is engaged in the control groove, the longitudinal axis of said control finger runs perpendicular to the surface of the control groove at all times, independently of the degree of pivoting of the control finger.
In a further embodiment, the transmission element is hollow and/or has a porous surface. In this way, for example, a lightweight gearing can be realized. The required stiffness for transmitting steering moments from the input shaft to the output shaft may, if appropriate, be achieved in this case by means of struts running within the hollow space of the transmission element. The transmission element may also be formed solely by the circumferential control groove and connections running between the turns.
The invention is described in more detail below with reference to the accompanying drawings:
In
An output shaft 10 is arranged substantially orthogonally with respect to the longitudinal axis 7 of the input shaft 5 and is pivotably mounted at two bearing points 11. The output shaft 10 is in this case arranged relative to the input shaft 5 in such a way that the respective longitudinal axes 7, 12 of the two shafts 5, 10 intersect at the central point 34 of the spherical transmission element 30.
An output lever 15 in the form of an angular arm is connected in a non-positive manner to an end of the output shaft 10 adjacent the transmission element 30. A control finger 20, which projects into the control groove 40, is arranged at an end of the output lever 10 adjacent the transmission element 30. In
The output lever 15 may however also have a second arm which, together with the previously mentioned first arm of the output lever 15, forms a claw. In this case, a control finger 20 is likewise arranged at that end of the second arm which faces toward the transmission element 30, which control finger extends into the control groove 40. In the position illustrated in
The invention is however not restricted to a symmetric embodiment of this type. An asymmetry may in fact be present in the pitch of the control groove 40, for example between the left and right halves of the transmission element 30 illustrated in
It may easily be comprehended that the arm or arms of the output lever 15 may also be of curved design, for example so as to be equidistant from the surface 33 of the spherical transmission element 30.
In
Such a pivoted position of the control finger 20 is illustrated in
A pivoting of the longitudinal axis 21 of the control finger 20 causes a pivoting movement of the guide unit 16, as a result of which a pivoting movement of the output shaft 10 is achieved by means of the output lever 15. An additional pivoting angle of the output shaft 10 may thus be achieved by controlling the pivoting motor 18. Said additional pivoting angle is superposed on a pivoting angle generated by the transmission element 30 in the event of rotation of the input shaft 5. As a result, the pivoting angle of the output shaft 10 may be greater or smaller than a pivoting angle caused by the pitch of the control groove 40 of the transmission element 30 in a gearing without a pivoting motor 18.
The input shaft 5 and the output shaft 10 may be supported at the bearing points 6, 11 on a housing in which the gear structure is disposed.
Number | Date | Country | Kind |
---|---|---|---|
103 27 440.5 | Jun 2003 | DE | national |
This is a Continuation-in-Part Application of International Application PCT/EP2004/006364 filed Jun. 12, 2004 and claiming the priority of German application 103 27 440.5 filed Jun. 18, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP04/06364 | Jun 2003 | US |
Child | 11305882 | Dec 2005 | US |