1. Field of the Invention
The present invention relates to a motion vector prediction method, and more particularly, to a motion vector prediction method in an error resilient mode.
2. Description of the Related Art
In general, redundancy of a moving picture must be effectively eliminated so as to compress the moving image. The moving picture experts ground (MPEG) adopts a motion prediction method. According to the motion prediction method, the current frame is divided into a plurality of macro blocks, and then each macro block (reference block) is compared with each macro block (matching block) of a previous frame within a given area, to calculate the difference therebetween. Then, the macro blocks having the lowest difference are selected to calculate motion vectors representing the difference in positions between the reference and matching blocks. In the motion vector prediction, the difference between a predicted motion vector and actual motion vector of the current block is encoded, in place of encoding the motion vector itself of the current block, thereby improving coding efficiency.
In
Here, prior to transmission of the difference among each 15 motion vector, motion vector prediction is separately performed in upper subblocks 121, 122, 141 and 142 and lower subblocks 123, 124, 143 and 144 of the macro blocks 12 and 14 from the macro block 10 in a solid arrow direction. Here, a motion vector is predicted from motion vectors calculated in the upper subblock 142, the macro blocks 16 and the subblocks 181 through 184 of the macro block 18 with correlation. However, the motion vector prediction is not performed between the motion vectors of the subblock 144 and the macro block 16, and the motion vector prediction continues toward the lower subblocks 183 and 184 from the macro block 16.
Thus, if an error occurs, the motion vector can be decoded from the macro block 16 toward the upper subblock 142 in a backward direction. However, if an error occurs in the lower subblock 123 of the macro block 12, it is not possible to reversely calculate the motion vectors of the subblock 144 and its left subblock 143 from the macro block 16 using a motion vector prediction code.
As a result, it is not possible to decode the blocks following the erroneous block, thereby increasing loss in motion vector value. Although an error concealment is adopted, there is a problem of loss of information.
To solve the above problems, it is an object of the present invention to provide a motion vector prediction method capable of restoring a motion vector lost after an error occurs, through backward decoding, even when information is lost during transmission due to the error.
Accordingly, to achieve the above object, there is provided a motion vector prediction method capable of decoding backwards, comprising the steps of: (a) calculating motion vectors of macro blocks; and (b) predicting motion vectors of macro blocks each having one motion vector while moving to another macro block from left to right, and motion vectors of macro blocks each having four motion vectors continuously in a predetermined sequence to have correlation in prediction of the four motion vectors.
Preferably, in the step (b) when one macro block has one motion vector, the motion vector prediction of the current block is performed using the motion vector of the macro block on the left of the current block or the previous coded macro block.
Preferably, in the step (b) when one macro block has four motion vectors, the motion vectors are continuously predicted from the motion vectors of the upper-left, lower-left, lower-right and upper-right subblocks in sequence.
The above object and advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings in which:
Referring to
The motion vectors are predicted in a solid arrow direction as shown in FIG. 2. That is, the motion vectors are predicted from the macro block 20 toward the macro block 22 having four motion vectors, through subblocks 221, 223, 224 and 222 in sequence, and then through subblocks 241, 243, 244 and 242 of the macro block 24. The prediction of motion vectors continues in the macro blocks 26 and 28 in the direction indicated by solid arrows.
Thus, in case that an error occurs in the subblock 223 and the macro block 28 is the last macro block of the erroneous group of blocks (GOB) when the difference between motion vectors is transmitted, motion vectors of non-erroneous blocks can be restored by reversely decoding in sequence from the subblock 282 of the macro blocks 28 in the direction indicated by dashed arrows. This is because the motion vector prediction continues with a correlation among the motion vectors of each block.
While the present invention has been illustrated and described with reference to a specific embodiment, further modifications and alterations within the spirit and scope of this invention as defined by the appended claims will occur to those skilled in the art.
As described above, in the motion vector prediction method according to the present invention, which is based on the image signal compression method of the MPEG-4 or H.263 standard, the motion vector prediction is performed with continuity and correlation among the motion vectors, so that two-way decoding is possible during transmission of blocks with a predetermined packet, resulting in better error resilient characteristics.
This application is an application filed under 35 U.S.C. §111(a), claiming benefit pursuant to 35 U.S.C. §119(e)(1) of the filing date of the Provisional Application No. 60/067, 015, filed Dec. 1, 1997, pursuant to 35 U.S.C. §111(b).
Number | Name | Date | Kind |
---|---|---|---|
5227878 | Puri et al. | Jul 1993 | A |
5530481 | De With et al. | Jun 1996 | A |
5886742 | Hibi et al. | Mar 1999 | A |
6026195 | Eifrig et al. | Feb 2000 | A |
6163576 | Lempel | Dec 2000 | A |
6175593 | Kim et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
1166255 | Nov 1997 | CN |
1479528 | Mar 2004 | CN |
0 798 929 | Oct 1997 | EP |
2-226985 | Sep 1990 | JP |
5-115061 | May 1993 | JP |
6-105299 | Apr 1994 | JP |
6-153181 | May 1994 | JP |
7-30896 | Jan 1995 | JP |
8-79767 | Mar 1996 | JP |
8-251601 | Sep 1996 | JP |
9-51540 | Feb 1997 | JP |
9-154141 | Jun 1997 | JP |
9-187016 | Jul 1997 | JP |
10-136369 | May 1998 | JP |
10-136374 | May 1998 | JP |
Number | Date | Country | |
---|---|---|---|
60067015 | Dec 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09201816 | Dec 1998 | US |
Child | 10862912 | US |