The invention will become more fully understood from the detailed description given herein below illustration only, and thus is not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
As shown in
The shaft 21 is the rotating center of the rotor structure 2. When the shaft 21 rotates, the whole rotor structure 2 is driven to rotate together. The shaft 21 can be made of metal, such as a stainless steel. The holding ring 22 is annular, and disposed around the shaft 21. The connecting portion 23 is disposed between the shaft 21 and the holding ring 22 to enhance the bonding between the shaft 21 and the holding ring 22. In the embodiment, the connecting portion 23 is formed with the shaft 21 or the holding ring 22 as a monolithic piece, and can be a recess of the shaft 21 or a protrusion of the holding ring 22. Alternatively, the connecting portion 23 can be a protrusion of the shaft 21 or a recess of the holding ring 22 in this embodiment. Therefore, by the structure of the connecting portion 23, the bonding in the axial and/or lateral direction between the shaft 21 and the holding ring 22 can be strengthened. In the embodiment, the connecting portion 23 can have various shapes, such as a lathe groove (a), a lathe thread (b), a milling plane (c), a milling groove (d), a drilling hole (e), a punching groove (f) or a rolling flower (g) profile at the surface of the shaft 21 as shown in
In the embodiment, the holding ring 22 can be connected with the shaft 21 by adhering or wedging. Especially when the holding ring 22 is made of a plasticized nonmetal material, such as a die-casting material or a thermosetting material, the holding ring 22 also can be connected with the shaft 21 by injection-molding. In practice, firstly the shaft 21 is disposed in a mold and then the plasticized nonmetal material is guided into the mold to form the holding ring 22, so that the holding ring 22 can be tightly fixed to the periphery of the shaft 21 with a stronger bonding due to the connecting portion 23. In addition, the holding ring 22 has at least a hollow part 221 which is disposed along the axial direction of the holding ring. Hence, the weight of the rotor structure 2 can be reduced without affecting the bonding, while reducing the cost of material and promoting the reliability and efficiency of the rotor structure 2. As shown in
Referring to
As shown in
The stator structure 31 includes a magnetically conductive element 311 and a driving device 312. In the embodiment, the magnetically conductive element 311 is disposed around the magnetic element 25 and is opposite to the magnetic element 25. The magnetically conductive element 311 includes at least a silicon steel sheet and at least a winding wound around the silicon steel sheet. The driving device 312 is electrically connected with the magnetically conductive element 311 for controlling the magnetically conductive element 311, especially the current direction of the winding, to produce the magnetic field by which the rotor structure 2 is driven to rotate. In the embodiment, the driving device 312 is a circuit board. Please note that, the stator structure 31 of the embodiment is an aspect only and not the main feature by which the invention is distinguished from the prior art.
As mentioned above, the inner-rotor type motor and the rotor structure according to the invention have at least a connecting portion disposed between the shaft and holding ring, so that the holding ring and the shaft can be tightly fixed to each other. The connecting portion of the invention can be formed with the shaft or the holding ring as a monolithic piece. That is, the connecting portion can act as a recess or a protrusion on the shaft or the holding ring. Compared with the prior art, the holding ring and the shaft can be fixed more tightly by the connecting portion and hence avoid separation. When the holding ring is made of plasticized material, injection-molding can be applied so that the holding ring and the shaft can be tightly fixed to each other. Moreover, the holding ring, the shaft, the magnetically conductive shell and the magnetic element are formed as a monolithic piece by injection-molding. Alternatively, the holding ring, the magnetically conductive shell and the magnetic element can be formed as a monolithic piece by injection-molding and then wedged with the shaft. In this case, the magnetically conductive shell may exist or not depending on the practical needs. In addition, since the specific gravity of the plasticized material is about 1.2, which is much smaller than that of material of the iron center used in the conventional motor, the inner-rotor type motor and the rotor structure of the invention can be reduced in weight, thus enhancing their reliability and efficiency.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
095123744 | Jun 2006 | TW | national |